
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. N. Grandjean, président du jury
Prof. P. De Los Rios, Dr M. Marsili, directeurs de thèse

Prof. J.-Ph. Bouchaud, rapporteur 
 Dr F. Hashemi, rapporteur 

Prof. R. Mantegna, rapporteur 

Modern Portfolio Theory Revisited: from Real Traders to 
New Methods

THÈSE NO 5255 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 20 janvier 2012

 À LA  FACULTÉ DES SCIENCES DE BASE
LABORATOIRE DE BIOPHYSIQUE STATISTIQUE

PROGRAMME DOCTORAL EN PHYSIQUE 

Suisse
2012

PAR

David Morton de Lachapelle



2 Modern Portfolio Theory Revisited

Acknowledgement

I am very much grateful to Swissquote Bank for the opportunity to carry out my thesis within

the Quantitative Asset Management Dept. A warm thank you to the wonderful QAM team

members for your constant support and all our fruitful discussions. I am truly indebted to my

thesis Director Paolo de Los Rios and co-Director Matteo Marsili for their trust in me and my

work, and to the three reviewers of my dissertation: Jean-Philippe Bouchaud, Rosario Mantegna,

and Fariba Hashemi, for their involvement in reviewing the manuscript.

I dedicate this thesis to my family and friends who all came along for the ride and without

whom none of this would have been possible. Special thanks go to my Dad, my Bro, Mum, Isa,

SQ Noyau Dur, NT4R, and Aitana & EPFL friends.

Last but not least, very special thanks to you my dear and sweet Eva for your unflagging love

and support.



3

Résumé

Le comportement des traders en-ligne est tout d’abord analysé puis modélisé. On montre que

l’investisseur moyen se comporte comme un minimiseur de mean-variance en finance. Sous cette

description, on montre également que les frais de transaction des courtiers jouent un rôle pri-

mordial dans l’explication des motifs d’investissement révélés par l’analyse, et en particulier

dans celle d’une relation semi-empirique reliant l’investissement moyen à la valeur en porte-

feuille. Puisque les investisseurs en-ligne tiennent compte des coûts de transaction dans leur

stratégie d’investissement, il sont également sensibles aux coût élevés de rotation des positions

de leur portefeuille. Des solutions pour éviter de trop importantes fluctuations du portefeuille

sont étudiées : tout d’abord dans le cas unidimensionnel, où l’on montre que les estimateurs de

dispersion minimale améliorent la précision ainsi que la variance des estimations de volatilité

et de valeur-à-risque, puis dans un environnement multi-asset où la matrice de covariance idéale

devrait avoir de bonnes propriétés de conditionnement afin de maintenir le turnover du porte-

feuille à un niveau raisonnable. Plusieurs résultats théoriques sont obtenus en utilisant la théorie

des matrices aléatoires, comme par exemple une équation pour la transformée de Stieltjes de la

densité des valeurs propres de la matrices de corrélation de variables i.i.d., construite à l’aide

d’un profile de poids décroisant dans le temps. Les résultats trouvés dans le cas unidimen-

sionnel sont généralisés, menant à l’introduction des matrices de covariance à longue mémoire.

Finalement, un actuel “fléau de la dimension” en finance est abordé par la généralisation de la

méthode du Spectral Coarse Graining, une technique de réduction des réseaux complexes qui est

étendue ici à la simplification du problème de l’optimisation de la mean-variance.

Mots-clés : allocation de portefeuille ; optimisation de la mean-variance ; matrices aléatoires ;

valeur-à-risque ; volatilité ; stabilité des estimateurs ; conditionnement des matrices ; spectral coarse-

graining
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Summary

In the first place the behavior of (online) traders on markets is analyzed and modeled, and it

is shown that the average investor behaves as a mean-variance optimizer in finance. Within this

description, transaction costs play a key role in explaining observed investment patterns and in

particular an important uncovered relation between average investment and portfolio value. As

online investors take into account transaction costs in their investment strategy, they are also

sensitive to high portfolio rebalancing costs. Solutions to avoid high portfolio turnovers are

investigated: first in the one-dimensional case, where it is shown that estimators with minimal-

dispersion improve both the accuracy and the variance of volatility and Value-at-Risk forecasts;

second, in a multi-asset environment where the ideal covariance matrix must have good con-

ditioning properties to maintain reasonable portfolio turnover. Theoretical results are derived

using Random Matrix Theory, as for instance an equation for the Stieltjes transform of the eigen-

value density of i.i.d. correlation matrices with general time-decreasing weight profiles. Results

found in the one-dimensional case are generalized leading to long-memory covariance matri-

ces. Finally, a “curse of dimensionality” in portfolio allocation is tackled by generalizing the

Spectral Coarse Graining, a method of reduction for complex networks, that is extended to the

simplification of the mean-variance optimization problem.

Keywords : portfolio allocation ; mean-variance optimization ; random matrices ; value-at-risk ;

volatilty ; estimator stability ; matrix conditioning ; spectral coarse-graining
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Motivations

1.1 A time-proof theory

More than 50 years have elapsed since economist and Nobel Laureate Harry Markovitz put

forward his theory of portfolio selection (1952). Fifty years during which the theory has been

disputed, sometimes challenged, refined and improved to finally become one of the most sig-

nificant breakthroughs of quantitative methods into the world of finance. Along with younger

Black and Scholes pricing scheme for derivatives (1973) and Engle’s autoregressive description

of asset returns (1982), Modern Portfolio Theory (MPT) is today a major pillar of the financial

investment worldwide and as such an essential ingredient of our market economy. But how did

this theory gain such acclaim so that, time passing by, it is still at the very root of investment

strategies deployed by many fund managers and financial institutions worldwide? What makes

this theory so important, and what makes it last when many others have not survived the test of

time? What does Markovitz’s framework teach us about markets and its constituting element,

the investor? What are tomorrows’ challenges to be faced by portfolio allocation and how can

the theory be improved to tackle this task? These are some of the questions that will be touched

upon in this dissertation.
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1.2 Agents building their portfolios: when costs and size matter

Empirical facts at the agent level

At the very ground of the financial system lies the investor. The price of an asset fluctuates, rises

up, or suddenly collapses as a result of actions taken by investors—at least most of the times1.

It seems therefore natural to start investigating financial markets by giving a close look at its

constituting and determining elements. Two serious problems make this tempting approach

difficult. Real investors greatly differ in means and strategies, which requires a theory capable

of capturing heterogeneity at the agent level while still offering understandable and tractable

outputs. This framework should be developed by taking into account empirical facts about real

investors, which raises the issue of the availability of datasets with rich enough information on

the market participants.

This is where online brokers can help. Swissquote Bank (the largest Swiss online broker) owns a

dataset of comprehensive details about million of orders sent to the market by more than 180’000

online investors over the past 10 years. The level of details is impressive, as is the complexity of

the data.

The dissertation opens with a paper, recently published in New Journal of Physics, that is the

fruit of an intense collaboration with Damien Challet. In this study, we only touch the tip of

the iceberg representing this huge amount of data, but the preliminary observations are shown

to be extremely encouraging. Two of them have particularly caught my attention: (1) be they

individuals, companies, or asset managers, online traders behave collectively as mean-variance

optimizers and (2) a significant number of online investors take into account transaction costs

in their investment strategy, and therefore do care about high portfolio turnovers. The first

observation places the mean-variance optimization (MVO), cornerstone of Markowitz’s theory,

at a leading position of the first principles driving financial markets. The second one has lead me

to wonder about the causes and remedies for high turnovers in the mean-variance framework.

Stable estimators: the issue of portfolio turnovers and transaction costs

When I started to think about this issue, I realized that volatility was given considerably more

attention than portfolio turnover in MVO. This was surprising at first sight because the high
1Technical failures of markets may happen sometimes; when they occur market places have the means to restore their

system, e.g. by canceling and reseting at a safer moment all the pending orders.



1.2. Agents building their portfolios: when costs and size matter 13

costs induced by important portfolio turnovers are one of the main causes of losses within the

population of active traders. Why is it so, then? Perhaps because the major market players

(e.g. financial institutions or hedge funds) seem to be rather insensitive to transaction costs (they

usually negotiate flat-fee rates), or maybe because, at least in the mean-variance allocation frame-

work, costly portfolio rebalancing can be easily avoided by adding “brute-force” constraints into

the minimization process.

In my opinion if these were true reasons they would suffer from major drawbacks. On the one

hand, as shown in this dissertation, a significant part of the market participants do care about

high rebalancing costs of their positions in portfolio. They may not be the most influential ones,

but their collective role has to do with fluctuations, liquidity, transmission of “information”, and

is probably as important as the one played by the biggest players (e.g. unlike institutions they

were recently found to be consistently contrariant hence providing liquidity to the market).

On the other hand, adding constraints to the mean-variance optimization in order to limit trans-

action costs inevitably increases the portfolio in-sample volatility, which in turn induces higher

out-of-sample risk leading to the opposite of the desired outcome. My goal is to shown that low

portfolio turnovers, much like low volatilities, can and should result from an efficient and stable

estimation of risk instead of from some ad hoc “fixing method”.

In Chapter 3 I analyze the weighted-estimators of volatility that produce estimates with mini-

mum dispersion and minimum mean-squared error. In particular, I show that these estimators

exhibit long-memory, much like the volatility autocorrelation upon which they strongly depend.

The analysis is extended in Chapter 4 to handle multi-asset portfolios by introducing and ana-

lyzing a class of weighted estimators, the long-memory covariance matrices, which are shown to

improve the accuracy of covariance forecasts while offering better control on portfolio turnovers

than exponentially-weighted estimators. In this chapter, I make extensive use of Random Matrix

Theory, a subject that was introduced to me by Olivier Lévèque who became my main collabo-

rator on this project.

The last part of the dissertation was also motivated by practical considerations that showed up

when evolving in the Swissquote environment. It is related to diversification and a so-called

“curse of dimensionality” in the world of (online) brokers.
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The curse of dimensionality: diversification and correlations in the stock market

Diversification is an essential ingredient of modern portfolio allocation. An investor who is able

to diversify his investments across, say many stocks (at reasonable costs), reduces substantially

the risk of losing an important part of his capital after e.g. the bankruptcy of any of them.

With the specific risk diversified out, risk management mainly follows statistical and technical

considerations; in short there is no need to scrutinize the results of a company to decide whether

it is worth buying shares.

But is diversification always possible? As depicted in Fig. 1.1 cross-correlations in the stock

market have been skyrocketing since year 2000. One therefore expects that investing in N stocks

today does not have the same diversification power as the one that same investment would have

had in the eighties or in the nineties. In other words to maintain a constant level of effective

diversification in their portfolios asset managers should invest in more and more stocks as time

goes by.

The latter constraint does pose a technical challenge. Large portfolios of stocks need constant

rebalancing to stick to the target of their investment strategy (e.g. the mean-variance portfolio).

This in turn is only feasible if one is able to recompute the target portfolio on a frequent basis and

in an efficient way. In the mean-variance allocation this possibility is by no means guaranteed.

Indeed, with thousands of stocks in portfolio even the more efficient algorithms would struggle

recomputing at such a high frequency (e.g. intra-day) the optimal mean-variance portfolio.

Furthermore, the last few years have seen the democratization by online brokers of e-banking

solutions based on quantitative allocation methods. When thousands of accounts are concerned

with a similar but not identical investment strategy (i.e. the global strategy may be the same

but parameter values are usually specific to the investor, e.g. risk tolerance), it leverages the

computing power required to maintain the strategy.

Along with Paolo De Los Rios I have developed a spectral-based method of coarse graining to

reduce to its effective size the risk estimator used in the mean-variance optimization (MVO),

namely the covariance matrix of returns. The method was recently introduced by Paolo and

David Gfeller as a mean to simplify complex networks while preserving important properties.

To fit in the financial context it has been first thoroughly formalized (Appendix B), and then

extended to the simplification of MVO in finance (Chapter 5).

The last research project of this thesis is directed to the biggest market players who are not
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Figure 1.1: Left plot: mean (Pearson) correlation between the daily returns of 30 major world stock indices. Right
plot: the somewhat unrelated daily absolute returns of the S&P500 (i.e. a proxy for daily volatility on the stock
market). Six-month moving averages are shown for better readability.

sensitive to high portfolio turnovers and who do care about maintaining a high level of effective

diversification in an increasingly correlated market.
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2

Portfolio allocation: the perspective of

online investors

2.1 Motivations

The availability of large data sets on financial markets is one of the main reasons behind the

number and variety of works devoted to their analysis in various fields, and especially so in

Econophysics since physicists much prefer to deal with very large data sets. At the macro-

scopic level, the analysis of millions of tick-by-tick data points uncovered striking regularities of

price, volume, volatility, and order book dynamics (see [61, 15, 30, 13] for reviews). Since these

phenomena are caused by the behavior of individual traders, news, and the interplay between

the two, finding a microscopic mechanism that allows agent-based models to reproduce some

of these stylized facts is an important endeavor meant to give us insight on the causes for large

fluctuations, be it herding [29], competition for predictability [23], portfolio optimization leading

to market instability [71], or chaotic transitions [19].

Market phenomenology appears as a typical example of collective phenomena to the eyes of

statistical physicists. Thus, the temptation to regard the numerous power-laws found in em-

pirical works as signatures of criticality is intense. But if the former are really due to a phase

transition, one wishes at least to know what the phases are, which is hard to guess from the

data alone. According to early herding theoretical models [29], the phase transition may lie in

the density of social communication and imitation, and is of percolation type, thereby linking
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power-law distributed price and volume, criticality and agent-behavior. The standard Minor-

ity Game [25] has also a single phase transition point where market predictability is entirely

removed by the agents, without any specular effect on price and volume; on the other hand,

grand-canonical MGs [75, 53, 21, 22] that allow the agents not to play have a semi-line of critical

points that do produce stylized facts of price, volume and volatility dynamics; in the framework

of statistical physics, the phase transition is due to symmetry breaking, i.e., it is a transition be-

tween predictable and perfectly efficient markets; this also suggests that the emergence of large

fluctuations is due to market efficiency.

There are of course many other possible origins of power-laws in financial markets that have

nothing to do with a second order phase transition. The simplest mechanism is to consider

multiplicative random walks with a reflecting boundary [64]. Long-range memory of volatil-

ity is well-reproduced in agent-based models whose agents act or do nothing depending on a

criterion based on a random walk [14]. Assuming pre-existing power-law distributed wealth,

an effective theory of market phenomenology links the distributions of price returns, volume,

and trader wealth [37]. On the other hand, markets are able to produce power-law distributed

price returns by simple mechanisms of limit order placement and removal without the need for

wealth inequality [24, 36]. However, in turn, one needs to explain why limit orders are placed in

such manner; the heterogeneity of time scales may provide an explanation of order placement

far away from best prices if power-law distributed [58], but additional work is needed in order

to explain order placement near best prices, which causes these large price moves. Finally, a

recent simple model of investment with leverage is able to reproduce some stylized facts [78].

But mechanisms alone may not be sufficient to replicate the full complexity of financial markets,

as some part of it may lie instead in the heterogeneity of the agents themselves. While the need

for heterogeneous agents in this context is intuitive (see e.g. [2]), there is no easily available data

against which to test or to validate microscopically an agent-based model. Even if it is rela-

tively easy to design agent-based models that reproduce some of the stylized facts of financial

markets (see e.g [60, 20, 19, 23, 1]), one never knows if this is achieved for good reasons, ex-

cept for volatility clustering [14]: it is to be expected that real traders behave sometimes at odds

with one’s intuition. Thus, without data about the traders themselves, one is left with the often

frustrating and time-consuming task of reverse-engineering the market in order to determine

the good ingredients indirectly. Some progresses have been made recently with the analysis of

transactions in Spanish stock market aggregated by brokers [81], hence with mesoscale resolu-
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tion.

Data on trader behavior is found in the files of brokers, usually shrouded in secrecy. But this lack

of data accessibility is not entirely to blame for the current ignorance of real-trader dynamics:

researchers, even when given access to broker data, have focused on trading gains and behavioral

biases, often with factor-based analyses (see e.g. [6, 7, 32]).

We aim at providing a coherent picture of how various types of traders behave and interact,

making it possible for agent-based models to rest on a much more solid basis. This work is the

first step towards establishing stylized facts about trader characteristics and behavior. One of the

most important aspects will be to characterize the heterogeneity of the traders in all respects (ac-

count value, turnover, trading frequency, behavioral biases, etc.) and the relationships between

these quantities in probability distribution, not with factors. This chapter is first devoted to the

description of the large data set that we use; it then focuses on the relationship between trader

account value, turnover per transaction and transaction costs, both empirically and theoretically.

We will show that while the traders have a spontaneous tendency to build equally-weighted

portfolios, the number of stocks in a portfolio increases non-linearly with their account value,

which we link to portfolio optimization and broker transaction fee structure.

2.2 Description of the data

Our data are extracted from the database of the largest Swiss on-line broker, Swissquote Bank SA

(further referred to as Swissquote). The sample contains comprehensive details about all the 19

million electronic orders sent by 120’000 professional and non-professional on-line traders from

January 2003 to March 2009. Of these orders, 65% have been canceled or have expired and 30%

have been filled; the remaining 5% percent were still valid as of the 31st of March 2009. Since

this study focuses on turnover as a function of account value, we chose to exclude orders for

products that allow traders to invest more than their account value, also called leveraging, i.e.,

orders to margin-calls markets such as the foreign exchange market (FOREX) and the derivative

exchange EUREX. The resulting sample contains 50% of orders for derivatives, 40% for stocks,

and 4% for bonds and funds. Finally, 70% of these orders were sent to the Swiss market, 20% to

the German market and about 10% to the US market.

Swissquote clients consist of three main groups: individuals, companies, and asset managers. In-
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Figure 2.1: Reciprocal cumulative distribution function of the portfolio value Pv for the three categories of clients at
the time of their first (empty symbols) and last (filled symbols) transactions. Several models have been fitted to the
data byMaximum Likelihood Estimation (MLE): the Student distribution (Pareto with plateau), the Weibull (stretched
exponential), and the log-normal distribution. The best candidate, determined graphically and via bootstrapping the
Kolmogorov Smirnov test [26] was found to be the log-normal distribution, which is the only one shown here for the
sake of clarity. The dashed line in light blue results from a MLE fit to the tail of the individual traders with the Pareto
distribution p(x) ∼ (x/xmin)−γ (see section 2.3.1).

dividual traders, also referred to as retail clients, are mainly non-professional traders acting for

their own account. The accounts of companies are usually managed by individuals trading on

behalf of a company and, as we shall see, behave very much like retail clients, albeit with a larger

typical account value. Finally, asset managers manage accounts of individuals and/or compa-

nies, some of them dealing with more than a thousand clients; their behavior differ markedly

from that of the other two categories of clients.

2.3 Results

2.3.1 Account values

Numerous studies have been devoted to the analysis and modeling of wealth dynamics and

distribution among a population (see [84] and references therein). The general picture is that

in a population, a very large majority lies in the exponential part of the reciprocal cumulative
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Table 2.1: Results of the fits of Pareto law (x/xmin)γ to the account value Pv of individuals.

individuals γ xmin
first transaction 2.33 ∈ [2.29, 2.37]95 2.30 · 106 ∈ [1.99 · 106, 2.59 · 106]
last transaction 2.39 ∈ [2.33, 2.44]95 3.73 · 106 ∈ [3.15 · 106, 4.29 · 106]

Table 2.2: Parameter values and 95% confidence intervals for the MLE fit of the account values to the log-normal
distribution lnN(μ,σ2). For each category of investors, the first and second row correspond to the account value at
the time of the first, respectively the last transaction (see text). Note that portfolio values have been multiplied by an
arbitrary number for confidentiality reasons. This only affects the value of μ.

μ σ

individuals 13.94± 0.02 2.87± 0.01
14.25± 0.02 2.01± 0.01

companies 16.0± 0.2 2.0± 0.1
15.9± 0.2 2.4± 0.1

asset managers 16.7± 0.2 1.8± 0.1
16.7± 0.2 2.0± 0.1

distribution function, while the wealth of the richest people is Pareto-distributed, i.e., according

to a power-law.

The account value of Swissquote traders is by definition the sum of all their assets (cash, stock,

bonds, derivatives, funds, deposits), and denoted by Pv. In order to simplify our analysis, we

compute Pv once per day after US markets close and take this value as a proxy for the next day’s

account value. Figure 2.1 displays this distribution computed at the time of the first and last

transactions of the clients. Results are shown for the three main categories of clients. Maximum

likelihood fits to the tail of the individual traders to the Pareto model p(x) ∼ (x/xmin)−γ were

performed using the BCa bootstrap method of [34] and determining the parameter xmin by

minimizing the Kolmogorov-Smirnov statistics as in [26]. Results are reported in table 2.1.

The values of γ are in line with the wealth distribution of all major capitalistic countries (see [76]

for a possible origin of Pareto exponents between 2.3 and 2.5). Thus the retail clients are most

probably representative of the Swiss population. The account value distributions of companies

and asset managers have no clear power-law tails, in agreement with the results of a recent model

that suggests a log-normal distribution of mutual fund asset sizes [72]. Consequently, figure 2.1

also reports a fit of the data to log-normal distributions lnN(μ, σ2), which approximate more

faithfully P>(Pv) than the Student and the Weibull distributions for the three categories of clients,

except its extreme tail in the case of retail clients.
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Figure 2.2: Reverse cumulative distribution function of the mean turnover per transaction for the three categories
of clients, and for both stock and derivative transactions. In the insets, the tail part of the RCDF of 〈Tnorm〉 =
〈T〉 /mean(〈T〉). The solid curves are maximum likelihood fits to (2.1) for stocks and (2.2) for derivatives. The dotted
lines are fits to the Weibull distribution and the dashed lines to the log-normal distribution.

2.3.2 Mean turnover

The turnover of a single transaction i, denoted by Ti is defined as the price paid times the volume

of the transaction and does not include transaction fees. We have excluded the traders that have

leveraged positions on stocks, hence Ti ≤ Pv; more generally one wishes to determine how the

average turnover of a given trader relates to his portfolio value. In passing, since P(Pv) has fat

tails, the only way the distribution of T can avoid having fat tails is if the typical turnover is

proportional to log(Pv). We denote by 〈T〉 the mean turnover per transaction for a given client
over the history of his activities.

Figure 2.2 reports its reciprocal cumulative distributions functions (RCDF) for stocks and deriva-

tives for the three categories of clients; all RCDFs have a first plateau and then a fat tail. For

stocks, the tails are not a pure power laws, but they are for derivatives. Indeed, fitting the RCDFs

with Weibull, log-normal and Zipf-Mandelbrot distribution with an exponential cut-off, defined

as

F(1)> (x) =
cγe−βx

(c+ x)γ
, (2.1)

clearly shows that the latter is the only one that does not systematically underestimate the tail
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Table 2.3: Results of the maximum likelihood fit of P>(〈T〉) with (2.1) and (2.2) for the three categories of clients.
The 95% confidence intervals reported in smaller character are computed by the biased-corrected accelerated (BCa)
bootstrap method of [34].

Stocks (2.1) Derivatives (2.2)
γ β · 10−6 γ

individuals 1.97 0.98 1.98
[1.83,2.10] [0.46,1.5] [1.91,2.15]

companies 1.29 1.66 -
[1.52,1.89] [0.44,2.3]

asset managers 1.93 0.91 -
[1.47,2.93] [-7.8,4.5]

of the RCDF for stocks; estimated values of β and γ given in table 2.3.

The RCDFs related to the turnover of transactions on derivative products have clearer power-law

tails for retail clients, which we fitted with a standard Zipf-Mandelbrot function, defined as

F(2)> (x) =
cγ

(c+ x)γ
. (2.2)

The parameters estimated are to be found in table 2.3; because of the power-law nature of this

tail, fits with Weibull and log-normal distributions are not very good in the tails. While the

decision process that allocates a budget to each type of product may be essentially the same,

the buying power is larger for derivative products, which may explain the absence of a cut-off.

Fits for companies and asset managers is very difficult and mostly non-conclusive because of

unsufficient sample size; the good quality of the tail collapse (see inset) tends to indicate that

the three distributions are identical, but we could not fit the RCDF of companies and asset

managers with (2.2); as reported in figure 2.2b, log-normal distributions are adequate choices in

these cases; since the quality of the fits are poor, we do not report the resulting parameters.
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Figure 2.3: Density plot of the average logT vs the average log Pv, robust non-parametric fit (red line), and linear
fits (dashed lines)

2.3.3 Mean turnover vs account value

The relationship between 〈T〉 vs 〈Pv〉 is important as it dictates what fraction of their investable
wealth the traders exchange in markets. We first produce a scatter plot of 〈log T〉 vs 〈log Pv〉
(figure 2.4). In a log-log scale plot, it shows a cloud of points that is roughly increasing. A

density plot is however clearer for retail clients as there are many more points (figure 2.3).

These plots make it clear that there are simple relationships between log T and log Pv. A robust

non-parametric regression method [27] reveals a double linear relationship between 〈log T〉 and
〈log Pv〉 for all three categories of investors (see figures 2.4 and 2.3):

〈log T〉 = βx 〈log Pv〉+ ax (2.3)

where x = 1 when 〈log Pv〉 < Θ1 and x = 2 when 〈log Pv〉 > Θ2. Fitted values with confidence

intervals are reported in table 2.5.

This result is remarkable in two respects: (i) the double linear relation, not obvious to the naked

eye, separates investors into two groups (ii) the ranges of values where the transition occurs is

very similar across the three categories of traders.
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(a) (b)

Figure 2.4: Density plot of the average logT vs the average log Pv, robust non-parametric fit (red line), and linear
fits (dashed lines)

Table 2.5: Parameter values and 95% confidence intervals for the double linear model (2.4). For each category of
investors, the first and second row correspond respectively to 〈log Pv〉 ≤ Θ1 an 〈log Pv〉 ≥ Θ2. For confidentiality
reasons, we have multiplied Pv and T by a random number. This only affects the true values of ax and Θ in the table.

