
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. P. Ienne, président du jury
Prof. G. De Micheli, directeur de thèse

Prof. D. Atienza Alonso, rapporteur
Prof. L. Benini, rapporteur
Prof. C. Piguet, rapporteur

Design of Thermal Management Control Policies for
Multiprocessors Systems on Chip

THÈSE NO 5253 (2011)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 19 DÉCEMBRE 2011

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DES SYSTÈMES INTÉGRÉS (IC/STI)

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2011

PAR

Francesco ZANINI

Abstract

The contribution of this thesis is a thorough study of thermal
aware policy design for MPSoCs. The study includes the mod-
elling of their thermal behavior as well as the improvement and
the definition of new thermal management and balancing policies.

The work is structured on three main specific disciplines. The
areas of contributions are: modeling, algorithms and system design.

This thesis extends the field of modeling by proposing new tech-
niques to represent the thermal behavior of MPSoCs using a math-
ematical formalization. Heat transfer and modelling of physical
properties of MPSoCs have been extensively studied. Special em-
phasis is given to the way the system cools down (i.e. micro-cooling,
natural heat dissipation etc.) and the heat propagates inside the
MPSoC.

The second contribution of this work is related to policies, which
manage MPSoC working frequencies and micro-cooling pumps to
satisfy user requirements in the most effective possible way, while
consuming the lowest possible amount of resources. Several families
of thermal policies algorithms have been studied and analyzed in
this work for both 2D and 3D MPSoCs including liquid cooling
technologies.

The discipline of system design has also been extended during
the development of this thesis. Thermal management policies have
been implemented in real emulation platforms and contributions in
this area are related to the design and implementation of proposed
innovations in real MPSoC platforms.

Keywords: Thermal, Management, Model, Predictive control,
Temperature, Algorithm, 3D-MPSoC, Optimization, Accuracy.

i

Riassunto

Il contributo di questa tesi e’ uno studio dettagliato dei sistemi
di gestione termica(thermal management) per sistemi a multipro-
cessore(MPSoC). Lo studio prende in considerazione ogni singolo
aspetto della tematica trattata: dalle equazioni matematiche che
descrivono il comportamento termico degli MPSoC, agli algoritmi
di gestione termica, alle politiche di smistamento del workload. La
tesi e’ multidisciplinare e si sviluppa a partire da tre tematiche
principali: modellizzazione, algoritmi e architettura del systema.

Questa tesi estende la tematica della modellizzazione proponenedo
nuove tecniche utilizzando un formalismo matematico il comporta-
mento termico di un MPSoC. I meccanismi di trasferimento termico
interni all’ MPSoC sono stati studiati in dettaglio. Una speciale at-
tenzione e’ stata data ai sistemi di raffreddamento(micro-cooling)
con liquido refrigerante.

Il secondo contributo di questa tesi riguarda le politiche di ges-
tione energetica e termica per quanto riguarda la scelta della fre-
quenza di funzionamento e della velocita’ della pompa dei sistemi
di raffreddamento a liquido. Come obbiettivo, il sistema di ges-
tione dell’ MPSoC deve rispondere in modo pronto alle richieste
dell’ utente impiegando il minor numero possibile di risorse e con
il minor dispendio energetico possibile. In questa tesi mettiamo
a confronto alcune famiglie di algoritmi per sistemi di tipo MP-
SoC sia planari che utilizzando tecnologie 3D con raffreddamento
a liquido.

Il terzo contributo riguarda l’architettura implementativa dei
sistemi di gestione termica degli MPSoC proposti in questa tesi.
Questi sistemi sono stati sviluppati su piattaforme di simulazione
e le principali innovazioni sono legate alla definizione di tali pi-
attaforme software.

Parole chiave: Modellizzazione, Controllo predittivo, Ges-
tione termica, Temperatura, Algoritmi, 3D-MPSoC, Ottimizzazione,
Accuratezza.

iii

Acknowledgements

First of all I would like to thank GOD for having given me everything I have
achieved.

I would like to thank my advisor, Prof. Giovanni De Micheli who gave me
the opportunity to pursue research in the beautiful research. He’s a person
with great vision, who is always interested in exploring new research directions
and ideas. He gave me complete freedom in performing research. He has given
excellent personal support to all his students, being more of a mentor. During
my Ph.D., he gave me the opportunity to travel and see many realities in the
best research labs in my field.

I am also thankful to Professor David Atienza for his help in the devel-
opment of my thesis. He guided me with patience and he also helped me in
developing the skills I have now. I thank also him for always finding the time in
his busy schedule to read my papers during the night or in the early mornings.

I really thank Professors Luca Capisani, Luca Benini and Colin Jones as
well as Dr. Srinivasan Murali for helping me in understanding the theory
behind my research work and at the same time giving me directions on how
to solve mathematical problems encountered during my research.

I really thank Professor Stephen Boyd for giving me the opportunity to
visit his lab at Stanford University and let me see the beauty of the research
environment in Silicon Valley. I also thank him for spending a lot of his
precious time with me. I really thank also Professor Subhasish Mitra and
Yang Wang for the inspiring discussions I had with them during my Stanford
experience.

I thank Mohamed Mostafa Sabry Aly for his greatful collaboration in the
development of some of my papers. I also thank my colleague Ciprian Se-
iculescu for his help in correcting homeworks in the Design Technology course
at EPFL. Both these people are very friendly, smart and extremely hard work-
ing. For me it has been a pleasure to work with them.

I really thank Dr. Sandro Carrara, Nicolas Genko, Alessandro Cevrero,
Andrea Bartolini, Martino Ruggiero, Giacomo Paci, Prof. Babak Falsafi, Prof.
Heinrich Meyr for the time spent with me and the interesting ideas inspiring
discussions.

I also thank the professors and the people who collaborated to the En-

v

vi Acknowledgements

trepreneurial Thought Leaders Seminars (Stanford University) and to the pro-
gram Venture Challenge (EPFL) for their ideas inspiring and motivational
lectures.

I would like to thank Rodolphe Buret for his kindness in resolving the
many technical issues that would crop up from time to time. Special thanks
must go to Christina Govoni who were helpful beyond words in addressing
administrative issues in all my years at EPFL.

I’d like also to thank all the professors from Stanford University, University
of Parma, the National University of Ireland, ALaRI and EFPL that helped
me in improving my skills.

I am also grateful to my PhD jury members for reading and evaluating my
thesis in detail and for providing constructive feedback.

I really would like to thank my parents Fulgenzio and Franca, my brothers
Roberto and Davide, my sister Linda for psychologically supporting me during
my studies. I’d like also to thank my grandmother Adele for preparing me good
food when I was coming back home from Lausanne. I’d like also to thank the
support of my uncles Ersilia and Luigi and all my relatives in general. I’d
like to thank my uncles Umberto, Sarro, Riccardo for showing me that high
achievements in life can be obtained without loosing humility or faith in God.
I also Would like to thank all the people who prematurely died before the end
of my Ph.d: my grandfathers Pietro and Franco, my grandmother Lea and my
uncles Ermete and Maria Teresa.

I’d like also to thank my parents, the University of Parma, EPFL, National
University of Ireland, the Franchetti Institute and the ALaRI partners for the
economical support that they gave me during my studies.

Special thanks to all my Stanford University and EPFL friends that I made
during my studies. For the conversations I had with them and for all the time
they always had for me.

Contents

Abstract i

Riassunto iii

Acknowledgements v

Contents vii

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 6

1.2.1 Modeling . 6
1.2.2 Algorithms . 7
1.2.3 System design . 8

1.3 Assumptions and Limitations 9
1.4 Thesis Organization . 10

2 Background 11
2.1 Modeling Background . 12

2.1.1 Dynamic voltage and frequency scaling 12
2.1.2 3D-MPSoC and liquid cooling 13
2.1.3 Thermal modelling . 14
2.1.4 Thermal sensing . 16

2.2 Algorithms Background . 16
2.2.1 Reactive policies . 16
2.2.2 History based policies 17

2.3 System Design Background . 20
2.3.1 Validation of policies 21
2.3.2 Real-time hardware simulation framework 21
2.3.3 Simulation platform 23

3 Thermal Models 25

vii

viii Contents

3.1 Thermal Modeling . 26
3.1.1 State-space heat propagation model 26
3.1.2 First order ODE solvers 28
3.1.3 Second order ODE solvers 30
3.1.4 Multi-step fourth order ODE solver 30
3.1.5 Changing the sampling rate 31

3.2 Thermal Simulation Analysis 32
3.2.1 Stability analysis . 32
3.2.2 Cell size influence . 35
3.2.3 Simulation time step 36
3.2.4 Matrix calculation period 37

3.3 Liquid Cooling . 37
3.3.1 Straight and bent microchannels 38
3.3.2 Interlayer cooling layer modeling 39

3.4 Summary . 41

4 Energy and Workload Models 43
4.1 System Energy . 44

4.1.1 Energy efficiency quantification 44
4.1.2 Energy bounds . 46

4.2 Workload Model . 48
4.2.1 System architecture . 48
4.2.2 Task arrival process . 48
4.2.3 Workload model . 49
4.2.4 Frequency and power model 50

4.3 Workload Prediction . 50
4.3.1 Workload arrival process 50
4.3.2 Prediction accuracy . 52
4.3.3 Maximum energy concentration based estimator 52
4.3.4 Polynomial least squares workload prediction 55

4.4 Summary . 57

5 Policies for Thermal Control with Air Cooling 59
5.1 Introduction . 60
5.2 2D-MPSoC case study . 61

5.2.1 The Niagara processor 61
5.2.2 Layout . 62
5.2.3 Frequency Setting and DVFS 62
5.2.4 Power Consumption 63
5.2.5 Benchmarks and Workload Statistics 63

5.3 Policy Classification . 64
5.4 Comparison of Receding Horizon Algorithms 67

5.4.1 Linear quadratic regulator 68
5.4.2 Explicit/Implicit MPC 70
5.4.3 Approximated explicit predictive policy 72

Contents ix

5.4.4 Convex optimization based policies 73
5.5 Experimental Results . 74

5.5.1 Policies setup . 74
5.5.2 Executed workload and working temperature 76
5.5.3 Thermal and frequency variations 80

5.6 Summary . 81

6 Policies for Thermal Control with Liquid Cooling 83
6.1 Introduction . 84

6.1.1 Centralized thermal management 84
6.1.2 Hierarchical thermal management 84

6.2 3D-MPSoC case study . 85
6.2.1 Layout and Technology Specifications 85
6.2.2 Frequency Setting and DVFS 86
6.2.3 Cooling Model . 87
6.2.4 Cooling System Power Consumption 88
6.2.5 3D-MPSoC Power Consumption 88
6.2.6 Benchmarks . 89

6.3 Centralized Thermal Management 89
6.3.1 Policy computation . 89
6.3.2 Policy setup . 91
6.3.3 Experimental results 92

6.4 Distributed Hierarchical Thermal Policy 95
6.4.1 Hierarchical structure 95
6.4.2 Run-time interaction: global and local controllers . . . 97
6.4.3 Design and implementation 98
6.4.4 Policy computation: global thermal controller 99
6.4.5 Policy computation: local controllers 101
6.4.6 Policy setup . 103
6.4.7 Compared 3D-MPSoC thermal management policies . . 104
6.4.8 Results . 104

6.5 Summary . 107

7 Sensor Placement 109
7.1 Thermal Profile Estimation 110

7.1.1 Temperature estimation by sensing devices 110
7.1.2 Temperature estimation by observability 112

7.2 Full Model Placement Algorithm 114
7.2.1 Methodology . 114
7.2.2 Placement results . 115
7.2.3 Comparison with state-of-the-art methods 117

7.3 Model Order Reduction Placement Algorithm 118
7.3.1 Introduction . 118
7.3.2 Model: from structure-centric to energy-centric 118
7.3.3 Identification of relevant states 120

x Contents

7.3.4 Balanced state transformation analysis 122
7.3.5 Reduced order model and sensor placement 123

7.4 Summary . 125

8 Experimental Framework 127
8.1 Global Infrastructure Overview 128

8.1.1 Thermal policy computation 128
8.1.2 MPSoC simulation infrastructure 129
8.1.3 Thermal simulator . 129

8.2 Thermal policy: Matlab code architecture 130
8.2.1 Optimization algorithm 130
8.2.2 Reduced order thermal model 131
8.2.3 Thermal profile estimator 131

8.3 MPSoC emulator: SystemC code architecture 131
8.3.1 Virtual Platform Environment 131
8.3.2 DVFS Support . 132
8.3.3 Support for Thermal Management Policies 133

8.4 Thermal Simulator . 133
8.4.1 Challenges in thermal simulators design 133
8.4.2 Proposed syntax and output types 134
8.4.3 Functional diagram of the simulator 137

8.5 Adaptive Thermal Simulation Algorithm 138
8.5.1 Methodology . 138
8.5.2 Experimental validation results 140

8.6 Summary . 141

9 Conclusions 143
9.1 Thesis Summary and Contributions 143
9.2 Future Work . 144

Bibliography 147

Curriculum Vitae 155

List of Figures

1.1 (left) Data center power use in the U. S. (right) Approximate break-
down of total power used by digital electronics in the U. S. [67] . 1

1.2 California average residence electricity price. [85] 2
1.3 Smartphone Battery Capacity vs. Power Requirements [1] 2
1.4 Power density trend of microprocessors [67] 3
1.5 Thermal profile of Sun UltraSPARC T1(niagara) platform [43] . . 3
1.6 Mean Time To Failure Predicted at 90% Confidence Level (courtesy

of: ASB inc.) . 4
1.7 Cross-section of a test stack with liquid cooling. 5
1.8 Comparison in the data center power consumption for an air cooled

versus water cooled system [28] 5
1.9 Example of a micro-cooling system from [78] 7
1.10 Block model representation of the system 8

2.1 Operating Points in the voltage Vs frequency design space for an
ARM Cortex A8 CPU . 12

2.2 Simplified illustration of 3D stack with inter-tier liquid cooling . . 13
2.3 Cubic cells Model of the MPSoC 14
2.4 Equivalent RC circuit of a cell . 15
2.5 Equivalent circuit of a fluid thermal cell. 15
2.6 Predictive policies using history information, graphical representa-

tion [courtesy of Martin Behrendt] 18
2.7 System architecture [3] . 22
2.8 Processing module architecture [3] 22

3.1 Modeling of the heat transfer inside a 2D-MPSoC 26
3.2 Silicon thermal conductivity and linear fit 27
3.3 Circuit for the determination of ∆Tcs and ∆Tss. 33
3.4 Experimental vs. theoretical values of ∆max for various grid reso-

lution values. 34
3.5 Accuracy vs. grid resolution of the floorplan. 35
3.6 Accuracy vs. simulation time step ∆τ 36
3.7 Accuracy vs. matrix calculation period. 37

xi

xii List of Figures

3.8 Top view of a) 2-port and b) 4-port microchannel fluid delivery
architecture compatible with area-array interconnects. 38

3.9 Comparison of the fluid flow velocity in different channel lengths
between the analytical method (Equations 3.48-3.51) and the ex-
perimental results shown in Brunschwiler et al. [15]. 40

3.10 Rate of change of thermal capability of interlayer liquid cooling TC
with respect to pumping power Ppump. 41

4.1 Scheduler viewpoint snapshot of the MPSoC at time k. 44
4.2 Effect of a frequency estimation error from a frequency perspective

in a DVFS system. (top): ideal case; (bottom) real case with an
estimation error ∆f . 45

4.3 Example of normalized power consumption versus delayed workload
for different optimization criteria ranging from power-oriented to
performance-oriented optimizations. 47

4.4 Overview of the system architecture. 48
4.5 Snapshot of the task arrival process at time k. 48
4.6 Duty factor mean and standard deviation of cores during system

operation. 51
4.7 Kaiser window function for N=120 and different values of β. . . . 53
4.8 Block diagram description of the method used to derive β and N

parameters from real applications or benchmarks. 54
4.9 Euclidean norm of the estimation error normalized to the average

maximum number of tasks executable by the MPSoC. 55
4.10 Structure of matrix Ǎ. 56

5.1 Diagram of a generic DVFS-based thermal management system . 60
5.2 UltraSPARK T1 processor, die photograph by courtesy of SUN [49] 61
5.3 Floorplan of the Niagara-1 multicore case study 62
5.4 Niagara, chip power consumption. 63
5.5 Niagara, chip power consumption by unit type. 64
5.6 Classification of compared thermal management policies 65
5.7 Linear Quadratic Regulator-based policy block diagram. 68
5.8 Explicit model predictive control-based policy block diagram. . . 70
5.9 Explicit model predictive control example: (a) state values x(t) and

resulting input u(t), (b) state-space partition and corresponding
control trajectories. 71

5.10 Embedded solver-based policy block diagram. 74
5.11 Temperature Vs executed workload normalized to the one that can

be executed by the MPSoC running with the highest possible fre-
quency setting. 77

5.12 Temperature gradients analysis. Normalized executed workload Vs
temporal temperature gradient (top); normalized executed work-
load Vs spatial temperature gradient (center); spatial Vs temporal
temperature gradient (bottom). 78

List of Figures xiii

5.13 Temperature rate of change Vs frequency rate of change. 80

6.1 Structure of the 4-tier 3D-MPSoC model with interlayer liquid cool-
ing. 85

6.2 Floorplan of the used silicon tiers in our 3D-MPSoC model. . . . 86

6.3 Electric current absorption (power consumption) and flow rates of
the cooling infrastructure per one tier. Data from [32] 88

6.4 Power consumption and flow rates of the cooling infrastructure per
one tier. 89

6.5 Percentage of run-time execution where the maximum MPSoC tem-
perature is higher than the threshold(370◦K). The area of the
hotspot is also provided as a percentage of the overall MPSoC area 93

6.6 Undone work as a percentage of the overall requested workload . 94

6.7 left graph: energy consumption of the overall system: 3D MPSoC
power consumption and cooling network. Values are normalized to
LC LB; right graph: average maximum 3D MPSoC temperature
[◦C] . 95

6.8 Structure of the proposed hierarchical thermal management system 96

6.9 Communication protocol between the global and the local con-
trollers of the proposed method 97

6.10 Design phase and run-time phase of the proposed hierarchical ther-
mal management . 98

6.11 Local policy controller block diagram. 102

6.12 Peak and average temperatures observed using all the policies, both
for the average case across all workloads and maximum workload
on 4-tier 3D-MPSoC. 105

6.13 Maximum thermal gradient of the whole 3D-MPSoC stack, using
the average case of all workloads. 106

6.14 Average intralayer thermal gradient of the whole 3D-MPSoC stack,
using the average case of all workloads. 107

6.15 The normalized energy consumption in the whole system (chip and
cooling network) averaged per stack. 107

7.1 Percentage error between every cell of the silicon layer and the one
of the copper layer on it normalized to the difference between the
silicon temperature and the ambient one (300◦C). 111

7.2 Maximum chip temperature estimation (in Kelvin degrees): real
versus thermal sensors. 112

7.3 Graphical representation of selection matrix C for the case study
floorplan described in the experimental setup chapter. 113

7.4 Proposed method block diagram 114

7.5 Design space exploration of the case study (step 2) 116

7.6 Pareto points (steps 3+4) and comparison with [5],[6]. 116

7.7 Proposed method block diagram 119

xiv List of Figures

7.8 Decay rate analysis for the normalized energy related to Hankel
singular values for our case study. Red arrows points to change in
the decay rate. 121

7.9 Model approximation error [%] versus number of states in the re-
duced model for our case study. 121

7.10 Sensor location according to the most relevant component identify-
ing each state of the new thermal model. Horizontal lines delimits
one layer from another . 122

7.11 Sensor placement algorithm: percentage of accurate temperature
estimation according to the number of sensors placed with the pro-
posed methodology . 124

7.12 Sensor placement for our case study with sensors (marked as red
stars on the floorplan) sampling frequency Ts of 1ms 125

8.1 Global infrastructure block diagram 128
8.2 Global infrastructure block diagram 130
8.3 Simulation infrastructure block diagram 132
8.4 First example of a description using the new description language. 134
8.5 Niagara, chip thermal profile at time 1.255ms. 136
8.6 Functional block diagram of the developed framework 137
8.7 Thermal simulator design flow . 138
8.8 Design space exploration using our adaptive thermal simulator . . 139
8.9 Normalized comparison of the proposed method (accuracy=3·10−3 ◦C)

with RK4-based thermal simulators (as HotSpot) and (FE)-based
thermal simulators. 141

Introduction 1
1.1 Motivation

Some of the greatest challenges of modern society are related to energy con-
sumption, dissipation, and waste. Among these, present and future technolo-
gies based on nanoscale materials and devices hold great potential for improved
energy conservation, conversion, and harvesting. A prominent example is that
of integrated electronics, where power dissipation issues have recently become
one of its greatest challenges. For example, Figure 1.1 shows that data center
energy consumption have doubled in the last five years, with waste heat re-
quiring drastic cooling solutions like air conditioning systems. These cooling
solutions increase even more the energy consumption of data centers. If present
growth trends are maintained, data center and overall electronics power use

Figure 1.1: (left) Data center power use in the U. S. (right) Approximate break-
down of total power used by digital electronics in the U. S. [67]

1

2 Introduction

Figure 1.2: California average residence electricity price. [85]

Figure 1.3: Smartphone Battery Capacity vs. Power Requirements [1]

could reach one third of total U. S. consumption by 2025 [67].
Moreover the cost of electricity keeps on growing. Figure 1.2 shows the cost

for electricity in California where many data centers are located nowadays.
Since 1980, the annual electric rates have increased an average of 2.91% and
can reasonably be assumed to continue to rise at least that much over the next
25 years.

Energy consumption has become one of the primary concerns in electronic
design due to the recent popularity of portable devices such as smartphones
and laptops. Figure 1.3 shows battery capacity versus power requirements in
the case of smartphones. The battery capacity has improved very slowly (a
factor of 2 to 4 over the last 30 years), while the computational demands have
drastically increased over the same time frame.

Figure 1.4 shows two power density trends in microprocessors power den-

1.1. Motivation 3

Figure 1.4: Power density trend of microprocessors [67]

Figure 1.5: Thermal profile of Sun UltraSPARC T1(niagara) platform [43]

sity. The first trend is the one of high-performance microprocessors such as
pentium 4, where performance is guaranteed by allowing heat spreaders, fans
and liquid cooling technologies on the device. The second trend is the one of
low-performance devices such as core 2 Duo and Atom where the power den-
sity has to be limited to a fixed maximum value. The reason is because either
the limited heat extraction capabilities of the portable device or the fact that
the device has to last long without recharging its battery.

A further problem is shown in Figure 1.5. As it can be noted, the thermal
profile of a commercial MPSoC is quite nonuniform and hot spots (localized
MPSoC areas with unsafe working temperature) may arise. This effect does
not only affect the performance of the system, but also leads to unreliable
circuit operation and affects the life-time of the chip [79]. Figure 1.6 shows

4 Introduction

Figure 1.6: Mean Time To Failure Predicted at 90% Confidence Level (courtesy
of: ASB inc.)

how temperature affects the lifetime(Mean Time to Failure) of a silicon device.
As it can be noted there is an approximately exponential behavior between
the junction temperature and the lifetime of the silicon device. Thus, thermal
management for multicore architectures is a critical matter to tackle.

In the last years, thermal management and balancing techniques received a
lot of attention. Many state-of-the-art thermal control policies operate power
management by employing dynamic frequency and voltage scaling (DVFS)
based techniques [60],[37]. This technique scales down the frequencies and
the voltages of some specified units to save power and optimize performance.
The problem with this technique is that the frequent abrupt change in working
frequencies and voltages produces thermal cycling that raises the failure rate
of the system [35], [90]. In addition, discontinuous power-mode transitions,
both in voltage and frequencies scaling, waste additional power [42]. For the
aforementioned reasons there are many trade-offs in power management tech-
niques that are not easy to handle properly during the runtime execution of
the MPSoC and with a low computational overhead.

Moreover, new challenges are related to emerging technologies for heat
extraction. Heat extraction is based on a ”heat sink”. A heat sink is a com-
ponent or assembly that transfers heat generated within a solid material to
a fluid medium, such as air or a liquid. Examples of heat sinks are the heat
exchangers used in refrigeration and air conditioning systems and the copper
dissipator placed on top of microprocessors in desktop computers. A heat sink
is physically designed to increase the surface area in contact with the cooling
fluid surrounding it, such as the air. In past decades the research to increase
the heat extraction performed by this element was focused on changing design

1.1. Motivation 5

Figure 1.7: Cross-section of a test stack with liquid cooling.

Figure 1.8: Comparison in the data center power consumption for an air cooled
versus water cooled system [28]

factors such as: air velocity, choice of material, fin (or other protrusion) de-
sign and surface treatment. In recent years with the increase of power density
the research has been focused on changing the coolant fluid. Not only air is
used nowadays but also fluids circulating and exchanging heat with the heat
spreader. The pipes where the coolant liquid is circulating can be either in-
tegrated inside MPSoCs [51]-[50] or placed on top of them [78]-[73] as shown
in Figure 1.7. Experiments have shown that when a coolant fluid is pumped
through the microchannels, up to 3.9KW/cm3 [15] of heat can be extracted.
Figure 1.8 shows the power saving of using liquid cooling in data centers ver-
sus air cooling. Energy consumption within the data center is reduced because
computer room air conditioners (CRACs) are replaced by more efficient mod-
ular water cooling units (WCUs). These new cooling technologies represent a
key perspective for novel thermal management policies to both reduce cooling
power consumption and at the same time increase performance.

6 Introduction

1.2 Contributions

The contribution of this thesis is a thorough study of thermal aware policy
design for MPSoCs. The study includes the modelling of MPSoCs thermal
behavior as well as the improvement and the definition of new thermal man-
agement and balancing policies. MPSoC modelling, input parameters required
by the optimization process as well as all the factors that improve its quality
are analyzed in detail. Thus, the project has been develop on three main axes:

• Modeling: heat transfer and modelling of physical properties of MPSoCs.
The goal is to model with a mathematical formalization the thermal
behavior of MPSoCs. Special emphasis is given to the way the system
cools down (i.e. micro-cooling, natural heat dissipation etc.) and the
heat propagates inside the MPSoC.

• Algorithms: control theory based and convex optimization based opti-
mization algorithm to manage the MPSoC to maximize performance,
increase reliability and minimize power consumption. The policy man-
ages MPSoC working frequencies and micro-cooling systems to reach its
goal in the most effective possible way and consuming the lowest possible
amount of resources.

• System design: design and implementation of proposed innovations in
real MPSoC platforms. Policies are implemented in real emulation plat-
forms. This field deals with constraints and problems related to the
design of real implementation of proposed policies in 3D MPSOC sys-
tems.

1.2.1 Modeling

The objective of this part of the thesis is to improve the accuracy of current
models and extend them from a 2-D to a 3-D perspective including liquid
cooling methods. Contributions are the following:

A study of the integration method with reference to stability and accuracy.
The integration method is used by the thermal management policy to predict
the future thermal profile of the chip based on power dissipation values, current
chip thermal profile and MPSoC floorplan. Stability and accuracy are two
important points in discrete-time integration methods. New mathematical
methods have been proposed.

Micro-cooling in 3D MPSoC. With the increasing of power density in new
technologies, new cooling devices have been introduced. These device are
integrated either inside MPSoCs [51], [93], [50] or they are placed on their heat
spreading layers [78], [73]. An example of micro-cooling is shown in figure 1.9
[78]. New modelling techniques have been proposed to address the inclusion
of new active and passive MEMS-based cooling systems for MPSoCs.

1.2. Contributions 7

Figure 1.9: Example of a micro-cooling system from [78]

1.2.2 Algorithms

The contribution is a novel set of thermal management algorithms. These algo-
rithms are based on a receding horizon approach that is called model predictive
control (MPC) [2].

This mathematical technique tries to solve the thermal management prob-
lem inside an MPSoC in a similar way to playing chess. The control problem
is indeed formulated over an interval of L time steps. The result of the opti-
mization is an optimal sequence of future control moves, in the same way a
player in chess is predicting future movements of the other player. Only the
first sample of such a sequence is actually applied to the process, the remaining
moves are discarded. At the next time step, a new optimal control problem
based on new temperature measurements is solved over a shifted prediction
horizon.

The goal of the thermal management algorithm is to satisfy performance
user constraints while keeping the chip in a reliable condition. This condition
implies that there are no localized areas in the chip where the silicon tempera-
ture is above a manufacturer specified vale (i.e. 370◦). Another requirement is
the fact that the chip does not have rapid thermal variations or large gradients
in its thermal profile.

Algorithms have been analyzed according to their hardware implementa-
tion requirements and also to their optimality. Indeed there is a trade-off in
designing the algorithm between its accuracy and its optimality. All aforemen-
tioned issues have been considered while designing and comparing proposed
families of algorithms for both air and liquid cooling technologies.

8 Introduction

Figure 1.10: Block model representation of the system

1.2.3 System design

I describe contributions related to the design of implementations of proposed
policies in 3D MPSOC systems. Figure 1.10 shows the block model repre-
sentation of the system. The system can be divided into two main parts:
the multi-core processing system (MPS) and the thermal management system
(TMS).

The first one is the part of the MPSoC that takes user requirements and
produces desired outputs. It can be seen as the plant to control. It consists of
the cores, a scheduler and some thermal sensors that make some temperature
measurements in some specific points of the chip.

The second part can be seen as the control system of the plant. It tries to
optimize its performance by using information it receives from the MPS. The
TMS consists of two subparts: one that estimates the thermal profile and one
that solves the frequency assignment problem. The first one has to estimate
and reconstruct the thermal profile starting from measurements coming from
sensors. The second subpart has to find the optimum frequencies and voltages
assignment for the cores in order to both meet performance requirements,
reduce power consumption and improve chip reliability preventing hotspots.
Constraints on the maximum temperature of the MPSoC are also respected
in the optimization process. The optimization algorithm can be implemented
with a look-up table(explicit) or an embedded solver(implicit).

1.3. Assumptions and Limitations 9

The feasibility of the thermal management policy implementation has been
addressed. To compare policies we consider trade-offs between the optimality
and its implementation requirements. The policies have been tested with real
scenarios common in many applications.

1.3 Assumptions and Limitations

As with any research work, there are some realistic assumptions that are used
for building the proposed methods:

• Application and architecture scaling: The first assumption is that the
number of cores on a chip is increasing and MPSoCs integrate several
applications. This is a realistic assumption, as the chip complexity has
been scaling roughly in accordance with the Moore’s law. Today, there
is indeed a convergence of several different applications onto the same
platform, with massive computation and communication complexity.

• Synchronous design: It is assumed that the entire MPSoC supports dif-
ferent working frequencies. We also assume that functional units com-
posing the MPSoC can be grouped into specific frequency islands each
one working at a specific frequency(which can, if needed, be varied dy-
namically). Because of the aforementioned considerations, globally asyn-
chronous locally synchronous (GALS) architectures are not supported.

• Power model: It is assumed that the power model of every functional
unit inside the MPSoC is dependent on its working frequency. This is
true in most applications, However for memories it is true only when
cache misses are in the order of few percent (true in most architectures
nowadays).

The main purpose of this work is to provide design methods. Thus, we
tested our methods only on few specific case studies. However, without any
loss of generality, every technique presented in this thesis can be applied to a
large variety of MPSoCs. I envision that the methods presented in this work
will have wide applicability, dealing with different architectures and operating
conditions.

Due to the above assumptions, methods presented in this work do have
some limitations:

Methods presented in this work can be applied only to architectures that
can provide different frequency modes. Power data used in this work are
abstracted at the component level and not at the transistor level. This means
that we know the power consumption of the many blocks or functional units
composing the MPSoC, however we do not know how this power is distributed
among the different transistors. This is because of the lack of detailed power
consumption information related to most commercial MPSoC architectures.

10 Introduction

1.4 Thesis Organization

This thesis is divided into the following sections:
Chapter 2 gives a background on state-of-the-art techniques about the

fields related to this work. Modeling, algorithms and system design are the
main areas described by this survey.

Chapter 3 introduces mathematical models used in this thesis. Models
are related to the heat transfer model of the MPSoC. A liquid cooling model
of a 3d-MPSoC is also provided.

Chapter 4 introduces the concepts developed to model the workload of
an MPSoC system. Moreover some considerations are made about the system
energy models used in this thesis. Workload prediction is also introduced and
two estimation techniques are presented.

Chapter 5 introduces air cooling algorithms. Four families of policies are
analyzed and compared by both theoretical studies and experimental tests. We
also provide a classification of the policies according to their problem formula-
tion complexity and their computational effort requirements. The 2D-MPSoC
case study used to run the simulations is also presented in detail.

Chapter 6 introduces liquid cooling algorithms. Two novel algorithms
are proposed here. The first one is based on a centralized controller based on
convex optimization. The second controller is a distributed structure based
on the interaction between a global unit and many small controllers. The
3D-MPSoC case study used to run the simulations is also presented in detail.

Chapter 7 introduces techniques to perform a detailed thermal profile
estimation of the MPSoC structure. Two techniques are presented here to
achieve a temperature estimation by using few thermal sensors placed in spe-
cific locations on the MPSoC.

Chapter 8 presents the thermal simulation infrastructure used to test and
compare policies presented in this thesis. The infrastructure consists of many
parts written with three different programming languages and simulated on
different simulation platforms.

Chapter 9 concludes the dissertation by summing up the contribution of
this research and highlighting some possible extensions of this work in other
areas.

Background 2
In this chapter we give a background material helpful for understanding the
algorithms and methods proposed subsequently in this thesis. The background
material is presented grouped into the three main areas of contribution of this
work: Modeling, Algorithms and System design.

11

12 Background

Figure 2.1: Operating Points in the voltage Vs frequency design space for an
ARM Cortex A8 CPU

2.1 Modeling Background

The goal of this section is to give the basic background material to be able
to understand innovations proposed in this thesis about new mathematical
thermal models for MPOSoCs.

2.1.1 Dynamic voltage and frequency scaling

Dynamic voltage and frequency scaling (DVFS) is a technique to reduce energy
consumption by changing processor speed and voltage at run-time depending
on the needs of the applications running. This method is widely used as part
of strategies to manage switching power consumption in battery powered de-
vices such as cell phones and laptop computers. Low voltage modes are used
in conjunction with lowered clock frequencies to minimize power consumption
associated with components such as CPUs and DSPs; only when significant
computational power is needed will the voltage and frequency be raised. Spe-
cial supply regulation circuits are required to be able to deliver a multiple
set of voltages to the SoC. Figure 2.1 shows possible voltages and frequencies
operating points for the case of an ARM core.

It is important to vary both the voltage and the frequency because if only
processor frequency is scaled, the total energy savings would be small or zero
as power is inversely proportional to cycle time and energy is proportional
to the execution time and power. The switching power dissipated by a chip
using static CMOS gates is CV 2f , where C is the capacitance being switched
per clock cycle, V is voltage, and f is the switching frequency, so this part of

2.1. Modeling Background 13

Figure 2.2: Simplified illustration of 3D stack with inter-tier liquid cooling

the power consumption decreases quadratically with voltage [70]. The formula
is not exact however, as many modern chips are not implemented using only
CMOS, but also uses pseudo nMOS gates, domino logic etc.

Moreover, there is also a static leakage current, which has become more and
more accentuated as feature sizes have become smaller (below 90 nanometers)
and threshold levels lower. When leakage current is a significant factor in
terms of power consumption, chips are often designed so that portions of them
can be powered completely off. This capability is an additional challenge to
be managed in new thermal management systems.

2.1.2 3D-MPSoC and liquid cooling

A three-dimensional integrated circuit (3D IC, 3D-IC, or 3-D IC) is a chip
in which two or more layers of active electronic components are integrated
both vertically and horizontally into a single circuit. 3D integration [8] is a
recently proposed design method for overcoming the limitations with respect to
delay, bandwidth, and power consumption of the interconnects in large multi-
processor system-on-chip (MPSoC) chips, while reducing the chip footprint
and improving the fabrication yield. The main reason of all these benefits is
the introduction of connections from one die to the other. These vertical wires
are called Through Silicon Vias (TSV) and they allow us to make connections
shorter as compared to a normal 2D chips [59]. A simplified illustration of a
TSV in a 3D stack is shown in Figure 2.2.

Figure 2.2 is an example of 3D MPSoC where liquid cooling(liquid in-
let/liquid outlet) is used as cooling mechanism. The reason for using liquid

14 Background

Figure 2.3: Cubic cells Model of the MPSoC

cooling is because of the higher thermal resistivity [39],[68], which irregularly
spread in the 3D chip stack. Hence, it is more difficult to remove the heat
from 3D systems with respect to conventional 2D MPSoCs.

Conventional back-side heat removal strategies, such as, air-cooled heat
sinks and micro-channel cold-plates only scale with the die size and are in-
sufficient to cool 3D MPSoC with hot spot heat fluxes up to 250W/cm2, as
expected in forthcoming 3D MPSoC stacks [14]. On the contrary, inter-tier
single and two-phase liquid cooling is a potential solution to address the high
temperatures in 3D MPSoCs, due to the higher heat removal capability of
liquids in comparison to air [16].

The use of convection in microchannels to cool down high power density
chips has been an active area of research since the initial work by Tuckerman
and Pease [88]. The heat removal capability of interlayer heat-transfer with
pin-fin in-line structures for 3D chips is investigated in Brunschwiler et al. [14].

2.1.3 Thermal modelling

Skadron et al. [81] and Paci et al. [64] have developed a thermal-power model
for super-scalar architectures. It not only predicts the temperature variations
between the different components of a processor, but also accounts for the
increased leakage power and reduced performance. Their results clearly prove
the importance of hot spots in high performance systems. Based on this model,
many architectural extensions have been proposed.

The model exploits the well known analogy between electrical circuits and
thermal models. It decomposes the silicon die and heat spreader in elementary
cells which have a cubic shape (Figure 2.3) and use an equivalent RC-model
for computing the temperature of each cell. By varying the cell size can trade-
off the simulation speed of the thermal with its accuracy. The coarser the
cells become, the fewer cells we need to simulate, but the less accurate the
temperature estimates become.

2.1. Modeling Background 15

Figure 2.4: Equivalent RC circuit of a cell

Figure 2.5: Equivalent circuit of a fluid thermal cell.

A thermal capacitance and five thermal resistances are associated with each
cell (Figure 2.4). Four resistances are used for modeling the horizontal thermal
spreading whereas the fifth is used for the vertical thermal behavior. See [64]
for further details.

These concepts model with a good accuracy 2D and 3D chips using air
cooling. In the case of liquid cooling, the model has been modified to the
one presented by Sridhar et al. [83]. This model is exactly the same for any
silicon or metal structure. The only difference is the introduction of the way
the liquid cooling flow has been modelled. A graphical representation is shown
in Figure 2.5.

Cells corresponding to microchannels containing the cooling fluid are mod-
elled like any other cell with the addition of a current source and a current
sink. To model the heterogeneous characteristics of the variable flow rate in
microchannels, Sridhar et al. [83] introduced the ability to change the intensity
of the current source and the resistance value of the cell at runtime. Thus,
the interlayer material composing the MPSoC is divided into grid cells, where
each grid cell except for the cells of the microchannels has a fixed thermal resis-
tance value depending on the characteristics of the interface material. Thermal
properties of the microchannel cells are computed based on the liquid flow rate
through the cell at runtime as presented in Sridhar et al. [83].

16 Background

2.1.4 Thermal sensing

Any thermal management algorithm to control the system must know the over-
all state (or thermal profile) of the MPSoC. This means that the temperature
of every single cell in which the floorplan has been divided must be known.

A study of the thermal profile estimation problem has been presented in
Memik et al. [56] and Sharifi and Rosing [80]. The proposed solutions are
based on techniques trying to reduce temperature differences between thermal
sensors and hot-spots by using the minimum possible number of sensors for a
certain accuracy. The problem with these approaches is that since hot-spots
are application dependent, there is no guarantee that all hot-spots are detected
during the lifetime of the device.

A better approach to estimate these temperatures is to use a state estimator
[33]. A state or thermal profile estimator is an algorithm able to derive the
current thermal profile based on measurements in some specific locations on
the chip with a specific rate. The parameter that measures how much a system
is observable is called Observability. Observability refers to the property of a
system that enables the reconstruction of the state variables given the inputs
[33]. It means that we are able to reconstruct completely the thermal profile
of the chip given the inputs only by looking at the measurements coming from
the sensors.

The placement problem in an MPSoC is the problem of selecting right
locations of thermal sensors to both minimize the number of sensors and max-
imize the observability of the system. Sumana and Venkateswarlu [86] select
the location of the sensing element according to a sensor strategy using just
described observability concept. Joshi and Boyd [41] solved the problem of
making a system observable by employing of graph theory. The problem of
choosing a set of measurements from a much larger set that also minimizes the
estimation error is solved by Boukhobza and Hamelin [10] using a convex opti-
mization based approach. This last method approximately solves the problem
and has no guarantee that the performance gap is always small.

2.2 Algorithms Background

The goal of this section is to give the basic background material to be able to
understand concepts behind the family of algorithms proposed in this thesis.

2.2.1 Reactive policies

This family of methods does not exploit history information. The policy takes
reactive decisions based on information related to the current thermal profile
and frequency setting of the MPSoC to control. For this reason they are
defined as reactive policies.

The problem with this family of policies is that they react only when the
thermal situation starts to be critical. For this reason their reaction is usu-

2.2. Algorithms Background 17

ally fast and abrupt frequency and corresponding temperature variations are
generated. These variations undermine the reliability of the system.

Clock gating and DVFS-based policies

Dynamic power management, (see Benini and Micheli [5] for more details),
was developed first for single processors. Lu et al. [52] devised a software
architecture that enables system designers to investigate power management
algorithms in a systematic fashion.

Merchant et al. [58] devised a variable speed processor which is thermally
controlled based on an estimation on the hottest junction temperature of the
chip. The problem with this method is that it uses a simplistic thermal model
to predict the hottest junction temperature of the chip. This assumption
degrades the quality of results.

Benini et al. [4], Paleologo et al. [65] and Qiu et al. [69] proposed policies
based on stochastic optimum control. These methods take power management
decisions based on theories of Markov decision processes and stochastic net-
works. Markov processes have by definition no memory of the past history of
the system.

Early methods based on monitoring the idle time in processors have been
presented by Halfhill [36], where DVFS has been used to turn off functional
units when they were not being used. Later, more refined power management
policies working at the OS-level were proposed. Rosing and Boyd [76] designed
a methodology for managing power consumption in networks on chip. Xie and
Hung [94] presented a set of scheduling mechanisms for MPSoCs that perform
temperature management at the system-level.

Donald and Martonosi [26] reduced significantly localized hotspots by using
thread migration techniques. Coskun et al. [24] designed a dynamic schedul-
ing algorithm with negligible performance overhead. Bircher and John [7] used
processor counters to get an online monitoring of the overall power consump-
tion. Reda et al. [74] achieved temperature and hotspot tracking by a smart
sensor allocation technique.

2.2.2 History based policies

To improve the efficiency of thermal management policies, memory has been
introduced inside thermal management algorithms. This family of methods
indeed, take decisions based on past information related to thermal profile,
power consumption, frequency and liquid cooling setting and thermal model
of the MPSoC. Past history information is used to predict the consequence
that decisions taken by the policy have on the MPSoC.

18 Background

Figure 2.6: Predictive policies using history information, graphical representation
[courtesy of Martin Behrendt]

Model predictive control and convex optimization

Model Predictive Control (MPC) is a technique that uses information on the
MPSoC model and on the history to improve the desired performance target.
A graphical representation is shown in Figure 2.6. The red line on Figure 2.6
shows the reference trajectory that in our case represents the requirements that
the MPSoC has to satisfy. The yellow line is the measured output that the
system can provide (i.e. MPSoC executed workload). At time τ the current
state of the system is sampled and a specific control strategy is computed
(light-blue line) (via a numerical minimization algorithm) for a relatively short
time horizon in the future: [τ ,τ + L]. The prediction horizon is called L.
Specifically, the policy explores state trajectories (brown line) that emanate
from the current state at time τ and find a control strategy until time [τ ,τ +L].

Only the first step of the control strategy is implemented, then the plant
state is sampled again and the calculations are repeated starting from the new
current state (now at time τ + 1), yielding a new control and new predicted
state path. The prediction horizon keeps being shifted forward and for this
reason this approach is also called receding horizon control. The control prob-
lem is indeed formulated over an interval of L time steps. The result of the
optimization is an optimal sequence of future control moves, in the same way
a player in chess is predicting future movements of the other player.

In this thesis, we propose many different ways to solve the optimization
problem. The first one is implicit and requires to solve on-line the minimiza-
tion problem every time the policy is applied. With the second approach the
optimization problem is solved off-line in a way that makes explicit the depen-
dence of the solution on input parameters. Bemporad et al. [2] have shown

2.2. Algorithms Background 19

that the optimal explicit controller is piecewise affine. In other words, the
state space can be divided by in a set of regions, bounded by linear inequal-
ities (i.e., a polytope), and in each region a different linear controller can be
specified and computed off-line. The main problem with this approach is that
the number of coefficients to store is usually large for a complex MPSoC sys-
tem. As a result, this method can be implemented only in MPSoC described
by simplified thermal models using a small number of states and input/output
variables. Moreover the policy has to be formulated over a limited interval of
few time steps in the future to keep the implementation of the policy feasible.
In this thesis, to solve this problem, we present a new explicit approximation
method, that reduces computational complexity and enables its online imple-
mentation. As a result, this approach can be extended to complex MPSoC
models without the need of a numerical embedded solver.

Another way to solve the receding horizon optimization problem is to ex-
press the optimization problem in terms of a convex function to be minimized.
I propose a problem formulation where all equations are convex models that
can be solved with polynomial-time complexity (in the number of variables and
constraints) using interior point methods as shown in Boyd and Vandenberghe
[12]. To solve the optimization problem, an efficient solver is CVX [34]. In this
thesis, we refer to this approach as ”convex optimization”. The most relevant
advantage of this approach is that since the computation of the solution takes
a small computational effort, the problem formulation can be more complex
and include advanced features without requiring a large amount of hardware
resources.

History exploitation policies

In two recent works, history information has been exploited to improve thermal
management policies. Coskun et al. [22] proposed a policy that exploits a
temperature forecast technique based on an auto-regressive moving average
model. In the work by Lee et al. [48], the policy uses auto-regressive moving
average applied to performance counters to find the correlation between the
applied voltage setting and the measured MPSoC temperature. Coskun et al.
[23], propose a novel technique that adapts the thermal management policy to
the current workload characteristics. The adaptation is done online exploiting
information related to the workload history. Both these approaches are based
on statistical methods to avoid hotspots. For this reason, there is not a formal
guarantee to complete avoid this problem.