βx ax ξ Θ R2

individuals 0.84± 0.02 0.73± 1.25 0.71 14 0.52
0.54± 0.01 5.07± 0.15 0.77 14.5 0.40

companies 0.81± 0.13 1.12± 8.17 0.88 15.5 0.47
0.50± 0.07 5.82± 1.65 1.00 15.6 0.33

asset managers 0.89± 0.20 −0.31± 0.76 0.62 15.5 0.52
0.63± 0.08 3.28± 5.78 0.62 16.5 0.46
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The relationships above only applies to averages over all the agents. This means that there

are some intrinsic quantities that make all the agents deviate from this average line. Detailed

examination of the regression residuals show that the latter are for the most part (i.e. more than

95%) normally distributed with constant standard deviations ξx and that the residuals deviating

from the normal distributions are not fat-tailed. This directly suggests the simple relation for

individual traders

Ti = eax+δiax(Piv)
βx ≤ eΘx (2.4)

where Ti and Piv are respectively the turnover and portfolio value of investor i, and δiax are

i.i.d. N(0, ξ2x) idiosyncratic variations independent from Pv that mirror the heterogeneity of the

agents. As we shall see, portfolio optimization with heterogeneous parameters yields this precise

relationship.

2.3.4 Turnover rescaled by account value

Let us now measure the typical fraction of wealth exchanged in a single transaction, defined as

Q =
〈
T
Pv

〉
. Since the inverse of this ratio is an indirect (and imperfect) proxy of the number N

of assets that a trader owns, it also indicates how well diversified his investments are, hence, it

can be viewed a simple proxy of the risk profiles of the agents.

2.3.4.1 data

Figure 2.5 shows that the distributions look exponential to a naked eye for about 90% of the

individuals and nearly 80% of the companies, while that of the asset managers is rapidly more

complex that a simple exponential. We derive exact relationships for this quantity in subsec-

tion 2.3.4.2 that show that these distributions are in fact not exponential but log-normal.

The resulting picture is that only a small fraction of customers trade a large fraction of their

wealth on average. Interestingly, these figures show a clear difference between the three cate-

gories of clients. As discussed above, figure 2.5 roughly reflects the risk profile of the different

types of customers: less than 10% of asset managers trade on average more than 20% of their

clients’ capital in a single transaction; this rises to 30% for companies, and 45% for retail clients.

Note however that despite the fact that the account values of companies and asset managers are

comparable, companies tend to have a Q closer to that of the individuals; this suggests either
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(a) (b)

Figure 2.5: Reverse cumulative distribution function of Q =
〈
T
Pv

〉
, the mean ratio of the turnover over the portfolio

value for individual traders (black), companies (red) and asset managers (green). Left plot is in lin-log scale and right
plot is in log-lin scale. Solid lines come from theoretical predictions of section 2.3.4.2.

that companies hold a smaller N than asset managers for the same account value, or that asset

managers tend to make smaller adjustments to the quantities of assets.

2.3.4.2 theory

Since we know the distributions of T, Pv and their relationship, we are in a position to derive

analytical expressions for Qi =
〈
T(t)
Pv(t)

〉
of investor i. The distribution of Q across the population

of on-line investors can be easily found using (2.4) and the distribution of Pv. Let PT,Pv(t, pv)

denote the joint distribution of T and Pv:

PQ= T
Pv
(q) =

ˆ ∞

0
pvPT,Pv(qpv, pv) dpv =

ˆ ∞

0
pvPT|Pv(qpv|pv)PPv(pv) dpv. (2.5)

Let us now assume for the sake of clarity that T = ea+δaPβ
v . Given Pv, the turnover T follows

a log-normal distribution with mean log pv + a and variance ξ2. Substituting PT|Pv(t|pv) =

lnN
(
log pv + a, ξ2

)
in (2.5) leads after some simplifications to

PQ(q) =
ˆ ∞

0

1√
2πξ2q

exp

⎛⎜⎝−
(
log(qp1−β

v )− a
)2

2ξ2

⎞⎟⎠ PPv(pv) dpv, (2.6)
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and

FQ(q) =
ˆ q

0
PQ(x) dx =

ˆ ∞

0

1
2
erfc

(
a− log(qp1−β

v )√
2ξ

)
PPv(pv) dpv, (2.7)

where erfc(x) = 2√
π

´ ∞
x e

−y2 dy is the complementary error function. As expected, when β = 0

(i.e. T and Pv are independent), we recover the product of the two marginal distributions. On

the other hand, when β = 1, i.e., when T is proportional to Pv, PQ(q) = lnN
(
a, ξ2

)
, which

is the distribution of the factor ea+δa. For other values of β the functions PQ and FQ cannot

be determined analytically unless PPv takes a particular form as shown below. However, the

moments of PQ(q) can be arranged in a simpler form:

E(qn) =
ˆ ∞

0
qnPQ(q)dq = ena+

1
2 n
2ξ2
ˆ ∞

0

1

pn(1−β)
v

PPv(pv) dpv, (2.8)

that is, the (log-normal) moments of T/Pv times an integral term smaller or equal to 1 (because

in practice PPv(pv) > 1)1. Hence, the relation E(qn) ≤ ena+
1
2 n
2ξ2 with equality when β = 1 holds

for any distribution of the account value Pv.

In section 2.3.1, we have shown that the distribution of Pv is well-approximated by a log-normal

distribution. This particular choice of distribution makes the previous integrals analytically

tractable. Indeed, with PPv = lnN(μ, σ2) straight integration of (2.6) leads to PQ = lnN(M, S2),

where M = a− (1− β)μ and S2 = ξ2+(1− β)2σ2. This simple result has some practical interest:

given the distribution parameters and the coupling factor β, one can draw realistic q factors for

agent-based modeling as Q = eM+SX, where X is N (0, 1) distributed. Furthermore, in the next

section, we show how the value of β may be inferred from the transaction cost structure, which

decreases the number of parameters to four.

Figure 2.5 confirms the validity of the above theoretical results, once expanded to the case of

a bi-linear relation between T and Pv. It is noteworthy that the continuous lines are no fits on

empirical q factors, but use instead the results of the separate fits on the turnover and account

distributions.

1Mathematically, all the moments of Q always exist since β ≤ 1 and Pv(pv) must decay faster than p−1v to be a valid
distribution.
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Figure 2.6: Swissquote fee curve for the Swiss stock market. Commissions based on a sliding scale of costs are
common practice in the world of on-line finance. The red line results from a non-linear fit to equation 2.10. Parameter
values are C = 0.13 ∈ [0.05, 0.5]95 and δ = 0.63 ∈ [0.5, 0.74]95, where the 95% confidence intervals are obtained
from the BCa bootstrap method of [34].

2.4 The influence of transaction costs on trading behavior: op-

timal mean-variance portfolios

Apart from risk profiles, education, and typical wealth, the differences in the turnover as a

function of wealth observed above between the three populations of traders may also lie in the

difference of their actual transaction cost structure. Swissquote current standard structure for

the Swiss market (its shape is very similar for European and US markets) is shown in figure 2.6;

it is a piece-wise constant, non-linear looking function. Fitting all segments to equation 2.10

gives δ = 0.63 ∈ [0.5, 0.74]95. The fee structure of most brokers is not set in stone and can be

negotiated. A frequent request is to have a flat fee, i.e. a fixed cost per transaction corresponding

to a constant function. Since quite clearly the negotiation power of large clients or of clients that

carry out many transactions is more important, asset managers are more likely to obtain a more

favorable fee structure than basic retail clients.

Since buying some shares of an asset is the result of unconscious or calculated portfolio construc-

tion process, one first needs a theoretical reference point with which to compare the population
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characteristics as measured in the previous subsection. In other words, we shall use results

from portfolio optimization theory with non-linear transaction cost functions to understand the

results of the previous subsection.

Quite curiously, all analytical papers in the literature on optimal portfolios either neglect trans-

action costs or assume constant or linear transaction cost structures; non-linear structures are

tackled numerically; thus, we incorporate the specific non-linear transaction cost structure faced

by the traders under investigation in the classic one-shot portfolio optimization problem studied

by Brennan [18], who restricted its discussion to fees proportional to the number of securities, in

other words, a flat fee per transaction.

Building optimal mean-variance stock portfolios consists for a given agent in selecting which

stock to invest in and in what proportion by maximizing the expected portfolio growth, usually

called return, while trying to reduce the resulting a priori risk. One cost function that corre-

sponds to such requirements is

Lλ(R) = λE(R)-Var(R), (2.9)

where R is the stochastic return of the portfolio over the investment horizon (e.g., one month,

one year) and λ tunes the trade-off between risk and return; as such, it can be interpreted as a

measure of an investor’s attitude towards risk: the larger λ , the more risk-adverse the investor.

The return of the portfolio can be decomposed into contributions from risky assets (stocks,

derivatives, etc.), the interests of the amount kept in cash, and the total relative cost of broker

commission, which we denote as R = Rrisky+ Rcash − Rcost. Mathematically,

• Rrisky = ΣNi=1xiRi, where Ri is the return of stock i over this horizon, xi is the fraction of

the total wealth invested in this stock, and N is the total number of investable assets; we

shall denote the total fraction of wealth invested in risky assets by x = ∑N
i=1 xi;

• Rcash = (1− x)r, where r is the interest rate;

• Rcost = ∑N
i=1 F(xiPv)

Pv
(1+ r), where F(x) is the amount charged by a broker to exchange an

amount x of cash into shares or vice-versa.

The focus of this section is to derive explicit relationships between F, the number of assets to

hold in a portfolio, and the account value Pv. Whereas previous works only considered special
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cases for F that are not compatible with the fees structure of Swissquote, we need to introduce

a cost function that can accommodate all the standard broker commission schemes. The two

extreme cases are i) flat-fee per transaction, i.e., a fixed cost that does not depend on the amount

exchanged ii) a proportional scheme, possibly with a maximum fee. Swissquote’s standard

scheme stands in between and is well approximated by a power-law with a maximum fee Fmax.

We hence choose

F(xiPv) = min
(
C(xiPv)

δ, Fmax
)
, (2.10)

where δ interpolates between a flat-fee (δ = 0), as in [18], and a proportional scheme (δ = 1) via

a power-law, and C is a constant.

Following the well-known one-factor model of Sharpe [73], we assume that the return of asset

i follows the global market’s return RM with an idiosyncratic proportionality factor βi. More

specifically,

Ri = βi(RM − r) + r+ ε i, (2.11)

where ε i is an uncorrelated white noise E(ε i) = E(ε iε j) = E(RMε i) = 0. This equation means

that the systematic idiosyncratic part of Ri only applies to the return above the risk-free interest

rate, also called market risk premium.

This completely specifies the functional Lλ. Returning to (2.9), one first computes the expectation

and variance of the portfolio return:

E(R) =
N

∑
i=1
xiE(Ri) + (1− x)r− ∑N

i=1 F(xiPv)
Pv

(1+ r),

= (E(RM)− r)
N

∑
i=1
xiβi + r− (1+ r)C

P1−δ
v

N

∑
i=1
xδ
i , (2.12)

and

Var(R) = Var(Rrisky)

= Var(RM)
N

∑
i=1

(xiβi)
2 +

N

∑
i=1
x2iVar(ε i). (2.13)

Note that, since here the risk-free rate is non-random, the portfolio variance is independent of

both the risk-free investment and broker commission; this does not hold for the expected return.

In principle, the functional L depends on N, the number of assets in the portfolio, λ the risk

parameter, and xi the fraction of account value to invest in risky product i. Assuming that xi is
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constant for all i (i.e. equally-weighted allocation), we are left with only three parameters since

xi = x/N. Thus, from the optimization of the resulting functional one can obtain a relationship

between any two of these parameters. We are mostly interested in N as a function of x.

2.4.1 Non-linear relationship between account value and number of assets

We will first assume that agents seek the optimal fraction of their account value x∗ to invest

in N securities—N being known—given the risk free rate r and broker commission F(xiW). The

optimal solution is simply obtained by setting xi = x/N in (2.12) and (2.13), and by equating to

zero the derivative of (2.9) with respect to x. This leads to the following transcendental equation

for x∗:

x∗ = λ

2

β̄(E(RM)− r)− δ(1+ r)C( N
x∗Pv )

1−δ

β̄2Var(RM) + 1
NVar(ε)

, (2.14)

where β̄ = 1
N ∑N

i=1 βi and Var(ε) = 1
N ∑N

i=1 Var(ε i) is the mean idiosyncratic volatility. Provided

the investor risk tolerance λ has been reliably estimated, which is usually a complex task [83],

and that Sharpe model is adequate, (2.14) can be used directly in a real-world portfolio opti-

mization problem. The βi and ε i are then obtained by regressing the returns of all the stocks

with (2.11); the optimal solution is expected to be reliable in the absence of significant resid-

ual correlations between ε i and ε j. In the more common situation where λ is unknown, one

can derive a second equation for the optimal number of securities under the assumption that

portfolios are sufficiently homogeneous, or that the investment horizon is long enough so as to

have β̄ and Var(ε) independent from N. As shown in figure 2.7, β̄ on the US stock market is

persistently close to one for various time horizons and values of N, consistently with the homo-

geneous assumption. Taking a few technical precautions into account ([18]), the differentiation

of the Lagrangian (2.9) with respect to N leads to

λ =
Var(ε)P1−δ

v

(1− δ)C(1+ r)
(
N∗
x

)2−δ
, (2.15)

where it is assumed that δ < 1 since for δ = 1 the optimum investment does not depend

on N through the cost function. According to (2.15), the agent risk tolerance increases with

their account value Pv, in agreement with various survey studies on the risk tolerance of actual
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investors (see the literature review of [82]). Using (2.14) and (2.15) to get rid of λ, we obtain

N2−δ

(
1+

δ

1− δ

K
N

)
= K

β̄(E(RM)− r)
(1− δ)C(1+ r)

(xPv)
1−δ , (2.16)

where K is the ratio of residual risk to market risk defined as

K = 2
(

β̄2Var(RM)
Var(ε)

+
1
N

)−1
≈
N�1 2

Var(ε)
β̄2Var(RM)

. (2.17)

Given the desired level of systematic risk x, (2.16) can be solved for N numerically in an actual

portfolio optimization. Further insight is gained by considering the high diversification limit

N � 1, which yields 1+ δ
1−δ

K
N ≈ 1 in (2.16) and thus

N =

(
K

β̄(E(RM)− r)
(1− δ)C(1+ r)

) 1
2−δ

(xPv)
1−δ
2−δ , (2.18)

where K is given by the right-hand side of (2.17). The latter equation generalizes [18] to the

case of a varying cost impact represented here by the parameter δ (i.e. the result of [18] is

recovered by setting δ = 0 and βi = 1 in (2.18)). These results can be further generalized to

non-equally weighted portfolios by differentiating (2.9) with respect to xi and assuming again

an homogeneous condition for the βis.

In essence, (2.18) says that the number of securities held in an equally-weighted mean-variance

portfolio with Sharpe-like returns is related to the amount invested as

log(N) =
1− δ

2− δ
log(xPv) + κ (2.19)

in the high diversification limit, where κ is the pre-factor of (xPv)
1−δ
2−δ in (2.18). The last equation

gives N as a function of Pv for a predefined x in the optimal portfolio. The heterogeneity of

the traders, beyond their account value, is not apparent yet, but may occur both in x and κ:

first each trader may have his own preference regarding the fraction of this account to invest

in risky assets, x; therefore one should replace x by xi; next, κ includes both a term related to

transaction costs, which does vary from trader to trader, and some measures and expectation

of market returns and variance; each trader may have his own perception or way of measuring

them, hence κ should also be replaced by κi. Finally, both terms can be merged in the same

constant term ζ i = 1−δ
2−δ log(x

i) + κi. This explains how the heterogeneity of the traders is the
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Figure 2.7: Box-plot of empirical βs obtained from the regression of several US stocks on the S&P500. The observation
period covers 2001 to 2008 and returns are computed on various time horizons Δt (in days). Results show that
β̄ = 1

N ∑N
i=1 βi ≈ 1 for all values of Δt and (even small) N, consistently with the homogeneous assumption of

section 2.4.1.

cause of fluctuations in the kind of relationships we are interested in.

2.5 Turnover, number of assets and account value

The result above only links N with Pv, but one also wishes to obtain relationships that involve the

turnover per transaction, T. Whereas in section 2.3, we have characterized the turnover of any

transaction, the results of section 2.4 rest on the assumption that the agents build their portfolio

by selecting a group of assets and stick to them over a period of time. This, obviously, does not

include the possibility of speculating by a series of buy and sell trades on even a single asset,

nor portfolio rebalancing which consists in adjusting the relative proportions of some assets. We

thus have to find a way to differentiate between portfolio building, rebalancing and speculation.

Here, we shall focus on portfolio building in order to test and link the results of section 2.4 to

those of section 2.3.

We have found a simple effective method that can separate portfolio-building transactions from
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the other ones: we assume that the transactions of trader i that correspond to the building of

his portfolio are restricted the first transaction of assets not traded previously; sell orders are

ignored, since Swissquote clients cannot short sell easily. In other words, if trader i owns some

shares of assets A, B, and C and then buys some shares of asset D, the corresponding transaction

is deemed to contribute to his portfolio building process; the set of such transactions is denoted

by Φi, while the full set of transactions is denoted by Ωi. Any subsequent transaction of shares

of assets A, B, C, or D are left out of Φi. The number of different assets that trader i owns is

supposed to be Ni 
 |Φi| where |X| is the cardinal of set X; this approach assumes that a trader
always owns shares in all the assets ever traded; surprisingly, this is by large the most common

case. We shall drop the index i from now on.

Let us now focus on TΦ = ∑k∈Φ Tk, the total turnover that helped building his portfolio (i.e. the

turnover on the transactions that allowed him to build his portfolio). We should first check how

it is related to the total portfolio value Pv. Let us define 〈Pv〉Φ, the account value of a trader

averaged at the times at which he trades a new asset.Plotting log 〈Pv〉Φ against log TΦ gives a

cloudy relationship, as usual, but the fitting it with log 〈Pv〉Φ = χ log TΦ gives χ = 1.03± 0.02
for individuals, χ = 0.99± 0.02 for asset managers and χ = 1.00± 0.01 for companies with an
adjusted R2 = 0.99 in all cases. This relationship trivially holds for the traders who buy all their

assets at once, as assumed in the portfolio model. The traders who do not lie on this line either

hold positions in cash (in which case this line is a lower bound), or do not build their portfolio in

a single day: they pile up positions in derivative products or stocks whose price fluctuations are

the origin of the devations from the line. But the fact that the slope is close to 1 means that the

average fluctuation is zero, hence, that on average trades do not make money from the positions

taken on new stocks. The consequence of this is that log Pv can be replaced by log TΦ in (2.19),

thus, setting x = 1,

logN =
1− δ

2− δ
log TΦ + κ (2.20)

The x = 1 assumption is in fact quite reasonable: most Swissquote traders do not use their

trading account as savings accounts and are fully invested; we do not know what amount they

keep on their other bank accounts.

A robust non-parametric fit does reveal a linear relationship between logN and log TΦ in a given
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Figure 2.8: Turnover of transactions contributing to the building of a portfolio TΦ versus the number N of assets
held by a given trader at the time of the transaction. Green lines: non-parametric fit; red lines: fits of the linear part
of the non-parametric fit. From left to right: companies, asset managers, and individuals.

Table 2.6: Slope α linking log TΦ and logN for the three trader categories.

individuals companies asset managers

α 0.52± 0.02 0.36± 0.14 0.44± 0.13
log TΦ ∈ [16, 19] [17, 19.8] [15.8, 18]

Table 2.7: Results of the double linear regression of log 〈T〉Φ versus log 〈Pv〉Φ. For each category of investors,
the first and second row correspond respectively to log 〈Pv〉Φ ≤ Θ1 an log 〈Pv〉Φ ≥ Θ2, where Θ1,2 have been
determined graphically using the non-parametric method of [27] as in section 2.3.3. Parameters are as in the double
linear model (2.4). For confidentiality reasons, we have multiplied Pv and T by a random number, which only affects
the true values of Θ1,2 and of the ordinate ax.

βx ax ξ Θ R2

individuals 0.85± 0.02 0.71± 0.16 0.65 14.5 0.59
0.51± 0.01 5.62± 0.17 0.76 15 0.31

companies 0.83± 0.17 1.03± 2.47 0.86 15.5 0.42
0.62± 0.14 3.99± 2.55 0.93 17 0.32

asset managers 0.84± 0.25 0.45± 3.77 0.79 15.95 0.50
0.73± 0.17 1.72± 3.23 0.72 18 0.41
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region (N, TΦ) ∈ Γ (figure 2.8). In this region, we have

logN = α log TΦ + β, (2.21)

which gives

α =
1− δ

2− δ
. (2.22)

We still need to link 〈T〉Φ and 〈Pv〉β
Φ. While section 3 showed that the unconditional averages

lead to 〈T〉 ∼ 〈Pv〉β, one also finds that 〈T〉Φ ∼ 〈Pv〉β
Φ. Therefore, one can write

log 〈T〉Φ = β log 〈Pv〉Φ + cst. (2.23)

Thus, one is finally rewarded with the missing link

β =
1

2− δ
, (2.24)

which directly involves the transaction cost structure in the relationship between turnover and

portfolio value, as argued in section 32. This relationship allows us to close the loop as we are

now able to relate directly the exponents linking T, N, and Pv. Going back to section 2.3, one

understands that the existence of a bi-linear relationship between log-turnover and log-account

value, i.e., of two values of β for each of the three categories of clients, is linked to two values of

δ: a flat flee structure or the disregard for transaction costs leads to β = 1
2 , while proportional

fees (δ = 1) give β = 1.

Let us finally discuss the empirical values of α, β, and δ against their theoretical counterparts,

which is summarized in table 2.8.

1. Small values of TΦ: it was impossible to measure α in that case since the non-parametric fit

shows a non-linear relationship in the log-log plot for retail clients, which we trust more

since they have many many more points than the graphs for the two other categories of

clients. But it may not make sense to expect a linear relationship since such a relationship is

only expected for N large enough (N ≥ 10 in practice) and a small TΦ is related to a small

N. Thus we can only test β = 1/(2− δ). The reported value of β is consistent accross all

2Note that this relationship can be obtained directly by assuming that all the transactions happen at the same time,
hence that T = (xPv)/N, which leads straightforwardly to (2.24).
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the clients. Retail clients have a larger δe f f = 2− 1
β that the estimated δSQ. Since the shape

of the fee structure is discontinuous, the values of these exponents can hardly be expected

to match. However, fitting the whole curve structure may be problematic in this context:

indeed, the traders with a typical small value of TΦ see a more linear relationship in the

region of small transaction value that when considering the whole curve; for instance,

removing the two largest segments from the fee structure yields δ′SQ = 0.74 ∈ [0.43, 0.79],

which is not far of δe f f .

2. Large values of TΦ: the relationships between all the exponents are verified for the three

categories of clients. While not very impressive for companies and asset managers, this re-

sult is much stronger in the case of retail clients since the relative uncertainties associated

with each measured exponent are small (1-2%). The value of βretail is of particular interest

as it corresponds δe f f = 0, or equivalently, to a flat fee structure. Going back to the fees

structure of Swissquote, one finds that that the transition happens when the relative trans-

action cost falls below some threshold (we cannot give its precise value for confidentiality

reasons; it is smaller than 1%). A possible explanation is that either some traders with

a high enough average turnover have a flat-fee agreement with Swissquote and that the

rest of them simply act as if they were not able to take correctly into account transaction

costs. Since not all traders have a flat-fee aggrement, one must conclude that some traders

have indeed some problems estimating small relative fees and simply disregard them. The

reported value of β for companies and asset managers is larger that βretail, but it is more

likely than not that the small sample size is responsible for this discrepancy, since these

two categories of clients have a greater propensity to negociate a flat-fee structure.

3. Transition between the two regimes: the transitions between the standard Swissquote and

an effective flat-fee structure happens occur at the same average value of T for the three

categories of traders (idem for TΦ). Since there is no automatic switching between fee

structures at Swissquote for any predefined value of transaction value, one is lead to con-

clude that this transition has behavioural origins, which is also responsible for the value at

which the transition takes place which, in passing, corresponds to the end of the plateau of

the RCDF of Pv in the case of retail clients (e15 
 3.27 · 106). As a consequence, it is likely
that the traders tend to either neglect or consider as constant transaction fees smaller than

some threshold when they build their portfolio.
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Table 2.8: Table summarising the empirical and theoretical relationships between α, β, and δ.

small Tφ individuals companies asset managers

β 0.85± 0.02 0.83± 0.17 0.84± 0.25
log TΦ < 14.5 17 18

δe f f = 2− 1
β 0.82± 0.02 0.80± 0.20 0.81± 0.30

δSQ 0.63 ∈ [0.50, 0.74] 0.63 ∈ [0.50, 0.74] 0.63 ∈ [0.50, 0.74]
δ′SQ 0.74 ∈ [0.43, 0.79] 0.74 ∈ [0.43, 0.79] 0.74 ∈ [0.43, 0.79]

β̃ = 1
2−δSQ

0.73 ∈ [0.66, 0.74] 0.73 ∈ [0.66, 0.74] 0.73 ∈ [0.66, 0.74]

large Tφ individuals companies asset managers

β 0.51± 0.01 0.62± 0.14 0.73± 0.17
log TΦ > 15 17 18

δe f f = 2− 1
β 0.04± 0.02 0.39± 0.23 0.63± 0.23

αe f f =
1−δe f f
2−δe f f

0.49± 0.01 0.38± 0.09 0.27± 0.08
α 0.52± 0.02 0.36± 0.14 0.44± 0.13

log TΦ ∈ [16, 19] [17, 19.8] [15.8, 18]

2.6 Discussion and outlook

We have been able to determine empirically a bilinear relationship between the average log-

turnover and the average log-account value and have argued that it comes from the transaction

fee structure of the broker and its perception by the agents. A theoretical derivation of optimal

simple one-shot mean-variance portfolios with non-linear transaction costs predicted relation-

ships between turnover, number of different asset in the portfolio and log-account values that

could be verified empirically. This means that the populations of traders do take correctly on

average, i.e. collectively, the transaction costs into account and act collectively as mean-variance

equally-weighted portfolio optimizers. This is not to say that each trader is a mean-variance

optimizer, but that the population taken as a whole behaves as such—with differences across

populations, as discussed in the previous section. This to be related to findings of Kirman’s

famous work on demand and offer average curves in Marseille’s fish market [47] and more gen-

erally as what has become known as the wisdom of the crowds (see [77] for an easy-to-read

account).