Murali et al. [62] proposed a convex optimization based policy. The pol-
icy is computed off-line and solutions are stored in a look-up table that is
read at run-time. Input parameters needed for the optimization are the ther-
mal profile, chip physical parameters and scheduler requirements. However,
apart from chip parameters, the other two input data can assume many val-
ues. Assumptions needed to make the system feasible from an implementation
perspective degrade the quality of results.

20 Background

Two recent approaches presented by Cochran and Reda [19] and Zhang
and Srivastava [101] describe two methodologies to achieve thermal prediction
without completely relying on the thermal model, on thermal sensors and
on power consumption statistical properties. In the work by Wang et al.
[91] a chip-level power control algorithm based on optimal control theory is
presented. This algorithm can control the power consumption of the MPSoC
and can maintain the temperature of each core below a specified threshold.
Magno et al. [54] tailors a similar concept for multi-modal video sensor nodes.

Aforementioned policies do not completely avoid hot spots, but they sim-
ply reduce their frequency. The reason is that the interaction between the
prediction method, the thermal behavior of the MPSoC and the frequency
assignment of the MPSoC has not been addressed as a joint optimization
problem. The action taken by the policy to avoid hot spots does not address
the problem from a global optimum perspective.

Liquid cooling based policies

Several works by Bhunia et al. [6] and Lee et al. [47] have explored the feasi-
bility of liquid cooling as cooling method for 3D MPSoCs. Then, prior liquid
cooling work by Coskun et al. [21] evaluates existing thermal management poli-
cies on a 3D system with a fixed-flow rate setting, and also investigates the
benefits of variable flow using a policy to increment or decrement the flow rate
based on temperature measurements, but without considering pump energy
consumption.

Thermal management methods for 3D MPSoCs using a variable-flow liquid
cooling have been recently proposed by Coskun et al. [20] and Sabry et al.
[77]. In Coskun et al. [20], the proposed controller forecasts maximum system
temperature, and uses this to proactively set the flow rate. The prediction
method is based on autoregressive moving average to predict the maximum
temperature for the next interval. In the work by Sabry et al. [77], the policy
uses a fuzzy logic controller. Decisions here are taken based on experimentally
proven rules of thumb to control the temperature profile of the 3D MPSoC
while ensuring performance requirements to be satisfied. The problem with
both previously mentioned approaches is that there is no formal guarantee to
completely avoid hotspots. The first approach is indeed based on a not very
accurate thermal model, while the policy of second approach is based on rule
of thumbs.

2.3 System Design Background

The goal of this section is to give the basic background material to be able
to understand how the emulation platform used to compare proposed thermal
management systems works.

2.3. System Design Background 21

2.3.1 Validation of policies

To be able to test and compare policies proposed in this thesis, a real hardware
simulation platform is needed. This platform has to support multiprocessors
systems as well all real time data transfer mechanisms that happens in state-
of-the-art MPSoCs. In the past, a number of architectural level multiprocessor
simulators have been developed by the computer architecture community for
performance analysis of large-scale parallel machines.

The tools proposed by Magnusson et al. [55], Rosenblum et al. [75] and
Hughes et al. [38] operate at a very high level of abstraction: their processor
models are highly simplified in an effort to speedup simulation and enable
the analysis of complex software workloads. Furthermore, they all postulate a
symmetric multiprocessing model (i.e. all the processing units are identical),
which is universally accepted in large-scale, general-purpose multiprocessors.
This model is not proper for embedded systems, where very different processing
units (i.e general purpose, DSP, VLIW) can coexist.

Moreover hardware modeling accuracy is highly desirable because it would
make it possible to use the same exploration engine both during architectural
exploration and hardware design. These needs are well recognized in the Elec-
tronic Design Automation (EDA) community and several simulators have been
developed to support SoC design. However, these tools (proposed by Mentor
Graphics [57], CoWare [25], Van et al. [89], Mukherjee et al. [61] and Falsafi
and Wood [31]) are primarily targeted towards single-processor architectures
(e.g. a single processor cores with many hardware accelerators), and their
extension toward MPSoCs, albeit certainly possible, is a non-trivial task.

2.3.2 Real-time hardware simulation framework

To develop the simulation infrastructure used in this work, we use MPARM
proposed by Benini et al. [3]. In analogy with current SoC simulators, this
design space exploration engine supports hardware abstraction level and con-
tinuity between architectural and hardware design, and at the same time it
fully supports multiprocessing. In contrast with traditional mixed language
co-simulators such as the one proposed by Mentor Graphics [57], all compo-
nents of the system are modeled in the same language. A graphical block
diagram representation of the system architecture is shown in Figure 2.7.

The multiprocessor simulation framework uses SystemC as simulation en-
gine. The simulated system currently contains a model of the communication
architecture (compliant with the AMBA bus standard), along with multiple
masters (CPUs) and slaves (memories) (Figure 2.7). The intrinsic multi-master
communication supported by the AMBA protocol is exploited by declaring
multiple instances of the ISS master module, thus constructing a scalable mul-
tiprocessor simulator.

The processing modules of the system are represented by cycle accurate
models of cached ARM cores. The module (Figure 2.8) is internally com-

22 Background

Figure 2.7: System architecture [3]

Figure 2.8: Processing module architecture [3]

posed of the ARM CPU, the first-level cache and peripherals (UART, timer,
interrupt controller) simulator written in C++. It was derived from the open
source cycle accurate SWARM (software ARM) simulator (proposed by M.
Dales [53]) encapsulated in a SystemC wrapper. The insertion of an external
(C++) Instruction Set Simulator (ISS) is subject to the necessity of inter-
facing it with the SystemC environment. For example, accesses to memories
and interrupt requests must be trapped and translated to SystemC signals.
Another important issue is synchronization. The ISS, typically written to be
run as a single unit, is capable of being synchronized with the multiprocessing
environment (i.e. there must be a way to start and stop it maintaining cycle-
accuracy). The ISS is also capable of being multi-instantiable, since there will
be one instance of the module for each simulated processor.

The simulation architecture is provided with two hierarchies of memories,
namely cache memory and main memory. The cache memory is contained in
the processing module and is directly connected to the CPU core through its
local bus. Each processing module has its own cache, acting as a local in-
struction and data memory; it can be configured as a unified instruction and
data cache or as two separate banks of instruction and data caches. Config-
uration parameters include also cache size, line length and the definition of

2.3. System Design Background 23

non cacheable areas in the address space. Main memory banks reside on the
shared bus as slave devices. They consist of multiple instantiations of a basic
SystemC memory module. Each memory module is mapped on its reserved
area within the address space; it communicates with the masters through the
bus using a request-ready asynchronous protocol; the access latencyexpressed
in clock cyclesis configurable.

2.3.3 Simulation platform

To simulate the thermal management systems in a real simulation scenario we
need a complete platform for the simulation of a MPSoC, enabling investiga-
tion in the parameter space to come up with the most efficient solution for
a particular application domain. The platform needs also distinctive require-
ment of simulation speed, accuracy and capability to support design space
exploration. The platform we decided to use is MPARM. This platform makes
use of SystemC as simulation engine, so that hardware and software can be
described in the same language, and is based on an AMBA bus compliant
communication architecture. We tailored this platform according to the needs
of the thermal management systems under comparison. We realized that the
flexibility and the accuracy of this tool has been fundamental in the compar-
ison and the validation of the thermal management systems proposed in this
thesis.

Thermal Models 3
In this chapter we describe the mathematical models used to represent the
thermal dynamics of a generic 2D/3D-MPSoC with air/liquid cooling from a
control theory perspective. The thermal dynamics are here analyzed in detail.

25

26 Thermal Models

Figure 3.1: Modeling of the heat transfer inside a 2D-MPSoC

3.1 Thermal Modeling

In this section we describe mathematically how the thermal properties of the
MPSoC can be represented by differential equations using a standard state-
space representation.

3.1.1 State-space heat propagation model

As we presented in the background chapter, the chip floorplan is divided into
grid cells with cubic shapes. Each functional unit in the floorplan can be repre-
sented by one or more thermal cells in the silicon layer. The thermal behavior
of the MPSoC is computed through the interaction of multiple discrete-time
differential equations modeling the thermal interactions between neighboring
cells. A graphical representation of a 2D-MPSoC structure is presented in
Figure 3.1. In Figure 3.1, the gray and brown blocks represent the silicon and
copper layer, respectively. The ambient temperature is modeled as a layer with
uniform temperature and infinite thermal capacity. The red mark inside the
silicon cell represents the cell’s power dissipation. At any moment in time, the
temperature change of each block due to its neighbors is given by the temper-
ature difference between the two blocks, multiplied by the constant that labels
each pair of arrows.

The thermal model is formed by considering the heat conductances G and
capacitances C of the cells (Paci et al. [64], Skadron et al. [81]). The differential
equation modeling the heat flow is given by:

C · ∂t(θ)

∂θ

∣∣∣∣
θ=τ

= −G(τ) · tτ + pτ (3.1)

where tτ is the temperature vector at time θ = τ . In this model we assume
that lateral heat capacitances are negligible. For this reason matrix C is di-

3.1. Thermal Modeling 27

Figure 3.2: Silicon thermal conductivity and linear fit

agonal with the entries representing the thermal capacitance of the cells (in
Joules/Kelvin). Matrix G is the thermal conductance matrix (the conduc-
tance values have units of Watts/Kelvin). The silicon thermal conductivity is
shown in Figure 3.2. As analyzed by Ramalingam et al. [71], it varies with
temperature in an approximately linear fashion. For this reason, matrix G is
a function of the thermal profile of the MPSoC at time τ .

In this thesis we want to represent the thermal model using a standard
state-space representation [33]. This representation uses a linear, time invari-
ant discrete-time system model. Since the original thermal model is nonlinear,
and coefficients are temperature-dependent (Paci et al. [64]), we need to lin-
earize the solution of the differential equation 3.1 modeling the heat flow inside
the MPSoC system. The rationale behind it is described in Zanini et al. [96],
Skadron et al. [81] and Paci et al. [64]. In following subsections we will describe
mathematically how the thermal model of the MPSoC can be represented by
following equation:

tτ+1 = Atτ + Bpτ + w (3.2)

This equation expresses the temperature profile vector at time step τ + 1,
tτ+1 ε <n, as a function of the current thermal profile at step τ and the
input vector pτ ε <p+z. This model is discrete-time with time step equal to
∆τ . The total number of cells in all layers of the 3D MPSoC structure is n,
the total number of independent processing units is p and the total number of
independent cooling liquid flow rates is z. Matrices A ε <n×n and B ε <n×(p+z)

describe the heat propagation properties of the MPSoC while w ε <n takes
into account of the fact that the MPSoC is at room temperature. If we refer to
all temperatures as offset from the room temperature we can omit this vector.
At time τ , the temperature of the next simulation step of cell i, i.e. (tτ+1)i
can be computed thanks to Equation 3.2. The first p entries of vector p are
the power consumptions for each of the p independent processing units, while
the remaining z entries are the normalized cooling flow rates for each of the z

28 Thermal Models

independent microchannels.

3.1.2 First order ODE solvers

A first-order ODE solver is the simplest tool for solving the system of differ-
ential equations modeling the MPSoC. Because of its simplicity, it has been
used by many state-of-the-art thermal simulators like the earliest versions of
HotSpot [81] or real-time thermal emulation frameworks targeting embedded
SoCs [64]. This integration method has been used in early thermal policies
embedding a thermal profile model of the MPSoC (see [62] for more details).
The Forward Euler(FE) method is described by Equation 3.3:

tτ+∆τ = tτ + ∆τ · ∂t(θ)

∂θ

∣∣∣∣
θ=τ

(3.3)

where tτ and tτ+∆τ are the vectors containing the temperature of any ther-
mal cell composing the MPSoC respectively at time τ and τ + ∆τ . θ is the

time, ∆τ is the simulation step size and ∂t(θ)
θ

∣∣∣
θ=τ

is the vector containing the

temperature rate of change at time τ .
The temperature rate of change at time τ in Equation 3.1 is given by:

∂t(θ)

∂θ

∣∣∣∣
θ=τ

= −C−1G(τ) · tτ + C−1pτ (3.4)

while, according to Equation 3.3, we have that:

∂t(θ)

∂θ

∣∣∣∣
θ=τ

= A′(τ) · tτ + B′ · pτ + w′ (3.5)

by solving the system composed by Equation 3.4 and 3.5, we have that:

A′(τ) = −C−1G(τ) (3.6)

B′ = C−1 (3.7)

where matrix A′(τ) expresses the part of the on-chip temperature spreading
process that depends only on the cell’s temperature. This matrix models the
thermal conductances and capacitances network of Figure 3.1 in the matrix
form except Kcu−RT , which needs to be modeled separately. Matrix B′ is a
matrix where B′

i,j contains the conversion factor between the power assigned
to functional unit j and the temperature increase in cell i. Matrices A′(τ) and
B′ contain the system dynamics that depend entirely on the current state and
on the given power assignment vector pτ . The part of the dynamic system
that is not controllable by the input vector, such as the heat dissipation of the
copper layer due to room temperature, is expressed by vector w’. Then, by
substituting 3.5 into 3.3, Eqn. 3.8 is obtained:

tτ+∆τ = A(τ) · tτ + B · pτ + w (3.8)

3.1. Thermal Modeling 29

where:

A(τ) = I + ∆τA′(τ) (3.9)

B = ∆τB′ (3.10)

w = ∆τw′ (3.11)

Equation 3.8 is a time-varying state-space representation modeling the
thermal behavior of the MPSoC using a first order ODE solver. The com-
putation here is simple and requires only a matrix multiplication. The total
number of cells in all layers of the 3D MPSoC structure is n, the total num-
ber of independent processing units is p and the total number of independent
cooling liquid flow rates is z.

An important property of a solver is its “stability”. An integration method
is called numerically stable if an error does not exponentially grow during
the calculation of the final solution. The FE method has potential stability
problems when the chosen time-step for the thermal simulations is large, as
shown in the literature [17], which will be explored and addressed in this paper.

A first order ODE method that is unconditionally stable is the Backward
Euler(BE) method. This method is described by Equation 3.12:

tτ+∆τ = tτ + ∆τ · ∂t(θ)

∂θ

∣∣∣∣
θ=τ+∆τ

(3.12)

Assuming A′(τ) ' A′(τ + ∆τ), and using Eqn. 3.13:

∂t(θ)

∂θ

∣∣∣∣
θ=τ+∆τ

= A′(τ + ∆τ) · tτ + ∆τ + B′ · pτ + w′ (3.13)

we can obtain Eqn. 3.14 in a discrete-time domain:

tτ+∆τ = A(τ) · tτ + B(τ) · pτ + w(τ) (3.14)

where:

A(τ) = [I−∆τA′(τ)]−1 (3.15)

B(τ) = [I−∆τA′(τ)]−1∆τB′ (3.16)

w(τ) = [I−∆τA′(τ)]−1∆τw′ (3.17)

This method achieves unconditional stability at the cost of a significant in-
crease in computational complexity with respect to the FE algorithm. The
most expensive computational step for the BE method is the inverse matrix
computation. It has been shown in the literature [64],[81] that the accuracy
of both first order methods is O(∆τ 2) [17].

30 Thermal Models

3.1.3 Second order ODE solvers

As a representative example of second order solvers, we analyze the Crank-
Nicholson(CN) method also called trapezoidal. This integration algorithm
combines FE with BE to obtain a second order method due to cancellation of
the error terms. CN method reaches an accuracy of O(∆τ 2). This method can
be described using Eqn. 3.18:

tτ+∆τ = tτ +
∆τ

2
·
[

∂t(θ)

∂θ

∣∣∣∣
θ=τ

+
∂t(θ)

∂θ

∣∣∣∣
θ=τ+∆τ

]
(3.18)

Assuming A′(τ) ' A′(τ + ∆τ), and using Eqn. 3.5 and 3.13, we obtain:

tτ+∆τ = A(τ) · tτ + B(τ) · pτ + w(τ) (3.19)

where:

A(τ) = [I− 0.5 ·∆τA′(τ)]−1 · [I + 0.5 ·∆τA′(τ)] (3.20)

B(τ) = [I− 0.5 ·∆τA′(τ)]−1 ·∆τB′ (3.21)

w(τ) = [I− 0.5 ·∆τA′(τ)]−1 ·∆τw′ (3.22)

The CN method is stable and has a higher accuracy in comparison to first
order solvers when larger simulation time-steps are used. The accuracy of such
second order methods is O(∆τ 3) [17].

3.1.4 Multi-step fourth order ODE solver

Numerical ODE solution methods, start from an initial point and take a small
step in time to find the next solution point. This process continues with sub-
sequent steps to compute the solution. Single-step methods (such as Euler’s
method) refer to only one previous point and its derivative to determine the
current value. Multi-step methods take several intermediate points within ev-
ery simulation step to obtain a higher order method. This way, they increase
the accuracy of the approximation of the derivatives by using a linear combina-
tion of these internal additional points. A multi-step solver has been embedded
in the version of 4.0 of HotSpot [81]. One particular subgroup of this family of
multi-step solvers is the Runge-Kutta(RK4) method, which includes a fourth
order solver. The algorithm that we use for implementing the RK4 solver em-
ploys a FE method to compute derivatives at the internal points. By using
the model represented in Figure 3.1, this method is described by following
equations:

k1 = ∆τ · [A′(τ)tτ + B′ · pτ + w′] (3.23)

k2 = ∆τ · [A′(τ + 0.5∆τ)(tτ + 0.5 · k1) + B′ · pτ + w′] (3.24)

k3 = ∆τ · [A′(τ + 0.5∆τ)(tτ + 0.5 · k2) + B′ · pτ + w′] (3.25)

k4 = ∆τ · [A′(τ + ∆τ)(tτ + k3) + B′ · pτ + w′] (3.26)

tτ+∆τ = tτ +
1

6
· (k1 + 2k2 + 2k3 + k4) (3.27)

3.1. Thermal Modeling 31

Assuming A′(τ) ' A′(τ + 0.5∆τ) ' A′(τ + ∆τ), we obtain:

tτ+∆τ = A(τ) · tτ + B(τ) · pτ + w(τ) (3.28)

where:

F = ∆tA
′(τ) (3.29)

A(τ) = I +
1

6
[6F + 3F2 + F3 + 0.25F4] (3.30)

B(τ) = ∆τ · [I +
1

6
(3F + F2 + 0.25F3)] ·B′ (3.31)

w(τ) = ∆τ · [I +
1

6
(3F + F2 + 0.25F3)] ·w′ (3.32)

Note that this method does not require the inverse matrix computation. In
addition, like FE, this method is not unconditionally stable, since RK4 method
uses the FE for computing the rate of change of the temperature function in
the internal point, and hence inherits its stability properties. The accuracy of
this multi-step fourth order method can reach O(∆5

t) [17].

3.1.5 Changing the sampling rate

Equation 3.8 models the RC network representing the MPSoC behavior. To
allow high accuracy in the discrete integration process, the sampling sampling
period between tτ and tτ+∆τ has to be small (i.e. 10µs − 200µs). A MPSoC
heating process makes relevant changes in a time range that is several orders of
magnitude the simulation time step cited before. This requires many iterations
of Equation 3.8 and this is costly if, for each step, there is a thermal policy
computation associated with it. To increase the sampling rate to ∆′τ = v ·∆τ
without changing the value of ∆τ the following mathematical derivation is
presented.

Assuming that the input p does not change during ∆′τ as well as matrices
A, B and vector w, we have that Equation 3.8 turns into Equation 3.33:

tτ+∆τ = A · tτ + B · p + w (3.33)

by iterating Equation 3.33, we have that:

tτ+2·∆τ = A · [A · tτ + B · p + w] · tτ + B · pτ + w (3.34)

by iterating 3.34 using equation 3.33, we have that at step 3:

tτ+3·∆τ = A · [A · [A · tτ + B ·p + w] · tτ + B ·p + w] · tτ + B ·pτ + w (3.35)

The way 3.33 has evolved to Equation 3.35, we derive the following general-
ization that holds for any step v:

tτ+v·∆τ = Avtτ +
v−1∑

i=0

AiBp +
v−1∑

i=0

Aiw (3.36)

32 Thermal Models

exploiting matrix series properties we have that:

tτ+v·∆τ = Avtτ + [(I−A)−1(I−Av)]Bp +

+[(I−A)−1(I−Av)]w (3.37)

where I is the identity matrix with the same size of the square matrix A. By
comparing eq. 3.37 with equation 3.33, we have that:

tτ+v·∆τ = Avtτ + Bvp + wv (3.38)

where

Av = Av

Bv = [(I−A)−1(I−Av)]B

wv = [(I−A)−1(I−Av)]w (3.39)

It is important to notice that this derivation holds only if the input p does
not change during ∆′τ = v ·∆τ as well as matrices A, B and vector w. The
assumption that matrix A does not change is an approximation that is as close
to reality as the thermal profile does not make big variations in ∆′τ .

3.2 Thermal Simulation Analysis

In this section we provide a theoretical analysis about the effects of the param-
eters in the ODE solvers on the speed and the accuracy of simulation results.
Then, we provide an experimental validation with the case study described in
Section 5.2 of this thesis.

3.2.1 Stability analysis

Explicit integration methods where the inverse matrix calculation is not em-
ployed suffer from a potential instability problem. Instability means that the
integration error can grow exponentially at every simulation step. This issue
occurs when the simulation time step is bigger or comparable to the inverse
of the maximum absolute temperature rate of change of the MPSoC [17]. The
maximum allowable simulation step size ∆max is then given by the following
equation:

∆max ≈ 1

max
∣∣∣∂t(θ)

∂θ

∣∣∣
(3.40)

where max
∣∣∣∂t(θ)

∂θ

∣∣∣ is the maximum temperature rate of change. In this section

our goal is to find the maximum allowable simulation step size that avoids
instability problems in the solver, assuming a worst-case scenario.

According to our analysis, based on the model shown in Figure 3.1, the
highest worst case temperature rate of change in cell Si−0 occurs when the
following conditions are true:

3.2. Thermal Simulation Analysis 33

Figure 3.3: Circuit for the determination of ∆Tcs and ∆Tss.

1. Si−0 is at room temperature

2. Si−0 has the highest power dissipated per cell Pmax

3. Between Si−0 and Cu−0, there exists the maximum temperature difference
possible, ∆Tcs.

4. Between Si−0 and neighboring cells, there exists the maximum temper-
ature difference possible, ∆Tss.

In this particular case, the maximum temperature rate of change is expressed
by the following equation:

max

∣∣∣∣
∂t(θ)

∂θ

∣∣∣∣ =

Pmax∆τ
C(Si−0)

+ 4Ksi−si∆Tss + Ksi−cu∆Tcs

∆τ
(3.41)

where Pmax is the highest power dissipated per cell and C(Si−0) is the silicon
cell thermal capacitance and ∆τ the simulation time step. To determine the
value of ∆Tcs and ∆Tss, we use the structure of Figure 3.3.

This structure maximizes the temperature differences between the cell Si−0

and the other two cells (Si−1 and Cu−0) by modeling the scenario where the
left half side of the cells in the floorplan are not dissipating any power and the
right half side has the highest power density in the circuit. Thus, cell Si−1 is
at room temperature (Tamb) and cell Si−1 is consuming Pmax. Our target is to
compute the temperature of Si−1 and Cu−0 at the equilibrium point when the
highest temperature differences are present between cells. When the transient
response is finalized, the result is:

∆Tss = t(Si−0)− t(Si−1) = t(Si−0)−Tamb (3.42)

34 Thermal Models

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

block size / cell size

si
m

ul
at

io
n

st
ep

 s
iz

e
[s

]

theoretical
experimental

Figure 3.4: Experimental vs. theoretical values of ∆max for various grid resolution
values.

where t(j) is the temperature of cell j. According to preceding equations, to
solve Equation 3.41 we need to determine the temperature value of cells Si−0.
By analyzing and solving the circuit in Figure 3.3, we obtain:

∆Tss =

Pmax∆τ
C(Si−0)

(kcu−si + kcu−RT)

kcu−siksi−si + kcu−RT (ksi−cu + ksi−si)
(3.43)

To determine the value of ∆Tcs, a different scenario needs to be considered.
The scenario assumes that all silicon cells are consuming Pmax. The structure
is equivalent to the previous one in Figure 3.3, but this time without the arrow
Ksi−si or the cell Si−1. In this case, at the equilibrium, the following equation
holds:

∆Tcs = t(Si−0)− t(Cu−0) (3.44)

By solving the previously described network, we obtain:

∆Tcs =
Pmax∆τ

ksi−cuC(Si−0)
(3.45)

Then, by substituting Eqn. 3.45, 3.43 and 3.41 into 3.40, we are able to
compute ∆max. The resulting function is a highly non-linear function that
depends on parameters such as MPSoC thermal profile, thermal cell size and
dimensions of the MPSoC.

3.2. Thermal Simulation Analysis 35

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−3

10
−2

10
−1

10
0

block size / cell size

m
ax

 a
bs

 e
rr

or
 [°

C
]

FE
BE
CN
RK4

Figure 3.5: Accuracy vs. grid resolution of the floorplan.

In addition to the theoretical derivations, we simulated the 8-core MPSoC
described in Section 5.2 using an explicit solver for various simulation step
sizes (∆τ). We then identified ∆max as the largest ∆τ value for which the
integration method was working without getting unstable. We repeated the
simulation for various grid resolution values. The comparisons between the
theoretical and the experimental results are shown in Figure 3.4.

Results show that the theoretical analysis is in line with the experimental
simulations, as both set of results have the same trends and the difference
of values is very small. The reason of the small difference is that worst case
scenario assumptions make our theoretical result more conservative: i.e., ∆max

is 7% lower in the 8-core case study described in Section 5.2. Note that the
theoretical derivation using Eqn. 3.45, 3.43, 3.41 and 3.40 is much faster to
compute than performing an experimental derivation of ∆max.

3.2.2 Cell size influence

The cell size is the parameter that mostly affects the speed of the simulation.
The computational complexity Nop is related to the grid granularity according
to following equation:

Nop = N0 ·
(

block size

cell size

)2

(3.46)

where N0 is the computational complexity to process the floorplan using a
cell size equal to the smallest functional block of the MPSoC. As shown in
Eqn. 3.46, the computational complexity increases quadratically with a linear

36 Thermal Models

10
−5

10
−4

10
−3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

simulation time step [s]

m
ax

 a
bs

 e
rr

or
 [°

C
]

FE
BE
CN
RK4

Figure 3.6: Accuracy vs. simulation time step ∆τ .

increase in the grid resolution. Figure 3.5 shows the accuracy of the thermal
model for the various solvers we have discussed.

As Figure 3.5 shows, with a high simulator order, the advantage of in-
creasing the grid resolution is more obvious than the advantage observed for
low-order simulators. In fact, for low accuracy solvers (such as FE or BE), the
increase in accuracy is almost irrelevant considering the quadratic increase in
computational complexity.

3.2.3 Simulation time step

In the previous section, we determined the value of ∆max. For ∆τ > ∆max,
explicit methods like the FE or the RK4 are unstable. On the other hand, if
the simulation time step is reduced, the explicit methods obtain an increase
in accuracy, but at a higher computational cost. The computational cost Nop

is related to the time step size ∆τ , as shown in equation 3.47:

Nop = N0 ·
(

∆τ0

∆τ

)
(3.47)

where N0 is the computational complexity using a step size equal to ∆τ0.
The computational cost is inversely proportional to ∆τ . Figure 3.6 shows the
accuracy change with respect to simulation step size.

The effect of decreasing ∆τ is visible for all the solvers. In addition, the
cost in terms of computational effort is relatively small with respect to the gain
in accuracy. We also observe that usually more than one solver can meet the
given error limit. For example, to achieve a desired maximum error of 10−2 ◦C,
the first order solver requires ∆τ ' 6 · 10−5, the second order solver requires

3.3. Liquid Cooling 37

0 0.005 0.01 0.015 0.02 0.025
10

−3

10
−2

10
−1

10
0

invert matrix calculation period [s]

m
ax

 a
bs

 e
rr

or
 [°

C
]

FE
BE
CN
RK4

Figure 3.7: Accuracy vs. matrix calculation period.

∆τ ' 5 · 10−4, and the fourth order solver requires ∆τ ' 10−3. The method
we present in Section 5 automatically identifies which option provides the
fastest simulation result, according to the properties of the particular MPSoC
architecture.

3.2.4 Matrix calculation period

All matrices describing the heat propagation inside the MPSoC are tempera-
ture dependent and they change over time during the runtime operation of the
MPSoC. If the matrices are not computed sufficiently often, this can reduce
accuracy. However the computation of these matrices takes time and slow
down the simulation time.

The parameter that influences the accuracy / simulation time trade-off is
the matrix calculation period (TMC). This is the time that passes between
two consecutive generations of matrices A(τ), B(τ) and W (τ). Figure 3.7
quantifies this error for different solvers and TMC values.

As Figure 3.7 shows, for higher order solvers, reducing TMC becomes more
beneficial than reducing TMC for low-order solvers. For low accuracy solvers,
the increase of accuracy is not high enough to justify the increase in compu-
tational complexity.

3.3 Liquid Cooling

In 3D stacks, cooling cannot be handled and managed by conventional air
cooling methods over the stack surface because of the large heat propagation.
Interlayer liquid cooling is a potential solution to address thermal problems.

38 Thermal Models

Figure 3.8: Top view of a) 2-port and b) 4-port microchannel fluid delivery
architecture compatible with area-array interconnects.

Brunschwiler et al. [14] reported that liquid cooling solutions offer a higher
heat removal capability in comparison to air and to the possibility to extract
heat at various layers of the stack. Several works described in Chapter 2 by
Bhunia et al. [6] and Lee et al. [47] have explored the feasibility of liquid cooling
as cooling method for 3D MPSoCs. Thermal management methods using this
technology have been recently proposed by Coskun et al. [20] and Sabry et al.
[77]. This section shows how these structures are modeled.

3.3.1 Straight and bent microchannels

There are several ways to support liquid cooling, e.g., by adding/inserting
to the stack a plate with built-in microchannels and/or by etching a porous-
media structure between the tiers of the 3D stack [14, 15]. Experiments have
shown that when a coolant fluid is pumped through the microchannels, up to
3.9KW/cm3 [15] of heat can be extracted.

Porous-media structures can be designed with different forms according to
the TSVs spacing requirements and the desired fluidic path [84, 83]. Figure
3.8 shows a planar view of two different structures. Although these structures
use microchannels to guide the fluid, one of them uses straight channels with
two ports (Fig. 3.8.a), while the other exploits bent channels and four ports
(Fig. 3.8.b). In the following we will refer to these structures as ’straight’ and
’bent’ channels. Using multi-port bent channels is more beneficial than using
straight channels, if the straight channel length is longer than the thermal
developing length of the fluid [15]. Moreover, bent channels have different
lengths, thus enabling different liquid flow rates between different channels.

Overall, thermal management of a 3D stack is achieved by a combination
of active control of on-chip switching rates (the heat source) as well as active
interlayer cooling with pressurized fluids (the heat sink). It is important to
remember that the cooling system requires one (or more) pumps to circulate
the fluid, as well as a heat exchanger to cool the fluid. The latter may be

3.3. Liquid Cooling 39

passive (e.g., fin structure) or active (e.g., fan). At any rate, a relevant part of
the system energy spent for cooling is due to the pump [77] and a minor part
by the exchanger.

3.3.2 Interlayer cooling layer modeling

In this thesis, we extend previous compact modeling concept proposed by
Sridhar et al. [83] to account for two major factors.

First, the fluid flow is no longer constant among the channels of the same
layer, but it is related to the channel length [14]. Thus, different lengths of the
channels lead to different fluid velocities [15]. The channels with the smallest
length have the highest fluid velocity, while the longest channels have the
lowest velocity.

Second, the fluid flow is not a single-dimensional flow. In fact, we allow
the fluid to flow with more flexibility, given that the used porous-media is
microchannels. Thus, the fluid enters from a direction that lies in one Cartesian
axis (e.g., south) and leaves from another direction that lies on another axis
(e.g., east).

In addition, in the target 3D-MPSoC stacks the microchannels have dif-
ferent lengths, which implies that the pumped flow rate is not distributed
homogeneously between the microchannels.

Flow Rate and Channel Length

The relation between the flow rate Fl and the channel length L is as follows:

Fl = wch · hch · νbulk (3.48)

νbulk =
νdarcy

ε
(3.49)

νdarcy =
κ

µ
· ∇P (3.50)

∇P =
∆P

L
(3.51)

where νbulk is the actual fluid velocity and νdarcy is the fluid velocity multiplied
by the cavity porosity. Parameters used in Equations 3.48-3.51 are shown in
Table 3.1. Hence, the flow rate and channel length are inversely proportional,
i.e., the shorter the channel length is, the higher the flow rate is. We validate
the flow velocity obtained for each channel comparing the analytical model in
Equations 3.48-3.51, with the experimental values shown in [15]. As Fig. 3.9
shows, the proposed analytical model provides us an acceptable method to
calculate the flow rate for different channel lengths.

Thermal Capability and Pumping Power

Since we use varying flow rate as a control variable for energy-efficient thermal
management, it is crucial to study the thermal capability of interlayer liquid

40 Thermal Models

Table 3.1: Parameters definition used to relate the flow rate to the channel length

Parameter Definition
wch Channel width (50µm)
hch Channel height (100µm)
ε Cavity porosity (0.5)
κ Cavity permeability (7.17E − 11m2)
µ Dynamic viscosity (1E − 3Pascal · sec)

∆P Pressure difference between the inlet and outlet ports (1 bar)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

v
 b

u
lk

 [
m

/s
]

Channel length [mm]

Analytical Experimental measurements

Figure 3.9: Comparison of the fluid flow velocity in different channel lengths
between the analytical method (Equations 3.48-3.51) and the experimental results
shown in Brunschwiler et al. [15].

cooling with respect to different pumping power values. Thus, each pumping
power value is translated to a specific flow rate in our system. First, we use
Bernoulli’s equation to describe the pump power Ppump as follows:

Ppump =
∆P · Fl

ζ
(3.52)

where ∆P is the pressure difference required, Fl is the fluid flow rate, and
ζ is the pumping power efficiency. We use ζ = 0.7, as it is a normal pump
efficiency value [45, 29]. Since there is a linear relation between the pressure
difference and the flow rate injected in the stack (Equations 3.48- 3.51), we
can say that Ppump ∝ Fl2.

Next, we define the thermal capability of interlayer liquid cooling as the
maximum heat flux absorbed by the fluid to keep the maximum temperature
within the stack below 85oC. To estimate this thermal capability, we use 3D-
ICE [83] to record the maximum temperature of the stack at different thermal
dissipation values, and with different flow rates. We limit the maximum flow

3.4. Summary 41

�� � � �� � � �� � � �� � � �
� 	 � � � � � � � 	 � �
 � � � � ��� ������ ��� ���� �� � �� ����

� ! " # $ % " & ' () * + , - - . /
Figure 3.10: Rate of change of thermal capability of interlayer liquid cooling TC
with respect to pumping power Ppump.

rate injected to be the one at ∆P = 1bar, since it is the maximum safe pressure
requirement within the stack [14].

Therefore, Fig. 3.10 shows the amount of minimum pumping power ap-
plied to keep the maximum temperature of the stack below 85oC, at different
thermal dissipation rates.

Flow Rate and Heat Extraction

The amount of heat ri extracted in cell i by the fluid in the microchannel
controlled by pump j can be approximated by the following equation:

ri = mj · γi,j · (ti − tfluid) (3.53)

where the fluid temperature is tfluid, ti is the temperature of cell i and γi,j is
the constant modeling the channel heat extraction properties. Vector m ε <z

is the normalized amount of heat that can be extracted for each of the z
independent pumps.

Thus, by varying vector m, the cooling power (flow rate of the cooling
liquid) is varied to achieve the desired heat extraction. In our model, we used
the temperature mapping from [83] to derive γi,j.

Experiments have shown that by updating γi,j every time the policy is
applied (10ms in our simulation setup), our approximation leads to a maximum
error up to ±5%.

3.4 Summary

This chapter has presented the derivation of all the models used in this thesis
to describe formally the thermal and cooling models of a generic MPSoC.

The first section has described mathematically how the thermal properties
of the MPSoC can be represented by differential equations using a standard
state-space representation.

42 Thermal Models

The second section has provided a theoretical and experimental analysis
about the effects of the parameters in the ODE solvers on the speed and the
accuracy of simulation results.

The third section has presented the way the liquid cooling is modelled in
this thesis. Straight and bent microchannels formal models have been pre-
sented.

Energy and Workload
Models 4
In this chapter I give an introduction to the concepts I developed to model the
workload of an MPSoC system. Moreover I make some considerations about
the system energy models I used in this thesis.

43

44 Energy and Workload Models

Figure 4.1: Scheduler viewpoint snapshot of the MPSoC at time k.

4.1 System Energy

Power saving, improving performance and increase chip reliability are three
important challenges facing MPSoC designers. These three objectives must
be reconciled with the fact that the MPSoC has to execute all the workload
requested from the scheduler with the minimum power consumption and the
smallest acceptable latency.

Figure 4.1 shows the status of the system from the scheduler point of view
at a certain fixed time point k. The frequency of the sampling point is the
frequency with which thermal policies are applied. The term R stands for
tasks that are still in the processor and need to be completed, W are tasks
arrived, waiting to be executed. Xi is the task workload arrived i previous
time steps. N is the length of the past task arrival history. D is the task
workload that will arrive in the next time step between the actual one k and
the next one k + 1.

Since the task arrival is a stochastic process, a prediction must be made in
relation to the the workload that will be required by the scheduler in the next
policy observation period D. If the scheduler employs a dynamic scheduling
in the time frame corresponding to a window, it is not possible to know the
workload in time frame D at time k in advance.

The ideal solution would be a method able to exactly estimate the number
of tasks arriving in the next time slot. The better the estimation is, the better
the performance of the thermal management system will be.

4.1.1 Energy efficiency quantification

We can assume a linear relation between the frequency of operation of a core
and the amount of instructions it executes (Choi et al. [18]). We consider

4.1. System Energy 45

Figure 4.2: Effect of a frequency estimation error from a frequency perspective
in a DVFS system. (top): ideal case; (bottom) real case with an estimation error
∆f .

now two consecutive window frames A and B and we define as fA and fB the
frequencies that will fulfill the scheduler requirements in the two consecutive
time window A and B. The picture in top of Figure 4.2 shows the setup. As
it can be noted the queue is empty since all tasks Ta and Tb are executed
respectively in window A and B.

To compute the power consumption in this ideal case we use derivations
from Rao et al. [72]. In his work, he showed that the relation between the
frequency and the power can be approximated as a polynomial function with
degree larger than one. The formula is quite complex. A good approximation
is represented by the following Equation:

P (fA) = Kp · fα
A + L (4.1)

where fA is a frequency value, Kp, α, L constants, and P () is the function that
relates the frequency of a functional unit to its power dissipation. The term
Kp ·fα

A models the active power consumption. The constant term L models the
part of the power that does not depend on the frequency such as the leakage
power consumption.

46 Energy and Workload Models

Using Equation 4.1, the power consumption Pideal due to the execution of
tasks Ta and Tb in this scenario is given by the following equation

Pideal = KP · fα
A + KP · fα

B + 2L (4.2)

The bottom of Figure 4.2 shows a scenario where an estimation error ∆f
has occurred. Because the frequency is lower than expected, some tasks (W)
are not executed and are stored in the queue at time step k + 1. To com-
pare both scenarios of Figure 4.2, we must have the same starting and ending
conditions. This implies having all jobs executed by the time step k + 2. To
achieve that, queuing tasks need to be executed in time frame B. Thus, a
frequency higher than the ideal one has to be used. The power consumption
in this scenario Perr due to the execution of tasks Ta′ and Tb′ respectively in
time frame A and B is given by the following equation:

Perr = KP · [(fA −∆f)α + (fB + ∆f)α] + 2L (4.3)

We define the energy loss E due to an estimation error as:

E = Perr − Pideal (4.4)

by substituting Equations 4.2 and 4.3 into Equation 4.4, we obtain:

E = KP · [(fA −∆f)α + (fB + ∆f)α − fα
A − fα

B] (4.5)

if α is greater than 1, the energy loss E in Equation 4.5 is greater than zero.
As a concluding remark, if there is a frequency estimation error, some of

the tasks will stay in the queue and will be executed in the next time slot. This
will cause the processor to run at a higher frequency in the next slot since now
there are some extra jobs pending due to the estimation error. If the relation
between the frequency and the power consumption were a linear function,
there would be no waste of energy. Since the function is convex, Equation 4.5
holds and so an estimation error is crucial from a power-performance efficiency
perspective.

4.1.2 Energy bounds

In the previous subsection we analyzed the effect of a workload estimation
error on the power consumption needed to execute a specific workload. In
quantifying the energy efficiency quantification, we assumed that tasks Ta
and Tb are executed respectively in time windows A and B. This constraint
makes the task delay equal to zero. Nevertheless it is not the minimum value
of power consumption that we can get to execute all tasks Ta+Tb during time
windows A and B.

The empirical law that represents the power consumption as a function of
the frequency setting expressed by Equation 4.1 is a convex function (Boyd

4.1. System Energy 47

0 2 4 6 8 10 12 14
68

69

70

71

72

73

74

75

76

77

P
ow

er
 c

on
su

m
pt

io
n

[%
]

Delayed workload [%]

Figure 4.3: Example of normalized power consumption versus delayed workload
for different optimization criteria ranging from power-oriented to performance-
oriented optimizations.

et al. [11]). By applying basic properties of convex functions, we obtain the
following:

pτ + pτ+ε ≥ 2 · p(τ+ε)/2 ∀ε ∈ [0,1) (4.6)

where pτ is the power consumption at time τ . Since frequency setting and
executed workload are positively correlated (see Choi et al. [18]), then energy
savings demand a uniformly-distributed workload. The problem is that work-
loads are usually not uniformly distributed during the run-time execution of
the policy and scheduling task uniformly would increase latency.

Inequality 4.6 expresses this issue as follows:

ppow ≤ p ≤ pperf (4.7)

by indicating that power consumption p is bounded between two values. On
the one hand, the lower bound (ppow) is the power value consumed when the
workload is uniformly distributed. In this case, we optimize the execution for
power minimization by allowing a non-zero task execution delay, but at the
same time we require that the complete workload has to be executed.

On the other hand, the upper bound (pperf) is the power consumed when
all tasks are executed at the same time they arrive. In this case, we opti-
mize the execution for performance and the resulting task execution delay is
zero. Clearly, the gap between these two numbers is highly dependent on the
workload properties. Figure 4.3 shows an example of the resulting power con-
sumption versus delayed workload for different optimization criteria ranging
from power-oriented to performance-oriented optimizations.

48 Energy and Workload Models

Figure 4.4: Overview of the system architecture.

Figure 4.5: Snapshot of the task arrival process at time k.

4.2 Workload Model

4.2.1 System architecture

From an operating system perspective, the interaction of the MPSoC with
a user generates a task arrival process. To simulate this interaction we use
benchmarks. The benchmark is a set of programs, or other operations, to
assess the relative performance of the MPSoC. Figure 4.4 shows an overview
of the MPSoC system architecture abstraction.

Incoming tasks are first stored in a global queue. Each task has a spe-
cific execution time. In each scheduling cycle, the scheduler fetches the next
available packet from the global queue and then dispatches the packet into a
specific core for task processing. The result is the desired output.

4.2.2 Task arrival process

The task arrival is a stochastic process, as described in Figure 4.5. The picture
shows the status of the system at a certain point k. The system is discrete-time

4.2. Workload Model 49

and it is sampled every Tp, where Tp is the period of time that passes between
the sample at time k and and the sample at time k + 1. The frequency of
the sampling points is the frequency with whom thermal policies are applied.
The term R stands for the amount of work to be executed by tasks that are
still in the processor and need to be completed. W is the amount of work to
be executed by tasks arrived waiting to be processed. Xi is the amount of
work executed by task arrived i time steps before the current step K. N is
the length of the task arrival history. D the amount of work to be executed by
task that will arrive in the next time step between the actual one k and the
next one k + 1.

In the block diagram of Figure 4.5, the overall amount of work S to be
executed between time K and time K + 1 equals:

S = R + W + D (4.8)

Equation 4.8 expresses that the system has to execute all uncompleted tasks
(R) plus the ones not executed in previous time steps that are queuing (W)
plus the one that will arrive in the next time step (D). If the overall amount
of tasks S are executed, performance requirements are satisfied, otherwise the
system will experience a performance loss.

4.2.3 Workload model

For each p clock islands(cores), the workload is defined as the minimum value
of the clock frequency that the functional unit should have to execute the
required tasks within the specified system constraints.

The workload requirement at time τ is defined as a vector wτ ε <p, where
(wτ)i is the workload requirement value for input i at time τ . (wτ)i is the
frequency that cores associated with input i from time τ to time τ + 1 should
have in order to satisfy the desired performance requirement coming from the
scheduler. The workload requirement is related to the overall amount of work
to be executed S by following equation:

S = Tp ·
p∑

i=1

(wτ)i (4.9)

where Tp is the period between time k and k+1 and p is the number of cores.
Equation 4.9 expresses the fact that the sum of all the workloads integrated
over the time period Tp should be equal to S, the overall amount of work to
be executed.

Our model is assumed to be continuous and ranging from fmin to a max
value fmax, the maximum frequency at which the cores can process data,
namely

fmin ¹ wτ ¹ fmax ∀ τ (4.10)

When (wτ)i > (fτ)i, the workload cannot be processed and so it needs to
be stored (W) and rescheduled in the following clock cycles. The way we

50 Energy and Workload Models

measure the performance of the system in achieving the requested workload
requirements at time τ is given by the vector uτ ε <p.

uτ = wτ − fτ (4.11)

We call uτ the undone workload at time τ and it expresses the difference
at time τ between the requested workload and the workload that is actually
executed by the MPSoC.

4.2.4 Frequency and power model

We model the MPSoCs as a synchronous with p clocks that are viewed as
the inputs to the system: vector fτ ε <p represents the value of the clock
frequencies at time τ . The frequency value of input i at time τ is (fτ)i. Clock
frequencies are continuous and range from zero to a max frequency value fmax.
Previous statement is expressed by Inequality 4.12.

0 ¹ fτ ¹ fmax ∀ τ (4.12)

where the symbol ¹ means element-wise comparison, fmax · 1 = fmax and 1 is
a vector of all ones of size p. The frequency vector represents our optimization
variable.

At time τ , the relation between the normalized value of power dissipation
pτ ε <p and the normalized frequency of operation fτ is expressed by Equation
4.13.