The fact that the turnover depends in a non-linear way on the account value implies that link-

ing the exponents of the distributions of transaction volume, buying power of large players in

financial markets, and price return is more complex that previously thought [37]. It has also

implications for agent-based models, which from now on must take into account the fact that
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the real traders do invest into a number of assets that depends non-linearly on their wealth.

Future research will address the relationship between account value and trading frequency,

which is of utmost importance to understand if the many small trades of small investors have a

comparable influence on financial market than those of institutional investors. This will give an

understanding of whom provides liquidity and what all the non-linear relationships found above

mean in this respect. This is also crucial in agent-based models, in which one often imposes such

relationship by hand, arbitrarily; reversely, one will be able to validate evolutionary mechanisms

of agent-based model according to the relationship between trading frequency, turnover, number

of assets and account value they achieve in their steady state.



3

Volatility long-memory and min-dispersion

profiles

3.1 Weighting the past: why and how

Weighted averages are extensively used in a number of fields for smoothing and forecasting

time series data. In a nutshell, when a series is believed to be stationary and to exhibit some

patterns, one can use regularities that showed up in the past for predicting future values. In

many instances though, motives are fairly simple and principally consist in clusters of values

with comparable amplitudes (e.g. high and low volatility periods). Forecasting is then done by

giving more weight to recent past values, which can be achieved by a time-decreasing weight

sequence.

Mainly for convenience, the most used and studied weighted estimators are the simple (SMA)

and exponentially-weighted (EMA) moving averages. The properties of the latter, which exploits

geometrically decreasing weights, have been thoroughly studied in econometrics, and also by

practitioners of finance [46]. In the financial context simple averages are poor forecasters as they

treat equally long and short past market events, whereas EMA, while showing better accuracy,

exhibit a high intrinsic variance which can create instabilities and high portfolio turnovers when

used in portfolio allocation.

The high intrinsic dispersion of EMA also raises the question of its efficiency: since the vari-

ance of x̄ is a measure of the dispersion of the estimator around its expected value, it gives
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no information on its accuracy and efficiency, which from a statistical viewpoint are assessed

respectively via the bias B(x̄) = E(x̄ − μ) and the mean squared error MSE(x̄) = E((x̄ − μ)2)

(assuming the true value μ exists). Nevertheless, an unbiased estimator that minimizes V(x̄)

as well minimizes the MSE for MSE(x̄) = V(x̄) + B(x̄)2. Hence if one is able to reduce the

intrinsic variance of a weighted estimator while not simultaneously harming its accuracy, one

ends up with a more efficient solution, that is an estimator with lower MSE. More precisely,

when restricting to normalized weighted averages, i.e. x̄ = ∑t wtxt with ∑t wt = 1, we read-

ily see that the estimator with minimum MSE is the one with minimum dispersion as the bias

B(x̄) = E(x̄− μ) = E(xt)− μ is independent of the particular weight sequence wt. Importantly,

since the MSE impacts the stability of the prediction, low MSE estimators are useful in many

places in Finance, and particularly in the mean-variance portfolio allocation that is the main

object of this dissertation.

Constructing efficient estimators is a task that traditionally belongs to prediction theory. To

do so one typically resorts to least-squares or generalized least-squares estimators because they

have minimum MSE when the residual errors are not too much correlated.1 Unfortunately, lin-

ear residual errors on financial series can still be highly correlated and one has to turn to more

sophisticated non-linear models (e.g. of the GARCH family) to remove the residual serial corre-

lations at a satisfactory level. Such models do not allow one to build efficient estimators easily

unless ad hoc assumptions on the dynamics of the true value are made (i.e. a model). On a differ-

ent level, one may have doubts about the existence of unbiased estimators with practical interest

in finance: the owner of a constantly unbiased estimator would benefit from an advantage that

should quickly be arbitraged out by other market participants (according to the efficient market

hypothesis).

Estimators with minimal variance, as we will see, do not suffer from the same drawback. They

can be computed under the sole weak stationarity of the underlying process, and as they do not

depend on the value to be estimated, they hold under no assumptions on the residual errors.

Their interest is related to the stability of risk predictions and is therefore directly connected

to portfolio turnovers, which was shown in the preceding chapter to be a major concern to the

majority of online investors.

1This follows from the Gauss-Markov theorem, which states that the best unbiased linear estimator is the one with
minimumMSE provided that the residual errors are uncorrelated and homoscedastic (i.e. have equal variance). General-
ized least square estimation extends this result to the case of heteroscedastic data with some degree of known correlations.
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3.2 Variance of weighted averages and autocorrelation

Consider the real-valued weakly stationary process {xt}t∈T, T = {1, . . . , tmax} and its associated
weighted average defined over {1, . . . ,M} ⊂ T as

x̄ =
M

∑
t=1
wtxt. (3.1)

Notice that in a model view one commonly writes xt = ∑M
s=1wsxt−s, whereas here we use

the previous definition and keep in mind that x1 corresponds to the most recent value. Also

note that we will later restrict to more specific weight sequences such as decreasing, positive or

normalized ones, but this is not required at this stage.

Recall that the variance of x̄ takes the form

V(x̄) = E
(
(x̄− E(x̄))2

)
=

M

∑
s,t=1

E ((wsxs − E(x̄)) (wtxt − E(x̄)))

=
M

∑
s,t=1

cov(wsxs,wtxt)

= 2
M

∑
s≤t
wswtcov(xs, xt)−

M

∑
t=1
w2t σ

2
t , (3.2)

where we have introduced the covariance function of xt and defined σ2t = cov(xt, xt). Now since

xt is weakly stationary its autocorrelation function ρ is well-defined and we can write σ2t = σ2

and ρ(h) = cov(xs, xt)/σ2, where h = |s− t|. With these simplified notations, Eq. (3.2) becomes

V(x̄) = σ2

[
2
M−1
∑
h=1

ρ(h)

(
M−h
∑
t=1

wtwt+h

)
+

M

∑
t=1
w2t

]
. (3.3)

This equation says that the sample autocorrelation function (ACF) of the process has a great

influence on the dispersion of the estimator x̄. For instance for positively correlated processes

the higher the autocorrelation the higher the variance of the estimation as prescribed by the

central limit theorem. It also suggests that to any particular ρ should correspond a weight

sequence minimizing V(x̄), which is the question addressed in Sec. 3.6.

Because of its key-role for understanding and controlling the variance of weighted estimators in

finance the sample ACF of volatility deserves a particular attention.
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3.2.1 Describing the whole volatility autocorrelation function

By volatility we mean here some positive power of the absolute returns |r|α, usually taken as 1
or 2. On the big picture the sample autocorrelation function (ACF) of absolute returns decays

at an hyperbolic rate ρ(h) ∼ h−δ where δ < 1 is reported to lie between 0.2 and 0.5 for most

financial assets [28]. If this description is true then volatility is said to exhibit long memory in

the sense that ∑h |ρ(h)| diverges. Since analyzes leading to these conclusions are done on series
with limited length they should benefit from occasional updates, which is the first purpose of

what follows.

We have analyzed the daily return sample ACF of 16 European stock indices, 200 European

stocks, 1’250 US stocks, 100 Swiss stocks, and 300 stocks of the world market over the period

1990-2011, and have reached the following conclusions:

1. In many instances the sample ACF is equally well described by (at least) four different

functions which despite presenting similar short-term decay have very different conver-

gence properties as h→ ∞.

2. The very short-term behavior of ρ(h), despite its obvious influence on the dispersion of

weighted estimators (more on that later), is usually not given much attention in the lit-

erature. For instance a number of statistical models have been designed to capture and

reproduce the “observed” long-memory of volatility, but as far as we know, none of them

tries to accommodate the short-time behavior of ρ.

Here we take the viewpoint that an accurate description of the whole sample ACF of the

volatility is key to building stable estimators with minimal dispersion.

The general shape of the volatility autocorrelation is illustrated in Fig. 3.1 using the sample

ACF of the absolute returns of the S&P500 since 1950. For several assets ρ starts to decrease

gently over the first few lags leading to a “plateau” on a lin-log scale (this feature is particularly

pronounced for stock indices). Then the ACF decreases faster but still slowly enough to look

either like a power-law on a log-log scale or like a logarithm on a lin-log scale (and perhaps like

many other things...). Here comes the limitation of the “fit-by-eye” technique often seen in the

literature to differentiate e.g. a power-law or a logarithmic tail from anything else. Indeed, this

technique is valid as long as the tail of the function spans several decades. Unfortunately this

is not true here since the stable part of the sample ACF is comprised in 2/
√
tmax < ρstable < 1
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Figure 3.1: Sample autocorrelation function of the daily absolute returns of the S&P500 over the period 1950-2011.
Lines are non-linear fits to the heavy-tailed functions defined in this paragraph. In general PREC and PEXP are better
candidates than LOG and SEXP to describe the stable part of the sample ACF, in particular on stock indices, but the
latter do almost as good as the former on individual stocks.

that is in ∼ 10−2 < ρstable <∼ 10−1 for daily returns. In conclusion, on a logarithmic scale and

over a single decade many heavy-tailed functions look the same to the naked eye, and therefore

one should resort to more accurate fitting techniques to discriminate between several candidate

functions which one is the best.

Based on our observations and on previous ones reported in the literature, we have introduced

four different candidates to describe the sample ACF of absolute returns: (1) over the whole

range where it is stable (not only its “tail”), and (2) using as few parameters as possible.

• PREC has power long-term decay. It tends to the step function as the memory parameter δ

goes to infinity:

ρprec(h) =
ρ0

1+ ( h−1b )δ
δ > 0, b > 0. (3.4)

• PEXP has power long-term decay. It tends to the exponential as the memory parameter δ

goes to infinity:

ρpexp(h) =
ρ0

(1+ h−1
b )δ

δ > 0, b > 0. (3.5)
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• LOG has logarithmic long-term decay:

ρlog(h) = ρ0

(
1− δ log

(
1+

h− 1
b

))
1 > δ > 0, b > 0. (3.6)

• SEXP has stretched-exponential long-term decay and thus can accommodate both constant

and exponential autocorrelations:

ρsexp(h) = ρ0 exp

(
−

(
h− 1
b

)δ
)

1 > δ > 0, b > 0. (3.7)

PREC and PEXP are natural extensions of a pure power-decreasing tail to describe the short-

term behavior of the ACF. SEXP roughly interpolates between the two previous ones and LOG

has been introduced here as it was reported to fit well the volatility ACF in [87]. Notice also

that even though all these functions are heavy-tailed the series ∑h |ρ(h)| diverges for LOG and
PREC,PEXP when δ ≤ 1, whereas it converges for SEXP and PREC, PEXP with δ > 1, which

emphasizes the clear difference between their asymptotic behavior.

For each function we have computed the non-linear least-squares estimates of ρ0, b, and δ. Since

the number of fitting parameters is the same for the three models a fair comparison is possible

by looking at the residual sum-of-squares. The latter are shown in Fig. 3.2 for European stocks

and indices, and for stocks of the Swiss and US markets. Note that similar results are obtained

for securities of the world stock market. The results reveal a notable difference between the

volatility ACF of aggregated returns (i.e. indices) and that of individual stocks. While the latter

are well described by the four candidate functions, indices on the other hand are significantly and

systematically better described by PREC and PEXP which outperform LOG and SEXP. Looking

into detail at the numbers we find that the best model on average over all five data sets (including

securities from the world stock market) is PREC, closely followed by PEXP.

Fit results are summarized below and in Fig. 3.3 and Fig. 3.4. They are not discussed at length

nor reported with confidence intervals because of high statistical errors. We note however that

all parameters are significant except for b in LOG which is regularly found to be not significant

on individual stocks. Estimates of the memory parameter δ in PREC are in line with known

results on the volatility ACF tail (see Fig. 3.3), whereas the same parameter in PEXP is often

significantly higher (as is the “plateau” b). Estimates of δ in PREC and PEXP for 75% of the
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Figure 3.2: Residual sum-of-squares of the ACF non-linear fits to the functions of Sec. 3.2.1. Top left to right: Euro-
pean indices and stocks. Bottom left to right: Swiss stocks and US stocks. Green triangles: PREC, red circles: PEXP,
dark blue crosses: LOG, and light-blue stars: SEXP. On stock indices PREC and PEXP systematically outperform
LOG and SEXP. On individual stocks all four functions give similar results, even though PREC gives on average
better results.
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Figure 3.3: Box plots of the ACF fit results for the “memory” parameter δ. Top left to right: European indices and
stocks. Bottom left to right: Swiss stocks and US stocks.

securities belong to:

EU Ind. EU St. CH US

PREC (0.38, 0.6) (0.23, 0.61) (0.29, 0.59) (0.17, 0.43)

PEXP (0.65, 0.78) (0.48, 0.78) (0.42, 0.71) (0.40, 0.77)

In conclusion, our results favor the two power-decreasing candidates over LOG and SEXP for

describing the stable part of the volatility ACF. Another argument in the same direction is the

following: if we admit that the ACF of |r|α should be described by the same function for any
α, we can repeat the above analysis and compare the different models for α varying, say from

1 to 2. Doing so clearly reveals an increasing discrepancy in favor of the power-law functions.2

Nevertheless a logarithmic description of the autocorrelation on individual stocks gives more

stable results and sometimes can be achieved with only 2 parameters, which may be useful in

some applications involving individual stocks.

2Notice that by increasing α one pushes up the noise level and thus makes the fitting results less accurate.
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Figure 3.4: Box plots of the ACF fit results for the “plateau” parameter b. Top left to right: European indices and
stocks. Bottom left to right: Swiss stocks and US stocks.

3.3 Asymptotic behavior of the variance

It is interesting to examine the variance of the most used moving average estimators (SMA and

EMA) on the two important exponential and power decays of the autocorrelation function. Expo-

nential autocorrelations show up in Markov processes, autoregressive conditional heteroscedas-

tic models (ARCH) [35], and in many empirical time series. On the other hand power-decaying

autocorrelations are characteristic of fractionally integrated generalized ARCH (FIGARCH [4]),

and most notably of stock volatility as seen above.

Let us come back to Eq. (3.3). Setting first wt = 1/M we obtain

V(x̄) =
σ2

M

(
2
M−1
∑
h=1

ρ(h)
(
1− h

M

)
+ 1

)
. (3.8)

Assuming now ρ(h) ∼ exp(−h/τ) with τ ≥ 1 leads to

V(x̄) ∼ σ2

M

(
e
1
τ + 1

e
1
τ − 1

+O
(
1
M

))
, (3.9)
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which means that the variance of simple averages on exponentially autocorrelated processes

goes to zero as fast as the uncorrelated variance V(x̄) = σ2

M . It is shown in Sec. 3.5 that simple

moving averages are asymptotically of minimal dispersion on these processes in the sense that

they minimize V(x̄) when M→ ∞.

Let us now consider the hyperbolic decay ρ(h) ∼ h−δ, 0 < δ < 1. Then xt exhibits long-memory

and the variance of x̄ takes the form

V(x̄) ∼ σ2

Mδ

(
2

(1− δ)(2− δ)
+O

(
1

M1−δ

))
, (3.10)

where the asymptotic expansion of the generalized harmonic number HM,δ = ∑M
h=1 h

−δ has been

used in the derivation. This result shows that the dispersion of simple averages on long-memory

processes decays at an hyperbolic rate governed by δ.

A common practice in finance is to use exponential moving averages to forecast volatility, some-

times regardless of the process autocorrelation structure [46]. Let us look at the variance of the

one-step forecaster x̂1 ≡ x̄ computed with geometric weights on both exponential and hyperbolic

autocorrelated processes. For the normalized geometric weights wt ∼ αt−1 Eq. (3.3) becomes

V(x̄) ≈ σ2
(
1− α

1+ α

)(
M−1
∑
h=1

ρ(h)αh
(
1− α2(M−h)

)
+ 1

)
, (3.11)

where we have neglected the terms αM. Now in the limit M→ ∞ we find the following non-zero

limits for ρ(h) ∼ exp(−h/τ)

V(x̄) ∼ σ2
(
1− α

1+ α

)(
e
1
τ + α

e
1
τ − α

)
, (3.12)

and for ρ(h) ∼ h−δ

V(x̄) ∼ σ2
(
1− α

1+ α

)(
2Γ(1− δ)

log( 1α )
1−δ

− 1
)
, (3.13)

where Γ(x) stands for the gamma function.3 Hence unlike simple averages exponential moving

averages have non-zero asymptotic variance on both exponential and hyperbolic autocorrelations,

which means that there exists some threshold value Mmax < M above which the dispersion of

3The first formula is exact as M → ∞, but the second one is only accurate for small values of δ as it was obtained by
replacing sums with integrals in Eq. (3.11). Fortunately, as can be seen in Fig. 3.5, this is true of typical values observed
in practice (δ ≈ 0.3).



3.3. Asymptotic behavior of the variance 51

100 5x100101 5x101102 5x102103

10−1

2x10−1

5x10−1

100

100 5x100101 5x101102 5x102103

10−1

2x10−1

5x10−1

100

MM

V
( x̄
)

V
( x̄
)

≈ −1
≈ −0.3

weightsweights

unifunif
expexp

powpow

Figure 3.5: Asymptotic variance of moving averages as a function of the sample size M. The left plot shows the
effects of uniform, exponential, and power-decreasing weights on exponential autocorrelation. The horizontal dashed
line is the limit Eq. (3.12) and the vertical one is placed at M = 150. The slope of the variance for uniform (and
power-decaying weights) is equal to −1 in agreement with the theory (Eq. (3.9)). The right plot shows the same effects
on power-decreasing autocorrelation like that of volatility. The limiting line is Eq. (3.13) and the parameters in this
case are δ = 0.3 and α = 0.97 which are typical values seen in practice [46]. The slope of the variance in the power
and uniform cases is ≈ −0.3 in agreement with the theory (Eq. (3.10)). The limitation of EMA (in red) is that no
variance reduction can be achieved beyond 150 observations.

x̄ cannot be significantly reduced by adding more historical data. As shown in Fig. 3.5 (the

vertical dashed lines) this threshold is remarkably low for the typical values of α used in volatility

forecasting, for instance by RiskMetrics [46]. More precisely we see that the dispersion of EMA

depends on the last 150 observations and cannot be reduced further by adding observations

beyond this threshold; whatever the form of the autocorrelation. The rest of the chapter is

devoted to building estimators with better efficiency by taking into account the peculiar structure

of the volatility autocorrelation.
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3.4 Weight profiles inducing minimal dispersion

Our approach is to compute the weight sequences that minimize V(x̄) under constraints that

are relevant to the financial application and particularly to the forecast of volatility and Value-

at-Risk. These constraints are chosen so as to preserve the accuracy of the estimation.

In the first place, it is suitable to rewrite Eq. (3.3) more compactly as

V(x̄) = σ2wtRw, (3.14)

where R is the M × M Toeplitz matrix of autocorrelations of xt, that is Rst = R|s−t| = ρ(h),

h = |s− t|. Since V(x̄) is non-negative for any weight sequences, and in fact strictly positive for
non-trivial ones, R is symmetric positive-definite which implies that V(x̄) has a unique global

minimum (i.e. the minimizing problem is strictly convex). In order to avoid the trivial solution

given by the null sequence it is natural to restrict to normalized weights. Note that although

normalization to unity seems natural in this context it is by no means mandatory and indeed

taking ∑t wt = b < 1 may sometimes be desirable (in a model-based view, this allows one to

define min-dispersion ARCH processes with finite variance). Imposing b = 1 leads to a result

well-known in prediction theory that is similar to Markovitz’s minimum variance portfolio [70]:

w∗ = R−11
1tR−11

, (3.15)

where 1t = (1, . . . , 1). Introducing the optimal weights Eq. (3.15) in Eq. (3.14) we obtain the

corresponding minimal variance

min
w∈RM,wt1=1

V(x̄) =
σ2

1tR−11
. (3.16)

Despite their similarity, the cross-correlation problem of Markovitz and the time-correlation

problems addressed here have two interesting differences due to the weak-stationarity assump-

tion on xt. First, one can factor σ2 out of the covariance in Eq. (3.2) and thus express the solution

in terms of the autocorrelation function alone. This is useful because R can be computed in a

much faster way than Σ as it is fully determined by only M numbers. Furthermore, in many

instances a great deal is known about ρ and therefore about R. For example explicit autocor-

relations have been obtained by econometricians for the most important representatives of the
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GARCH family (ARCH, GARCH, IGARCH, FIGARCH, etc) [9, 12, 67, 4]. In the next section

we use these results to gain some insight into the solution and derive an explicit solution for

processes with exponentially decreasing autocorrelation.

3.4.1 Adding up relevant constraints

The other major difference between the variance minimization of asset portfolios and that of

weighted averages comes from the peculiar structure of R. By the weak-stationarity of xt the

Toeplitz matrix R is symmetric about its two diagonals. This property is conserved by matrix

inversion and therefore yields w∗t = w∗M−t+1 ∀t in Eq. (3.15). This means that the M numbers

required to generate R define in reality a sequence of M/2 “independent” optimal weights, the

second half of w∗ being just a mirror of the first one. This situation lacks financial intuition and

should be remedied in one of the following two ways in order two preserve the accuracy of the

estimator: either by dropping the second half of w∗ and renormalizing the resulting sequence,

or alternatively by imposing decreasing weights in the minimization at the cost of harming the

minimal variance. Additionally, the latter option has the benefit of smoothing out the weight

profile which may lead to improved stability in applications.

Another natural constraint to consider at this stage is the non-negativity of wt. Indeed, all

the significant weights on autocorrelated processes are positive. Hence restricting to positive

sequences only slightly harms the minimal dispersion for the benefit of turning w into a well-

defined discrete density function of time. Such a density is useful as it is required for the forecast

of volatility or Value-at-Risk (VaR) with the historical method used in Sec. 3.7.

In summary the original minimum dispersion problem quite naturally extends to

min
w∈RM

σ2wtRw

wt1 = 1

wt ≥ 0 ∀t

wt ≥ wt+1 ∀t. (3.17)

It is worth mentioning that Eq. (3.17) can be further extended to handle optimal weights con-

ditional on a given range of values taken by the estimator. For instance, one may investigate

whether the shape of the optimal profile depends on the magnitude of the estimation by adding
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the constraint ∑t wtxt ≥ S and varying S (e.g. how does vary the shape of optimal profiles be-

tween high and low volatility periods?). By analogy with Markovitz’s problem [63], the curve

(S,V(S)) then defines an “efficient frontier” in which a point is mapped to the set of decreasing

densities over the time index.

3.4.2 Solving the min-dispersion problem

Computing the optimal weights with Eq. (3.15) requires the inversion of a symmetric positive-

definite Toeplitz matrix, which can be achieved efficiently by using ultra-fast algorithms (i.e. al-

gorithms that require O(n log2 n) flops). As the autocorrelation function can be computed in

O(n logn) time by means of Fast Fourier Transform (FFT), the whole process is indeed very

fast. In the case of Eq. (3.17) the minimization problem admits no explicit solutions because of

the inequality constraints. However, several methods minimizing a quadratic function subject

to linear constraints make use of R−1 or of some matrix decomposition of R (e.g. Cholesky’s).

The latter can be easily and efficiently worked out by algorithms specially designed to handle

symmetric Toeplitz matrices. In summary, solving the minimum dispersion problem, whether

its solution is given explicitly or not, is always much faster and easier than solving Markovitz’s

mean-variance problem. This is useful to practitioners as it allows them to compute optimal es-

timators virtually on any time scale (possibly also on intra-day horizons) and by using as much

historical data as available.

3.5 Exponentially autocorrelated processes: explicit results

Interestingly, the estimator with minimal dispersion can be worked out in closed form for pro-

cesses with strictly exponential autocorrelation. This follows from the advantageous tridiagonal

structure taken by R−1 in this case. Indeed, if ρ(h) can be written ρ(h) = αh for all h ≥ 0, then it
is straightforward to verify that

R−1 = 1
1− α2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −α 0 . . . 0

−α 1+ α2 −α . . . 0
. . .

. . .
. . .

0 . . . −α 1+ α2 −α

0 . . . 0 −α 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.18)
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a result that was first reported in [66]. Using Eq. (3.18) in Eq. (3.15) and Eq. (3.16), one immedi-

ately finds

w∗t =
1

M(1− α) + 2α

⎧⎪⎪⎨⎪⎪⎩
1 t = 1,M

1− α t ∈ {2, . . . ,M− 1}
(3.19)

and

V(x̄;w∗) = σ2
1+ α

M(1− α) + 2α
≈ σ2

M
1+ α

1− α
. (3.20)

As expected, in the absence of autocorrelation α = 0 one is left with w∗s = 1/M and V(x̄) =

σ2/M, whereas for perfectly correlated series all weights are zero except for w∗1 = w∗M = 1/2

which yields V(x̄) = σ2. We notice also that for M → ∞ the optimal weights tend to 1/M and

V(x̄, 1M ) is as in Eq. (3.9), which shows that uniform averages are asymptotically of minimal

variance on exponentially autocorrelated processes.

We consider now a correlated process and its optimal estimator with length M, whose variance

is given by Eq. (3.16). If the same process were uncorrelated its variance would be σ2/Me f f with

Me f f < M, so that by comparing the two expressions one can define an effective number of

“uncorrelated observations” in the correlated process as

Me f f =
M

∑
i,j=1

R−1ij . (3.21)

On processes with exponential ACF this yields

Me f f

M
=
1− α + 2α

M
1+ α

≈ 1− α

1+ α
,

which is the factor previously found in Eq. (3.11) (and incidentally the largest eigenvalue of R−1

in the limit M→ ∞).

A number of statistical processes seen in finance and natural sciences have exponentially decreas-

ing autocorrelation. The popular Ornstein-Uhlenbeck process, used to model mean-reversion

for instance in statistical arbitrage, features a “true” exponential decay of its autocorrelation

ρ(h) = exp(−h/τ) for h ≥ 0. The weights defined by Eq. (3.19) are therefore of minimal

dispersion on this process. In contrast, other useful exponentially correlated processes as the

GARCH(1,1) have autocorrelation defined for h ≥ 1 as ρ(h) = ρ0α
h−1 [67] which in general can-
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Figure 3.6: Weights inducing minimum dispersion on moving average estimates on a GARCH(1,1). Black circles
show the unconstrained solution (except for normalization) given by Eq. (3.15) and red triangles correspond to the
solution of the constrained problem Eq. (3.17). In both cases the short-term decay is exponential as expected from
Eq. (3.22).

not be written in the adequate form to invoke Eq. (3.18). For such processes the inverse of the

autocorrelation matrix reads R−1pert = ((1− ρ0)I + ρ0R)
−1, which can sometimes be expanded as

R−1pert = θ

(
R−1 + ∑

k≥0
(−1)k+1

(
(1− θ)R−1

)
k+2

)
(3.22)

where θ = 1/ρ0. Although the expansion Eq. (3.22) is only valid under certain circumstances4,

it suggests a sum of exponentially decreasing corrections to R−1 which in turn induce short-

term exponential decreasing components in w∗ (R−1 is tridiagonal implies (R−1)2 is four-band,

(R−1)3 is five-band, etc.). These observations are recapped in Fig. 3.6.

3.6 Profiles of volatility with minimum dispersion

We have computed the weight profiles inducing minimal variance (i.e. Eq. (3.15)) in the estimator

|r| =
M

∑
t=1
wt|rt|,

4The expansion follows from a direct application of the identities (A+ B)−1 = A−1 − A−1(A−1 + B−1)−1A−1 and
(I + A)−1 = ∑k A

k. For the latter to converge one needs here (1 − θ)λmax(R−1) ≤ 1, where it can be shown that
λmax(R−1)→ (1− α)/(1+ α) as M→ ∞).
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Figure 3.7: Volatility profiles with min-dispersion computed with Eq. (3.15) on 16 European Indices and 1’250 US
stocks. Fits of PREC and PEXP on the mean profiles are also shown. Unlike that on individual stocks fits on the
average curve are robust and give very close results for both PREC and PEXP.

where |rt| stands for the absolute log-return of the securities in our five datasets. Unsurpris-
ingly, and because of the tight connexion between the process min-dispersion profile and its

autocorrelation, the results presented in Fig. 3.7 describe a functional form that is close to the

ones proposed in Sec. 3.2.1 to describe the volatility ACF. The main difference here is the clear

discrepancy of the fits between the four functions used to describe the optimal weighting. In-

deed, PREC clearly and almost systematically outperforms PEXP, SEXP and especially LOG in

this task. This can be seen in Fig. 3.8 and Table 3.1 where the residual sum-of-squares and the

cumulated errors are compared. At this stage we can therefore safely discard LOG as a good

candidate to describe the optimal volatility profiles.

Analysis of the fit results reveals once again an important dispersion of the fitted values and

a relatively high statistical error. This error is considerably reduced if one instead tries to fit

the mean optimal profile, which is just the average curve over all the optimal weights in the

dataset. The mean profile is interesting in that it confirms PREC and PEXP as the best candidates
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Figure 3.8: Residual sum-of-squares of the optimal profiles non-linear fits to the functions of Sec 3.2.1. Top left to
right: European indices and stocks. Bottom left to right: Swiss and US stocks. Green triangles: PREC, red circles:
PEXP, dark blue crosses: LOG, light-blue stars: SEXP. For all datasets PREC almost systematically outperforms the
other candidates and LOG is systematically behind the three others.

Table 3.1: Cumulative residual sum-of-squared exceeding the best fitting profile. PREC gives systematically the
minimal cumulative error. It is set to zero and the other errors are expressed relatively to PREC.

PEXP LOG SEXP
US 3% 20% 8%
CH 4% 13% 6%
EUR 2% 16% 3%
W 3% 18% 4%
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Figure 3.9: Box plots of the fit results of the weight profiles for the “memory” parameter δ. Top left to right: European
indices and stocks. Bottom left to right: Swiss and US stocks.

for describing the min-dispersion weighting of volatility. Nevertheless, one should treat with

caution the fitted values on the mean profile because of the cross-correlations between stocks of a

same dataset. This difficulty can be overcome by applying for instance the random-phase method

used in [85], which creates surrogate uncorrelated series from originally cross-correlated ones

while preserving asymptotically their autocorrelation. Alternatively, one can use the results of

Fig. 3.9 and Fig. 3.10 but given the effectiveness and ease of implementation of the computation

methods required, we recommend instead to follow the procedure in Sec. 3.4.2.

3.7 Forecasting Value-at-Risk with min-dispersion profiles

Value-at-Risk (VaR) is a widely used technique to estimate the probability of losses of an as-

set portfolio. Since 2004 it is the recommended approach to assess market risk in the Basel

II Accords on banking laws and regulations (despite regular criticisms made by experts about

severe potential consequences when misused in risk management). Basically, a VaR estimate

computed on the returns of a portfolio answers the question: What is the most I can expect
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Figure 3.10: Box plots of the fit results to the weight profiles for the “plateau” parameter b. Top left to right: European
indices and stocks. Bottom left to right: Swiss and US stocks.

to lose—with 95%/99%/.... confidence—in percentage of my portfolio value over the next

day/week/months/...? One sees that to function VaR must be fed with two essential ingre-

dients: a confidence level (usually, 95% or 99%) and a forecast horizon (usually one day or one

week). Here we have set the confidence level at 95% and the forecast horizon at one day to take

advantage of more historical data in the estimation process.

3.7.1 Historical estimation of VaR with non-uniform time-weighting

VaR can be estimated in a number of ways as for instance with dynamical models of volatility,

Monte-Carlo simulations, extreme event theory, or with the historical method used here. Ul-

timately the choice of one method or another is based on practical considerations and in this

regard the historical method is shown to be stable, easy to implement (it is indeed the easiest

one), and it gives the fastest results as it only requires to reorder historical data (see Fig. 3.11 for

an explanation of the method). These features make the historical method suitable to brokers

managing a very large number of portfolios and willing to communicate VaR estimates to their

clients on a regular basis. This is the case of Swissquote Bank which provides weekly estimates
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Figure 3.11: Historical method of VaR forecasting with non-uniform weight densities. The VaR confidence level is
fixed at 95% and the forecast horizon at one day. Left plot displays 250 daily returns of the S&P500 along with the
weight profiles compared in this paragraph, namely the uniform (REC), exponential (EXP), and parametric power-
decay PREC defined in Sec. 3.2.1 and fitted in Sec. 3.4. The parameters of PREC correspond to the median values
measured on the US stock market δ = 0.77 and b = 9 days Fig. 3.9 and Fig. 3.10. All the weight profiles are
normalized to one. At the end of the period t = 250, VaR is estimated in the following way: (1) each return rt is
attached a weight wt (i.e. a probability) according to the moment of its appearance in the time-window (2) returns are
reordered from worst to best rt → r′k (right plot) (3) the cumulative sum of the reorganized weights w

′
k is computed

(dashed blue line) (4) the reordered return r′p attached to the first weight such that ∑
p
k=1 w

′
k ≥ conf. level is the

VaR estimate (strictly speaking, r
′
p = VaR if w

′
p = conf. level, otherwise an interpolation is used, e.g. VaR =

(r
′
p + r

′
p−1)/2). In this case p = 13 and VaR(95%) = −0.016. Traditionally the historical method makes use of

uniform weights. It has been extended here to more general weight densities.

of VaR to its 180’000 clients using a improved version of the historical method.

3.7.2 Backtesting results: comparing the weight profiles

We have restricted our VaR computations to single assets in order to focus on dynamical prop-

erties and avoid potential difficulties due to cross-correlations (see e.g. [79] for methods dealing

with VaR and cross-correlation estimation and in multi-asset portfolios). Fig. 3.11 illustrates

the estimation of VaR on the S&P500 daily returns with the historical method extended to non-

uniform weight densities. When the VaR estimation is repeated daily over a long period of

time by means of a rolling window, one obtains the plot shown in Fig. 3.12. This plot gives

much insight into the differences between the VaR estimates obtained with the simple (REC),
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Figure 3.12: Daily returns of the S&P500 along with VaR(5%) forecasts computed with the extended historical
method (Fig. 3.11) over a moving window of 250 days. The three forecasts shown here have been obtained with
uniform, exponential (EMA) and power-decaying (PREC) weight profiles (see Sec. 3.2.1 and Sec. 3.4). For EMA the
typical value α = 0.97 [46] has been used. The parameters of PREC are b = 9 days and δ = 0.77 which are the
median values of the fit results of Eq. (3.4) on the optimal weights of the US stock market. For a fair comparison
between EMA and PREC, these values do not come from the minimization of the dispersion on the S&P500 absolute
returns.

exponential (EXP) and PREC moving averages. By definition of the Value-at-Risk a VaR violation

occurs every time the S&P500 returns cross the VaR estimate curve. We readily see that most of

the VaR violations of REC happened in the second halves of 2007 and 2008 whereas in contrast

VaR violations of EXP and PREC tend to be less clustered in time—except in 2009 where PREC

adopted a pretty conservative posture all year long due to the volatility boom caused by the end

of 2008 recession. In practice we would like our VaR estimator to be accurate (i.e. VaR violations

should occur on 5% of the days), and reactive enough so as to produce time-independent VaR

violations (as is seemingly true of EXP). Therefore testing accuracy alone is not sufficient as it

may happen that estimators have the right number of violations but that the latter are clustered

in time (see VaR results for REC below).

In order to systematically assess and compare the quality of VaR forecasts produced by the

different weight profiles, we have conducted two statistical tests constituting our VaR backtesting

strategy. The first one is an independence test: given a binary sequence of 0 and 1, where 1

stands for a VaR violation, what is the probability of rejecting independence while the violations

indeed occurred independently. The second one is a binomial test: given an independent sequence

of VaR violations, what is the probability of wrongly rejecting the hypothesis that the number of
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violations agrees with the VaR confidence (i.e. here 5 violations out of 100 days)? In both cases

the probability is called the p-value of the test and is returned by any software implementing

these tests (e.g. in R the functions binom.test and runs.test ).

The p-values computed from the violation binary sequences of 1’250 US stocks are presented

in Fig. 3.13. Results show that most of the VaR estimations performed with REC have failed

the independence test (62%), as expected from Fig. 3.12, in the sense that they show a p-value

smaller that the confidence threshold for the test (here set to 0.05). Of the total number of stocks

5% have failed the binomial test. This number remains pretty much the same when restricting to

stocks that passed the independence which seems to indicate that there are no clear correlations

between failing at one and the other test. The table below gives the percentage of failures at both

tests for the three profiles. Results indicate a slightly more important dependence in the binary

series of VaR violations of PREC as compared to EXP. On the other hand PREC shows a low rate

of failures at the binomial test (slightly less than 1%) where EXP failure rate is above 3%.

independence binomial

REC 62% 5%

EXP 14% 3%

PREC 18% 1%

In a reassuring way the percentage of simultaneous failures at both tests is 0.4% for PREC and

0.5% for EXP, whereas it lies above 3.6% for REC.

Another observation arising from the examination of Fig. 3.12 is the lower variance of REC

and PREC VaR estimates with respect to that of EXP. This is not surprising given the results of

Sec. 3.3 and the fact that PREC has been designed so as to minimize the dispersion of volatility

forecasts—volatility and VaR are closely related since they both assess market risk. The variance

of the VaR results for the three profiles is compared in Fig. 3.14. As can be seen PREC does not

give the minimum dispersion which most of the time is achieved by the simple moving average.

The main reason is that PREC parameter values are the same for all stocks (we did so for the

sake of a fair comparison with EXP and REC). Given the high dispersion observed on the fit

results of Sec. 3.4 this choice is by far not optimal on many stocks.



64 Modern Portfolio Theory Revisited

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
In
d
ep
en
d
en
ce
te
st
p-
va
lu
es

In
d
ep
en
d
en
ce
te
st
p-
va
lu
es

Binomial test p-values

Figure 3.13: p-values of the independence test with respect to those of the VaR violation test used to asses the quality
of VaR forecasts. From left to right results correspond to the REC, EXP, and PREC weight profiles. Solid red lines
show the 5% significance level of the test. Series with p-values below the significant level are said to fail the test with
a risk of error below 5%. For instance, series with p-values belonging to the bottom-left rectangle fail both tests. The
quality of their VaR forecasts is therefore highly questionable.
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Figure 3.14: Excess variance of VaR(95%) estimates on 400 US stocks for the three weight profiles REC, EXP and
PREC. The smallest variance (generally obtained with simple moving averages) is taken as benchmark and the two
others are expressed relatively to this value in percentage. Solid lines represent the mean over the 1’250 US stocks.
On average EMA estimates are 32% more volatile than REC’s and 28% more volatile than the ones computed with
the PREC profile.
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3.8 Concluding remarks

We have seen that even a simplified description of the min-dispersion weights taking into ac-

count the autocorrelation structure of the volatility was able to reduce in a highly significant

way the variance of VaR estimates, as compared with exponentially moving average, while in-

ducing much less dependence in the sequence of VaR violations than simple moving averages.

Furthermore, long-memory VaR estimators are more accurate than EWA and SMA in the sense

that the number of their VaR violations, measured out-of-sample on 1’250 US stocks, was shown

to be significantly closer to the prescribed confidence level. Although our backtesting procedure

should be extended to other forecast horizons and confidence levels, these promising results so

far suggest that long-memory estimators are more efficient than the commonly used alternatives

with flat or exponential memory. This is not a surprise: to comparable or better accuracy, es-

timators with smaller dispersion are expected to have better efficiency. All these effects should

be enhanced with the non-parametric form of the profile that one can obtain from direct mini-

mization of a quadratic Toeplitz form under suitable constraints so as to preserve the accuracy

and stability of the estimator (i.e. imposing non-decreasing and positive weights). As discussed

in Sec. 3.4.2, the minimization process can be performed in a stable and efficient way by using

appropriate algorithms implemented in open-source (e.g. R, Scilab) or commercial software so-

lutions (e.g. Matlab or Mathematica). Their efficiency and ease of implementation should make

long-memory estimators attractive to risk managers supervising a large number of portfolios.
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4

Long-memory covariance matrices

4.1 Time-weighted covariance matrices: the issue of condition-

ing

We have seen in the previous chapter that one-dimensional weighted risk estimators can produce

estimates with lower dispersion and higher accuracy when computed with a suitable power-

decaying weight profile. It is natural at this stage to wonder about the extension of these results

to the multidimensional case. In other words: what if one uses power-decaying weights to

build a long-memory covariance matrix of returns? At first sight, this estimator should have less

intrinsic dispersion, give more accurate predictions than the usual sample covariance matrix, and

therefore should reduce portfolio turnover in mean-variance allocation while achieving lower ex-

post volatility.

Things are not so simple though. In fact the construction of weighted covariance matrices raises

important questions that should be addressed prior to feeding one’s optimizer with them. The

case of Exponential Moving Averages (EMA) is instructive in this regard. As expected, EMA

covariance estimators are generally more accurate than simple moving average ones (in the sense

that optimal portfolios solving the mean-variance optimization problem can reach lower out-of-

sample volatility when computed with EMA covariance matrices as shown in this chapter), but

it may produce so high turnovers that the resulting transaction costs in a real-world allocation

may ruin the whole investment strategy (this will be demonstrated at the end of the chapter).

Why is it so? Causes have to do with the (bad) conditioning of the weighted estimator.
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To see this consider an investor who buys at t− Δt the mean-variance portfolio x(t− Δt) com-

puted with the return covariance matrix forecast Σ̂(t). Then at t the investor rebalances his

positions to match the optimal portfolio at this date. The turnover of this operation depends

partly on the intrinsic error of the estimator, partly on price movements between t − Δt and t.

Assume that Δt can be reduced sufficiently so that price fluctuations become negligible com-

pared to the estimator intrinsic errors (e.g. to some sufficiently small intra-day horizon) and

denote by E = Σ̂ − Σ the forecast error matrix. Then it follows from standard matrix algebra

that the absolute turnover is bounded by

|Δx(t)| � κ(Σ)

1− κ(Σ) |E||Σ|

|E|
|Σ| , (4.1)

where κ(Σ) is the condition number of Σ defined as κ(Σ) = |Σ||Σ−1| if Σ is invertible and

∞ otherwise. Relation (4.1), which holds for any matrix norm and compatible vector norm,

suggests that the conditioning of κ(Σ) plays a key role in determining the sensitivity of the

turnover to forecast errors (strictly speaking the sensitivity of the bound). In particular, for small

|E| the bound is of the order of κ(Σ)(|E|/|Σ|),1 that is, of the order of the relative forecast errors
provided that κ(Σ) remains small, which is the “ideal” situation we were expecting. On the

other hand, for ill-conditioned matrices κ(Σ) can take very large values, which implies that even

small relative forecast errors may give rise to high portfolio turnovers and thus may cause high

rebalancing costs. This is precisely the drawback of time exponentially-weighted covariance

estimators.

Detailed examination reveals that the spectral shortcoming of EMA, much like its dynamical

limitations discussed in Sec. 3.3, can be explained by the “steepness” of the exponential decay.

Indeed, it is shown in [70] that the smallest eigenvalue of EMA matrices tends exponentially fast

to zero as the “effective” number of observations captured by the exponential profile decreases.

This inevitably leads to ill-conditioned estimator. The situation gets worse when the number of

assets increases because in order to preserve the estimator accuracy weight profiles should not

scale with the number of assets.

In this chapter we first derive a general formula and a simple algorithm for the computation

of the eigenvalue density of general weighted covariance estimators. We then focus on power-

1This relation becomes κ(Σ)(|E|/|Σ|+ |e|/|r|) when forecasts on the returns and corresponding errors e = r̂ − r are
included.
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decaying profiles, in particular on PREC which was shown to provide the best parametric de-

scription of the volatility min-dispersion weights among four heavy-tailed profiles, and derive

exact results for its eigenvalue density and edge spectrum in two asymptotic limits. We finally

present results of backtested strategies on real data with the newly introduced long-memory

estimators.

4.2 Theory

We first give a formal definition of the weighted covariance estimator used throughout the text,

and then proceed to its spectral analysis in the case of independent asset returns with zero mean

and unit variance (i.e. a correlation matrix). Since we deal here with finite-length series the

sample correlation matrix of independent returns is not the identity, and therefore its spectrum

is not trivially 1. Our spectral analysis has two goals: (1) building a null model for the eigenvalue

density of weighted correlation matrices of independent returns, and (2) assessing the effects of

specific weight profiles on the estimator conditioning, with particular focus on power-decaying

profiles.

4.2.1 Weighted covariance estimator

Let H be the N × T matrix of returns. Our aim in this section is to study the dependence of the

spectrum of weighted correlation matrices on the chosen weight profile. Towards this goal, we

will consider first the i.i.d. model, that is, empirical correlation matrices of the form

C =
1
N
H diag(wN) Ht, (4.2)

where H is an N× T matrix with i.i.d. entries—having zero mean and unit variance—and wN =

(wN(1), . . . ,wN(T)) is a given profile, exhibiting some limiting behavior as N and T become

large. Restricting ourselves to matrices with entries having all unit variance allows us to focus

on correlation effects; the impact of the profile on the variance of the individual observed processes

has been discussed at length in the previous chapter.
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4.2.2 Random Matrix Theory in a nutshell

Random Matrix Theory (RMT) deals with matrices whose entries are random variables. The

theory aims at computing the (joint) distribution of the matrix eigenvalues given the distribution

of its entries. In some cases, RMT allows one to find the distribution of other quantities of interest

as extreme eigenvalues and eigenvector components. In this chapter, we focus on the eigenvalue

distribution and the edge spectrum as these are of primary interest in portfolio allocation (see

later).

Given an N × N symmetric and non-negative definite matrix X with eigenvalues λ1 ≥ . . . ≥
λN ≥ 0, we define its empirical eigenvalue distribution as2

FN(x) =
1
N
|{k ∈ {1, . . . ,N} : λk ≤ x}|, x ∈ R,

where |A| denotes the cardinality of the set A. Let also

gN(z) =
1
N
Tr

(
(X− zI)−1

)
=

ˆ
R

1
x− z dFN(x), z ∈ C\R,

denote the Stieltjes’ transform of FN . We say that FN converges weakly a.s. (i.e. almost surely) to

a (deterministic) limiting distribution function F if FN(x) converges to F(x) a.s., for every x ∈ R

continuity point of F. This implies in particular that

lim
N→∞

gN(z) = g(z) =
ˆ

R

1
x− z dF(x), a.s. ∀z ∈ C\R. (4.3)

Assuming that F(x) admits the density p(x), one can further invoke the Frobenius-Perron inver-

sion formula to obtain

p(x) =
dF
dx

(x) = lim
ε↓0

1
π
Im g(x+ iε), x ∈ R. (4.4)

Furthermore, a recent result [74] states that for correlation matrices as in Eq. (4.2), Eq. (4.4)

reduces to

p(x) =
1
π
Im g(x), x ∈ R\{0}, (4.5)

which will be useful for the actual computation of the eigenvalue density function.

2The theory is valid for Hermitian matrices with complex entries. We restrict here to real non-negative definite
matrices for the sake of simplicity.
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4.2.3 Main result

In the following, we derive a general equation for the Stieltjes transform of the asymptotic

eigenvalue distribution of weighted correlation matrices, that is valid under mild assumptions

on the profile and that is found to be easily solvable in some limit for various families of profiles.

The theorem below can be directly deduced from Marčenko and Pastur’s main result [62].

Theorem 1. • Let c0 > 0 be fixed and T, N be integers tending to infinity with a fixed ratio, that is:

lim
N,T→∞

T
N

= c0.

• Let H be an N × T matrix with i.i.d. real entries hjk having zero mean and unit variance.

• Let (wN(k))k∈{1,...,T} be positive real numbers such that the sequence of empirical distribution
functions

F(N)
W (x) =

1
T
|{k ∈ {1, . . . , T} : wN(k) ≤ x}|, x ≥ 0,

converges weakly towards a given distribution function FW(x) as N, T → ∞.

• Let C be the N × N matrix defined as C = 1
NH diag(wN) H

t, that is,

Cij =
1
N

T

∑
k=1

wN(k) hikhjk, i, j ∈ {1, . . . ,N}.

Then the empirical eigenvalue distribution of C converges weakly almost surely as N, T → ∞

towards a deterministic distribution, whose Stieltjes’ transform g(z) is solution of the equation

g(z) = −
(
z− c0

ˆ ∞

0

x
1+ x g(z)

dFW(x)
)−1

, z ∈ C\R. (4.6)

Let us now introduce a continuous and decreasing function w : [0, c0]→ R+ such that

lim
N→∞

wN(�Nt�) = w(t), ∀t ∈ [0, c0]. (4.7)

We will see below examples of sequences wN and functions w satisfying this assumption. Let us

first see how Eq. (4.7) allows us to rewrite Eq. (4.6) in a simpler form. Using this assumption as
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well as the one made in Theorem (1), we obtain that for any x ≥ 0 continuity point of FW ,

FW(x) = lim
N,T→∞

1
T
|{k ∈ {1, . . . , T} : wN(k) ≤ x}|

=
1
c0
|{t ∈ [0, c0] : w(t) ≤ x}| = 1

c0
w−1(x),

where w−1 denotes the formal inverse of w (which exists as w is decreasing). Therefore, c0 FW(x) =

w−1(x) for all continuity points of FW . Making thus the change of variable t = w−1(x) in Eq. (4.6)

gives

g(z) = −
(
z−
ˆ c0

0

w(t)
1+ w(t) g(z)

dt
)−1

, z ∈ C\R. (4.8)

For a given constant c0 and a given profile w, Eq. (4.8) does not have in general a closed-form

solution as the integral on the right-hand side can be some special function. Even though g(z)

may be computed in a number of cases (see next section), it is often helpful for comprehension’s

sake and numerical efficiency to obtain analytical results. To this aim, a possible simplification

in the analysis of Eq. (4.8) can be made by letting the factor c0 tend to infinity. But this requires

to assess under which condition on w Eq (4.8) admits a unique solution in the limit c0 → ∞.

This study has been rigorously conducted in Appendix A.1.

It is shown that if w : R+ → R+ is a continuous and decreasing function such that w ∈ L2(R+),

then the limiting equation

g(z) = −
(
z−
ˆ ∞

0

w(t)
1+w(t) g(z)

dt
)−1

, z ∈ C\R. (4.9)

admits a unique solution which is the Stieltjes transform of a distribution.

Alternatively, one can obtain the same result via the more recent R-transform method by gen-

eralizing the calculation in [70] for uniform covariance matrices, to estimators with arbitrary

weight profiles. We present this alternate and less rigorous derivation below as a simple way of

obtaining the main formula without relying on Marčenko and Pastur’s heavy machinery.

Derivation of Eq. (4.9) by the R-Transform method For simplicity we will assume that the

entries of the matrix H are i.i.d. Gaussian with zero mean and unit variance (the Gaussian

assumption is crucial for the R-transform). Let gN(z) be the Stieltjes transform of CN (i.e. C with

N < ∞) and g(z) := limN→∞ gN(z). We define the R-transform of C as R(z) := g−1(−z) − 1
z ,
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where z ∈ C; by definition, g(g−1(−z)) = −z.

We consider the rank-one matrices δCNj := 1
N wN(j) hj h

t
j. Notice that because the entries of H

are Gaussian and independent, these matrices are both independent and rotationally invariant

(i.e. they are independent Wishart matrices). The idea is to use the additivity of the R-transform

for such matrices [?, 10], which is expressed as R(z) = ∑∞
j=1 RδCj(z), and then to compute g(z)

and finally p(x) by Eq. (4.5).