µfα
τ = pτ ∀ τ (4.13)

where µ is a technology-dependent coefficient. The constant α depends as on
the technology as well and usually it takes a value between 1 and 2. If α = 1,
we have a linear dependence (i.e., frequency scaling) while if 1 < α ≤ 2 we
obtain a quadratic or sub-quadratic dependence (i.e., DVFS) [62].

We calculate the leakage power of processing units inside the MPSoC as a
function of their area and actual run-time temperature. We use a base leak-
age power density of 0.25Wmm2 at 383◦K for 90nm technology according to
experimental results from Bose [9]. Thus, the leakage power at a temperature
T ◦K is given by:

P (T) = Po · eβ(T−383) (4.14)

where Po is the leakage power at 383◦K, and β is a technology dependent
coefficient. We set β = 0.017 according to experimental results from Sabry
et al. [77].

4.3 Workload Prediction

4.3.1 Workload arrival process

The workload arrival process can be modelled as a stochastic process. Without
loss of generality we consider an MPSoC with 8 cores. Graph 4.6 shows the

4.3. Workload Prediction 51

Figure 4.6: Duty factor mean and standard deviation of cores during system
operation.

duty cycle mean and standard deviation of cores in the case of a light and
heavy scenarios using the experimental setting described in Section 5.2.

In both cases the standard deviation of the duty cycle is not zero. The
reason is because the overall task execution process can be seen as a stochastic
G/G/8 process with an infinite buffer length. The first two G mean that both
the task arrival and the task execution time can have any distribution and 8 is
the number of cores processing the tasks. From queuing theory we know that
in these systems core utilization have a standard deviation that is higher when
the core utilization is lower. This is because the probability that the queue is
empty is higher and if the queue is empty some processors may stay idle while
others are busy.

Figure 4.6 shows that, in case of a light workload, the standard deviation
of core duty cycle is higher than 40% while in the other case is lower than
25%. Moreover the standard deviation assumes different values on different
cores. Looking at the mean value of core duty cycle, the assumption of having
a core utilization that is equal to one and the same for every core can be seen

52 Energy and Workload Models

as a 10% approximation in heavy workload scenarios but does not hold in light
ones.

In next subsections, we propose two estimators to predict future workload
requirements in time varying scheduling scenarios employing dynamic schedul-
ing techniques.

4.3.2 Prediction accuracy

It is possible to take into account of the accuracy of the prediction in the prob-
lem formulation of a thermal management policy by embedding a weighting
vector γt. It is defined according to Equation 4.15:

γt = βt − ‖wt − ŵt‖ ∀ N− L ≤ t ≤ N (4.15)

where ŵt ε <p is the workload predicted at time t by the workload predictor,
wt ε <p is the actual value of it and p is the number of different workloads
requested at a specific time t. They correspond also to the number of process-
ing cores of the MPSoC. The absolute value of the difference between the two
represents the prediction error.

βt ε <p is a vector that adds a penalty for the workload that has been
predicted, but not executed yet, in different and future time frames. This
penalty function βt can be chosen to be linear, quadratic, exponential or in
any other way, according to the impact that a delayed execution of tasks has
on performance. Indeed the more reliable the prediction is, the smaller the
prediction error is and so the bigger γt is. This means that, since in our
formulation the prediction is reliable, importance is given to the cost function
corresponding to that future time frame.

4.3.3 Maximum energy concentration based estimator

Method description

This system is based on both a queue and a mean value prediction based on
task arrival history. The derivation presented here is referred to Figure 4.1.
The proposed frequency fp to execute all the tasks by the time K + 1 will be:

fp =
R + W + D

p · Tp

(4.16)

where Tp is the period between time k and k + 1 and p is the number of cores.
The problem is the estimation of the parameter D in the case of non-

stationary task arrival processes. This means that statistical properties of the
task arrival process are changing over time. The task arrival has been modelled
this way since there is no guarantee that user requirements will not change over
time.

To estimate statistical parameters (mean value) of this process, we use
a short-time discrete time fourier transform(DSTFT) using a Kaiser window

4.3. Workload Prediction 53

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
β(i)

i

β=0
β=1
β=2
β=4
β=8
β=16

Figure 4.7: Kaiser window function for N=120 and different values of β.

(see Oppenheim and Schafer [63]). The DSTFT is a Fourier-related transform
used to determine the sinusoidal frequency and phase content of local sections
of a signal as it changes over time. It is a Fourier transform of the original
signal multiplied by a windowing function. Among all the possible windowing
functions, we decided to use a Kaiser window, because it is a relatively simple
approximation of the prolate spheroidal function that satisfies the maximum
energy concentration theorem [66].

Thus, an estimate of the parameter D is given by following equation:

D =

∑N
i=0 wβ(i) ·Xi∑N

i=0 wβ(i)
(4.17)

where N is the number of past time slot considered and wβ() a Kaiser window
of parameter β and length N . Figure 4.7 shows the shape of this type of
windowing function for different values of N and β. As it can be noted, for
β = 0, than D is the mean of the last N Xi.

The parameters N and β are left to the designer. The optimum size of
this parameter depend on the way the task arrival process changes its mean
and standard deviation over time. Moreover it depends also on the memory
that is allocated to keep track of the history of the task arrival process. For
slowly varying processes to have a large window size N is good since this way
the prediction error is small. For fast varying processes, to have a small N is
better.

54 Energy and Workload Models

Figure 4.8: Block diagram description of the method used to derive β and N
parameters from real applications or benchmarks.

Mathematical analysis

There are two fundamental parameters that are left to the designer: window
width (history) N and the parameter β that determines the shape of the Kaiser
window. To derive these parameters from real applications or benchmarks, we
propose the method described in the block diagram of Figure 4.8.

Given some applications, they are run on the MPSoC. Scheduler require-
ments for every time window are collected and stored. After that, a design
space exploration is made and the performance of different β and N parameters
is tested.

After that, an optimization is made basing on both Pareto points obtained
at the end of the design space exploration and a pre-defined cost function. This
cost function takes into account how power consumption, area occupation and
the estimation error is important in the optimization process. Finally the
result of this is the pair β and N that will best fit specified needs.

System design

For the experiment, we consider the 8-core Niagara architecture described in
Section 5.2. To derive N and β parameters of the Kaiser window, a design

4.3. Workload Prediction 55

0

10

20

30

0

10

20

30

40
0.5

0.6

0.7

0.8

0.9

Nbeta

no
rm

. e
st

im
. e

rr
or

 e
uc

lid
ea

n
no

rm

Figure 4.9: Euclidean norm of the estimation error normalized to the average
maximum number of tasks executable by the MPSoC.

space exploration has been made. All possible values of β (between 0 and
32) and N (between 1 and 30) have been tested. The output of this study is
reported in figure 4.9. The graph plots the Euclidean norm of the estimation
error normalized to the average maximum number of tasks executable by the
MPSoC. In this case, since there’s only one point that minimizes the estimator
error, the optimization is an easy task. Optimal points are: β = 8 and N = 20.

4.3.4 Polynomial least squares workload prediction

Method description

This technique makes the prediction by using a linear model to perform a best
dth order polynomial fit, because the prediction length L for this application
is short and ranges usually from 1 to 9 samples.

The polynomial fit is performed by minimizing the error within the ob-
served window of temperatures, by using the following function:

‖w − Ǎx‖22 (4.18)

where wt contains the frequency requirements ∀t = 1...N , N is the length
of the observation window of historical data. Vector xt ε <d+1 and matrix
Ǎ ε <d+1×(N+L) are used in the polynomial interpolation process.

56 Energy and Workload Models

Figure 4.10: Structure of matrix Ǎ.

Equation 4.18 can be solved as a least squares minimization problem to de-
rive vector x. The prediction on the future workload requirement is performed
by assuming that the linear model just derived will hold for the next L data
samples.

Assuming this assumption hold, the future workload requirement is given
by following equation:

wt = Ǎxt, ∀ N ≤ t ≤ N + L (4.19)

where wt ε <p for t > N is the predicted workload requirement at time t. We
tested the predictor on the benchmarks described in the experimental setup
section of this thesis and we achieved good accuracies for short-term forecasts
(L ranging from 1 to 9).

Design methodology

The structure of matrix Ǎ is shown in Figure 4.10. As it can be noted, the
first row of matrix Ǎ considers only the first component of vector x since the
first entry of the row is the only nonzero element. The second row considers all
the history contained in vector x, all with the same weight. The third row is
a weight function that considers elements of vector x according to a quadratic
weight. All rows of matrix Ǎ follow the same trend including the last row that
weight entries of vector x with a dth polynomial function.

Values of N (the length of the observation window) and d (the order of the
polynomial fit) that provide the best prediction depend on the workload re-
quirement (task arrival process) statistical properties. These kind of processes
are usually non-stationary and depend on the interaction between the user and
the MPSoC itself. For the aforementioned reasons, to chose these parameters
we suggest to use empirical studies.

4.4. Summary 57

4.4 Summary

This chapter has introduced the concepts to model the workload of an MP-
SoC system. Moreover some considerations have been made about the system
energy models used in this thesis.

The first section has introduced the concept that minimizing power sav-
ing, improving performance and increase chip reliability are three important
tradeoffs facing MPSoC designers. A theoretical quantification of the energy
efficiency is also provided.

The second section has described the power and the workload models used
in this thesis. A description of the way the task arrival process is abstracted has
also been presented. Finally the relation between the working frequencies of
the cores composing the MPSoC and its power dissipation has been described.

The third section has provided a theoretical and experimental analysis
about the effects that workload prediction has on the performance of any
thermal management technique. Two workload estimation techniques are also
presented.

Policies for Thermal
Control with Air Cooling 5
This chapter we analyze and explore the use of four families of control tech-
niques for thermal management of multi-processors system on chip (MPSoC).
In particular, we aim at achieving an online smooth thermal control action
that minimizes the performance loss as well as the computational and hard-
ware overhead of embedding a thermal management system inside the multi
processor system on chip. The optimization problem considers the thermal pro-
file of the system, its evolution over time and current time-varying workload
requirements. This problem is formulated as a finite-horizon optimal control
problem. Thus, we implement the policies on a hardware simulation platform
and we collect data of the system. A detailed comparison and analysis is also
reported.

59

60 Policies for Thermal Control with Air Cooling

Figure 5.1: Diagram of a generic DVFS-based thermal management system

5.1 Introduction

The structure of state-of-the-art DVFS-based thermal management systems is
reported in the diagram of Figure 5.1.

The thermal management policy regulator monitors the multi processors
system on chip (MPSoC). Without loss of generality, we assume this MPSOC
to be partitioned into p islands (or subsystems), each with independent fre-
quency and voltage settings. For our purposes, we consider frequencies as
inputs to the system, since we are abstracting away the computation. Vector
fτ ε <p represents the value of the clock frequencies at time τ . The frequency
value of input i at time τ is denoted by (fτ)i. Input i ranges from 1 to p.

The regulator sets working frequencies fτ+1 according to a specific policy.
The frequency setting the regulator does at time τ is performed by taking
into account the current frequency setting fτ , temperature measurements t̃τ

coming from on-die thermal sensors and a workload requirement coming from
the scheduler wτ ε <p. For each functional unit i = 1..p, the workload is
defined as the minimum value of the clock frequency that the functional unit
should have in order to execute the required tasks within the specified system
constraints. The regulator provides a frequency assignment that minimizes
the difference between the required and the achieved workload.

The author of this thesis proposed previously various policies for thermal
management [96], [95], [99], [100]. These policies were developed and analyzed
independently. In this thesis, we provide a comprehensive comparison of four
families of thermal management methods for multi processors system on chip.
Thus, this chapter provides the analytical and experimental basis for selecting
among four similar, but different, control methods.

These families are closely related and some are based on model predictive
control (MPC) [2], which has received much attention lately. These policies
aim at achieving an online smooth thermal control action that minimizes the
performance loss as well as the computational and hardware overhead of em-
bedding a thermal management system inside the MPSoC. Control models and

5.2. 2D-MPSoC case study 61

Figure 5.2: UltraSPARK T1 processor, die photograph by courtesy of SUN [49]

policies differ according to both the way details are included in the problem
formulation and the way the solution is computed.

5.2 2D-MPSoC case study

5.2.1 The Niagara processor

The 64b Niagara SPARC processor (UltraSPARC T1) [49] is designed for
power-efficient high-throughput commercial server applications where power,
cooling, and space are major concerns. The chip-multithreaded (CMT) archi-
tecture achieves high throughput while optimizing performance/watt. Concur-
rent execution of 32 threads is implemented through 8 symmetrical 4-way mul-
tithreaded cores, supported by a high-bandwidth low-latency cache/memory
system shown in Figure 5.2.

Features are: eight 64b Multithreaded SPARC Cores, shared 3MB L2
Cache, 16KB ICache per Core, 8KB DCache per Core, four 144b DDR-2
DRAM Interfaces (400 MTs), 3.2GB/s JBUS I/O.

About the technology: 90nm CMOS Process, 9LM Copper Interconnect,
Power: 63 Watts @ 1.2GHz, Die Size: 378mm2, 279M Transistors, Package:
Flip-chip ceramic LGA (1933 pins)

In our thermal model, the parameters are provided in Table 5.1. This table
contains the thermal conductance and capacitance values of different materials
used in modeling the MPSoC.

62 Policies for Thermal Control with Air Cooling

Table 5.1: Thermal and Floorplan parameters deployed in the model

Parameter Value

Silicon conductivity 130W/(m ·K)
Silicon capacitance 1635660J/(m3 ·K)
Wiring layer conductivity 2.25W/(m ·K)
Wiring layer capacitance 2174502J/(m3 ·K)

Figure 5.3: Floorplan of the Niagara-1 multicore case study

5.2.2 Layout

The MPSoC architecture we are considering resembles the 8-core Niagara-
1 (UltraSparc T1) architecture from Sun Microsystems [43]. To model the
Niagara floorplan, the chip has been divided into functional regions as depicted
by yellow rectangles in the picture of 5.2. The resulting floorplan model is
presented in Figure 5.3. The floorplan has been modelled using blocks of 3mm
side each, and values of technological parameters and coefficients have been
derived from [43].

5.2.3 Frequency Setting and DVFS

This architecture has a maximum operating frequency of 1.2 GHz and the
maximum power consumption of each processor core at this frequency is 4
W [43]. To implement the voltage and frequency scaling techniques, we use
frequencies ranging from 0 to 1.2GHz.

In this range, only specific values of frequencies are allowed, thus the values

5.2. 2D-MPSoC case study 63

Figure 5.4: Niagara, chip power consumption.

for the frequencies different from 0 are expressed by Equation 5.1.

f =
6 · 109

Df

∀ Df , subj. to : 5 ≤ Df ≤ 35 (5.1)

where Df is the division factor needed by the clock tree generator. To simu-
late the system we used different benchmarks, ranging from web-accessing to
playing multimedia [22], [23].

5.2.4 Power Consumption

To perform the thermal evaluation and calculate the temperature distribution
among the chip, we need to have a power consumption trace for each yellow
box on the die. If we know when each unit is active or idle, we can estimate
the instantaneous power consumption using the average power values. For
SPARC cores, the peak power consumption is similar to the average power
values [49]. The power efficiency of this chip has been tested with the Java
Business Benchmark (SPECJBB) [40] and the resulting power consumption
of various components has been reported [49] in the pie-chart of Figure 5.4.

Figure 5.5 shows the ratio of the energy dissipated by each unit type in the
chip with reference to the overall power consumption.

5.2.5 Benchmarks and Workload Statistics

We modelled the different workloads of a mix of different benchmarks, ranging
from web-accessing to playing multimedia [22], [23]. Each job created by the
scheduler defines and tests a different workload by varying the load of a set of
large multiplication matrices and memory accesses intervals. Recorded execu-
tion characteristics are shown in Table 5.2. Using cpustat, we also recorded
the cache misses and floating point (FP) instructions per 100K instructions to
accurately model them in our MPSoC simulation framework.

64 Policies for Thermal Control with Air Cooling

Figure 5.5: Niagara, chip power consumption by unit type.

Benchmark Average CPU Load L2 I-Miss L2 D-Miss FP unit

1 Web-med 53.12% 12.9 167.7 31.2
2 Web high 92.87% 67.6 288.7 31.2
3 Database 17.75% 6.5 102.3 5.9
4 Web+DB 75.12% 21.5 115.3 24.1
5 gcc 15.25% 31.7 96.2 18.1
6 gzip 9 2 57 0.2
7 Mplayer 6.5% 9.6 136 1
8 Mplayer+Web 26.62% 9.1 66.8 29.9

Table 5.2: Comparative table of workload characteristics

The average CPU load is 62%, and ranges during the runtime execution
from 10% to 100%. Jobs have an average duration of 2ms, but oscillates from
0.1ms to 10ms. The experiments are conducted using a large trace with around
60000 tasks, modeling several hundreds of seconds of actual system execution.
We assume as initial condition, the system to be at room temperature set equal
to 300◦K.

5.3 Policy Classification

In this paper we are considering and comparing four polices that are in our
opinion representative. The thermal policy techniques we are considering are:
the ’linear quadratic regulator’ [96] (unconstrained MPC with horizon equal
to infinity), the ’explicit/implicit model predictive control’-based approach
[95] (traditional MPC), the ’approximated explicit model predictive control’
policy [99] (approximated MPC) and finally the ’convex optimization’-based

5.3. Policy Classification 65

Figure 5.6: Classification of compared thermal management policies

approach [100] (joint workload & thermal profile prediction). This last tech-
nique is solved with a convex solver, however it is an MPC as well with a linear
objective function.

We classify policies according to two main metrics. The first one is the
complexity of the problem formulation and the second is the solution compu-
tational requirements. Figure 5.6 locates the compared policies graphically.

The first row identifies thermal policies that do not take into account the
workload history. The entire formulation and solution of the Linear Quadratic
Regulator(LQR) is based on the idea of prediction. However, the prediction
horizon on the temperature profile of the system is fixed and equals to infinity.
These policies only ensure that both power consumption and temperature
spatial gradients are minimized. Their objective function targets:

• minimization of the difference between the target power consumption
(required to get the work done) and the real one

• temperature spatial gradients minimization

The linear quadratic regulator(LQR) does not allow one to set any threshold
constraint on the MPSoC maximum temperature. However a threshold-based
mechanism is used to partially solve the problem.

66 Policies for Thermal Control with Air Cooling

The second row of Figure 5.6 identifies techniques that try to predict the
future behavior of the MPSoC thermal profile. To this family of polices belong
the approximated, the explicit and the implicit MPC. Their objective function
targets:

• undone work minimization

• temperature gradient minimization

• power consumption minimization

Constraints are:

• frequency range

• power-frequency relation

• thermal profile prediction

• maximum temperature

The last row identifies techniques performing a prediction on the MPSoC
thermal profile by additionally exploiting workload history information. An
example is provided by convex optimization. The objective function targets:

• undone work minimization

• temperature gradient minimization

• power consumption minimization

Additional constraints with respect to the first and second row are:

• workload prediction

• workload prediction reliability

Each column of the table identifies a different level of computational re-
quirement needed to on-line compute the solution to the problem formulation.
To the first column belong policies that require only a look-up table and a
small multiplier to be implemented. The second column identifies techniques
needing a look-up table and a small computational unit to be implemented.
Here the level of complexity is higher and higher capabilities are required. To
the third column a look-up table and an average-to-large computational unit
is required. To the last column belong algorithms requiring an online solver
to be implemented.

Interesting trade-off policies are highlighted by the red squares and by the
dotted lines. They correspond to techniques taking into account the highest
number of MPSoC properties for a given computational requirement. They
indeed perform the best in making the problem formulation easy to solve
while exploiting the largest quantity of information in the determination of
the MPSoC frequency assignment.

5.4. Comparison of Receding Horizon Algorithms 67

5.4 Comparison of Receding Horizon Algorithms

Common objectives fulfilled by all these class of polices are the following.
First they ensure that the maximum MPSoC temperature never exceeds a
pre-defined threshold. Second they avoid abrupt frequency and temperature
variations both over time and over space. Finally they minimize the work that
is requested from the scheduler and not executed. The control problem to be
solved to fulfill previous requirements can be formalized in the following way:

J =
h∑

τ=1

(
‖Qxτ‖g + ‖Rpτ‖j + ‖Tuτ‖b

)
(5.2)

min J (5.3)

subject to : 0 ¹ fτ ¹ fmax ∀ τ (5.4)

xτ+1 = Ãxτ + B̃pτ ∀ τ (5.5)

C̃xτ+1 ¹ tmax ∀ τ (5.6)

uτ º 0 ∀ τ (5.7)

uτ = wτ − fτ ∀ τ (5.8)

pτ º µfα
τ ∀ τ (5.9)

Function J is expressed by three sums where the summation index τ ranges
from 1 to h. During these h future steps the system tries to minimize the cost
function J and computes the frequency assignment for these steps.

The first term ‖Qxτ‖g is the g norm of the state vector x weighted by
matrix Q. Matrix Q is related to hotspot minimization and thermal balancing.
The second term ‖Rpτ‖j is the j norm of the input power vector p weighted
by matrix R. Matrix R quantifies the importance that power minimization
has in the optimization process. The third term ‖Tuτ‖b is the b norm of the
amount of predicted required workload that has not been executed. The weight
matrix T quantifies the importance that executing the workload required from
the scheduler has in the optimization process.

Inequality 5.4 defines the range of working frequencies that can be used.
It enables a continuous range of frequency settings but this does not prevent
from adding in the optimization problem a limitation on the number of allowed
frequency values. Equation 5.5 defines the evolution of the system according to
the present state and inputs. Equation 5.6 states that temperature constraints
should be respected at all times and in all specified locations. The maximum
allowed temperature is Tmax. Tmax · 1 = tmax and 1 is a vector of all ones.
Since the system cannot execute jobs that have not arrived, every entry of uτ

has to be greater than or equal to 0 as stated by Equation 5.7. The undone
work at time τ , uτ is defined by Equation 5.8. The relation between the
power vector p and the working frequencies is expressed in previous section
by Equation 4.13. In Equation 5.9 we relax Equation 4.13 to an inequality. It

68 Policies for Thermal Control with Air Cooling

Figure 5.7: Linear Quadratic Regulator-based policy block diagram.

can be shown that the resulting relaxed convex problem is equivalent to the
original problem with the quadratic equality constraint [[12], page 191].

The control problem is formulated over an interval of h time steps, which
starts at current time τ . For this reason, the approach is said to be predictive.
The result of the optimization is an optimal sequence of future control moves
(i.e., frequency settings for the cores). Only the first sample of such a sequence
is actually applied to the process; the remaining moves are discarded. At the
next time step, a new optimal control problem based on new temperature mea-
surements and required frequencies is solved over a shifted prediction horizon.
Such a ’receding-horizon’ [2] mechanism represents a way of transforming an
open-loop design methodology into a feedback one, as at every time step the
input applied to the process depends on the most recent measurements.

5.4.1 Linear quadratic regulator

The linear quadratic regulator targets temperature and power difference min-
imization using a linear discrete time system.

If Tmax, the maximum MPSoC temperature is less than a certain thresh-
old, the overall system presented in Figure 5.7 is a linear feedback system,
where MPSoC frequencies are calculated simply by subtracting from the work-
load requirement wτ the product of the state vector xτ and the controller ma-
trix gain K. The state vector x is related to the thermal profile by Equation
7.9. The emergency saturation block (in Figure 5.7) just saturates the regu-
lated frequencies to a certain value when the maximum MPSoC temperature

5.4. Comparison of Receding Horizon Algorithms 69

is higher than the threshold Tmax. This enables the MPSoC to cool down
and so to reduce its maximum temperature in case of overheating. This policy
is based on the work of [96].