The multiplication of hj by δCNj leads to δCNj hj = wN(j)
‖hj‖2
N hj, so that δCNj has one eigenvalue

equal to wN(j)
‖hj‖2
N and N − 1 zero eigenvalues. By the law of large numbers, the non-zero

eigenvalue is approximately equal to wN(j) for large N. This allows us to calculate the Stieltjes

transform of δCNj in this asymptotic limit:

gδCj(z) ≡
1
N
Tr((δCNj − zI)−1) 


1
N

(
1

wN(j)− z −
N − 1
z

)
.

Inverting gδCj(z) to find RδCj(z), we first obtain the following quadratic equation in z:

xz2 + (1+ wx)z− (1− 1
N
)w 
 0, (4.10)

where we have used the abbreviations x := gδCj(z) and w := wN(j). The solutions of Eq. (4.10)

read

z± 
 1
2x

(
wx− 1± (1+ wx)

√
1− 4wx

N(1+wx)2

)


 1
2x

(
wx− 1±

[
(1+wx)− 2wx

N(1+wx)

]
+O

(
N−2

))
. (4.11)

We consider the solutions to first order in 1/N. Inverting Eq. (4.11) to find x(z+) (with O(N−2)

dropped), we realize that lim�z↓0�x(�z+ i�z) = 0, so that x(z+) cannot be the Stieltjes trans-

form of a distribution. On the other hand, the solution z− leads to a valid Stieltjes transform,

which yields

g−1δCj
(x) 
 − 1

x
+

wN(j)
N(1+wN(j)x)

.

Then the R-transform ofW can be easily calculated as

RδCj(z) = g−1δCj
(−z)− 1

z

 wN(j)
N(1− wN(j)z) ⇒ R(z) 
 1

N

∞

∑
j=1

wN(j)
1−wN(j)z ,
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and thus

g−1(z) = R(−z)− 1
z

 1
N

∞

∑
j=1

wN(j)
1+ wN(j)z

− 1
z
−→
N→∞

ˆ ∞

0

w(t)
1+ w(t) z

dt− 1
z
.

Finally, replacing z by g(z) in the above equation and rearranging terms yields the final result

established before:

g(z) = −
(
z−
ˆ ∞

0

w(t)
1+ w(t) g(z)

ds
)−1

.

In the above model, T accounts for the amount of available historical data, which is assumed here

to be of the order of the number of assets N. As the value of N is typically large in our setting,

this assumption may sound unpractical at first sight. In our model, the fact that the profile w

decays over time compensates for this unrealistic assumption, as fewer and fewer weight is put

on old data as time goes by. Comparing Eq. (4.8) and Eq. (4.9), we see that as c0 → ∞, the former

equation converges to the latter. Provided that the profile w decays sufficiently fast to zero, the

solution of the resulting equation gives therefore a reasonable approximation to the solution of

Eq. (4.8).

One could argue that the right model is to consider a perhaps large but fixed amount of available

historical data T, independent of the number of assets N. Our viewpoint on this problem is on

the contrary that considering the present asymptotic regime leads to explicit answers regarding

the dependency of the spectrum on the shape of the profile. These are important in practical

applications and might never have been obtained by setting T to be constant.

Next, we consider particular examples of profiles w satisfying the above assumptions. Interpret-

ing w as a weighting profile, a natural assumption to add is the profile normalization, i.e.

‖w‖c0 =
ˆ c0

0
w(t; c0) dt = 1, (4.12)

which, as c0 → ∞, reads

‖w‖1 = lim
c0→∞

‖w‖c0 =
ˆ ∞

0
w(t) dt = 1. (4.13)

In Eq. (4.13), it is understood that w(t) ≡ limc0→∞ w(t; c0). Notice that Eq. (4.13) together with

the assumption that w is continuous and decreasing implies that w ∈ L2(R+). Indeed,

‖w‖22 =
ˆ ∞

0
w(t)2 dt ≤ w(0)

ˆ ∞

0
w(t) dt < ∞. (4.14)
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Algorithme 4.1 Compute the asymptotic spectral density of weighted correlation matrices
Require: λ, kmax, tol
1: g0 ← random starter in C \R

2: for k = 1 to kmax do
3: gk ← gk−1 − Gλ(gk−1)/G

′
λ(gk−1)

4: if |gk − gk−1| ≤ tol then
5: g∗ ← gk
6: exit loop
7: end if
8: end for
9: p(λ)← 1

π Im g∗

4.2.4 Computing the spectral density of i.i.d. weighted correlation matrices

Consider the following complex function of g ∈ C \R:

Gz(g) = g
ˆ c0

0

w(t; c0)
1+ w(t; c0) g

dt− g z− 1.

If g is as in Theorem 1, then the equation Gz(g) = 0 has a unique solution for any c0 ∈ ]1,∞] and

positive decreasing profile w (and integrable in the case c0 = ∞). It is easy to show that Gz(g) is

holomorphic with respect to g and has derivative

Gz(g)
′
=

ˆ c0

0

w(t; c0)
1+ w(t; c0) g

dt− g
ˆ c0

0

(
w(t; c0)

1+ w(t; c0) g

)2
dt− z.

The well-known Newton-Raphson method is particularly suitable for finding the zero of a holo-

morphic function with known derivative. Algorithm 4.1 provides a straightforward version of

this recursive scheme adapted to the computation of p(λ). The algorithm converges very quickly

to the solution provided that the initial value g0 is in the solution basin of attraction, which can

be (almost surely) ensured by randomly choosing g0 ∈ C \R. Note that the algorithm crucially

relies on the fact that limz→λ Gz(g(z)) = Gλ(g(λ)), which follows from Eq. (4.5).

4.3 Long-memory covariance matrices

4.3.1 Old and new weight profiles

As discussed in Chapter 3, the most popular weight sequences used in volatility forecasting are

the uniform and exponential weightings. They are now defined formally and so as to satisfy the

assumptions of Theorem 1.
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The uniform weight sequence (REC):

wN(k) =
1
c0
1{1≤k≤c0N} ⇒ w(t; c0) =

1
c0
1[0,c0](t). (4.15)

The Exponential Moving Average (EMA): EXP Up to an appropriate normalizing factor, the

exponential weight sequence and profile are given by

wN(k) ∼
(
1− 1

cN

)k
⇒ w(t; c0) =

e− t
c

c (1− e− c0
c )

⇒ lim
c0→∞

w(t; c0) =
1
c
e−

t
c . (4.16)

We define similarly PREC and PEXP, which have been shown in Sec. 3.4 to give best fit results

to the min-dispersion weights. As will be demonstrated theoretically and by simulation in this

chapter, these heavy-tailed profiles do spare the conditioning of Σ even for large portfolio size.

EXP, on the other hand, is not suitable for portfolio allocation as it induces very high turnovers

for the optimal values of the parameter c (Sec. 4.4).

PREC produces an “almost” flat short-time decay:

wN(k) ∼ 1

1+
(
k
cN

)γ ⇒ w(t; c0) =
K0

1+ ( tc )
γ
, (4.17)

where K0 =
(
c0 2F1

(
1, 1γ ; 1+

1
γ ;−

( c0
c

)γ
))−1

is such that ‖w(t; c0)‖c0 = 1 (Eq. (4.12)) and

2F1(a, b; c; z) is the hypergeometric function [44]. For c0 = ∞, PREC becomes

w(t) =
γ

πc

sin(π
γ )

1+ ( tc )
γ
. (4.18)

PEXP provides an alternate version of power-decaying profile with exponential short-time be-

havior:

wN(k) ∼ 1(
1+ k

cN

)γ ⇒ w(t; c0) =
Q0

(1+ t
c )

γ
, (4.19)

where Q0 =
(γ−1)

c−cγ(c+c0)
1−γ . In the asymptotic case c0 = ∞ PEXP reads

w(t) =
γ− 1

c (1+ t
c )

γ
. (4.20)
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Figure 4.1: As γ is increased PREC tends to the uniform weighting (left plot) and PEXP resembles EXP over a larger
range of values (right plot). This will be used in Sec. 4.4 to analyze the effects of long-memory weights in a real-world
portfolio allocation.

The rate of decay in both sequences is tuned up by the memory parameter γ: for high values of

γ PREC and PEXP resemble respectively REC and EXP (see Fig. 4.1).

wN(k) w(t) t̄ d δ0.5

1
N

∞

∑
k=1

wN(k) = 1
ˆ ∞

0
w(t) dt = 1

ˆ ∞

0
t w(t) dt

ˆ d

0
w(t) dt = 1− ε

w(δ0.5)
w(0)

= 0.5

REC
1
c0
1{1≤k≤c0N}

1
c0
1[0,c0](t)

c0
2

{
(1− ε)c0 d ≤ c0
0 d > c0

/

EXP
1
c

(
1− 1

cN

)k 1
c
e− t

c c c log( 1ε ) c log 2

PREC
(γ > 1)

KN
1+ ( k

cN )
γ

γ

πc

sin( π
γ )

1+ ( tc )
γ

c (2 cos π
γ )

−1

(γ > 2)
∼ c ( 1ε )

1
γ−1 c

PEXP
(γ > 1)

QN
(1+ k

cN )
γ

γ− 1
c(1+ t

c )
γ

c (γ− 2)−1
(γ > 2)

c
(
( 1ε )

1
γ−1 − 1

)
c
(
2
1
γ − 1

)

Table 4.1: The weight profiles of Sec. (4.3.1) for c0 = ∞ and their main attributes: the mean number of observations
t̄, the effective sample size at a given tolerance level d(ε), and the median lag δ0.5. Attributes are useful for comparison
purpose and to better understand the role of the parameters: e.g. c is the mean number of observations in EXP and
the return half-life time in PREC. As can be seen c is proportional to all the measures of the effective number of
observations (i.e. information) captured by the profile.
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Remark 2. Obviously, one can define other heavy tailed functions exhibiting some sort of long-

memory. For instance, in Sec. 3.6 we have fitted a logarithmic profile and the stretched expo-

nential SEXP: w(t) ∼ exp(−(x/c)γ), γ ∈ [0, 1], to the min-dispersion weight profiles on the

one-dimensional volatility estimator3. Although giving fairly good results, SEXP and LOG were

generally outperformed by the two power-decaying profiles PREC and PEXP defined above.

4.3.2 Eigenvalue density and edge spectrum of PREC estimators

We work out the spectral density and the edge spectrum of the i.i.d. PREC estimator in the two

asymptotic cases c0 < ∞ and c0 = ∞. This profile was shown to provide the best parametric

description of min-dispersion volatility estimators in Sec. 3.6. PEXP does not lead in general to

closed-form calculations (except for a few integer values of γ), nevertheless, we show numer-

ically that the spectrum of PREC and PEXP are much alike because of their similar long-term

decay.

Spectral density

Finite T/N ratio For T/N = c0 < ∞, the definite integral in Eq. (4.8) can be expressed in terms

of the hypergeometric function [44]:

ˆ c0

0

w(t)
1+ w(t)g

dt =
c0K0
1+ K0g

2F1

(
1,
1
γ
; 1+

1
γ
;−

( c0
c

)γ

1+ K0g

)
, (4.21)

where the value of the profile normalizing factor K0 is given in Section 4.3.1. Although this is

sufficient for computing the asymptotic spectrum via the method of Section 4.2.4, we can gain

significant insight and computing power in some cases of interest by deriving a closed-form

equation for g. Indeed, a general expression for γ = 1/p, p ∈ N is obtained in Appendix A.1;

in the most simple case, γ = 1, one finds

1+ zg = c K0g log
(
1+

c0
c (1+ K0g)

)
.

Consistently, in the limit of infinite information c → ∞ one recovers the Marčenko and Pastur

equation for g [62]. Other closed-form expressions for general γ require to consider the limit

T/N = ∞.
3For γ = 1 SEXP is equal to EXP, whereas it decreases slower and slower for values of γ approaching zero. SEXP can

therefore be seen as a tradeoff between REC and EXP.
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Infinite T/N ratio Letting c0 = ∞ in Eq. (A.2) and assuming γ > 1 leads to

ˆ ∞

0

w(t)
1+w(t)g

dt =
(

1
1+ Kg

) γ−1
γ

,

where from Sec. 4.3.1 K = γ
πc sin(

π
γ ). Using this result in Eq. (4.9) leads to the following general

equation for Stieltjes transform of PREC

1+ zg = g(1+ Kg)
1
γ−1. (4.22)

Interestingly, for γ = q/p with q > p ≥ 1 two integers, the valid transform of p is a root of a

complex polynomial of degree 2q− p given by

(1+ Kg)q−p(1+ zg)q − gq. (4.23)

This shows that p admits a closed form only for γ = 2 and γ = 3/2 for which its transform is

solution of a polynomial of degree 3, respectively of degree 4. In all other cases, Eq. (4.22) has to

be solved numerically, for instance with Algorithm 4.1. The PREC density for several values of

γ and c is compared with an empirical histogram in Fig. 4.2.

Edge spectrum

The edge spectrum of weighted estimators is important in portfolio allocation, for it is related

to the conditioning of the estimator via the condition number κ(C) = λmax/λmin. The edge

spectrum of C is also useful as it gives the limits of the i.i.d. return model; any eigenvalue

outside these limits can be regarded as “informative” from a statistical (and thus a financial)

point of view. The idea has been successfully used in portfolio allocation to reduce the “out-of-

sample” volatility of the optimal portfolio (see [17] for a review of the eigenvalue filtering and

conditioning techniques).

The approach of Marčenko and Pastur [62] to obtain the edge spectrum of matrices verifying

Theorem 1 readily carries over to the case T/N = ∞. It is applied below to PREC estimators.

Denoting by B ≡ g−1 the inverse function of the Stieltjes transform, the bounds of the spectrum
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Figure 4.2: The asymptotic spectral density of PREC in the limit c0 = ∞ (Eq. 4.22) compared with the spectral
histogram of a 400× 2000 matrix of i.i.d Student returns. The setting is c = 2.5 and γ = 3.5. Dashed lines show
the density upon varying the memory parameter γ (left plot) and median lag c (right plot). For γ � 1 PREC tends
to the Marčenko and Pastur law. As the information c captured by PREC increases the density peaks around one
(i.e. the correlation “noise dressing” vanishes), and in the limit c → ∞ the spectrum is exactly equal to one, that is
the spectrum of the identity matrix in this limit.
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are given by B(y±), where y± are such that B′(y±) = 0. From Eq. (4.22), B(y) verifies

B(y) = (1+ Ky)
1
γ−1 − 1

y
, (4.24)

whose derivative can be written

B′(y) = K
(
1
γ
− 1

)
(1+ Ky)−1

(
1
y
+ B

)
+
1
y2
. (4.25)

Setting B′(y) = 0 and rearranging terms gives a second-degree equation for y:

(γ− 1)By2− y− γ

K
= 0. (4.26)

When introduced in Eq. (4.24), the solutions of Eq. (4.26) lead to the following equations for the

upper, resp. the lower, bound of the spectrum:

λ1,N =

(
K∓√

K [K+ 4γ(γ− 1)λ1,N]
2(γ− 1)λ1,N + 1

) 1
γ
−1
± 2(γ− 1)λ1,N√

4γ(γ− 1)λ1,N
K

+ 1∓ 1
. (4.27)

Hence for given values of γ and c the limiting eigenvalues can easily be computed by solving

numerically Eq. (4.27). Interestingly, a much simpler expression is found by expanding the

right-hand side of this equation to first order in λN . Solving the resulting linear equation leads

to

λN ≈
λN→0+

π
(γ−1)3

γ2

γ

(
c(γ− 1)
γ2 sin π

γ

)γ−1
∼ cγ−1. (4.28)

Hence in the critical regime λN ≈ 0 the smallest eigenvalue of PREC matrices decays as a power
of c at a rate that is governed by the memory parameter γ. Even though we haven’t found such

a simple expression for λ1, we have observed that λ1 ∼ c−α with α ≈ 2 for small c and different
values of γ (see Fig. 4.3). From this observation, we therefore conclude that the condition number

of PREC i.i.d. correlation matrices decreases with c roughly as κ(C) ∼ 1/cγ+1 for γ > 1. By the

similarity between both power-decaying profiles the same conclusion holds for PEXP matrices

(see the insets in Fig. 4.3).
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4.3.3 Simulation results

As shown in Fig. 4.3, Eq. (4.28) agrees well with simulations based on randomly generated re-

turns, even when the latter are drawn from independent but non-identical Student distributions4.

The simulation goes as follows: we draw a matrix H ∈ R400×500 of 400 independent Student

returns with mean zero and degree of freedom chosen randomly in [2, 5]. Then the return cross-

correlation matrices are computed for values of c between 1 and 200 days. The dashed line

results from a linear fit to the tail of the curves. For values of γ > 1.5, we find a good agreement

with the theoretical bound λN ∼ cγ−1 obtained by considering λN � 1 (Eq. (4.28)). On the right

plot, we examine the behavior of the maximum eigenvalue. Fits show that λ1 ∼ cα with α ≈ 2

for all γ ∈ {1.25, 1.5, 2, 2.5, 3} and c ∈ [1, 10]. A more intricate relation between λ1, c and γ is

observed for higher values of c.

It was shown in [70] that the smallest eigenvalue of EMA matrices goes exponentially fast to

zero as the information c captured by the profile decreases:

λN ∼ exp(−1/c).

As can be seen in Fig. 4.4, the smallest eigenvalue of PREC and PEXP matrices is much larger

than that of EXP when optimal values (obtained in the one-dimensional case) are plugged in.

Furthermore, power-decaying profiles produce a null model with narrower spectral bandwidth,

which is a useful feature for the eigenvalue-based filtering techniques [17].

4.4 Turnover and long-memory profiles in portfolio allocation

Simulations The goal of this application is twofold (1) assessing the consequences of ill-conditioned

estimators on both realized volatility and portfolio turnover, and (2) showing how long-memory

added to the exponential profile can decrease the turnover in MVO while reducing (to some

extent) the realized volatility.

We have run many long-only mean-variance allocations using REC (uniform), EXP, and PEXP

covariance matrices (with and without the expected return constraint), and averaged over sub-

samples to improve the readability of the results. The simulation parameters are given below

(without the expected return constraint).
4This choice is closer to empirical observations than returns drawn from the Gaussian distribution [15].
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Figure 4.3: Left panel: main plot: smallest eigenvalue λN as a function of the median lag c for PREC-weighted
covariance matrices (log-log plot). For each γ ∈ {1.25, 1.5, 2, 2.5, 3}, we draw a matrix H ∈ R400×500 of 400
independent Student returns with mean zero and degree of freedom chosen at random in [2, 5]. Then the PREC
estimator is computed for values of c between 1 and 200 days. The dashed lines result from a linear fit to the tail of
the curves. Inset: Same plot for PEXP matrices. Right panel: same plots for the largest eigenvalue λ1. In this case
the fits show that λ1 ∼ cα with α ≈ 2 for all γ and c ∈ [1, 10].
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(b) Weekly returns: the matrix is rank-deficient (zero eigenvalues to numerical precision are shown).

Figure 4.4: Spectrum of weighted correlation matrices. Data are the daily returns of 1’200 stocks of the NYSE over
the period 1996-2008. The profile parameters are chosen according to their optimal forecast values obtained in the
one-dimensional case, that is: cexp = 33 days corresponds to the typical RiskMetrics value λ = 0.97 [46]. For
power-decaying profiles the values (cprec,γprec) = (4, 0.6) and (cpexp,γpexp) = (8, 0.75) are the medians of the fit
results obtained on the US stock markets for these two profiles (see Sec. 3.4). Plots show the better conditioning of
power-decaying estimators over EXP. Similar conclusions hold for rank-deficient correlation matrices (i.e. the number
of assets exceeds the length of time series), that is, the magnitude of the first non-zero eigenvalue is substantially larger
with power-estimators than with EXP.
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Simulation settings

Market NYSE

Calibration period 1998-2006

Observation period 2006-2010

Return horizon weekly

Portfolio rebalancing weekly

Allocation method long-only MVO

Subsampling 300 stocks / 1’200

Nb. subsamples 50

The realized volatility σ was defined as follows: the optimal portfolio was allocated every Mon-

day and the realized daily volatility was computed as the square-root of the mean square returns

over the week. Then the daily volatility was annualized multiplying by
√
250.

To better illustrate the relation between the realized volatility σ and the portfolio turnover Δ

(annualized), we have plotted σ(Δ) for different values of the profile parameters.

Plot results The result for the uniform weighting (REC) is the red diamond in the top-left

corner in Fig. 4.5. As expected, REC shows low turnover and high realized volatility as compared

to other (decreasing) profiles. The red squares are the results for EMA matrices. They were

obtained by letting cexp take the following values (from left to right on the plot)

cexp: 400 200 100 66 50 40 33 20 15 ,

where the RiskMetrics value (λ = 0.97) corresponds to cexp = 33 weeks. We see that on average

EMA achieves a significant, although not striking, reduction of σ with respect to REC’s. The

minimal realized volatility is obtained for cexp = 100 (λ = 0.99), which is in agreement with the

minimal value obtained by [68] with similar EMA matrices but on daily returns. We notice that

the RiskMetrics value cexp = 33, considered optimal in the one-dimensional case (in the sense of

forecasting), is not optimal when used in a multi-asset environment.

Unlike σ, the annualized turnover is very sensitive to the variations of cexp, which can be ex-

plained by the high sensitivity of the smallest eigenvalue of EMA matrices to the variations of
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this parameter. For instance, the annualized turnover observed for cexp = 100 is half the value

observed for cexp = 33, that is, the latter strategy may be on average twice as costly as the optimal

one.

To see the theoretical results of the previous section at work—in particular our considerations on

the edge spectrum and the conditioning of weighted covariance matrices—we have imagined a

way to integrate long-memory in EMA while preserving the shape of the short-time exponential

decay. This can be done in a simple way: set γ to a very large value so that PEXP is as close as

possible to the exponential profile. Then for t not too large the two profiles must coincide, that

is, one should have

PEXP ≈ EXP⇒ cpexp = γcexp, (4.29)

which follows from equating the first order terms in the two Taylor expansions. As can be seen

in Fig. 4.6, this method allows one to preserve in PEXP the short-time exponential decay of EXP

while progressively adding long-memory by decreasing γ.

For each value of cexp, we have defined 10 PEXP profiles using the method above and the fol-

lowing values for γ

γ: 1.2 2 3 4 10 15 30 80 150 500 .

For each γ we have run the same simulations as before and averaged the annualized out-of-

sample volatility and turnover over 50 subsamples. The results on the plot Fig. 4.5 show that

adding long-memory efficiently and substantially decreases the turnover, at least for cexp ≥ 100.
As suggested by the theoretical results in the previous chapter, this illustrates the high sensitivity

of portfolio turnovers to the tail of the weight profiles (since in this case the short-term profile

remains exponential).

4.5 Conclusion

The dynamical and spectral analysis of weighted correlation matrices has lead us to introduce a

class of weight profiles with long-memory, which, while maintaining a small number of fitting

parameters, are able to capture the persistence of volatility and to spare the conditioning of the

estimator.
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Figure 4.5: Annualized out-of-sample volatility and turnover for the MVO problem in which the covariance matrix
is estimated with uniform (REC), exponential (EXP), and power-decaying (PEXP) weight profiles (details in the text).

We have derived a spectral null model for weighted correlation matrices with i.i.d. entries that

is valid in the two limits limN,T→∞ T/N = c0 < ∞ and limN,T→∞ T/N = ∞, where N is the

number of assets and T the number of observations. Through an appropriate change of variable,

these results readily extend to the case 0 < c0 < 1, that is, when the number of assets exceeds the

number of observations. Finally, the introduction of “long-memory” in EMA covariance matrices

was shown do decrease substantially the MVO portfolio turnover, which we believe provides

another evidence that long-memory is key to improving the efficiency of one-dimensional and

multi-dimensional estimators.
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Figure 4.6: PEXP can be used to add long-memory in EMA while preserving the shape of the exponential short-time
decay. The mean number of observations in EXP is fixed, here at cexp = 66, and the power-decaying profiles PEXP
are defined by cpexp = γcexp, where γ takes the values used in this section. The legend displays the values obtained
for cpexp.
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Simplifying the Mean-Variance Optimization

To address the topical “curse of dimensionality” (see Sec. 1.2) in portfolio allocation, we propose

a spectral-based method that reduces the sample covariance matrix of asset returns and simpli-

fies the complexity of the mean-variance optimization (MVO). In contrast with current trends

(e.g. factor models), our method is fully algebraic and thus does not rely on any ad hoc as-

sumptions on the statistical properties of the observed returns. It applies to the usual (weighted

and non-weighted) covariance and correlation matrices as well as to other less common but

useful robust estimators. The method produces a “coarse-grained” matrix that is always better

conditioned than the input, in addition to featuring straightforward financial interpretation.

5.1 Exploiting stock correlations to reduce the covariance matrix

of returns

Modern portfolio theory relies on the minimization of expected risk balanced with the maxi-

mization of expected returns. In this context, we have already seen that the sample covariance

matrix plays a key role as it embeds the idiosyncratic risk associated with individual fluctuations

of prices, as well as the systematic component rooted in the co-movement of correlated returns.

Whether it is analyzed in its raw form (weighted or not), decomposed, or filtered out [16], the co-

variance matrix of returns is the topic of an ever-growing number of papers by researchers from

various horizons. Very recently, the effective size of the mean-variance portfolio (a measure of

its actual diversification) was found to be much smaller than its actual size [65].
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This raises a question that is directly related to the so-called curse of dimensionality faced by

today’s asset managers: the proliferation of financial instruments to be handled by portfolio

allocators poses complex practical challenges. We argue that the latter may be overcome, at

least partially, if one is able to reduce the sample matrix of returns to its effective size and

conduct the MVO over the reduced estimator. The reduction, however, should meet some basic

requirements to fit in mean-variance optimizers: (1) it should be linear and (2) the reduced

covariance estimators Σ̃ should not be ill-conditioned since the optimal portfolio depends on

Σ̃−1 [70]. Furthermore, to be efficient the reduction is expected to preserve in Σ̃ most of the

relevant financial information contained in the original covariance matrix Σ and thus to be the

result of some function optimization over the original asset space.

We will see that this suggests the use of semi-projectors to achieve the reduction as in the Spectral

Coarse Graining (SCG) of graphs introduced in [39], and formalized and expanded in [31]. We

expose in this chapter the main elements of the theory and present preliminary out-of-sample

results of real-world allocation backtests (our priority here is to set the theoretical frame).

5.2 Different types of covariance estimators

Let us start with N time series of observed log-returns arranged in the N × T matrix H. Math-
ematically, the elements of H are defined as hit = log pi(t)− log pi(t − Δt), where pi(t) is the

price of asset i at time t and Δt is the return time-horizon, usually ranging from a few minutes

to several months. The (unweighted) sample covariance matrix is defined as

Σunb =
1

T − 1
(
HHt − 1

T
H1Ht

)
, (5.1)

with 1 standing for the T× T matrix of ones. It is readily checked that Σunbij is the usual unbiased

estimate of cov(Hi,Hj) = E(HiHj) − E(Hi)E(Hj). In practice, the mean of Hi is often much
smaller than its fluctuations, so it is customary to consider instead the (biased) sample covariance

matrix of centered returns, already encountered in Chapter 4, and given by

Σ =
1
T
HHt. (5.2)
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The estimator in Eq. (5.2) is the maximum likelihood estimator (MLE) of the covariance matrix

for normally distributed returns. The normality of asset returns being highly challenged for

decades (see e.g. [28] for a review of the most important stylized facts about markets) robust

MLE accounting for the return excess kurtosis have been recently proposed as alternatives in

portfolio allocation. Other popular estimators include the time-weighted covariance matrices

analyzed in Chapter (4).

The reduction method presented here applies to the estimators of Eq. (5.1) and Eq. (5.2), to

time-weighted covariance matrices, as well as to many robust estimators. This flexibility, which

follows from the pure algebraic nature of the coarse-graining operation, makes the method suit-

able to applications in other fields of research as for instance to the analysis of gene expression

data in bioinformatics.

5.3 Coarse-graining the Mean-Variance Optimization problem

Under its general form the Mean-Variance Optimization (MVO) problem consists in finding the

N asset portfolio x∗, solution of

min
x∈RN

xtΣx − α xtr

Ax ≤ b, (5.3)

where (without loss of generality) Σ is the covariance matrix Eq. (5.2), r is the asset vector of

expected returns, and α is the risk tolerance factor describing the investor’s attitude toward risk

(i.e. a small α indicates risk-aversion whereas a large α a risk-prone attitude). All the linear

constraints are expressed in a canonical form by Ax ≤ b; beside normalization these are typi-

cally restrictions to: long-only positions (xi ≥ 0), mean expected return above the threshold μ

(∑i xiri ≥ μ), minimum diversification (xi ≤ d), etc.1

The coarse-grained version of Eq. (5.3) is defined as

min
y∈RÑ

ytΣ̃y − α ytq

By ≤ c, (5.4)

1Equality constraints are formed from two inequalities, e.g. ∑i xi ≥ 1 and ∑i xi ≤ 1
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where Ñ < N and the reduced covariance matrix results from a mapping Σ̃ ≡ M(Σ) from the

space of non-negative definite matrices in RN×N to the same space in RÑ×Ñ.

In order to account for the linearity of the constraints in MVO, it is convenient to consider a

linear reduction of Σ, that, is to write

Σ̃ = RΣRt =
1
T
(RH)(RH)t =

1
T
H̃H̃t, (5.5)

where the coarse graining operator R is a Ñ × N real matrix such that the rows of H̃ = RH are

linear combinations of the asset returns. The financial interpretation of H̃ is then straightfor-

ward: H̃ is the return matrix of Ñ sub-portfolios built from the N assets according to the weights

embedded in R (hence Σ̃ is merely the covariance matrix of H̃).2

For any portfolio y ∈ RÑ , the vector x = Rty defines a portfolio in RN such that the coarse-

grained MVO problem can be conveniently expressed in terms of R and of the original settings

as

min
y∈RÑ

ytRΣRty − α ytRr

ARty ≤ b. (5.6)

Transforming back the minimizer y∗ of Eq. 5.6 with Rt defines in a natural way the coarse-grained

portfolio

x∗cg = Rty∗ ∈ RN .

In general x∗cg is expected to be different from the optimal portfolio x∗ that is solution of the

original problem in RN . The key point then is to find Ñ and R such that the out-of-sample

behavior of x∗cg is close enough to the one of x∗ so that x∗cg can be safely used as a proxy for

x∗ in an actual portfolio allocation. Succeeding in this task leads to an improvement of the

performance of the optimizer by direct reduction of its workload. The expected gain of this

operation crucially depends on the effective size Ñ, which decreases as the cross-correlation

between assets increases as in the world stock market since 2000 (Fig. 1.1).

2Taking the same R to left-and right-multiply Σ in Eq. 5.5 ensures the nonnegative definiteness of Σ̃: y
′
Σ̃y =

(R
′
y)

′
Σ(R

′
y) ≥ 0 ∀y since Σ is nonnegative definite.
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5.4 Building the coarse graining operator

Obviously R should be built so as to preserve in Σ̃ the relevant financial information contained

in Σ—ideally, we would like to only remove noise by coarse-graining Σ. But that is not all. We

have already discussed the dangers of badly conditioned estimators in MVO (Sec. 4.1). It is

therefore essential for the coarse-graining operation not to spoil the conditioning of the original

estimator; as argued below this is ensured if R takes the form of a semi-projector.

Semi-projectors and eigenvalue interlacing

A semi-projector R is a matrix whose cross-product defines a projector RtR = P = P2. From this

definition, it can be seen that the range of P is spanned by the rows of R, and thus the idea will

be to construct appropriately R so as to preserve in RΣRt the most “informative” eigenpairs of

Σ (which lie at the extremity of the spectrum [69]).

Given a semi-projector R ∈ RÑ×N , what can be said about the conditioning of RΣRt? Let

0 ≤ λN ≤ λN−1 ≤ . . . ≤ λ1 denote the eigenvalues of Σ and κ−1(Σ) = λN/λ1 its inverse

condition number (in Euclidean norm); Σ is said to be well-conditioned if κ−1(Σ) ≈ 1 and

ill-conditioned when κ−1(Σ) ≈ 0. By the Poincaré eigenvalue separation theorem [49], the

eigenvalues of Σ and Σ̃ = RΣRt interlace as

λN−Ñ+i ≤ λ̃i ≤ λi, (5.7)

which implies that Σ̃ is never worse conditioned than Σ (in practice it can be significantly better

conditioned). Indeed

κ−1(Σ̃) =
λ̃Ñ
λ̃1

≥ λ̃Ñ
λ1

≥ λN
λ1

= κ−1(Σ).

Hence the linear reduction of Σ through semi-projectors produces reduced estimators with a

narrower spectral bandwidth.3 Nevertheless, this result, which does not depend explicitly on

the semi-projector R, is not sufficient for assessing the effects of the reduction on the individual

eigenvalues of Σ. Since we want to preserve in Σ̃ a few prescribed eigenpairs of Σ, it is crucial to

better understand the connexion between R, the spectrum of Σ, and that of Σ̃.

3A similar result holds for the eigenvectors of Σ and Σ̃ [42]
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Location of the coarse-grained eigenvalues

The connexion between the eigenvalues of Σ̃ and those of Σ is uncovered below by following a

perturbative approach. We start from the equality

Σ̃(Rv) = λ(Rv) + RΣeP(v), (5.8)

where λ is an eigenvalue of Σ for the vector v (i.e. Σv = λv), and eP(v) = v− Pv is such that
‖eP(v)‖ measures the distance between v and the projection Pv. If trivially v = Pv then Rv is

an eigenvector of the coarse-grained matrix Σ̃ for the eigenvalue λ.

In the following, we first show that when v �= Pv the norm of RΣeP(v) provides an estimate of

the distance between λ and the closest eigenvalue of Σ̃. Ultimately, we derive a bound that is

used to optimize the coarse-graining operation. The derivation is not complicated, but it requires

some basic facts about matrices and norms that are briefly stated below.

The spectral norm of a matrix M is defined as ‖M‖ ≡ max{√μ : μ ∈ sp(MtM)}, such that for P
a projector and R a semi-projector ‖P‖ = ‖R‖ = 1 since {0, 1} = sp(P) = sp(RtR) = sp(PtP).4

The spectral norm is a vector space norm with the following additional properties [49]: (1)

‖M1M2‖ ≤ ‖M1‖ ‖M2‖ (i.e. sub-multiplicativity) and (2) ‖Mx‖ ≤ ‖M‖ ‖x‖ ∀x (i.e. consistency
with the vector Euclidean norm).

If λ is not an eigenvalue of Σ̃, then det(Σ̃− λIN) �= 0 and Eq. 5.8 can be rewritten as

Rv = (Σ̃− λIN)−1RΣeP(v). (5.9)

Taking the spectral norm on both sides of Eq. 5.9, we obtain

‖Rv‖ ≤ ‖(Σ̃− λIN)−1‖‖RΣeP(v)‖.

Since Σ̃ is symmetric, there is a unitary matrix Ũ such that Σ̃ = ŨD̃Ũt, with D̃ a diagonal matrix

4In contrast with the usual Euclidean norm in the space of matrices: ‖R‖F = ‖P‖F = rank(P) ≥ 1.
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containing the eigenvalues of Σ̃. Hence

‖(Σ̃− λIN)−1‖ = ‖Ũt(D̃− λIN)−1Ũ‖

≤ ‖(D̃− λIN)
−1‖

≤ max
λ̃
|λ̃− λ|−1

≤ (min
λ̃
|λ̃− λ|)−1, (5.10)

where we have used the sub-multiplicativity of the spectral norm and the fact that ‖Ũ‖ =

‖Ũt‖ = 1. Finally, using Eq. 5.10 in Eq. 5.9 leads to

min
λ̃
|λ− λ̃| ≤ ‖RΣeP(v)‖

‖Rv‖ ≤ ‖Σ‖ ‖eP(v)‖‖Pv‖ ,

since ‖Pv‖ ≤ ‖Rt‖‖Rv‖ = ‖Rv‖. We can express this result in a more compact form by intro-

ducing θλ, the angle between v and Pv. Assuming as usual ‖v‖ = 1 , we finally have

min
λ̃
|λ− λ̃| ≤ λ1 tan θλ, (5.11)

where we have made the substitution ‖Σ‖ = λ1. Eq. 5.11 provides an upper bound on the

maximum eigenvalue error caused by the coarse graining operation. It asserts that at least one

eigenvalue of the coarse-grained matrix RΣRt lies at a distance λ1 tan θλ of λ. As expected, when

θλ = 0 (e.g. the projection is the identity or its range is v) the equality λ = λ̃ holds, that is λ is

perfectly preserved in Σ̃.

We now focus on the edge spectrum. When substituting λ for the extreme eigenvalues λ1 and

λN , the left-hand side of Eq. 5.11 is known exactly by the interlacing inequalities (5.7). Two new

bounds that depend explicitly on R follow:

λ̃1 ≥ λ1(1− tan θ1) and (5.12)

λ̃Ñ ≤ λN + λ1 tan θN . (5.13)

From Eq. 5.12 and Eq. 5.13 one can readily bound the coarse-grained reverse condition number

κ̃−1 = λ̃N/λ̃1 with respect to κ−1 and R:

κ̃−1 ≤ κ−1 + tan θN
1− tan θ1

, (5.14)
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which is tight in the sense that θN = θ1 = 0 imply κ̃−1 = κ−1. Notice that, when it is smaller than

one, the right-hand side of Eq. 5.14 is a limiting factor to the improvement of the conditioning

by the coarse graining. In order to avoid this limitation one should take θ1 and θN large enough

so as to have

tan θ1 + tan θN ≥ 1− κ−1, (5.15)

which in practice might not be desirable nor even always possible.

Minimizing the eigenvalue error to preserve relevant information in the coarse-grained matrix

Eq. (5.11) is useful because it provides an upper bound on the maximum eigenvalue error caused

by the coarse graining operation. This suggests that the preservation of (λ, v) in Σ̃ can be

achieved by minimizing tan θλ, for example with the methods presented in [31] and in Ap-

pendix B.

Notice that in this study we restrict to non-negative entries in R in order to avoid having to

deal with short positions; short-selling is of course possible in MVO but it makes the whole

allocation process trickier. Furthermore, in absence of additional information, it is fair to say

that all stocks belonging to the same sub-portfolio are to be treated equally (i.e. following a max.

entropy argument), or in other words that all sub-portfolios should be equally-weighted.

Under these assumptions, and given the size of the coarse-grained universe Ñ, the problem

becomes combinatoric and amounts to finding the partition of assets that minimizes the objective

function (see Sec. B.5.3)

‖v− Pv‖2 =
Ñ

∑
α=1

∑
i∈α

[v(i)− (Pv)(i)]2 =
Ñ

∑
α=1

∑
i∈α

(
v(i)− 1

|α| ∑
j∈α

v(j)

)2
, (5.16)

where ∑i∈α stands for the sum over the assets in sub-portfolio α of cardinality |α|, and ∑Ñ
α=1

denotes the sum over all the sub-portfolios in the partition. We have designed a dynamic pro-

gramming algorithm to solve exactly this problem (Algorithm B.5.3.1). This algorithm finds the

partition with size Ñ minimizing Eq. (5.16) (in fact all the minimizing partitions with size 2

to Ñ) in time O(ÑN2) and memory load O(N2), which is suitable to the financial application

considered here.

In general, one may want to rely not only on the first eigenpair of Σ to build the coarse-grained

portfolio but rather on, say, the top q ones. In that case, the problem becomes that of minimizing
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∑
q
k=1 ‖vk− Pvk‖2 where each term in the sum is similar to Eq. (5.16). Unfortunately this problem

is known to be NP hard for q ≥ 2, which means that in practice it can only be tackled via

approximate methods. In our simulations, we have used the efficient k-means algorithm [3] to

carry out the minimization (see Sec. B.5 and following for the use of approximate methods in

this context).

5.5 Simulations and preliminary results

We show here how to build a coarse-grained portfolio with similar ex-post returns as the ones

of the Markovitz’s portfolio, but with an effective size that is half the dimension of the asset

universe.

In this application H is the 2-week return matrix of 200 stocks quoted on the New York Stock

Exchange in the period 1996-2008. The dimension of the coarse-grained matrix Ñ = 100 was

found by using the method suggested in [65], which is similar as the one used to derive Eq. (3.21)

in Sec. 3.19 (i.e. time-correlations are to replaced be cross-correlations).

We proceed as follows: we estimate the sample (unweighted) covariance matrix of returns over

the period 1996-2007 and compute the optimal portfolio x∗, solution of Eq. (5.3) with α = 0

and xi ≥ 0 ∀i; we also add the diversification constraints xi ≤ 0.1 ∀i and ∑i xir̂i ≥ r̄. The out-of-

sample returns of the MVO portfolio are compared with the ones of the coarse-grained portfolios

x∗cg obtained from Eq. (5.6) according to two different grouping strategies:

1. using a random grouping (i.e. the null model),

2. by minimizing ∑5
k=1 ‖vk − Pvk‖2 with the spectral-based method of Section. 5.4, where

the eigenvectors were the five largest ones in the correlation matrix of the residuals of the

returns regressed on the first eigenvector of Σ (i.e. this was shown to improve the stability

of the groups, see next section).

The whole procedure was repeated 10 times for 200 stocks chosen at random among a total of

1’000 securities, and results averaged over the subsamples to improve readability.

As shown in Fig. 5.1, the out-of-sample returns of x∗cg and x∗ are in remarkable agreement during

the whole observation period. In contrast, the random grouping strategy leads to significantly

more volatile ex-post returns. The excess volatility observed for the null model comes from the
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Figure 5.1: Comparison of the ex-post two-week returns of the MVO portfolio with the ones of coarse-grained
portfolios obtained from (a) the grouping of the stocks according to the spectral-based method of Section 5.4 with
Ñ = 100, and (b) a random grouping of the stocks into 100 sub-portfolios. Results are averaged over 10 subsamples
of 200 stocks drawn at random in a universe of 1’000 US stocks.

loss of information induced by randomly grouping the stocks, which can be better quantified by

comparing the annualized information ratios (IR) over the observation period. The annualized

IR is defined as
√
24 Ê(r − rM)/σ̂(r − rM), where r stands for the portfolio two-week returns

and rM denotes the returns of the Standard & Poor’s 500 index. To fix ideas the threshold value

reached by the top-quartile asset managers is 0.5 [45].

The information ratios averaged over the 10 subsamples are

x∗ x∗cg x∗rdm

0.57(0.2) 0.58(0.2) 0.41(0.2)
,

where the standard deviation is indicated in parentheses. The relevant information is preserved

by a spectral-based clustering whereas it is dramatically harmed by blindly grouping the stocks

which here leads to an average IR dropping below 0.5.
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5.6 Discussion and conclusion

The close resemblance of the ex-post returns of x∗ and x∗cg is a direct consequence of the spectral-

based method adopted to group the stocks: the most significant eigenvectors of the return cor-

relation matrix contain important information about the correlation structure between the stock

returns [69], which can be exploited to efficiently reduce the sample covariance matrix in the

sense of the Mean-Variance Optimization. The underlying mechanism can be understood from

the following simple heuristic: stocks with highly correlated returns are likely to behave on av-

erage similarly in the next period if the correlation pattern persists. Grouping those stocks in the

same sub-portfolio is reasonable from a portfolio allocation perspective, since it is the grouping

that yields minimum loss of diversification. The key issue then turns out to be the reliable iden-

tification of persistent correlation patterns among returns, which can be addressed via a number

of techniques as the spectral one used here. Indeed, the largest eigenvectors of the return corre-

lation matrix are known to give a rough picture of important and stable correlation structures,

e.g. industrial sectors 5 [69]. This effect is enhanced if one considers instead the correlation

matrix Cres of the residuals ε i(t) of the regression

ri(t) = ai + birM(t) + ε i(t),

where rM is the return on the largest eigenvector of the correlation matrix (regarded as a portfo-

lio) [71]. Beside the eigenvector-based clustering, a number of methods have been developed to

find “natural” groups of stocks from the return cross-correlation matrix, e.g. correlation screen-

ing filters out less significant correlations ultimately leading to trees [61] or planar graphs [80]

of correlations; other approaches include the Super-Paramagnetic Clustering of [11] and more

recently the Maximum Likelihood Approach of [41]. Since the spectral coarse graining accepts

virtually any grouping, further tests should tell us which of these clusterings performs best

when applied to the coarse graining of MVO.

The main benefit of reducing the covariance matrix of returns in portfolio allocation is to improve

the performance of the optimizer by reducing its workload. This may be particularly useful for

asset managers dealing with a very large number of portfolios or managing very large portfolios

(several thousands of assets or more). In this case, it might be desirable to use the same grouping

5The time-stability of the main eigenspace of covariance estimators has been seriously questioned in [86]. Neverthe-
less, it seems clear that important correlation patterns embedded in this space show enough persistence to be efficiently
exploited, even if they may appear “deformed” in an intricate way over time.
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over a certain period of time in order to improve the reallocation process and avoid too large

portfolio turnovers.



A

Proofs of Chapter 4

A.1 Proof of Eq. 4.9

This proof was done by Olivier Lévèque.

We show that under the assumptions made on w, namely that it is continuous, decreasing and

such that w ∈ L2(R+), Eq. (4.9) admits a unique solution which is the Stieltjes transform of a

distribution. First, recall the definition of g:

g(z) =
ˆ

R

1
x− z dμ(x), a.s. ∀z ∈ C\R.

as we know from the start that μ is supported on the positive axis (W being positive semi-

definite). This implies that if Re z ≤ 0, then

Re g(z) =
ˆ ∞

0

x− Re z
(x− Re z)2 + (Im z)2

dμ(x) ≥ 0.

On the other hand, we know that if Im z ≥ 0, then Im g(z) ≥ 0 also. So it is sufficient to prove

that if z ∈ C is such that Re z ≤ 0 and Im z > A = ‖w‖2 + ε (by assumption A < ∞), then the

map F : C → C defined as

F(g) = −
(
z−
ˆ ∞

0

w(t)
1+w(t) g

dt
)−1

, g ∈ C,
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is a contraction on C++ = {g ∈ C : Re g ≥ 0, Im g ≥ 0}, that is, there exists K < 1 such that

|F(g2)− F(g1)| ≤ K |g2 − g1|, ∀g1, g2 ∈ C++. (A.1)

It is easily checked that given the assumptions made on z, F indeed maps C++ into C++. Let us

then check inequality (A.1):

|F(g2)− F(g1)| =
∣∣∣∣ 1
G(g1)

− 1
G(g2)

∣∣∣∣ = |G(g2)− G(g1)|
|G(g1)| |G(g2)| ,

where

G(g) = z−
ˆ ∞

0

w(t)
1+w(t) g

dt.

As Im g ≥ 0 by assumption, |Im G(g)| ≥ |Im z| ≥ A. We also have

|G(g2)− G(g1)| ≤
ˆ ∞

0
w(t)

∣∣∣∣ 1
1+w(t) g2

− 1
1+w(t) g1

∣∣∣∣ dt
≤
ˆ ∞

0
w(t)2

|g2 − g1|
|1+ w(t) g1| |1+ w(t) g2| dt ≤ ‖w‖22 |g2 − g1|,

as Re g1, Re g2 ≥ 0. So we obtain finally that

|F(g2)− F(g1)| ≤ ‖w‖22
A2

|g2 − g1|,

proving the above claim, since ‖w‖22
A2 < 1. This implies that Eq. (4.9) admits a unique solution

g(z) when z ∈ C is such that Re z ≤ 0 and Im z ≥ A. As we also know that g(z) is the Stieltjes

transform of a distribution, it is analytic on C\R, so its value on the upper half plane is uniquely

determined by its value on {z ∈ C : Re z ≤ 0, Im z ≥ A} (and a similar argument applies to the
lower half plane). This finally proves that Eq. (4.9) admits a unique solution for all z ∈ C\R.

A.2 Spectrum of PREC i.i.d. correlation matrices for limN,T
T
N =

c0 < ∞

When c0 < ∞, the definite integral in Eq. (4.8) can be expressed in terms of the hypergeometric

function [44]: ˆ c0

0

w(t)
1+ w(t)g

dt =
c0K0
1+ K0g

2F1

(
1,
1
γ
; 1+

1
γ
;−

( c0
c

)γ

1+ K0g

)
, (A.2)
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where the normalizing constant K0 =
(
c0 2F1

(
1, 1γ ; 1+

1
γ ;−

( c0
c

)γ
))−1

. Although this is suffi-

cient for computing the spectrum with Algorithm 4.1, one can gain some insight into the solution

by expanding the hypergeometric function, and even obtain a closed form in some cases of in-

terest.

In series representation 2F1(a, b; c; z) = ∑∞
k=0

(a)k(b)k
(c)k

zk
k! , where (x)k stands for (x)k = Γ(x +

k)/Γ(x) = x(x + 1) . . . (x + k − 1). Using this expansion in Eq. (A.2) and simplifying leads
to

2F1

(
1,
1
γ
; 1+

1
γ
;−

( c0
c

)γ

1+ K0g

)
=

∞

∑
k=0

(1)k
(
1
γ

)
k(

1+ 1
γ

)
k

(−1)k
k!

( ( c0
c

)γ

1+ K0g

)k

=
∞

∑
k=0

(−1)k
1+ γk

( ( c0
c

)γ

1+ K0g

)k
, (A.3)

which is convergent since Eq. (A.2) admits a unique solution by Theorem 1. Consider the case

γ = 1/p, p ∈ N; Eq. (A.3) can be written

2F1

(
1, p; 1+ p;−

( c0
c

)1/p
1+ K0g

)
= p

∞

∑
k=0

(−1)k
p+ k

( ( c0
c

)1/p
1+ K0g

)k

= p
∞

∑
m=p

(−1)m−p
m

( ( c0
c

)1/p
1+ K0g

)m−p

= p(−1)p+1 c
c0

(1+ K0g)
p

∞

∑
m=p

(−1)m+1
m

( ( c0
c

)1/p
1+ K0g

)m
,

where we have made the substitution m = k+ p. Then, using log(1+ω) = ∑∞
k=1

(−1)k+1
k ωk, |ω| <

1, we finally obtain

2F1
(
1, p; 1+ p;−Zp

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
Z1
log (1+ Z1) p = 1

p (−1)p+1
Zpp

[
∑
p−1
j=1

(−1) j
j Zjp + log

(
1+ Zp

)]
p > 1

(A.4)

where Zp =
( c0
c

)1/p / (1+ K0g). The simplest form is obtained for γ = p = 1, which, from

Eq. (A.2) and Eq. (4.8), leads to the following equation for the Stieltjes transform of the asymp-
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totic spectral distribution:

1+ zg = cK0g log
(
1+

c0
c (1+ K0g)

)
.

The next expression corresponds to γ = 0.5 and is obtained by letting p = 2 in Eq. (A.4):

1+ zg = 2cK0g
(√

c0/c− (1+ K0g) log
(
1+

√
c0/c

1+ K0g

))
.
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The Spectral Coarse Graining of matrices:

theory and examples from complex network

theory

B.1 Introduction

In order to provide a size-reduction scheme that is not only effective at simplifying the system’s

complexity, but that also preserves its behavior, we have introduced a spectral-based method

that we have named Spectral Coarse Graining (SCG) [39, 40]. SCG allows to go beyond the

classical clustering techniques, by not only identifying groups, but also assembling them in a

coarse-grained arrangement while protecting some targeted features of the original system; typ-

ically, these features can be readily expressed in terms of the spectral properties of the system’s

interaction matrix.

In this work our first aim is to frame SCG on robust mathematical foundations by showing that

it can be cast as a projection, which, when duly chosen, causes the least possible perturbation on

some prescribed eigenpairs of the interaction matrix.