Problem formulation

By looking at the general model of Equations 5.2 - 5.9, the problem can be
formulated in the following way.

The horizon is infinite and the reference (the requested workload wτ) is
assumed to be constant over all this period. Matrix T is a zero matrix and
the norm g = j = 2. Thus, the objective function is a 2-norm. Because
this method is linear, it is not possible to include any constraint inside the
problem formulation. For this reason no frequency, temperature or undone
work constraint can be added. However all these constraints are considered
after the optimization. Frequencies outside the frequency range are discarded.
A bias signal wt is added to the control loop to force the system to execute
the requested workload wt. Finally an emergency saturation block is added
to avoid that the maximum MPSoC temperature is higher than the threshold
Tmax.

Design phase

The state feedback controller gain K presented in [33] can be computed via
standard matrix computations in negligible time using established tools. The
solution of the previous equation exists only if matrix Q is positive semi-
definite and matrix R is positive definite. However, while the original system
is passive, the reduced system is not necessarily passive. However, the re-
duced system is stabilizable since it’s passive and balanced reduction retains
stabilizability. Consequently all LQR controllers are stabilizing [33].

Runtime phase

If the MPSoC maximum temperature is under a predefined threshold during
the on-line optimization phase, the optimum frequency assignment to achieve
thermal balancing is calculated using the following equation:

fτ+1 = wτ −K · xτ (5.10)

where at time τ , xτ is the current state and wτ the workload required in
order to fulfill performance requirements. The number of multiplication and
additions Nop required every time the policy is applied at runtime, is given by
the following equation:

Nop = l · p (5.11)

where l is the dimension of the state vector and p is the number of cores of
the system.

70 Policies for Thermal Control with Air Cooling

Figure 5.8: Explicit model predictive control-based policy block diagram.

5.4.2 Explicit/Implicit MPC

In general MPC is an optimal control approach aimed at maximizing a per-
formance metric for a linear dynamic system under input/output constraints.
The solution of the optimization problem provides the feedback control actions
that will determine the frequency setting of the following clock cycles. The
policy can be implemented by embedding a numerical solver in the real-time
control code (implicit solver), or pre-computed off-line and evaluated through
a look-up table of linear feedback gains (explicit solver). Figure 5.8 shows the
block diagram of an explicit MPC-based policy. The ’plant to control’ is the
MPSoC that we want to control. In the case of implicit MPC, the orange
dotted box is implemented using an embedded solver that online solves the
frequency assignment problem. This policy is based on the work of [95]. The
block diagram is shown in Figure 5.10.

Problem formulation

According to the general model of Equations 5.2-5.9, the problem formulation
is the following.

The horizon is finite and equal to h and the reference (the requested work-
load wτ) is assumed to be constant over all this period. The state and the
power cost function matrices Q and R are set to be null matrices. Matrix T

5.4. Comparison of Receding Horizon Algorithms 71

Figure 5.9: Explicit model predictive control example: (a) state values x(t) and
resulting input u(t), (b) state-space partition and corresponding control trajecto-
ries.

is the identity matrix and the norm b = 2. Thus, the objective function is a
quadratic form. All the others constraints expressed by Equations 5.4-5.9 are
considered inside the problem formulation.

Implicit versus Explicit Regulator

The proposed control strategy can be implemented in two different ways. The
first one is called implicit and requires to solve on-line the minimization prob-
lem every time the policy is applied. Thus, a significant amount of hardware
resources are needed, since the result must be computed in a time frame shorter
than the thermal time constants of the MPSoC.

An alternative approach has been proposed in [2]. In this case, the problem
is solved off-line in a way that makes explicit the dependence of the solution
of the frequency assignment problem fα

τ on input vectors fα
τ , wα

τ and xτ . The
state space can be divided into a set of regions, bounded by linear inequalities
(i.e., a polytope), and in each region a different linear controller can be specified
and computed off-line.

Then, the controller selection can be efficiently performed on-line by simply
checking region boundaries. The resulting controller structure is defined in any
of the M partitions as follows:

[fα
τ+1] = Fj

xτ

fα
τ

wα
τ

 + gj if Hj

xτ

fα
τ

wα
τ

 ≤ kj (5.12)

where matrix Fj and vector gj are the gain and offset coefficients of the jth

region (see Figure 5.8). Each region is identified by affine inequalities defined
by the matrix Hj and vector kj in Equation 5.12 (see [2] for more details).

An example of explicit MPC region partitioning is shown in Figure 5.9. The
task is to regulate the system to the origin while fulfilling the input constraint

72 Policies for Thermal Control with Air Cooling

−2 ≤ u(t) ≤ 2. The system to control consists of 2 entries for the state vector
x(t) and one input entry u(t). The resulting explicit MPC controller is shown
in Figure 5.9 (a). As it can be noted, the overall 2-dimensional state space
is divided into 9 regions. For every region there is a specific controller that
generates the optimum input value to control the system. In Figure 5.9, the
controller starts from Region 7 and ends in Region 1 passing through Regions
8 and 9. Without loss of generality, in this example the region is determined
only by the state value of the system.

If the partitions are properly stored, the number of operations depends
logarithmically on the partitions [87]. Nonetheless, while the computer code
for evaluating MPC in the explicit form is certainly simpler than the code
embedding the QP solver, from the point of view of memory requirements, the
explicit form may be more demanding, as M and the matrices to be stored in
look-up tables may be large.

The length of the prediction horizon h affects the number of regions. There
is indeed (worst-case scenario) an exponential relation between these two pa-
rameters. However the longer the prediction horizon is, the better the policy
performance is. Thus, for large horizons an implicit implementation may be
more convenient in terms of power dissipation and area consumption than an
explicit one or vice-versa.

According to Equation 5.12, the number of coefficients Nc to implement the
optimum explicit approach of our method is given by the following expression:

Nc = Nreg · (
Fj︷ ︸︸ ︷

2p(p + l/2) +

gj︷︸︸︷
p +

Hj︷ ︸︸ ︷
2Navg · (p + l/2) +

kj︷︸︸︷
Navg) (5.13)

Nreg is the number of regions of the explicit controller, p is the number of
processing cores and l the dimension of the state vector x. NAV G is the average
number of affine inequalities that identifies each region. In this equation, the
symbol ︷︸︸︷ highlights contributions for each of the matrices in Equation 5.12.

The computational effort of the evaluation can be computed from [87] and
Equation 5.12 and, assuming an average-case scenario, is provided by the fol-
lowing equation:

Ncomp = 1.7 · log2(Nreg) (5.14)

NMult−Add = 2p(p + l/2) (5.15)

where Ncomp is the number of required comparisons and NMult−Add is the num-
ber of required multiplications/additions.

5.4.3 Approximated explicit predictive policy

This method is similar to the explicit approach presented in Section 5.4.2 and
both its block diagram and its problem formulation are presented in Figure
5.8. Compared with the optimum approach (see previous section), it provides
a significant reduction in hardware requirements and computational cost at

5.4. Comparison of Receding Horizon Algorithms 73

the expense of a small loss in accuracy. This enables an increase of the pre-
diction length and accuracy of the MPSoC model and so the performance of
the method. This policy is based on the work of [100].

The solution of the optimization problem is computed off-line in a way
that makes explicit the dependence of the solution of the frequency assignment
problem fτ+1 on input parameters wτ and xτ . The resulting explicit controller
is piecewise polynomial. In other words, the state space can be divided by a set
of regions, bounded by linear inequalities (i.e., a polytope) and in each region
a different polynomial controller can be specified and computed off-line [2].
Then, the controller selection can be efficiently performed on-line by simply
checking region boundaries.

Approximation algorithm

The proposed method computes an approximate convex Piece-Wise Affine
(PWA) lower bound of the optimal cost function J (Equations 5.2-5.9). Since
this approach proceeds in an incremental greedy-optimal fashion, it is possible
to stop the process when any desired level of complexity, or approximation
accuracy, is reached. The control law is then derived from this lower bound
using the barycentric technique proposed in [92]. The result is a nonlinear
and smooth piecewise polynomial control law. In particular, the algorithm is
divided into two main phases.

The first phase of the algorithm iterates two steps. In the first step, we
compute the level of approximation and a point that obtains this level. In the
second step, the approximation is updated such that the error is maximally
reduced around this point. These two steps are iterated until the desired
accuracy is achieved. It can be shown that any desired approximation error
can be achieved in finite time for any convex function.

When the iteration is complete, we apply the second phase of the algorithm,
where we define a polynomial for each region by interpolation of the optimal
control law at the vertices of the region. The result is a smooth, piecewise
polynomial control law.

5.4.4 Convex optimization based policies

Figure 5.10 shows the block diagram of this policy. In the case the problem
formulation solver is implemented using an embedded solver that solves the
frequency assignment problem online.

Problem formulation

According to the general model of Equations 5.2-5.9, the problem formulation
is the following. The horizon is finite and equal to h. The state cost matrix Q
is set to be a null matrix. Matrix R, responsible for the power minimization

74 Policies for Thermal Control with Air Cooling

Figure 5.10: Embedded solver-based policy block diagram.

is an identity matrix and the norm j = 1. All the others constraints expressed
by Equations 5.4-5.9 are considered inside the problem formulation.

The major differences with respect to previous problem formulations are
the following. Matrix T is time varying, the norm b = 1 and the reference
(the requested workload wτ) is time-varying as well. The algorithm indeed
dynamically predicts the future workload requirements wτ and the reliability
of the estimation is embedded in the problem formulation by matrix T. The
larger the prediction error is, the smaller undone work is and vice-versa.

The accuracy of this prediction is embedded in the weighting matrix T,
which is chosen accordingly to the reliability of the workload prediction. We
have chosen these parameters to achieve a good prediction, according to em-
pirical studies performed on different benchmarks for representative examples
of the MPSoCs under study in this thesis.

5.5 Experimental Results

5.5.1 Policies setup

In all our experiments the thermal management policies are applied every
Tpol = 10ms, while the simulation step for the discrete time integration of
the RC thermal model (Section III-c) has been set to 200µs. The maximum
temperature limit is set to 370◦K. The room temperature is set to 300◦K. In
the problem formulation, we used α = 2 [62] to establish the relation between
the frequency setting and the power consumption because we assumed that
devices are working in velocity saturation [70].

5.5. Experimental Results 75

Controller Number Number Computational effort
of of (#operations)

regions vertices search control law total
MPC-100 1 66 0 858 858
MPC-200 14 136 30 1025 1055
MPC-300 32 233 50 1184 1234
MPC-400 51 328 60 1286 1346
MPC-500 72 431 60 1335 1395
MPC-600 87 528 65 1354 1419
MPC-opt 3770 89552 16 89568

Controller Storage Space Time Time
(#coefficients) design run

search control law total [s] [ms]
MPC-100 0 366 366 40.13 4.29
MPC-200 204 915 119 46.92 5.27
MPC-300 1560 1770 3330 50.75 6.17
MPC-400 3186 2778 5964 55.90 6.73
MPC-500 4986 3771 8757 63.61 6.97
MPC-600 7212 4683 11859 71.46 7.09
MPC-opt 89552 60320 149872 196.32 447.84

Table 5.3: Comparative table of MPC-based thermal approaches having different
approximation complexities

Threshold based DVFS (TB-DVFS)

This policy sets the frequencies of the cores according to the requirements
coming from the scheduler. If the maximum chip temperature goes above
a specified threshold (in this case study set to 370◦K), the policy sets the
frequency up to 62.5% of the maximum one [62].

Linear Quadratic Regulator (LQR)

In the setting, we focus more on keeping the thermal profile uniform rather
than minimizing power consumption. Thus, in the problem formulation we
minimize thermal unbalancing while respecting the power limit. According to
our experimental model, where the number of cores p equals 8 and n equals
30, the number of required coefficients to store, multiplications and additions
equal to 30 · 8 = 240. These operations need to be performed every Tpol.

Model predictive control (MPC)

To design the regulator, we used a Matlab-based development platform pro-
vided by [44]. Table 5.3 compares the approximated approach with the op-
timum approach proposed in [95]. The resulting polynomial control laws are

76 Policies for Thermal Control with Air Cooling

ranging from 100 to 600 vertices. The penultimate column reports the time in
seconds that a MacBook Pro (2.8GHz, Core 2 Duo, 4GB ram) took to design
the controllers. By comparing with the optimal controller, we get a reduction
in the computation time ranging from 2.7× to 4.9×. The last column reports
the time needed to run-time execute the policy assuming a processor able to
execute 200K FLOPs. A reduction versus the optimum approach ranging from
63.1× to 104.4× can be achieved.

Convex optimization (Convex-opt)

The linear predictor has been designed using a 3rd order polynomial equation
[99], an observation window of 600ms and a prediction length equal to 50ms in
the future. We assumed to have two frequency inputs controlling the MPSoC.
The first frequency input controls cores 1, 4, 5 and 8. The second input sets
the frequency value for cores 2, 3, 6 and 7. We suppose that the scheduler
performs a workload balancing strategy on the cores to have all the cores run-
ning with potentially the same (or very similar) active frequency. By doing
this we assume that the power consumption of the cores depends mostly on
their frequency setting. To solve the problem formulation, we use CVX [34],
an efficient convex optimization solver. C++ optimized implementations of
this software take few microseconds (for the case study described in the ex-
perimental set-up section) to run on a state-of-the-art solver [27]-[13], which is
at least 3 orders of magnitude less than the interval between two consequent
applications of the policy (from 10ms to 100ms).

5.5.2 Executed workload and working temperature

Figure 5.11 compares the performance of the policies by plotting the normal-
ized executed workload versus the thermal profile. The normalized executed
workload is the workload executed by the policies normalized to the one that
can be executed by the MPSoC running with the highest allowable frequency
setting. The top plot analyzes the average maximum chip temperature while
the bottom one shows the maximum MPSoC temperature peak. The average
maximum chip temperature is the average of the maximum temperature over
all the MPSoC.

As these figures show, in the case where no thermal policy is used (upper
right circle), even for an average workload of less than 65%, the maximum
chip temperature gets to almost 398oK. All the thermal policies compared in
this work avoid this problem. Indeed the maximum temperature peak of all
the policies is less than 370.46oK. The reason of these extra 0.46oK (above
the maximum temperature threshold 370◦K) is because the simulated policies
use an extended thermal model as compared to the policy computing method.
In reality, considering the cache misses, pipeline stalls, and other events that
could increase the CPI, this parameter cannot be estimated accurately. In

5.5. Experimental Results 77

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
365

370

375

380

385

A
ve

ra
g

e
 m

a
x

te
m

p
e

ra
tu

re

Normalized Executed workload

no policy
TB−DVFS
LQR
MPC−opt
MPC−300
MPC−200
Convex−opt

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
365

370

375

380

385

390

395

400

M
a

x
te

m
p

e
ra

tu
re

 P
e

a
k

Normalized Executed workload

no policy
TB−DVFS
LQR
MPC−opt
MPC−300
MPC−200
Convex−opt

Figure 5.11: Temperature Vs executed workload normalized to the one that can
be executed by the MPSoC running with the highest possible frequency setting.

practice, while the maximum temperature peak is slightly above the threshold
by 0.46oK, the average maximum temperature never exceeds the threshold.

The best performance in terms of executed workload is provided by convex
optimization-based policy. This policy outperforms the TB-DVFS in terms
of executed workload by a factor of 50% by having approximately the same
average temperature. The approximated MPCs (with 200-300 vertices) provide
almost the same performance with negligible differences in temperatures. The
optimum MPC provides around 2% lower performance. The reason is given
by the fact that the optimum MPC changes the frequency values more often
than the approximated versions of it. The change in the frequency setting has
an overhead in terms of additional power dissipation that is not considered in
the problem formulation. However, our results show that this effect leads to a
loss of performance less than 6% compared with the approximated MPC.

The best performance in terms of executed workload is provided by convex
optimization-based policy. This policy outperforms the TB-DVFS in terms
of executed workload by a factor of 50% by having approximately the same
average temperature. The approximated MPCs (with 200-300 vertices) provide
almost the same performance with negligible differences in temperatures. The
optimum MPC provides around 2% lower performance. The reason is given
by the fact that the optimum MPC changes the frequency values more often
than the approximated versions of it. The change in the frequency setting has

78 Policies for Thermal Control with Air Cooling

0.2 0.25 0.3 0.35 0.4

0.4

0.5

0.6

0.7

temperature rate of change [°K/10ms]
N

o
rm

a
liz

e
d

 e
x
e

c
u

te
d

 w
o

rk
lo

a
d

no policy
TB−DVFS
LQR
MPC−opt
MPC−300
MPC−200
Convex−opt

5 6 7 8 9 10

0.4

0.5

0.6

0.7

spatial temperature difference [°K]

N
o

rm
a

liz
e

d
 e

x
e

c
u

te
d

 w
o

rk
lo

a
d

no policy
TB−DVFS
LQR
MPC−opt
MPC−300
MPC−200
Convex−opt

0.2 0.25 0.3 0.35 0.4
5

6

7

8

9

10

s
p

a
ti
a

l
te

m
p

e
ra

tu
re

 d
if
fe

re
n

c
e

 [
°K

]

temperature rate of change [°K/10ms]

no policy
TB−DVFS
LQR
MPC−opt
MPC−300
MPC−200
Convex−opt

Figure 5.12: Temperature gradients analysis. Normalized executed workload
Vs temporal temperature gradient (top); normalized executed workload Vs spatial
temperature gradient (center); spatial Vs temporal temperature gradient (bottom).

an overhead in terms of additional power dissipation that is not considered in
the problem formulation. However, our results show that this effect leads to a
loss of performance less than 6% compared with the approximated MPC.

The TB-DVFS and the LQR policies show lower performance, as they
provide 50% and 25% less executed workload than the convex-optimization
approach and the approximated MPCs polices, respectively. The LQR pol-
icy shows an executed workload that is few percent lower the same compared
with the TB-DVFS that is much simpler. Advantages of the LQR are shown
in Figure 5.12. Temperature gradients are a concern not only in space, but
also in time. The frequent abrupt change in working frequencies and voltages
produces thermal cycles that raise the failure rate of the system [35]. In addi-
tion, abrupt power-mode transitions in voltage and frequencies scaling waste
additional power [42].

Figure 5.12 consists of 3 plots. The first plot on the top compares the po-

5.5. Experimental Results 79

lices according to the executed workload and the temperature rate of change.
On the y axis there is the workload executed by the policies normalized to the
one that can be executed by the MPSoC running with the highest allowable
frequency setting. On the x axis there is the temperature rate of change. This
metric represents the mean of the maximum absolute temperature difference
in degrees on the same MPSoC location between two consecutive applications
of the policy. For this reason its dimension is oK/(Tpol = 10ms). The second
plot in the middle compares the polices according to the executed workload
and the spatial temperature difference. This metric represents the mean of the
maximum absolute temperature difference in degrees between two neighboring
units. Its dimension is oK. Both plots compare the polices according to the
executed workload and temperature variations. The first one considers varia-
tions in the time domain, while the second one variations in the space domain.
The third plot analyzes the correlation among time and space temperature
gradients for all the compared policies.

The effect of thermal policies is shown in Figure 5.12. Both the spatial
temperature difference and the temperature rate of change are reduced in all
the policies by a factor up to 2×. Moreover, this is achieved by keeping the
maximum temperature under a threshold that ensures the reliable operation of
the MPSoC. In the setup of our case study, we worked in a worst case scenario
by using a high-quality spreader. In the case of an embedded system, usually
using a low-quality spreader, the advantage of using the compared policies is
even more evident.

In all the plots of Figure 5.12 the convex optimization approach shows
the highest variations in both the time and the space domain. The convex
optimization based approach indeed does not target the minimization of space
and time temperature gradient, but it targets only the minimization of the
power consumption and the difference between the workload requested and
the one executed by the MPSoC. Therefore it provides the best performance
in terms of executed workload at the cost of a less uniform and a more rapidly
changing thermal profile.

The policy with the smallest thermal variations (both in time and space) is
the approximated MPC with 300 vertices and the LQR. In all graphs the LQR
shows a performance comparable with the one of more complex techniques,
like the MPC-300. The LQR, in terms of keeping the temperature under the
predefined threshold, works with the same principle as the TB-DVFS. If we
compare these two policies, a reduction up to 15% and 45% in time and space
temperature variations is achieved. Moreover, the LQR is performing the best
in minimizing spatial temperature gradients. The reason is because the LQR
policy directly addresses thermal gradients as the main priority. This policy
makes the thermal profile more uniform.

80 Policies for Thermal Control with Air Cooling

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

av
er

ag
e

te
m

pe
ra

tu
re

 r
at

e
of

 c
ha

ng
e

[°
K

/1
0m

s]

average frequency rate of change [10ms]−1

no policy
TB−DVFS
LQR
MPC−opt
MPC−300
MPC−200
Convex−opt

Figure 5.13: Temperature rate of change Vs frequency rate of change.

5.5.3 Thermal and frequency variations

This section makes a study about thermal and frequency variations that gen-
erated during the runtime execution of the compared thermal management
policies. The more the policy acts smoothly while responding to workload
demand, the more both these variations are small.

Figure 5.13 compares the policies according to the average frequency rate
of change (x axis) and the average temperature rate of change (y axis). These
two metrics represent respectively the average frequency and temperature vari-
ation that occurs between two consequent applications of the thermal control
method. In our case study the policies are applied every 10ms, and so the
metrics dimensions are [10ms−1] and [◦K/10ms], respectively.

Figure 5.13 shows that thermal management policies have reduced up to
6× and 1.8× frequency and temperature variations, respectively, compared
with the case where no thermal management policies are used. The worst
performance is provided by the convex optimization based approach policy.
Figure 5.13 also outlines that the optimum MPC has an average frequency rate
of change that is higher as compared to the approximated ones. The reason
is because the fewer the number of regions are, the less often the frequency
settings are changed.

5.6. Summary 81

5.6 Summary

In this section we analyzed and explored four control techniques for thermal
management of MPSoCs based on MPC. The techniques that we have pre-
sented aim at achieving an online smooth thermal control action that mini-
mizes the performance loss as well as the computational and hardware overhead
of embedding a thermal management system inside the MPSoC. Our optimiza-
tion problem considered the thermal profile of the system, its evolution over
time and current time-varying workload requirements. We formulated this
problem as a discrete-time control problem. The different techniques we pre-
sented in this work are characterized according to both the way details are
included in the problem formulation and the method used to compute the
solution.

We implemented the policies on a MPSoC-simulation platform, and per-
formed experiments on a model of the 8-core Niagara-1 multicore architecture
using benchmarks ranging from web-accessing to playing multimedia. Results
show different trade-offs between the analyzed techniques. Strength and weak-
nesses about the compared thermal policies are also discussed.

Policies for Thermal
Control with Liquid
Cooling 6
In this chapter, we propose two novel online thermal management approaches
for 3D multi-processors system on chip using microfluidic cooling. The con-
troller uses dynamic voltage and frequency scaling for the computational cores
and adjusts the liquid flow rate to meet the desired performance requirements
and to minimize the overall MPSoC energy consumption.

83

84 Policies for Thermal Control with Liquid Cooling

6.1 Introduction

This chapter proposes two main contributions: a centralized and a distributed
thermal management algorithm for 3D MPSoC. Despite techniques with air
cooling, these techniques use liquid cooling technologies applied to 3D-MPSoCs.

Liquid cooling is performed by attaching a cold plate with built-in mi-
crochannels, and/or by fabricating microchannels in the silicon layers of the
3D-MPSoC architectures. Then, a coolant fluid is pumped through the mi-
crochannels to remove the heat. The flow rate of the pumps is altered dy-
namically, and the pump power consumption increases quadratically with the
increase in flow rate [14]. Thus its contribution to the overall system energy is
not negligible [77]. Details about models used for liquid cooling in 3D-MPSoCs
are presented in Section 3.3.

6.1.1 Centralized thermal management

The first contribution of this chapter is a novel centralized thermal manage-
ment approach for 3D stacks that controls both DVFS and a variable-flow
liquid cooling using convex optimization to meet the desired performance and
minimal energy requirements.

The optimization is centralized and performed online by an embedded
solver. The process is applied at run-time using the convex-solver proposed by
[34]. At this stage the convex solver finds the optimum frequency assignment
for the inputs of the MPSoC system that will maximize performance under
temperature constraints.

Results on the case study described in Section 6.2 show that the proposed
method guarantees that scenarios with dangerous thermal profiles are avoided
while satisfying the application performance requirements.

Moreover, cooling energy is reduced by up to 50%, as compared with state
of the art liquid cooling policies. In addition, the proposed policy keeps the
average thermal profile up to 18◦C lower compared with state of the art polices
using variable-flow liquid cooling, like [77].

6.1.2 Hierarchical thermal management

The second contribution of this chapter is an online hierarchical thermal man-
agement policy for high-performance 3D systems with liquid cooling. Our
proposed controller uses an approach with a global controller regulating the
active cooling and local controllers (on each layer) performing dynamic voltage
and frequency scaling (DVFS) and interacting with the global controller.

Then, the on-line control is achieved by policies that are computed off-
line by solving an optimization problem that considers the thermal profile
of 3D-MPSoCs, its evolution over time and current time-varying workload
requirements. The proposed hierarchical scheme is scalable to complex (and
heterogeneous) 3D chip stacks.

6.2. 3D-MPSoC case study 85

Silicon Layer 3

Silicon Layer 4

Wiring Layer 3

Wiring Layer 4

Ch1 Ch2 Ch3 Chnc

Ch1 Ch2 Ch3 Chnc

Wiring Layer 2

Silicon Layer 2

Ch1 Ch2 Ch3 Chnc

Wiring Layer 1

Ch1 Ch2 Ch3 Chnc

Silicon Layer 1

Tier 1

Tier 2

Tier 3

Tier 4

Figure 6.1: Structure of the 4-tier 3D-MPSoC model with interlayer liquid cool-
ing.

Results on the case study described in Section 6.2 show significant advan-
tages in terms of energy savings that reaches values up to 50% versus state-
of-the-art thermal control techniques for liquid cooling, and thermal balance
with differences of less than 10oC per layer.

6.2 3D-MPSoC case study

6.2.1 Layout and Technology Specifications

A typical structure of 3D-MPSoC consists of two or more more silicon tiers,
with the processing and storage elements of the system. Interlayer liquid
cooling is realized by etching microchannels in silicon and creating porous
structures of different form and shapes. Etching must take into account the
Through Silicon Vias (TSVs) allocation and spacing requirements.

Figure 6.1 shows an example of a 4-tier 3D-MPSoC with multiple inlets
and outlets in different parts of the tiers, as we target in this paper. In this
figure the wiring layer is explicitly shown, as thermal properties of interconnect
(usually copper) are different from silicon. In this example we show four dif-
ferent floorplans (A, B, C, D) (see Figure 6.2) in the silicon tiers with various
processing cores (i.e., UltraSPARC Niagara T1 described by Kongetira et al.
[43]), with independent clock frequency and voltage supplies, interconnects
(crossbar) and memories (scdata).

In our thermal model of this 3D-MPSoC, the parameters are provided in
Table 6.1. This table contains the thermal conductance and capacitance values
of different materials used in modeling the stack.

86 Policies for Thermal Control with Liquid Cooling

Figure 6.2: Floorplan of the used silicon tiers in our 3D-MPSoC model.

Table 6.1: Thermal and Floorplan parameters deployed in the model

Parameter Value

Silicon conductivity 130W/(m ·K)
Silicon capacitance 1635660J/(m3 ·K)
Wiring layer conductivity 2.25W/(m ·K)
Wiring layer capacitance 2174502J/(m3 ·K)
Water conductivity 0.6W/(m ·K)
Water capacitance 4183J/(kg ·K)
Die thickness (one stack) 0.15mm
Area per core 10mm2

Area per L2 cache 19mm2

Total area of each layer 115mm2

6.2.2 Frequency Setting and DVFS

This architecture has a maximum operating frequency of 1.2 GHz. To imple-
ment the voltage and frequency scaling techniques, we use frequencies ranging
from 0 to 1.2GHz.

In this range, only specific values of frequencies are allowed, thus the values
for the frequencies different from 0 are expressed by Equation 6.1.

f =
6 · 109

Df

∀ Df , subj. to : 5 ≤ Df ≤ 35 (6.1)

where Df is the division factor needed by the clock tree generator. To simu-

6.2. 3D-MPSoC case study 87

Table 6.2: Microchannel-based parameters used in different topologies

Parameter straight channel Bent channel

Channel width 50µm 50µm
Channel height 100µm 100µm
Channel pitch 150µm 150µm
Channel length 11mm 2.5− 11mm
Number of channels per tier 67 90
Max flow rate per tier 0.0323l/min 0.0686l/min

late the system we used different benchmarks, ranging from web-accessing to
playing multimedia [22], [23].

6.2.3 Cooling Model

In our approach, we experiment with both straight and bent microchannels,
having 2 and 4 ports respectively (see Figure 3.8). In both cases the microchan-
nel cross section is constant. The straight microchannels have all equal length
(i.e., they go from side to side of the chip). The length varies in bent channel
structures.

The geometry of the cooling layer is related to the following factors: the
microchannel topology and dimensions, and the TSVs sizes and spacing re-
quirements. In our model, we use 50µm diameter TSVs with 100µm spacing
requirements. The microchannel-related parameters is shown in Table 6.2 for
both straight and bent channels. This table shows that the amount of injected
fluid in the case of bent channels is more than that of straight channel. This
increase implies better heat removal capabilities, but the increase in flow rate
comes with an increase of the pumping power.

We assume that there is only one pump connected to all microchannels
of all the layers, such as a centrifugal pump EMB MHIE [29], is responsible
for the fluid injection to the whole system. This pump has the capability of
producing large discharge rates at small pressure heads.

Liquid is injected to the stack from this pump via a pumping network.
To enable using different flow rates for each stack, we control the fluid via
control valves we include in the network. We assume normally closed valves
(NCV) provided by Festo group [32]. NCVs use external power to reduce
the pressure drop and to increase the flow rate. Without loss of generality,
this configuration is scalable into different pumping networks, where different
valves are used to control the fluid in every tier.

88 Policies for Thermal Control with Liquid Cooling

Figure 6.3: Electric current absorption (power consumption) and flow rates of
the cooling infrastructure per one tier. Data from [32]

6.2.4 Cooling System Power Consumption

Figure 6.3 shows the relation between the increase of electric current (power)
absorption consumed by the pump and the increase of injected fluid. As it can
be noted there is a quadratic dependance between the current absorption and
the liquid cooling flow rates.

Figure 6.4 shows the power consumed by the pump and valve per tier to
inject the fluid from a single at a certain flow rate and pressure difference. In
the case of straight channels, we use the same plotted values. However, in the
case of bent channels, we increase the energy consumed by the pump only to
account for the increased amount of injected fluid at the same pressure differ-
ence. Unlike the valve energy which is a function of the pressure difference,
not the flow rate. Thus, the valve energy remains the same for both straight
and bent channels.

6.2.5 3D-MPSoC Power Consumption

To perform the thermal evaluation and calculate the temperature distribution
among the chip, we refer to power consumption values we got in Section 5.2.4.
These values are derived from the work by Leon et al. [49] and are used for
each of the units of the 4 tiers composing the 3D structure of Figure 6.2.

We dynamically calculate the leakage power of processing cores as a func-
tion of their area and actual run-time temperature. We use a base leakage
power density of 0.25Wmm2 at 383◦K for 90nm technology [9]. Thus, the

6.3. Centralized Thermal Management 89

� �� ��� �� �
� � � � � � � � � � � � � �� 		
� ��	��� ��������� ������� �� �� � !" # $ % & ' () * + * ') , * ' - . / 0 , 1 23 ($ 4 * 5 6 0 +

Figure 6.4: Power consumption and flow rates of the cooling infrastructure per
one tier.

leakage power at a temperature T ◦K is given by: P (T) = Po · eβ(T−383), where
Po is the leakage power at 383◦K, and β is a technology dependent coefficient.
We set β = 0.017 [77].

6.2.6 Benchmarks

We use workload traces collected from real applications running on an Ultra-
SPARC T1. We record the utilization percentage for each hardware thread at
every second using mpstat for several minutes for each benchmark.

We use various real-life benchmarks including web server, database man-
agement, and multimedia processing. The web server workload is generated
by SLAMD [82] with 20 and 40 threads per client to achieve medium and high
utilization, respectively.

For database applications, we experiment with MySQL using sysbench for
a table with 1 million rows and 100 threads. Finally, we run several instances of
the mplayer (integer) benchmark as typical examples of multimedia processing.
The utilization ratios are averaged over all cores throughout the execution.

We assume as initial condition, the system to be at room temperature set
equal to 300◦K.

6.3 Centralized Thermal Management

6.3.1 Policy computation

The proposed thermal management approach uses both DVFS and variable-
flow liquid cooling to meet the desired requirements, which are represented
by a two-term cost function. The first one is related to power minimization
(3D-MPSoC power consumption and liquid cooling pumping system power
consumption) and the second one to the performance loss (undone work). The
solution of following minimization are the 3D MPSoC frequencies and cooling
pumps speeds necessary to meet the desires requirements. The control problem

90 Policies for Thermal Control with Liquid Cooling

is formulated as the following convex optimization problem:

J =
h∑

τ=1

(
‖Rpτ‖j + ‖Tuτ‖b

)
(6.2)

min J (6.3)

subject to : fmin ¹ fτ ¹ fmax ∀ τ (6.4)

xτ+1 = Axτ + Bpτ ∀ τ (6.5)

C̃xτ+1 ¹ tmax ∀ τ (6.6)

uτ º 0 ∀ τ (6.7)

uτ = wτ − fτ ∀ τ (6.8)

lτ º µfα
τ ∀ τ (6.9)

−w ¹ mτ+1 −mτ ¹ w ∀ τ (6.10)

0 ¹ mτ ¹ 1 ∀ τ (6.11)

pτ = [lτ ;mτ] ∀ τ (6.12)

It is important to highlight that the matrices A, B used in previous equations
are constant during the h time steps the system tries to minimize the cost
function J , and are then updated every time the policy is applied. In our
optimization problem formulation, h is the time horizon [2](or number of time
steps) to minimize the cost function J. Then, matrices A, B are constant
during these next h time steps, and are then updated every time the predictive
policy is applied.

Function J is expressed by a sum where the summation index τ ranges
from 1 to h. The first term ‖Rpτ‖j is the j norm (in our implementation
j = 1) of the power input vector p weighted by matrix R. Power consumption
is generated here by two main sources: the voltage-frequency setting of the 3D
MPSoC and the liquid cooling pumping power. Vector p is a vector containing
normalized power consumption data of both the cores and the cooling pumps.
Matrix R contains the maximum value of the power consumption of both the
cores (first p diagonal entries) and the cooling pumps (last z diagonal entries).

The second term ‖Tuτ‖b is the b norm (in our implementation b = 1)
of the amount of predicted required workload that has not been executed.
The weight matrix T quantifies the importance that executing the workload
(required from the scheduler) has in the optimization process.

Inequality 6.4 defines the range of working frequencies that can be used.
It enables a continuous range of frequency settings but this does not prevent
from adding in the optimization problem a limitation on the number of allowed
frequency values. Equation 6.5 defines the evolution of the system according to
the present state and inputs. Equation 6.6 states that temperature constraints
should be respected at all times and in all specified locations. Since the system
cannot execute jobs that have not arrived, every entry of uτ has to be greater
than or equal to 0 as stated by Equation 6.7. The undone work at time τ , uτ is
defined by Equation 6.8. Equation 6.9 defines the relation between the power

6.3. Centralized Thermal Management 91

vector l and the working frequencies. µ is a technology-dependent constant.
Since all constraints in the minimization problem must be convex functions,
we relaxed the original power equation to the convex inequality of Equation
6.9. By doing this operation we changed the original minimization problem
to the problem described by the convex Equations 6.2-6.9. It can be shown
that the resulting relaxed convex problem is equivalent to the original problem
with the equality constraint [12].

Equation 6.12 defines formally the structure of vector p. Vector l ε <p is
the power input vector, where p is the number of frequency islands composing
the 3D-MPSoC. Vector m ε <z contains the normalized amount of cooling
power for each of the z independent pumps. Equations 6.10-6.11 define con-
straints on the liquid cooling management. Equation 6.11 states that m is
a normalized value and it can range from 0 to 1. Equation 6.10 defines the
maximum increment/decrement that the normalized pump can have between
two consequent applications of the policy. In other terms this value takes into
account the mechanical time dynamics of the pump. Their values are stored
in vector w ε <z.

The result of the optimization is an optimal sequence of future control
moves (i.e., frequency settings for the cores of the 3D MPSoC which are stored
in vector f). To increase the performance of our proposed policy, history infor-
mation about the task arrival process are exploited by the proposed algorithm.
Matrix T is chosen accordingly to the reliability of the workload prediction.
We have selected these parameters to achieve a good prediction, according to
empirical studies performed on different benchmarks [22].

6.3.2 Policy setup

According to the general model of Equations 6.2-6.9, the problem formulation
is the following. Matrix T is set to be an identity matrix while matrix R
contains the maximum value of the power consumption of both the cores and
the cooling pumps (power values from [20]). The policy minimizes the sum of
all contributions to the 3D MPSoC power consumption as well as the undone
workload. For this reason, we set both the norms b and j to 1.

All the others constraints expressed by Equations 6.4-6.9 are considered
inside the problem formulation. The policy is applied every Tpol = 10ms,
while the simulation step for the discrete time integration of the RC thermal
model has been set to 200µs. The maximum temperature limit is set to 370◦K.
The room temperature and tfluid are set to 300◦K. In the problem formulation,
we used α = 2 to establish the relation between the frequency setting and the
power consumption. The linear predictor has been designed using a 3rd order
polynomial equation, an observation window of 600ms and a prediction length
equal to 50ms in the future. The optimization process is done online using
the convex solver proposed in [34]. These operations, have been performed on
standard processors (i.e., Core Duo @ 2GHz) in few tenth of microseconds.
This time is 3 orders of magnitude smaller compared with the time the policy

92 Policies for Thermal Control with Liquid Cooling

is applied (i.e.10ms). The time constants needed by the mechanical dynamics
of the cooling pumps to go from 0 to maximum power is set to 400ms.

6.3.3 Experimental results

Policies under comparison

In our experiments, we compare the proposed 3D thermal management method
with state-of-the-art thermal management techniques based on DVFS, load
balancing and variable flow liquid cooling ([20], [77], [26]).

Dynamic load balancing (LB) [26] balances the workload by moving threads
from a core’s queue to another if the difference in queue lengths is over a thresh-
old. Temperature-triggered task migration (TTTM) [26] moves tasks from a
core if that core exceeds the threshold temperature. TTTM has an impact
on performance resulting from the time overhead required to move tasks be-
tween the cores (e.g., context switch overhead and cold start effects). We
assume a 1ms overhead when a thread is migrated to a new core [20], [77].
For previously mentioned polices, if the temperature goes higher than 420◦K,
the system shuts down until the maximum MPSoC temperature returns be-
low 250◦K. In temperature triggered DVFS (TTDVFS) [26] the voltage
and frequency settings are reduced to the 10% of the maximum value when
the maximum MPSoC temperature exceed the threshold value set to 370◦K.
TTTM and TTDVFS can also be combined into a joint policy called (TTTM
TTDVFS) [26].

We experiment with both air-cooled (AC) and liquid-cooled (LC) systems
for comparison purposes. In LC LB, we apply 100% of the maximum flow
rate (0.0323 l/min per cavity [77]). We also consider in the comparison state
of the art liquid cooling methods recently proposed in [20] and [77]. These
methods employ a variable-flow liquid cooling combined with DVFS. We refer
to the first method as LC VF and to the second one as LC Fuzzy.

Hotspots prevention

Thermal impact of all the policies on the system is shown in Figure 6.5. This
figure compares the percentage of time spent above the threshold temperature
set to 370◦K. Thus shows each bar the area distribution of the dimension of
the hotspot as percentage of the overall MPSoC area.

The first four policies are air cooled methods, while the last four are liq-
uid cooled. The first ones are not able to avoid hot spots. AC LB and
AC TTTM present hot spots for more than 67% of the execution time, and
in addition to that, these hot spots affect more than 80% of the total MP-
SoC area. Methods using temperature-triggered DVFS show a better perfor-
mance. This can be noted by looking at the results for AC TTDVFS and
AC TTTM TTDVFS. They indeded present hot spots for only 34% and

6.3. Centralized Thermal Management 93

Figure 6.5: Percentage of run-time execution where the maximum MPSoC tem-
perature is higher than the threshold(370◦K). The area of the hotspot is also
provided as a percentage of the overall MPSoC area

35% of the execution time, respectively. In addition to that these hot spots
cover less than 20% of the overall MPSoC area.

Air cooled policies do not completely avoid hotspots. The reason is because
the 4-tier stacked architecture has problems in dissipating the heat of inner
layers by using only a heat spreader. Liquid cooling techniques completely
avoid any hotspots scenario. The reason is because of their capability to cool
inner layers of the 3D-MPSoC of Figure 6.2.

Workload execution performance

Figure 6.6 shows the percentage of the workload requested from the MPSoC
that has not been executed due to thermal problems. This is a direct mea-
sure of the performance of the system. Liquid cooling policies provides a
value of undone workload that is less than 1% of the overall executed work-
load. Air cooled polices provide values ranging from 24%(AC LB) to 31%
(AC TTDVFS).

Previous results show the reason why there is a need for liquid cooling for
3-D structures including multiple layers connected to each others. Because
of the fact that we are interested in techniques that avoid hot spots while
satisfying performance requirements, we restrict now our comparison to liquid

94 Policies for Thermal Control with Liquid Cooling

Figure 6.6: Undone work as a percentage of the overall requested workload

cooling methods.

Energy consumption and thermal profile

The left graph of Figure 6.7 shows the overall energy consumption of the
3D MPSoC. It is divided here into two contributions. The first one is the
one absorbed by the cooling network (pumps+valves) while the second is the
energy absorbed by the MPSoC activity (switching+leakage). The simplest
policy LC LB shows the highest energy consumption. The value of the cooling
power here represents 24% the overall 3D MPSoC energy consumption. For
this reason, LC VF [20] and LC Fuzzy [77] have been proposed. We tested
these policies on our experimental setup. They show a reduction in the cooling
power consumption by approximately 30% and 50% respectively, according to
what mentioned in [77] and [20]. The proposed technique has a cooling and an
overall 3D MPSoC power consumption that is respectively 50% and 7% lower
compared with LC LB. If we compare our policy with the recently presented
technique LC Fuzzy [77], we see approximately the same saving in terms of
cooling power and a 3% saving in the overall MPSoC consumption.

To better emphasize advantages of this policy versus LC Fuzzy, the graph
on the right side in Figure 6.7 is presented. This graph shows the average
maximum 3D MPSoC temperature for all the policies under comparison. It
is important to emphasize here that from Figures 6.5 and 6.6 we know that
all the policies completely avoid hot spots and execute the workload requested
from the 3D MPSoC by the scheduler. The lowest thermal profile among the
compared policies is generated by the LC LB. In this case the maximum

6.4. Distributed Hierarchical Thermal Policy 95

Figure 6.7: left graph: energy consumption of the overall system: 3D MPSoC
power consumption and cooling network. Values are normalized to LC LB; right
graph: average maximum 3D MPSoC temperature [◦C]

MPSoC temperature has an average value of 54◦C. LC LB and LC Fuzzy
show a thermal profile having an average maximum temperature of 89◦C and
92◦C, respectively. The reason is because both these systems save energy by
reducing the cooling cost and by having the system working at a temperature
close to the threshold set to 97◦C. The proposed policy is able to keep the
thermal profile 18◦C lower compared with LC Fuzzy. The main reason is
because the predictive problem formulation of the proposed method is able to
satisfy performance requirements by acting in advance and this enables the
policy to act slower on the system and so to save active power. This keeps the
thermal profile colder and this turns also into a leakage power saving.

6.4 Distributed Hierarchical Thermal Policy

6.4.1 Hierarchical structure

The structure of the proposed hierarchical thermal management system is
shown in Figure 6.8: the 3D-MPSoC architecture is partitioned into p tiers
(or layers) where, without loss of generality, each tier is a subsystem of the
3D-MPSoC. In our exploration, we define a tier as a complete layer.

Moreover, any tier consists of several units. These units could be cores,
memory storage units, or other computational units (e.g., ASIC or custom

96 Policies for Thermal Control with Liquid Cooling

Figure 6.8: Structure of the proposed hierarchical thermal management system

hardware blocks). Then, the units inside each tier, say tier i, are partitioned
into q(i) frequency islands, and a local thermal controller manages the q(i)
islands, i.e., sets the frequencies and voltages to all (controllable) components
inside the tier. Objectives of local controllers include preventing hot-spots
and minimizing undone workload. Specific requirements (e.g. workload) come
from a centralized unit (i.e., the global thermal controller in Figure 6.8), which
is responsible for the holistic coordination of the p local thermal controllers,
and which regulates the heat extraction of the cooling system by setting the
pressure of the coolant liquid (by controlling the cooling pump and/or the
controlling valve).

This hierarchical structure is crucial for scalability and feasibility of large
MPSoCs [30]. Indeed by using this hierarchical approach, we can significantly
simplify the function and overhead of the global controller by using local ther-
mal controllers. Moreover, this structure enables the global and local con-
trollers to be executed with different rates, e.g., the optimization of the global
controller can be executed at least one order of magnitude less frequently as
compared to the local regulators. The global controller manages the pumping
flow rate, which is much slower process than DVFS.

6.4. Distributed Hierarchical Thermal Policy 97

Figure 6.9: Communication protocol between the global and the local controllers
of the proposed method

6.4.2 Run-time interaction: global and local controllers

The communication protocol between the local controllers and the global one
is shown in Figure 6.9. Initially, the global controller receives a workload
requirement from the scheduler as well as a data vector containing their work-
load fulfillment status in each specific tier from all the p local controllers. This
data vector contains two pieces of information: i) the maximum temperature
measured on line in the corresponding tier, ii) the already executed workload.
Indeed this last information provides the global controller with an overview
about how well the local controllers are performing in trying to fulfill overall
requirements.

Moreover, as the workload fulfillment data from all the local controllers
are collected and processed, the global unit splits the overall workload into p
components. Hence, for each local controller, the global unit sets the amount
of workload it has to execute. It is important to notice that the controller
does not perform detailed task assignment, but just sets individual targets for
each tier to satisfy the overall workload. The pressure of the coolant liquid is
set during this process by the global controller, which performs this operation
periodically, with a period of TGC . Once these tasks are performed, the global
controller stays still for the rest of the period TGC . Concurrently each local con-
troller sets periodically the DVFS value of all related islands, but with another
period TLC , such that TGC = n · TLC , n ∈ Z+. The local controllers manage

98 Policies for Thermal Control with Liquid Cooling

Figure 6.10: Design phase and run-time phase of the proposed hierarchical ther-
mal management

independently the corresponding subsystems and they can communicate with
the global thermal management unit only once in the period TGC .