Our second goal is to present different algorithms to carry out the SCG of a matrix. Each specific

implementation has both strengths and weaknesses that are going to be addressed. Finally,

some examples drawn from graph and network theory will be provided to allow for a better

assessment of the techniques in practical applications.
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B.1.1 Overview

Our text is structured as follows. We first draw up a formal frame for the spectral coarse graining

of matrices in §B.2 and §B.3. The effects of spectral coarse graining on the eigenpairs of a matrix

are analyzed in §B.4 borrowing techniques from matrix perturbation theory. Then, in a slightly

less formal style, we describe our methods and algorithms in §B.5, followed by some applications

of the spectral coarse graining to graph theory in §B.6. Finally, we present our conclusions and

sketch some possible developments of Spectral Coarse Graining in §B.7.

B.1.2 Notations and Style

The conjugate, transpose, and conjugate transpose of a matrix M are denoted M, Mt, respectively

M∗. The abbreviation sp(M) stands for the spectrum of M ∈ Cn×n. The spectral norm, or 2-
norm, of M is denoted by ‖M‖. The couple (λ, v), where Mv = λv, is called (right) eigenpair

of M; it is called zero (right) eigenpair if λ = 0. Eigenvalues are assumed sorted as |λ1| ≥ |λ2| ≥
· · · ≥ |λn| and eigenvectors are normalized except where noted. We state our results for right
eigenvectors only since the translation to left eigenvectors is straightforward by transposing M;

therefore, we omit the qualifier “right” to designate a right eigenpair/eigenvector.

B.2 A Note on Projectors in Cn×n

We introduce this section by recalling some fundamentals about projectors in Cn×n.

By definition, a matrix P ∈ Cn×n is a projection matrix or simply a projector if P2 = P. Besides,

if P = P∗ the projector is said to be orthogonal (with respect to the canonical Hermitian scalar

product).

The range and the null space of P are the sets of y such that y = Pz for z ∈ Cn, respectively the sets
of z ∈ Cn such that Pz = 0. By complementarity, we have the decomposition z = Pz+ (In − P)z
for any z ∈ Cn, where Pz is in the range and (In − P)z is in the null space of P.

From P(P− In) = 0, the minimal polynomial of P factors into distinct roots and thus a projector

is always diagonalizable with eigenvalues 0 and 1. There is equality between the number of one

eigenvalues, the dimension of the range and the rank of P.
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The next result provides a useful decomposition of a projector that will be used throughout the

text.

Theorem 3. A matrix P ∈ Cn×n is a projector of rank k if and only if there exists two matrices L, R ∈
Ck×n such that P = R∗L and LR∗ = Ik. Furthermore, the rows of R span the range of the projector and

the rows of L span the orthogonal complement of its null space.

Proof. The first statement is clearly necessary since P2 = R∗(LR∗)L = P, and rankP = rank(R∗L) =

rankR = k by the properties of the rank and the fact that L is row-full rank. To show it is suffi-

cient recall that, up to a row-column permutation in V, the eigen-decomposition of P reads

P = V

⎛⎜⎝ Ik 0

0 0

⎞⎟⎠V−1 =
⎛⎜⎝ A B

C D

⎞⎟⎠
⎛⎜⎝ Ik 0

0 0

⎞⎟⎠
⎛⎜⎝ E F

G H

⎞⎟⎠ =

⎛⎜⎝ A

C

⎞⎟⎠
︸ ︷︷ ︸

R∗

(
E F

)
︸ ︷︷ ︸

L

,

with LR∗ = EA + FC = Ik by definition of R and L. For the second statement, P acting on

R∗ gives PR∗ = R∗LR∗ = R∗ so that the rows of R belong to the range of P. As they are k

independent vectors they actually span the latter. Finally, for all z ∈ Cn we have Pz = R∗Lz =

0 ⇔ Lz = 0 (by left-multiplication with L), which shows that the null space of P is orthogonal

to the rows of L (with respect to the canonical Hermitian scalar product).

When P is Hermitian, the spectral theorem yields V−1 = V∗ in the proof of Theorem 3. This

shows the following result.

Corollary 4. A matrix P ∈ Cn×n is an orthogonal projector of rank k if and only if there exists a matrix
R ∈ Ck×n such that P = R∗R and RR∗ = Ik. The rows of R span the range of the projection.

Even though there is an infinite number of RL-decompositions one can associate to a projector,

when defining the matrices R and L through an eigen matrix of P, as in the proof of Theorem

3, there is no need to know beforehand the range and the null space of the projection—whose

bases are provided by the decomposition1.

The next and last result of this section is useful to assess the non-orthogonality of a projector.

Theorem 5. For any projector P ∈ Cn×n of rank k > 0, ‖P‖ ≥ 1 with equality if and only if P is

orthogonal.

1Such a decomposition provides particular bases for the range and the null space of P that are orthogonal between
each other (i.e. by the condition LR∗ = Ik).
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Proof. The proof can be found in different places, e.g. [51].

Remark 6. For any sub-multiplicative matrix norm ‖ · ‖ and non-zero projector P ∈ Cn×n, ‖P‖ =

‖P2‖ ≤ ‖P‖2 ⇒ ‖P‖ ≥ 1. Hence the spectral norm in Theorem 5 is to some extent an optimum

choice. For example, it is not difficult to show that ‖P‖F ≥ rank P, where ‖ · ‖F is the Frobenius
norm.

B.3 Exact Coarse Graining

The matrices R and L of a projection can be used to shrink a matrix M down to a new matrix

LMR∗. The purpose of this section is to introduce the formalism used throughout the text to

deal with this coarse graining transformation, as well as to link it with the projection PMP.

Definition 7. The linear map L · R∗ : Cn×n → Cñ×ñ is a coarse graining transformation if (1)

ñ ≤ n and (2) L, R ∈ Cñ×n are such that LR∗ = Iñ. For M ∈ Cn×n the matrix M̃ ≡ LMR∗ is a

coarse graining (CG) of M.

The matrices L and R are referred to as the semi-projectors and P = R∗L as the projector induced

by the coarse graining L · R∗. If the semi-projectors are equal, we call L = R the semi-orthogonal

projector of the coarse graining. If P = P∗ the coarse-graining is said to be orthogonal. Besides,

if M is Hermitian (symmetric) and L = R, the coarse-graining is called Hermitian (symmetric),

since M̃ is also Hermitian (symmetric). The matrix M̃ is sometimes called the coarse-grained

matrix and its eigenvalues the coarse-grained eigenvalues.

As shown by the following proposition, there is a simple one-to-one mapping between the non-

zero eigenpairs of LMR∗ and PMP.

Proposition 8. Let M ∈ Cn×n and let L, R ∈ Cñ×n be such that ñ ≤ n, P = R∗L and LR∗ = Iñ.

For every eigenpair (λ̃, ṽ) of LMR∗, (λ̃, R∗ṽ) is an eigenpair of PMP. Furthermore, for every non-zero

eigenpair (μ,w) of PMP (μ, Lw) is an eigenpair of LMR∗.

Proof. By definition of R and L, we have LMR∗ṽ = λ̃ṽ ⇔LMP(R∗ṽ) = λ̃ṽ ⇔PMP(R∗ṽ) =

λ̃(R∗ṽ). Since R∗ṽ �= 0 (R∗ṽ = 0 ⇒ ṽ = 0, which is impossible), (λ̃, R∗ṽ) is an eigenpair of

PMP. On the other hand, suppose there exists (μ,w), an eigenpair of PMP, such that μ �= 0.

Left-multiplying PMPw = μw by L yields LMR∗(Lw) = μ(Lw). We note that Lw �= 0 otherwise
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Figure B.1: In this diagram M, P ∈ Cn×n and P = R∗L is a projector such that LR∗ = Iñ, with ñ ≤ n. It
is easy to show that sp(PM) = sp(PMP) = sp(MP) = sp(LMR∗) ∪ {0}. A directed edge goes from A to B if
there is a mapping from the non-zero eigenpairs of A to the non-zero eigenpairs of B. Furthermore, left-multiplying
an eigenvector of A that is associated with a non-zero eigenvalue by the label of an edge gives the corresponding
eigenvector of B. For instance, if (λ, v) is an eigenpair of MP and λ �= 0 then (λ, Pv) is an eigenpair of both PM
and PMP. Proposition 8 establishes the one-to-one mapping between the non-zero eigenpairs of LMR∗ and PMP.

we would have Pw = 0 ⇒ μw = 0 ⇒ w = 0, which is impossible. Thus (μ, Lw) is an eigenpair

of LMR∗.

Remark 9. As depicted in Figure B.1, similar mappings exist between the eigenpairs of LMR∗

and those of some combinations of products between M and P. We stress that for a given P all

the relations hold for any choice of L and R as long as P = R∗L and LR∗ = Iñ.

Consider the following eigenvalue equations for M and M̃ serving to introduce the next defini-

tion:

Mvi = λivi ⇒ (LM)vi = λiLvi and

M̃ṽα = λ̃α ṽα ⇔ (LM)R∗ṽα = λ̃α ṽα.

Definition 10. Let M̃ ∈ Cñ×ñ be a coarse graining of M with projector P and semi-projectors

L, R. Let also (λi, vi) and (λ̃α, ṽα) be eigenpairs of M, respectively of M̃. |λi − λ̃α| is the absolute
eigenvalue shift between both eigenpairs. We also define the two eigenvector shifts eR(vi, ṽα) ≡
vi − R∗ṽα, eL(vi, ṽα) ≡ Lvi − ṽα, and the vector eP(vi) ≡ vi − Pvi.

Together, eR(vi, ṽα), eL(vi, ṽα), and |λi − λ̃α| form the eigenpair shifts. These are used to estimate

the accuracy of a coarse graining with respect to the eigenpair (λi, vi)—the smaller the eigenpair



110 Modern Portfolio Theory Revisited

shifts the more accurate the coarse graining for (λi, vi). An important particular case, called exact

coarse graining, is when the three eigenpair shifts are zero for some α.

Definition 11. The matrix M̃ is an exact coarse graining of M for the eigenpair (λ, v) if there is

an eigenpair (λ̃, ṽ) of M̃ such that λ̃ = λ, eR(v, ṽ) = 0 and eL(v, ṽ) = 0.2

Remark 12. The trivial exact coarse graining of M for (λ, v) is obtained by setting R = L = v∗;

this yields LR∗ = 1 and LMR∗ = λ.

An exact coarse graining for (λ, v) means that there is a one-to-one mapping between (λ, v) and

an eigenpair of M̃. As a consequence, no information about (λ, v) is lost in the transformation,

and we say that (λ, v) is exactly preserved in M̃.

It is sometimes convenient to define the exact coarse graining in terms of v and P instead of the

unknown eigenpair (λ̃, ṽ).

Proposition 13. M̃ is an exact coarse graining of M for the eigenpair (λ, v) if and only if v is in the

range of P (i.e. eP(v) = 0).

Proof. Substituting ṽ = Lv into R∗ṽ = v shows that Pv = v. Conversely, left-multiplying by LM

the equation eP(v) = v− Pv and rearranging yields

LMPv = LMv− LMeP(v)⇔ M̃Lv = λLv− LMeP(v).

If Pv = v then Lv �= 0 and there is an eigenpair (λ̃, ṽ) of M̃ such that λ̃ = λ and ṽ = Lv; this in

turn implies R∗ṽ = v.

B.4 Approximate Coarse Graining

Whenever ‖eP(v)‖ > 0 the coarse graining for (λ, v) is said to be approximate. In this case, it is

interesting to have an estimate of the distance between the eigenpairs of M and M̃. We address

this question here by means of techniques developed in matrix perturbation theory [50, 49, 43].

The idea is first to bound the smallest distance between λ and an eigenvalue of the matrix PMP

in terms of the difference between Pv and an actual eigenvector of PMP. Then, the same bound

2Notice that for λ �= 0, λ̃ = λ and eR(v, ṽ) = 0 readily imply eL(v, ṽ) = 0
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holds for the smallest distance between λ and an eigenvalue of LMR∗ through the one-to-one

correspondence between the non-zero eigenpairs of PMP and LMR∗ (Proposition 8).

Theorem 14. Let M, P ∈ Cn×n with P a ñ-rank projector. Let also Q∗(PMP)Q = D+ N be a Schur

decomposition of PMP, where D is diagonal and N strictly upper triangular. For any eigenpair (λ, v) of

M such that Pv �= 0,

min
λ̃∈sp(PMP)

|λ− λ̃| ≤ max(β, β1/p),

where p is the smallest integer such that Np = 0, and β is given by

β =
‖PMeP(v)‖

‖Pv‖
p−1
∑
k=0

‖N‖k.

Proof. This theorem is the a posteriori version of Theorem 7.2.3 in [43] so its demonstration follows

similar lines, except for the first part. The theorem clearly holds if λ ∈ sp(PMP). If λ /∈
sp(PMP), consider the identity

PMP(Pv) = λ(Pv)− PMeP(v). (B.1)

As Pv �= 0, Equation B.1 allows us to write 1 ≤ ‖(λIn − PMP)−1‖‖PMeP(v)‖/‖Pv‖. Using the
Schur decomposition of PMP and the invariance under unitary transformations of the spectral

norm, we have ‖(λIn − PMP)−1‖ = ‖(λIn − D − N)−1‖. The proof is completed by the same
technique as in the proof of Theorem 7.2.3 of [43, p.321].

The relevant factors influencing the accuracy of a coarse graining can easily be uncovered by

breaking down the upper bound of Theorem 14. Indeed, let β be defined as in Theorem 14, then

β ≤ ‖M‖Λ(PMP)‖P‖‖eP(v)‖‖Pv‖ , (B.2)

where Λ(PMP) = ∑
p−1
k=0 ‖N‖k ≥ 1 with equality if and only if PMP is a normal matrix (by the

spectral theorem), and by Theorem 5 ‖P‖ ≥ 1 with equality if and only if P is orthogonal. The

quantity Λ(PMP) is an estimate of PMP’s departure from normality and ‖P‖ of P’s departure
from “orthogonality”.

In the important coarse graining of Hermitian matrices with orthogonal projectors, Theorem 14
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and Equation B.2 become notably simpler.

Corollary 15. Let M ∈ Cn×n be a Hermitian matrix and P ∈ Cn×n be an orthogonal ñ-rank projector.
Then

min
λ̃∈sp(PMP)

|λ− λ̃| ≤ max
μ∈sp(M)

|μ| ‖eP(v)‖‖Pv‖ = max
μ∈sp(M)

|μ|‖eP(v)‖
(
1+O(‖eP(v)‖2)

)
.

Furthermore, if M is non-singular,

min
λ̃∈sp(PMP)

|λ− λ̃|
|λ| ≤ κ(M)

‖eP(v)‖
‖Pv‖ = κ(M)‖eP(v)‖

(
1+O(‖eP(v)‖2)

)
,

where κ(M) ≡ ‖M‖‖M−1‖ ≥ 1 is the condition number of M expressed in the spectral norm.

Proof. Assuming M and P Hermitian implies max(β, β1/p) = β in Theorem 14 (since p =

1), and 1 = Λ(PMP) = ‖P‖ in Equation B.2. We also notice that the decomposition v =

Pv + eP(v) yields 1 = ‖v‖2 = ‖Pv‖2 + ‖eP(v)‖2 so that ‖Pv‖−1 = (1 − ‖eP(v)‖2)−1/2 =

1+O(‖eP(v)‖2). Finally, the relative bound follows since for M a non-singular normal matrix

κ(M) = maxμ∈sp(M) |μ|(minμ∈sp(M) |μ|)−1 when the spectral norm is used [49].

The following result provides a lower bound on the eigenvector shifts in terms of ‖eP(v)‖.

Proposition 16. Let M̃ ∈ Cñ×ñ be a coarse graining of M ∈ Cn×n with projector P and semi-projectors
L, R. Let also (λi, vi) and (λ̃α, ṽα) be eigenpairs of M and M̃ respectively. The following relations

hold for any i ∈ {1, . . . , n} and any α ∈ {1, . . . , ñ}: (1) eL(vi, ṽα) = LeR(vi, ṽα) and (2) eP(vi) =

(In − P)eR(vi, ṽα). As a consequence, when P is orthogonal,

‖eP(vi)‖ ≤ ‖eR(vi, ṽα)‖ ≤ 2.

Proof. Relation (1) is immediate. Relation (2) can be derived as follows:

eP(vi) = vi − R∗Lvi + R∗ṽα − R∗ṽα

= (vi − R∗ṽα)− R∗(Lvi − ṽα)

= eR(vi, ṽα)− R∗eL(vi, ṽα)

= (In − P)eR(vi, ṽα).
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The bound is a straightforward consequence of the definitions and of Theorem 5.

Proposition 16 shows that ‖eR(v, ṽ)‖ cannot be decreased faster than ‖eP(v)‖ for any ṽ; this is
a useful fact to have in mind when trying to minimize the eigenpairs shifts (§B.5). We add that

there is no simple relation between ‖eP(vi)‖ and ‖eL(vi, ṽα)‖ as it is easy to find examples for
either ‖eP(vi)‖ ≶ ‖eL(vi, ṽα)‖.

We conclude this section by mentioning an important theorem that can help localize the coarse-

grained eigenvalues about the original spectrum. This result is cited as the Poincaré separation

theorem in [49].

Theorem 17. Let M̃ = LMR∗ ∈ Cñ×ñ be a coarse graining of M such that (1) M is Hermitian and (2)

P = R∗L is orthogonal. Then, the eigenvalues of M̃ interlace the eigenvalues of M in the following way

λn−ñ+i ≤ λ̃i ≤ λi.

Proof. The proof given in [49, p.190] holds for L = R. The generalization to an arbitrary RL-

decomposition of P is straightforward since sp(LMR∗) = sp(L̂MR̂∗) as long as P = R̂∗ L̂ and

L̂R̂∗ = Iñ (Proposition 8 and Remark 9).

In [39, Table 1] one can observe the left-positioning of the eigenvalues of the coarse-grained

matrix about the original spectrum. Notice that when ñ = n− 1 the rank of the eigenvalues is
automatically preserved since in that event

λn ≤ λ̃ñ ≤ λn−1 ≤ · · · ≤ λ2 ≤ λ̃1 ≤ λ1.

The presence of ‖P‖ in our upper bounds suggests that orthogonal projectors are less harmful
to eigenvalues in coarse graining. Other relevant factors with potential effects on the accuracy

of a CG are the departure from normality of PMP (closely related with that of M) and the

conditioning of M. In particular, when P is orthogonal and M is Hermitian, the presence of

κ(M) in Theorem 15 suggests that matrices amenable to numerical computation (i.e. with low

κ(M)) should be amenable to coarse graining as well.

As the upper bound of Theorem 15 suggests the accuracy of a coarse graining can be inde-

pendent of the magnitude of the original eigenvalue (since the upper bound on the minimum

relative eigenvalue shift can cancel independently of |λ|); numerous simulations validate this
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observation (see also the discussion of Figure B.3). Finally, in the coarse graining of Hermitian

matrices with orthogonal projector the coarse-grained eigenvalues interlace the original spec-

trum as described by the Poincaré separation theorem.

B.5 Optimizing Coarse Graining under Constraints

When coarse graining real-world systems—e.g. oscillator networks while retaining their syn-

chronization properties [40], or large graphs while preserving the mean first passage time of

random walks on them [39]—one aims at preserving an arbitrary number of M’s eigenpairs

given some problem-specific constraints on the transformation. In this section, we define a

constrained minimization problem and solve it taking into account the material previously in-

troduced.

We have seen in Proposition 13 that an eigenpair (λ, v) of M is exactly preserved in M̃ = LMR∗ if

and only if ‖eP(v)‖ = 0. This yields the following definition of a generic coarse graining problem.

Problem 18. Given M ∈ Cn×n and (λ, v) an eigenpair of M to be preserved by the coarse

graining, the problem is to find a projector P̂ that solves

min
P∈C

‖eP(v)‖

where C is a set of projectors in Cn×n described by some ad hoc constraints c1, . . . cr (e.g. c1 : P ∈
Rn×n, c2 : P = Pt, c3 : Pij ≥ 0, etc).

Assuming a solution exists, P̂ is called a minimizer of Problem 18. Once a minimizer has been

found, one can compute an RL-decomposition of P̂, for instance as in the proof of Theorem 3,

and finally the coarse graining LMR∗.

Remark 19. In the absence of constraints, the minimization of ‖eP(v)‖ with respect to P leads to
P = vv∗. Then the natural RL-decomposition is provided by the trivial exact coarse graining

(Remark 12).

Remark 20. The term Spectral Coarse Graining (SCG) is used to stress that the projector of a coarse

graining is chosen so as to preserve one or more (see §B.5.4) eigenpairs of the original matrix.

In the next two sections we introduce two important constraints, namely the grouping by parti-

tioning and the homogeneous mixing.
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B.5.1 Partitioning

In most applications, the entries of a n × n matrix quantify the pairwise interactions between
n objects, or entity, labelled {1, . . . , n}. Conceptually, as in data clustering [52], the grouping of
the objects can be done either by partitioning {1, . . . , n}, or by allowing every object to have a
non-zero degree of membership to all the groups (the latter is called “soft-grouping”). We focus

on the more common partitioning and introduce below the formalism to deal with it in coarse

graining.

Definition 21. Let γ be the mapping from {1, . . . , n} to one of its partitions Γ, such that γ(i)

indexes the group (block) of i in Γ. We use Greek letters α, β to label the elements of Γ and

Roman letters i, j for the elements of {1, . . . , n}. To simplify notation α can represent either

the group or its index, so that the reader will encounter the notations i ∈ α, ∑ñ
α=1 ·, and |α|

to designate the number of elements in group α. The so-called partitioning constraint is the

requirement for the product (LMR∗)αα not to mix up entries of M whose indexes don’t belong

to α. Under partitioning, the semi-projectors L and R are defined as

Lαj = �αjδαγ(j) and Rαj = rαjδαγ(j), (B.3)

where δαγ(j) is equal to one if j belongs to α and zero otherwise, and �αj, rαj ∈ C for all α ∈
{1, . . . , ñ}, i ∈ {1, . . . , n}.

The next example should clarify the purpose of Equation B.3.

Example 22. When partitioning is imposed, the condition LR∗ = Iñ (Definition 7) reads

(LR∗)αβ =
n

∑
j=1

�αjr̄βjδαγ(j)δβγ(j) = δαβ ⇔ ∑
j∈α

�αjr̄αj = 1 ∀α, (B.4)

and the entries of P become

Pij =
ñ

∑
α=1

R∗iαLαj = �γ(j)jr̄γ(i)iδγ(i)γ(j). (B.5)

Hence, P can be put in block form where each block corresponds to a unique group in Γ. Finally,
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the coarse graining of M reads

M̃αβ = (LMR∗)αβ = ∑
i∈α
j∈β

�αir̄βjMij, (B.6)

such that, as expected, M̃αα is a linear combination of M’s entries whose indexes belong exclu-

sively to α.

Remark 23. When partitioning is the only constraint the minimizing projector is given by

P̂ij =
v(i)v(j)

∑k∈γ(i) |v(k)|2
δγ(i)γ(j), (B.7)

where v(i) denotes component i of v. It is straightforward to check that P̂ in Equation B.7 is

indeed an (orthogonal) projector and that eP̂(v) = 0 for any partition of {1, . . . , n}.

B.5.2 Homogeneous Mixing

The homogeneous mixing constraint is imposed to ensure that objects belonging to the same

group are identical in the projected system (i.e. that they are indistinguishable with respect to

the interactions described by PMP), and therefore that they can be merged into a single entity

in the coarse-grained system described by LMR∗.

Definition 24. Let Γ be a partition of {1, . . . , n}. The constraint of homogeneous mixing is the
requirement that for any x ∈ Cn and any α ∈ Γ, component i of Px is the same for all i ∈ α (i.e.

(Px)(i) = constant ∀i ∈ α).

The Homogeneous mixing constraint, which has roots in physics, was implicitly assumed in

[39, 40].

B.5.3 Minimizing ‖eP(v)‖: Methods and Analysis

In this section, we show how to minimize ‖eP(v)‖ under the partitioning and the homogeneous
mixing constraints. For simplicity, we impose P ∈ Rn×n and v ∈ Rn; the case v ∈ Cn is treated
in §B.5.4.
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For v ∈ Rn, the general form of ‖eP(v)‖2 is

‖v− Pv‖2 =
ñ

∑
α=1

∑
i∈α

[v(i)− (Pv)(i)]2. (B.8)

The homogeneous mixing allows us to write ‖eP(v)‖2 = ∑ñ
α=1 ∑i∈α[v(i) − vavg(α)]2 for some

vavg ∈ Rñ. We see that ‖eP(v)‖2 is minimum if ∑i∈α[v(i)− vavg(α)]2 is minimum for each α, that

is for vavg(α) = 1
|α| ∑i∈α v(i) as it can be readily verified, for example, by deriving ‖eP(v)‖2 with

respect to vavg(α). This gives us the optimal form of (Pv)(i), that is (Pv)(i) = 1
|γ(i)| ∑j∈γ(i) v(j). It

is not difficult to see that for such P the partitioning constraint is satisfied, and thus the problem

reduces to finding the partition of {1, . . . , n} minimizing

‖eP(v)‖2 =
ñ

∑
α=1

∑
i∈α

(
v(i)− 1

|α| ∑
j∈α

v(j)

)2
. (B.9)

We present below three methods to tackle this problem. The first method finds a trueminimizing

partition of ‖eP(v)‖2 in polynomial time and memory load, whereas the other two find an
approximate solution in less time and memory. We stress that the use of approximate methods,

which may be appropriate if one deals with very large systems, turns out to be indispensable

when the SCG aims at preserving several eigenpairs (see §B.5.4).

B.5.3.1 Optimal Minimization of ‖eP(v)‖

The naive approach consists in generating all the partitions of {1, . . . , n} and extract a minimizer
of ‖eP(v)‖. This method, however, turns out to be infeasible in practice (even for moderately
small ñ)3, and we must follow different lines to obtain a solution in reasonable time. We propose

an algorithm in the spirit of Dynamic Programming [8], which relies on both the sub-optimality

of the problem and the reusability of previously computed values to boost computation. A

similar approach was independently taken in [55] in the context of image analysis.

Step 1 Sort the components of v in increasing order: v(1) ≤ v(2) ≤ · · · ≤ v(n).

3The number of different partitions of {1, . . . , n}, known as the Bell number, grows exponentially with n. E.g. for
n = 20 it already exceeds 1013!
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Step 2 For all i ≤ j, compute

cv(i, j) ≡ ∑
i≤k≤j

(
v(i)− 1

j− i+ 1 ∑
i≤k≤j

v(j)

)2
= ∑
i≤k≤j

v(k)2 − 1
j− i+ 1

(
∑
i≤k≤j

v(k)

)2
.

(B.10)

Step 3 Starting with Fv(1, j) = cv(1, j), compute Fv(ñ, n) recursively by the following for-

mula

Fv(α, j) = min
α−1≤q<j

(Fv(α− 1, q) + cv(q+ 1, j)) , (B.11)

and store at each step the minimizer of Equation B.11:

Qαj ≡ arg min
α−1≤q<j

(Fv(α− 1, q) + cv(q+ 1, j)) .

According to Equations B.10 and B.11, Fv(ñ, n) is the minimum of ‖eP(v)‖ over all the
partitions with ñ groups.

Step 4 Starting from Qñn work out the minimizing partition corresponding to Fv(ñ, n) by

backtracking through the matrix Q.4

Provided cv is computed in time O(n2)—which can always be achieved computing the right-

hand side of Equation B.10—it can be seen that Algorithm B.5.3.1 finds the minimizing partitions

with size 1 to ñ in time O(ñn2) and memory load O(n2).

B.5.3.2 Approximate Minimization of ‖eP(v)‖: Fixed-Size Intervals Method

For very large systems (i.e. n � 104), one has to rely on approximate methods to minimize

‖eP(v)‖. We discuss below in some detail the partitioning of v into fixed-sized intervals, as

employed in [39, 40], and give arguments to explain the very accurate coarse grainings obtained

by this simple method.

Recall that the eigenvector v is assumed normalized. Cut v into m ≥ ñ intervals I1, . . . , Im of

respective length ε1, . . . , εm and denote by |Ik| the number of components falling into Ik; by
definition ñ is the number of non-empty intervals. We have seen above that ∑ñ

α=1 ∑i∈α(v(i)−

4The same procedure can be applied to retrieve from Q all the minimizing partitions with n′ ≤ ñ groups.
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vavg(α))2 is minimum for vavg(α) = 1
|α| ∑i∈α vα. Hence,

‖eP(v)‖2 =
ñ

∑
α=1

∑
i∈α

(
v(i)− 1

|α| ∑
i∈α

vα

)2
≤

m

∑
k=1

∑
i∈Ik

( εk
2

)2
=
1
4

m

∑
k=1

|Ik|ε2k. (B.12)

Ideally, the Ik should be chosen so as to minimize the right-hand side of Equation B.12. For

simplicity though, we consider here fixed-size intervals such that εk = ε ∀k, which yields imme-
diately ‖eP(v)‖ ≤ ε

2
√
n. Let δ(v) be defined as δ(v) = maxi v(i)−mini v(i) ≤ 2; then ε = δ(v)/m

and we have

‖eP(v)‖ ≤ δ(v)
√
n

2m
≤
√
n
ñ
. (B.13)

Hence, when P is orthogonal, as in Theorem 15,

‖eP(v)‖
‖Pv‖ = ‖eP(v)‖(1+O(‖eP(v)‖2) ≤ δ(v)

√
n

2m

(
1+O

( n
ñ2

))
. (B.14)

Remark 25. Equations B.13 and B.14 provide informative bounds on the eigenvalue shifts. Indeed,

provided fixed-size intervals or a better partitioning is used (e.g. the optimal partitioning of

§B.5.3.1):

• The minimum eigenvalue shifts go to zero at least as ñ−1.

– If the accuracy is the same, the SCG of large matrices may achieve better dimension

reduction than the coarse graining of small matrices. E.g. ‖eP(v)‖ ≤ 0.1 is obtained

either for n = 104 and ñ = 103, or for n = 106 and ñ = 104, which improves by a

factor 10 the ratio n/ñ.

– The factor δ(v) in Equation B.13 can affect substantially the accuracy of a coarse grain-

ing. Indeed, it is common to observe values of δ(v) much smaller than 2, especially

for particular eigenvectors of some random matrices (see Figure B.3).

B.5.3.3 Approximate Minimization of ‖eP(v)‖: Fixed-Size Intervals+k-means Method

One can usually improve the result of the fixed-size intervals method by running the so-called

“k-means” algorithm [59, 48] on the obtained partition. Starting from a partition of {1, . . . , n}
with k groups, k-means finds at each step a new partition of same cardinality such that ‖eP(v)‖
(of Equation B.9) is smaller for the new partition than for the former. The algorithm keeps

running until it gets stuck—usually—in a local minimum of ‖eP(v)‖.
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Hence, even though the final partition driven by k-means is seldom the “absolute” minimizer of

‖eP(v)‖, it is certainly a better one than the partition obtained by the fixed-size intervals method
when the latter is used to initialize k-means.

B.5.4 Several Eigenpairs and Complex Case

B.5.4.1 Several Eigenpairs: Exact SCG

In the absence of constraints on the coarse graining, it is sometimes possible to preserve exactly

an arbitrary subspace of M’s eigenspace. Suppose M ∈ Cn×n is diagonalizable. Compute a

projector P onto the subspace of Cn spanned by the eigenvectors of M to be preserved, and along

the subspace spanned by the remaining eigenvectors; since M is diagonalizable both subspaces

are complementary (but not necessarily orthogonal). Compute an RL-decomposition of P and

finally the coarse-grained matrix M̃ = LMR∗.

This approach is popular in statistics to reduce multidimensional data sets, wherein it is known

as Principal Component Analysis (PCA) [54]. In this context, M is the data covariance matrix and its

eigenvectors are the (independent) directions along which the variance of the data is maximum;

as for the variance along each eigenvector it is given by the corresponding eigenvalue of M. PCA

usually preserves the largest eigenvalues as they explain the most variance.

When partitioning is imposed, the projector of Equation B.7 is generally useless to preserve

exactly several eigenpairs. However, if the groups are made up of objects with equal compo-

nents in the eigenvectors to be preserved, the projector of Equation B.7 takes the form P̂ij =

|γ(i)|−1δγ(i)γ(j), and ‖eP(v)‖ = 0 for all these eigenvectors. This technique can be used to elim-

inate zero eigenpairs resulting from possible row duplication in M (columns if left eigenvectors

are considered).

B.5.4.2 Several Eigenpairs: Approximate SCG

Method 1 Let (λ1, v1), . . . , (λs, vs) be s eigenpairs of M, not necessarily ordered, to be preserved

by the coarse graining. We assume the conditions of §B.5.3 hold, that is P and the vk are real,

and we impose the homogeneous mixing constraint. Suppose one of the three methods of

§B.5.3 has been applied on each vk and has given the s partitions Γ1 = {α11, . . . , α1ñ1}, . . . , Γs =
{αs1, . . . , αsñs}, where αki denotes group i of partition k. Let γ(i) stand for the final group of i.
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Figure B.2: This figure depicts the construction of the final partition Γ, when fixed-size intervals of size ε1 and ε2 are
used to bin the components of v1, respectively of v2 (Method 1 of §B.5.4.2). All objects whose components end up in
the same box are grouped together in Γ.

Two objects i and j are grouped together in the final partition Γ if they are grouped together

within each Γk. Formally, Γ is defined implicitly as follows. For all i, j ∈ {1, . . . , n},

γ(i) = γ(j) d⇔ ∃k1, . . . , ks such that i, j ∈ α1k1 ∩ · · · ∩ αsks . (B.15)

Even though each Γk minimizes ‖eP(vk)‖, Γ generally does not minimize any of the ‖eP(vk)‖.
The case s = 2 of this construction is illustrated in Figure B.2.

Method 2 Another way to preserve (λ1, v1), . . . , (λs, vs) is by trying to minimize the overall

sum

s

∑
k=1

‖eP(vk)‖2 ≡
s

∑
k=1

ñ

∑
α=1

∑
i∈α

(
vk(i)− 1

|α| ∑
i∈α

vk(i)

)2
=

ñ

∑
α=1

∑
i∈α

‖wi − 1
|α| ∑

i∈α

wi‖2, (B.16)

where wi = (v1(i), . . . , vs(i))t and 1
|α| ∑i∈αwi is the barycentre of the wi belonging to group α.

This amounts to clustering n points (of a s-dimensional space) into ñ groups by minimizing

the overall intra-group variance. This approach was proposed in [56] for the coarse graining

of stochastic matrices, but the problem was previously shown NP-hard for s > 1 and ñ ≥ 2 in

[33]. As a consequence, k-means is commonly employed to drive an approximate minimizer of

Equation B.16 in reasonable time.

The main drawback of k-means here is that for large ñ the k-means solution can be much poorer

than the true minimizer of Equation B.16, due to the multiplication of “trapping” local minima in
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Figure B.3: These figures depict the relative eigenvalue shifts when coarse graining for λ1 and λ2, by Method 1 of
§B.5.4.2, two different classes of matrices in R500×500. (1) On the left-hand side, the results for symmetric matrices
with positive i.i.d. entries. In this case, the v(i) are densely distributed with no particular pattern. We observe that the
three methods, optimal (“——”), intervals+kmeans (“– – –”), and intervals (“− · ·−”), give equally accurate coarse
grainings. The important gap between both shifts follows from the fact that δ(v1) = maxi v1(i)−mini v1(i) ≈ 10−3
whereas δ(vi) ≈ 1 ∀i ∈ {2, . . . , n} (Remark 25). We stress that the relative eigenvalue shifts for i > 2, not shown
here, are all identical to the case i = 2 (i.e. the relative accuracy is—generally—independent of the magnitude of the
eigenvalues; see also Summary B.4). (2) On the right-hand side, the results for adjacency matrices of Barabasi–Albert
random graphs [5]—the latter have correlated entries drawn from {0, 1}. For these matrices, the v(i) are sparsely
distributed and a stripe pattern can be observed. As a consequence, the groups are better identified by the optimal
algorithm, which outperforms the approximate methods. Results have been averaged over a thousand realizations of
both matrices.

∑s
k=1 ‖eP(vk)‖2. More importantly, minimizing Equation B.16 does not allow precise individual

control of the eigenpair shifts, which may be problematic in applications wherein the eigenpairs

to be preserved are not all equally relevant to the system.

In other words, because of its greater flexibility, Method 1 of this paragraph is generally a better

choice than Method 2 to preserve several eigenpairs in SCG. In particular, Algorithm B.5.3.1 of

§B.5.3.1 can be used to find the true minimizing partitions of the ‖eP(vk)‖, which makes further
consideration about the (physical) meaning of the groups more pertinent than with approximate

methods. On the other hand, Method 2 allows one to fix ñ at the cost of unpredictable eigen-

pair shifts. Therefore, the latter might be considered if the size of the coarse grained matrix

is imposed beforehand, and one is not concerned with precise control of individual eigenpair

shifts.

B.5.4.3 Complex Eigenpairs

For v a non-real eigenvector, one can carry out the minimization of ‖eP(v)‖ as the minimization
of both ‖eP(�v)‖ and ‖eP(�v)‖ by either of the methods above. Indeed, provided vavg(α) =



B.6. Application to Graph Theory 123

1
|α| ∑i∈α v(i),

‖eP(v)‖2 =
ñ

∑
α=1

∑
i∈α

|v(i)− vavg(α)|2

=
ñ

∑
α=1

∑
i∈α

(� [
v(i)− vavg(α)

])2
+

(� [
v(i)− vavg(α)

])2
=

ñ

∑
α=1

∑
i∈α

(�[v](i)−�[v]avg(α))2 + (�[v](i)−�[v]avg(α))2
= ‖eP(�v)‖2 + ‖eP(�v)‖2.

The need to minimize two eigenvector shifts in the complex case is not surprising since, for

M a real matrix, the preservation of an eigenpair automatically implies the preservation of its

conjugate. In this case, Method 1 of §B.5.4.2 allows the differentiation between the preservation

of �v and �v.

The accuracy of the methods presented in this section is compared in Figure B.3.

B.6 Application to Graph Theory

The spectral coarse graining (SCG) of graphs under constraint has been initially introduced

through the SCG of stochastic matrices in [38, 56, 39] and through the SCG of Laplacian matrices

in [40]. The main goal in these works was to reduce large graphs while preserving their spectral-

related features (i.e. features of the system related to the spectral properties of the associated

interaction matrix). In the following we recast these SCG in the framework of this article, and

introduce the SCG of a graph adjacency matrix.

Definition 26. Let G(V, E) be a weighted strongly connected graph (i.e. there is a path between

any pair of vertices in G). V is the set of vertices, labeled from 1 to n, and E is the set of edges;

to every edge is associated a weight eij ≥ 0 and, with no mention of the contrary, G is supposed
directed, that is eij is not necessarily equal to eji.

1. The adjacency matrix A is defined as Aij = eij, with Aij = 0 indicating that there is no edge

from vertex i to vertex j. By definition G is undirected if A is symmetric.

(a) We define the graph Laplacian matrix L as Lij = δij ∑n
k=1 Aik − Aij.
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(b) The row-stochastic matrixW is defined asWij =
Aij

∑n
k=1 Aik

.

Definition 27. Let G(V, E) be a weighted graph with edge weights {eij}. Let Γ be a partition of

V. A coarse-grained graph G̃(Ṽ, Ẽ) with respect to Γ is a graph where (1) to each vertex in Ṽ

corresponds one and only one group in Γ, and (2) every edge weight ẽαβ is a linear combination

of the elements in {eij|i ∈ α, j ∈ β and α, β ∈ Ṽ}.

Remark 28. A crucial condition to the coarse graining of A, L and W is that the transformation

preserves the structure of the original matrix, that is Ã ≡ LARt, resp. L̃ ≡ LLRt and W̃ ≡ LWRt,

must be an adjacency, respectively a Laplacian and a stochastic matrix, of a graph; this is called

the structural constraint.

B.6.1 Adjacency Matrices

G(V, E) is a weighted graph with n vertices and A its associated adjacency matrix.

If A is symmetric, and the coarse-grained adjacency matrix LARt is to be symmetric as well,

the natural choice is to coarse-grain A with L = R—which implies that the projector P = RtR

is orthogonal. In addition, we impose the homogeneous mixing constraint of Section B.5.2 (i.e.

(Px)(i) is constant within each group and ∀x ∈ Rn). Recall that ‖eP(v)‖2 = ∑i∈α[v(i)− (Pv)(i)]2

is minimum if (Pv)(i) = 1
|γ(i)| ∑j∈γ(i) v(j), and the partitioning constraint is automatically satis-

fied by P (§B.5). A simple way to satisfy homogeneous mixing, while still ensuring RRt = Iñ, is

to define R as

Rαj =
1√|α| δαγ(j).

The coarse-grained matrix Ã is the adjacency matrix of the coarse-grained graph G̃(Ṽ, Ẽ), with

edge weights given by

ẽαβ = Ãαβ =
1√|α||β| ∑

i∈α
j∈β

Aij.

Obviously, taking L = R is also possible if LARt is not to be symmetric (e.g. G(V, E) is directed),

as long as this choice does not violate other ad hoc constraints.
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B.6.2 Laplacian Matrices

In this example, G(V, E) is a weighted undirected graph with n vertices and L is its associated
Laplacian matrix. Under these conditions, it can be shown that L is symmetric semi-positive

definite.

By definition the rows of L sum up to zero, which in this case is equivalent to saying that L has
a unique zero eigenvalue with corresponding right eigenvector vn = (1, . . . , 1)t ∈ Rn—the zero
eigenvalue has multiplicity one since G is connected.

The structural constraint is satisfied if L̃ = LLRt also has a unique zero eigenvalue with right
eigenvector ṽñ = (1, . . . , 1)t ∈ Rñ. A natural choice is then to choose R such that Rtṽñ = vn,

which implies rαj = δαγ(j) under partitioning (Equation B.3). Since LR
t = Iñ, it follows that the

rows of L verify ∑n
j=1 �αjδαγ(j) = ∑j∈α �αj = 1, which can be achieved by taking �αj = |α|−1. This

results in the following definitions:

Lαj =
1
|α| δαγ(j) and Rαj = δαγ(j). (B.17)

As with adjacency matrices, this choice of L and R is optimum in the sense that (Pv)(i) =

1
|γ(i)| ∑j∈γ(i) v(j) for all i (§B.5). Hence, the homogeneous mixing is satisfied and the minimiza-

tion of ‖eP(v)‖ to find the optimal partition can be carried out as described in §B.5.

Let us examine the main properties of this coarse graining.

P1 A straightforward calculation shows that L̃ṽñ = 0.

P2 (Px)(i) is constant over each group ∀x ∈ Rn.

P3 Denote by H the ñ× ñ matrix Hαβ =
√|α|δαβ and consider the change of basis HL̃H−1 =

(HL)L(RtH−1). It is easy to see that HL = (RtH−1)t, such that L̃ is similar to a symmetric
semi-positive definite matrix (though it is not symmetric since L �= R).

P4 Since the projector P = RtL is orthogonal, the coarse-grained eigenvalues obey the interlacing

of the Poincaré separation theorem (Theorem 17). As a consequence, the zero eigenvalue

of L̃ is unique.

Properties P1 and P4 ensure that the matrix L̃ is the Laplacian matrix of a connected weighted
graph G̃(Ṽ, Ẽ) in the sense of Definition 26. To find the edge weights ẽαβ, we first notice that
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LLRt = LDRt − LARt = D̃ − Ã, where Ãαβ = 1
|α| ∑ i∈α

j∈β
Aij and D̃αβ = δαβ ∑ñ

ω=1 Ãβω. Hence, Ã

is the adjacency matrix of G̃ and the edge weights are given by

ẽαβ = Ãαβ =
1
|α| ∑

i∈α
j∈β

Aij.

As argued in [40] the coarse graining presented in this paragraph can be used to reduce ef-

ficiently large graphs of coupled oscillators while preserving their synchronization properties

(the latter are related to the ratio λ1(L)/λn−1(L)).Stochastic Matrices

For this last application, G(V, E) is a strongly connected weighted graph with n vertices and

row-stochastic matrixW.

The matrix W gives the transition probability distribution of a Markov chain on G. Since G is

strongly connected W has a unique eigenvalue λ = 1 associated to a right eigenvector v1 =

(1, . . . , 1)t ∈ Rn, and to a left eigenvector p1 ∈ Rn with p1(i) > 0 ∀i. The components of p1 give,
up to a scalar multiplication, the stationary distribution of the Markov chain. Importantly, for

undirected graphs p1 (unnormalized) is given by p1(i) = ∑n
j=1 Aij.

In order to satisfy the structural constraint, we require that the coarse-grained matrix W̃ is row-

stochastic, that is λ = 1 must be an eigenvalue of W̃ with corresponding right eigenvector

ṽ1 = (1, . . . , 1)t ∈ Rñ.

In addition, we demand to preserve exactly the stationary state p1 in W̃, that is, we look for

semi-projectors L and R such that pt1R
t is a left eigenvector of LWRt with eigenvalue equal to

one.

To this aim the following choice for R and Lwas independently proposed in [38, 56, 39] (although

column-stochastic matrices were considered there):

Lαj =
p1(j)

∑k∈γ(j) p1(k)
δαγ(j) and Rαj = δαγ(j). (B.18)

We verify immediately the following properties:

P1 P = RtL is indeed a projector since LRt = Iñ, but P �= Pt in general.

P2 (Px)(i) is constant over each group ∀x ∈ Rn.

P3 The stationary state is exactly preserved. Indeed, it is easy to verify that pt1P = pt1 so that

pt1R
tW̃ = pt1PWR

t = pt1R
t.
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P4 The structural constraint is fulfilled: W̃ṽ1 = ṽ1. Furthermore, λ̃ = 1 has multiplicity one

since the coarse-grained graph defined from W̃ is strongly connected (see Equation B.19).

By property P4, the coarse-grained matrix W̃ = LWRt is the row-stochastic matrix of the coarse-

grained graph G̃(Ṽ, Ẽ) with edge weights given by

ẽαβ = Ãαβ = ∑
i∈α
j∈β

p1(i)
∑n
k=1 Aik

Aij. (B.19)

To see this, we first write down explicitly W̃αβ:

W̃αβ = (LWRt)αβ = ∑
i∈α
j∈β

p1(i)
∑l∈α p1(l)

Aij
∑n
k=1 Aik

=
Ãαβ

∑l∈α p1(l)
, (B.20)

where we have defined Ãαβ ≡ ∑ i∈α
j∈β

p1(i)
∑n
k=1 Aik

Aij. Recall that the left eigenvector p1 satisfies

pt1 = pt1W ⇔ p1(l) = ∑n
j=1 p1(j)

Ajl
∑n
k=1 Alk

. Substituting p1(l) in Equation B.20 gives

W̃αβ =
Ãαβ

∑l∈α ∑ñ
ω=1 ∑j∈ω p1(j)

Ajl
∑n
k=1 Alk

=
Ãαβ

∑ñ
ω=1 Ãωα

.

Now, since W̃ṽ1 = ṽ1, we have that ∑β W̃αβ = 1⇔ ∑β Ãαβ = ∑β Ãβα, and thus

W̃αβ =
Ãαβ

∑ñ
ω=1 Ãαω

.

Therefore, Ãαβ is the adjacency matrix of a (directed) graph G̃(Ṽ, Ẽ) with edge weights given by

Equation B.19. If G(V, E) is undirected, we recall that p1(i) = ∑n
j=1 Aij; as a consequence

ẽαβ = ∑
i∈α
j∈β

Aij,

which is the (intuitive) sum of the edge weights between the two groups α and β.

Importantly, Equation B.18 implies that ‖eP(v)‖2 now reads

‖eP(v)‖2 =
ñ

∑
α=1

∑
i∈α

(
v(i)− 1

∑j∈α p1(j)
∑
j∈α

p1(j)v(j)

)2
. (B.21)
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Even though Equation B.21 and Equation B.9 are different in general, when the groups are

composed of vertices with equal components in v (i.e. v(i) = v(j) ∀i, j ∈ α and ∀α), the coarse

graining is exact in both cases (i.e. ‖eP(v)‖ = 0).

The optimal minimization of ‖eP(v)‖ (Algorithm B.5.3.1) can still be carried out by defining

cv accordingly. Furthermore, the fixed-size intervals method yields a similar upper bound as

in Equations B.12 and B.14, so that adding the constraint pt1R
tW̃ = pt1R

t to the minimization

does not alter the main results of §B.5. In particular, the approximate methods presented in the

previous section still lead to very accurate coarse grainings, as observed in [39].

Finally, if G is undirected, we show that the coarse-grained matrix LWRt with L and R as in

Equation B.18 is similar to the matrix R̂MR̂t, where M is real symmetric and R̂ is a semi-

orthogonal projector (see also Property P3 of the Laplacian matrix).

Let D be the diagonal matrix defined as Dii = ∑n
j=1 Aij; hence W = D−1A. We consider the

matrix M defined as

M = D1/2WD−1/2 = D−1/2AD−1/2. (B.22)

ClearlyM andW have the same eigenvalues and if G is undirectedM is symmetric. We introduce

the matrix M̃ = D̃1/2W̃D̃−1/2, with D̃ the diagonal matrix defined as D̃αα = ∑i∈α Dii; then

sp(M̃) = sp(W̃). Further, M̃ can be expressed as

M̃ = D̃1/2W̃D̃−1/2

=
(
D̃1/2LD−1/2

)
︸ ︷︷ ︸

L̂

M
(
D1/2RtD̃−1/2

)
︸ ︷︷ ︸

R̂t

.

It is straightforward to see that L̂R̂t = Iñ as required. Finally, if the graph is undirected, we

have that L̂ = R̂ since p1(i) = ∑n
k=1 Aik. Therefore, although P is not orthogonal in this coarse

graining, the results of the symmetric SCG apply; in particular the eigenvalues of W̃ and W

interlace as described by the Poincaré separation theorem.

B.7 Summary and Conclusion

Spectral Coarse Graining (SCG) is a general framework for dimension reduction of large sys-

tems. It goes beyond traditional clustering strategies by providing a coarse-grained system, and
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includes Principal Component Analysis as the exact coarse graining of correlation matrices for

their large eigenvalues.

In this work our first goal was to put SCG on a firm mathematical basis. To this aim, we have

addressed some important theoretical issues, such as the mathematical definition of a coarse

graining transformation and its connexion with projection in Linear Algebra. Then, borrow-

ing techniques from matrix perturbation theory, we have bounded from above the minimum

eigenvalue shifts caused by a coarse graining. We have extracted from the bound the quantity

‖eP(v)‖, whose minimization has been shown to be a necessary and sufficient condition to the
preservation of the eigenpair (λ, v) in the coarse-grained matrix.

In a second part, we have defined a generic SCG problem along with the partitioning and ho-

mogeneous mixing constraints. We have solved the problem by means of an optimum algorithm

and of two approximate methods—introduced do deal with very large systems—which have

been further extended to the preservation of several eigenpairs. Finally, we have performed the

SCG of graphs within our framework through the SCG of the adjacency, the Laplacian and the

stochastic matrices. In particular, we have incorporated the conservation of the matrix structure

as a constraint in all these instances.

We believe that SCG, being still in its infancy, offers a number of interesting extensions and

open questions. For example, it would be interesting to refine the perturbative analysis so as to

obtain upper bounds on the eigenvector shifts, as well as lower bounds on the eigenvalue shifts,

in terms of ‖eP(v)‖. Possible extensions of the theory include the SCG of linear operators in

Hilbert space (for which the spectrum is discreet and often meaningful), SCG with overlapping

groups (in analogy with “soft” clustering), and the SCG of higher-rank tensors for which “eigen-

decompositions” have recently found application in Genetics [57].

As could be noticed, setting up a specific SCG problem involves the choice of system-dependant

constraints that can make the problem delicate to solve. We hope the present framework, along

with the various examples, will be helpful to anyone interested in applying SCG techniques to

his or her problem. Toward this goal, a computer program will soon be released that will make

the methods presented in this paper ready-to-use.
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