6.4.3 Design and implementation

The design and implementation of the proposed management scheme consists
of two phases, i.e., design phase and run-time phase, which are shown in Figure
6.10. The design phase is performed off-line to compute and generate the
optimized control decisions of both local and global controllers. Afterwards,
these decisions are allocated in a look-up table-based implementation, at design
phase, to be used by the global and local controllers at the run-time phase.

To compute the tables needed for the implementation of the local con-
trollers, all design data related to the structure of the 3D-MPSoC (e.g., el-
ements layout, thermal conductivity of materials,...) are used to create an
accurate thermal model for each one of the p tiers composing the 3D-MPSoC
(upper part of Figure 6.10). This model has a fine granularity and can be for-
mulated as an optimization problem. Different explicit solutions (for various

6.4. Distributed Hierarchical Thermal Policy 99

values of the input parameters and optimization goals) are then stored into
tables to be used at run-time. To compute the table needed for the imple-
mentation of the global controller, we build a coarse-grained thermal model of
the 3D-MPSoC and of the cooling system (e.g., the available pumping power
values, microchannel layout,...).

During run-time, both the global and the local controllers apply the rules
stored in the aforementioned look-up tables. Each local controller generates
the frequency setting for its tier elements, at the processing element-level gran-
ularity, while the global controller sets the pressure for the cooling system
pump.

The overall system uses software-driven thermal management. That is,
the control action is done by software routines (for both the local and global
controller) that access the pre-computed data in the tables. These tables
represent the control policies. Their computation is described in the following
subsections.

Since the global controller performs the major decisions by frequent com-
munication with all local controllers and performing the major control actions
to them and the coolant system, a dedicated thread resembling the global
controller routine is always active. Moreover, this thread is assigned to single
dedicated processing unit that is fully utilized. Being fully utilized implies
that, this element should be exposed to the maximum cooling ability available
in the system. Thus, in our case of 3D-MPSoC with liquid cooling, a process-
ing element that is nearest to the fluid inlet port(s) at any tier is a possible
candidate to be allocated to the global control routine [77].

6.4.4 Policy computation: global thermal controller

The global thermal controller is the unit responsible for the global joint oper-
ation of all local controllers and for the pump control which sets the coolant
pressure.

The workload to be dispatched to each local controller is stored in vector
fτ . The p entries of this vector contain the average frequency of operation
at which each local controller has to work in order to execute the workload
assigned to its controlled tier by the global unit.

The global controller policy minimizes power and undone workload. Fur-
thermore, the performance requirements coming from the scheduler have to be
fulfilled and the maximum temperature constraint satisfied. The problem can

100 Policies for Thermal Control with Liquid Cooling

be defined as follows:

J =
h∑

τ=1

(
‖Rpτ‖+ ‖Tuτ‖

)
(6.13)

min J (6.14)

subject to : fmin ¹ fτ ¹ fmax ∀ τ (6.15)

xτ+1 = Axτ + Bpτ ∀ τ (6.16)

C̃xτ+1 ¹ tmax ∀ τ (6.17)

uτ º 0 ∀ τ (6.18)

uτ = wτ − fτ ∀ τ (6.19)

lτ º µf2
τ ∀ τ (6.20)

−w ¹ mτ+1 −mτ ¹ w ∀ τ (6.21)

0 ¹ mτ ¹ 1 ∀ τ (6.22)

pτ = [lτ ;mτ] ∀ τ (6.23)

where matrices A, B are related to the overall 3D-MPSoC system de-
scription. These matrices represent the 3D-MPSoC system using a coarse
granularity of the thermal cells and where the sampling time of the resulting
discrete-time system is TGC . We define the horizon of this predictive policy as
h [2]. Then, the objective function J is expressed by a sum over the horizon.

In this equation, the first term ‖Rpτ‖ is the norm of the power input vector
p weighted by matrix R. Power consumption is generated here by two main
sources: i) the workload setting and ii) the liquid cooling pumping power.
Vector p is a vector containing normalized power consumption data the p tiers
and the pumping power. Matrix R contains the maximum value of the power
consumption of the tiers (first p diagonal entries) and the cooling system (last
entry). The second term ‖Tuτ‖ is the norm of the required workload, but not
yet executed. To this end, the weight matrix T quantifies the importance that
executing the required workload from the scheduler has in the optimization
process. Then, Inequality 6.15 defines a range of working frequencies to be
used, but this does not prevent from adding in the optimization problem a
limitation on the number of allowed frequency values.

Equation 6.16 defines the evolution of the 3D-MPSoC according to the
present state and inputs. Equation 6.17 states that temperature constraints
should be respected at all times and in all specified locations. Since the system
cannot execute jobs that have not arrived, every entry of uτ has to be greater
than or equal to 0 as stated by Equation 6.18. The undone work at time τ ,
uτ is defined by Equation 6.19. Equation 6.20 defines the relation between
the power vector l and the working frequencies. µ is a technology-dependent
constant.

Then, Equations 6.21-6.22 define constraints on the liquid cooling manage-
ment. The normalized pumping power value (m) scales, and any time instance
τ , from 0 (no liquid injection) to 1 (power at the maximum pressure difference

6.4. Distributed Hierarchical Thermal Policy 101

allowable), as shown in Equation 6.22. Moreover, we limit the maximum incre-
ment/decrement change in the pumping power value from time (τ) to (τ + 1)
by a another normalized value w, as shown in Equation 6.21, which models
the mechanical dynamics of the pump. Although we assume one pump in the
target 3D-MPSoCs, since we use a vector notation for the pumping power and
its constraints, our formulation is valid for multiple pumps as well.

Equation 6.23 defines formally the structure of vector p. Vector l ε <p is
the power input vector, where p is the number of tiers of 3D-MPSoC.

Finally, we formulate the control problem over an interval of h time steps,
which starts at current time τ . Therefore, our approach is predictive. In-
deed the result of the optimization is an optimal sequence of future control
moves (i.e., amount of workload to be executed in average for each tier of the
3D-MPSoC which is stored in vector f). Then, we only apply to the target
3D-MPSoC the first samples of such a sequence; the remaining moves are dis-
carded. Thus, at each next time step, a new optimal control problem based
on new temperature measurements and required frequencies is solved over a
shifted prediction horizon (e.g., the ”receding-horizon” [2] mechanism), which
represents a way of transforming an open-loop design methodology into a feed-
back one,as at every time step the input applied to the process depends on the
most recent measurements.

As already presented in Section 5.4.2, this problem can be transformed so
that the solution is given by the linear system

yτ+1 = Fj

xτ+1

f2τ
w2

τ

 + gj (6.24)

where y is the desired solution as a vector containing the workloads and the
pump power, matrix Fj is a suitable matrix, and gj a suitable vector defined
over subregions of the solution space indexed by j. We refer the reader to [2]
and [99] for details. In [99] an approximate computation method of the regions
shows a consistent reduction in the number of storage space with a negligible
performance loss.

6.4.5 Policy computation: local controllers

The p local controllers are responsible for the thermal management (e.g.,
DVFS) of the p tiers of the target 3D-MPSoC. Then, for each tier i the local
controller sets frequency and voltage for the q(i) frequency islands (cf. Figure
6.11).

In our hierarchical design, the local controller i receives as input the vector
ft+1, which is the average frequency at which island i has to run to execute
all the workload assigned to it by the global unit. As a second input data,
some thermal sensors provide the thermal profile of the 3D-MPSoC island.
We assume that the thermal sensors are optimally allocated as shown in pre-
vious work [97]. Thus, the impact of thermal sensor quality and allocation on

102 Policies for Thermal Control with Liquid Cooling

Figure 6.11: Local policy controller block diagram.

the management policy is beyond our scope. The local policy computes the
frequencies and voltages for all the q(i) units inside island i, as sketched in
the dotted box of Figure 6.11. Input data are used as both computing and
selection parameters to choose one of the k functions stored in pre-computed
look-up tables.

The local controller decides on the type of optimization to perform: either
performance or power-oriented optimization and the related policies are stored
in the corresponding tables. Specifically, the control policies optimize power
and undone workload. We use an optimization parameter γ that weights these
two objectives. At the same time, performance requirement coming from the
global controller has to be fulfilled and the maximum temperature constraint
satisfied.

The control function is expressed by a policy that is the solution of the
following optimization problem:

6.4. Distributed Hierarchical Thermal Policy 103

J =
h∑

τ=1

(
‖Rpτ‖+ γ‖Tuτ‖

)
(6.25)

min J (6.26)

subject to : 0 ¹ vτ ¹ vmax ∀ τ (6.27)

xτ+1 = Axτ + Bpτ ∀ τ (6.28)

C̃xτ+1 ¹ tmax ∀ τ (6.29)

uτ º 0 ∀ τ (6.30)

uτ = (fτ)i −
∑

vτ ∀ τ (6.31)

pτ º µv2
τ ∀ τ (6.32)

where matrices A, B are related to the thermal modeling of the specific
tier that the local controller is supervising. The objective function J expresses
the minimization problem by a weighted sum of two terms, in a similar vein as
the global policy is computed, except for the tuning parameter γ. Parameter
γ changes according to the specific type of optimization criteria for each tier.
It ranges from 0 to 1 in steps of 0.1. We set this parameter at run-time
based on the maximum temperature recorded according to a heuristic rule: the
hotter the thermal profile, the lower γ is, and vice versa. Thus, the controller
performs performance-oriented optimization in the case of cold thermal profile,
but power saving oriented optimization in case of a hot thermal profile. γ is
used at run-time to choose from a set of tables, as shown in Figure 6.11. In the
next subsection, we present the generated design space by the parameter γ,
and quantify how it significantly affects the power and performance trade-offs
of the local policy design.

As in the previous case, this problem can be transformed so that the solu-
tion is given by the linear system:

yτ+1 = Fj

xτ+1

v2τ
f2
τ

 + gj (6.33)

where y is the desired solution as a vector containing the frequencies of the
various islands for the tier under consideration.

6.4.6 Policy setup

The global thermal controller activation period is TGC = 1s, while the local
policies are applied every TLC = 10ms. The simulation step for the discrete
time integration of the RC thermal model has been set to 200µs. The max-
imum temperature limit is set to 370◦K. The room temperature and fluid
temperature (Tfluid) are set to 300◦K. In the problem formulation, to estab-
lish the relation between the frequency setting and the power consumption,

104 Policies for Thermal Control with Liquid Cooling

we use a quadratic relation as in Murali et al. [62]. The time constants needed
by the mechanical dynamics of the cooling pumps to go from 0 to maximum
power is set to 400ms.

We vary the parameter γ in the local policies from 0 to 1 with steps of 0.1.
Since every value of this parameter is associated with a different look-up table,
there are 11 tables in the local controller.

6.4.7 Compared 3D-MPSoC thermal management policies

In our evaluation of the proposed hierarchical management policy thermal and
energy efficiency, we implement different state-of-the-art thermal management
techniques that we elaborate on them as follows:

• Liquid cooling with load balancing (LC LB) [26, 21] (the default
implementation in most operating systems): it applies the maximum flow
rate (0.0323 l/min per tier), while balancing the workload by moving
threads from a core’s queue to another if the difference in queue lengths
is over a threshold.

• LUT-based varying flow rate with TALB (LC VAR) [20]: it
changes the flow rate (between 0.01-0.0323 l/min per tier) based on
the predicted maximum temperature, but the jobs are scheduled with
temperature-aware 3D load balancing [20].

• Fuzzy control-based thermal management (LC FUZZY) [77]: it
uses a run-time fuzzy control to alter the flow rate (between 0.01-0.0323
l/min per tier) and tunes the voltage and frequency values of the pro-
cessing elements.

In our evaluation, we use the straight microchannel-based cooling layer with all
policies, while we use the bent microchannel-based cooling layer with LC LB
and our proposed hierarchical policy.

6.4.8 Results

In our evaluation of different thermal management policies, we compare our
proposed policy with respect to the other management techniques mentioned
above based on the:

• Maximum and average temperatures.

• Thermal gradients.

• Power consumption and performance degradation.

In the following subsections, we elaborate on each of the aforementioned met-
rics.

6.4. Distributed Hierarchical Thermal Policy 105

�� �� �� �� �� �� �� �	 �
 �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ! � � " # $ � � � � " !% & ' () * + , ' - � � " # $ � � � � " !% . / 0 ' -1 2342567 8529 :;

< � � � � � = > � � � � ? � � � � @ � � � � � � < � � � � � = > � � � � ? � � � < � A B C � D E C � F �G /) H ' / I J / () ' K (/ %) L / () + / - G /) H ' / I J / () ' K (/ % M) N O P (H Q P) R -
Figure 6.12: Peak and average temperatures observed using all the policies,
both for the average case across all workloads and maximum workload on 4-tier
3D-MPSoC.

Maximum and average temperatures

Thermal impact of all the policies the 4-tier 3D-MPSoC is shown in Figure
6.12. In this figure, we show in the peak and average temperature recordings.
Interlayer liquid cooling has the ability to absorb the heat flux between differ-
ent tiers surrounding the cooling layer, regardless the used structure. LC LB
reduces the peak temperature to 47oC, whereas LC FUZZY and LC VAR
push the system into a higher peak of 52oC and 67oC, respectively, but still
avoids any hot-spots. This is the similar case in our proposed hierarchical
policy, where the peak temperature reaches 84oC. The variation from the
peak temperature comes from the fact that main target is to reduce the peak
temperature to any value below 85oC. However, since each technique has a
different management policy, with different control elements, the peak and
average temperatures are affected.

Thermal gradients

We compute thermal gradients in the stack in addition to computing the
peak/average temperatures. We calculate the maximum thermal gradient in
the whole stack as well as the average intralayer thermal gradient of the dif-
ferent source layers in the stack. We define the thermal gradient threshold by
15oC, hence the policy objective is to minimize the maximum thermal gradient
to any value below 15oC.

Figure 6.13 and Figure 6.14 show the maximum thermal gradient and the
intralayer thermal gradient of the 3D-MPSoC with different management poli-
cies. Although interlayer liquid cooling diminishes the thermal hot-spots, it
increases both the intralayer and the maximum thermal gradient of the stack.
This is based on the fact that the fluid grows thermally from the inlet to the
outlet such that the elements near the inlet have more heat removed than

106 Policies for Thermal Control with Liquid Cooling

� �� � �� � �� � �� � �� � � �
	
 � 	 � � � � � � � � � � 	
 � 	 � � � � � � 	
 � � � � 	
 � � � � � � 	
 � ! " � � �
 �# $ % & ' () * % + 	
 � ! " � � �
 �# , - . % +/ 012034560758 90

: ' ;) & ' < (- . % = > ? > ? = : ' ;) & ' < (- . % = > � > � = : ' ;) & ' < (- . %
Figure 6.13: Maximum thermal gradient of the whole 3D-MPSoC stack, using
the average case of all workloads.

the ones at the outlet. Moreover, varying the flow rate, as in LC FUZZY and
LC VAR, increases the thermal gradient, since reducing the flow rate increases
the thermal gradient of the system.

Our hierarchical policy manages to reduce intralayer thermal gradients be-
low 10oC per layer. This is due to that fact that the local controllers distributed
the assigned workload among the controlled elements, taking into considera-
tion their thermal state. Thus, elements with lower temperature gets more
load, while high temperature elements are assigned lower workload.

While using straight microchannels has an impact on the thermal gradient,
the usage of bent microchannels aids in diminishing the maximum thermal
gradient. The peak thermal gradient in LC LB with bent channels, is reduced,
by 58% with respect to using the same policy with straight channels. This
enhancement is based on the fact that there is more fluid pumped to the bent
structure than the straight structure. Moreover, the fluid path is in the bent
channels is relatively shorter than that of straight channels. Thus, the fluid
thermal growth is lower in the bent channel case. Furthermore, the use of
bent channels with our policy aids in reducing the maximum gradient by an
additional 32% with respect to using straight channels.

System and cooling power consumption

Figure 6.15 shows the total consumed power when running the various policies
on the 4-tier MPSoC for the average workload. Energy consumption values
are normalized with respect to the load balancing policy on a system with
LC LB. In this figure, we show that our proposed policy manages to reduce
the cooling power and the overall system power by 60% and 23%, respectively
with respect to LC LB. Moreover, our policy even reduced the cooling energy
more than LC VAR and LC FUZZY by 40% and 22%, respectively.

When the bent channels are used with LC LB, the pumping power con-
sumed is higher than the case with straight channels. This is based on the
same fact that more fluid is pumped in this case, hence more power is needed.

6.5. Summary 107

� �� � �� � �� � �� � �� � � �
� � 	 �
 � � � � � � � � � � 	 �
 � � � � � � � 	 � � � � � 	 � � � � � � � 	 � � � � � � � �� � � � � � � � � � 	 � � � � � � � �� � � � �! "#$"%&'(")'* +"

, - . / 0 1 0 2 3 / 4 / 0 5 6 3 - . 7 � 8 � 8 7 , - . / 0 1 0 2 3 / 4 / 0 5 6 3 - . 7 � � � � 7 , - . / 0 1 0 2 3 / 4 / 0 5 6 3 - .
Figure 6.14: Average intralayer thermal gradient of the whole 3D-MPSoC stack,
using the average case of all workloads.

�� � �� � �� � �� � � �� � 	� � �� � �

 � �
 � � � � � � � � � �
 � �
 � � � � � �
 � � � � �
 � � � � � �
 � � ! " # � � � � ! � � � � � � � � � �
 � � ! " # � � � � ! � � � � � �$ %&'()* +,- ,.,&/01 %.23'45* %.

6 7 8 9 � � � � � : ; : � � � 8 # � � � � :
Figure 6.15: The normalized energy consumption in the whole system (chip and
cooling network) averaged per stack.

However, when the bent channels are used, our policy does not apply the
maximum flow rate since the objective goal is achievable with lower flow rates.
Thus, the consumed pumping power in the bent channel case is of the same
order as the case with straight channels.

6.5 Summary

This chapter has presented two main contributions: a centralized and a dis-
tributed thermal management algorithm for 3D MPSoC. These techniques use
liquid cooling technologies applied to 3D-MPSoCs.

The first contribution of this chapter is a novel centralized thermal man-
agement approach for 3D stacks that controls both DVFS and a variable-flow
liquid cooling using convex optimization to meet the desired performance and
minimal energy requirements. The optimization problem considers the ther-
mal profile of the system, its evolution over time and current time-varying
workload requirements. Our experimental results illustrate that our policy
satisfies performance requirements, maintains the temperature below the spec-

108 Policies for Thermal Control with Liquid Cooling

ified threshold, while reducing cooling energy by up to 50%. The policy also
keeps the thermal profile approximately 18◦C lower compared with state of
the art polices using liquid cooling.

The second contribution of this chapter is an online hierarchical thermal
management policy for high-performance 3D systems with liquid cooling. The
proposed controller has an innovative hierarchical structure that enables the
policy to be both effective in terms of achieving its performance requirements
and simple in terms of hardware implementation. Moreover, the hierarchical
structure of the policy enables the thermal management system to be easily
scalable to any 3D systems. The optimization problem is executed and it con-
siders the thermal profile of the system, its evolution over time and current
time-varying workload requirements. The implementation is done using look-
up tables. Results show significant advantages in terms of energy savings that
reach values up to 50% with respect to state-of-the-art thermal control tech-
niques for 3D stacks with liquid cooling, and a thermal balance with differences
of less than 10oC per layer.

Sensor Placement 7
Any thermal management algorithm to control the system must know the over-
all state (or thermal profile) of the MPSoC. This means that the temperature
of every single cell in which the floorplan has been divided must be known.
Thermal sensors are silicon devices able to measure the temperature of the
material surrounding them, that is indeed silicon.

In this chapter we present three approaches to estimate the thermal profile
from sensors located in some specific locations on the MPSoC floorplan.

109

110 Sensor Placement

7.1 Thermal Profile Estimation

7.1.1 Temperature estimation by sensing devices

This approach derives the thermal profile by means of many sensing devices
placed on the silicon layer. It can be proved both theoretically and experi-
mentally that with a small approximation error (of the order of few percent)
the temperature of a certain copper cell can be considered similar to the one
located in the same position of the silicon layer. The derivation is presented
here by working on the different heat propagation dynamic between the cell
and its neighbors.

Silicon layer

The cell Si−0 transfers heat to cells of the same layer with a rate depending
on the constant Ksi−si. The heat transfer between cell Si−0 and Ci−0 depends
on Ksi−cu. The ratio between these two constants expresses the dominance
relation between the two mechanism of heat transmission. By analyzing the
RC model behind Figure 3.1, we have that:

Ksi−si

Ksi−cu

=
1

2
·
(

hsi

l

)2

(7.1)

where hsi is the height of the silicon cell and l is its width. By assuming hsi <<
l (i.e. a factor of 10 using a cell size of 3mm as shown in the experimental
setup chapter) we have that the dominant dynamic is the one that exchange
the heat between the silicon and the copper layer.

Copper layer

We now analyze the ratio between Kcu−si and two other constants Kcu−cu and
Kcu−RT . The first one is expressed by the following equation:

Kcu−cu

Kcu−si

=
1

2
· Kcu · hcu · hsi

Ksi · l2 (7.2)

where hsi is the height of the silicon cell and l is its width. hcu is the height
of the copper cell. Kcu and Ksi are respectively copper and silicon thermal
conductivity coefficients. Because the last two coefficient have the same order
of magnitude, by assuming hsi << l and hcu << l (from the experimental
setup chapter: hsi = 300µm, hcu = 850µm, l = 3000µm) we have that the
dominant dynamic is the one exchanging heat with Si−0.

The second one is expressed by:

Kcu−RT

Kcu−si

=
Kcu · hsi · Spck

Ksi · (Kcu · l2 + Spck)
(7.3)

where hsi is the height of the silicon cell and l is its width. Spck is the environ-
mental superficial conductance of each cell composing the copper layer. Kcu

7.1. Thermal Profile Estimation 111

and Ksi are respectively copper and silicon thermal conductivity coefficients.
From Equation 7.3, if we assume that hsi >> Ksi/Kcu (true for hsi > 1µm)
and that l >>

√
Spck · hsi/Ksi (from the experimental setup chapter: for

Spck = 16.67m, thanl > 133µm, true in our case since l = 3000µm), we have
that Kcu−RT << Kcu−si.

When all previous assumptions hold, in the heat exchange process (Figure
3.1), the most important dynamics is the one between cells Si−0 and Cu−0. This
means that temperature difference between a silicon cell and the copper cell
above it is negligible compared with temperature differences between these cells
and their respective neighbors. The most important consequence of previous
statement is that the copper layer thermal profile can be assumed to be like
the silicon one with a small error. This way, a full state estimation can be
performed by simply measuring temperatures on the silicon layer.

Simulation Results

The plot of Figure 7.1 shows the percentage error between every cell of the
silicon layer and the one of the copper layer on it normalized to the difference
between the silicon temperature and the ambient one (300◦C).

Figure 7.1: Percentage error between every cell of the silicon layer and the one of
the copper layer on it normalized to the difference between the silicon temperature
and the ambient one (300◦C).

Simulation results show that the temperature is always less than 2.5 % and
the approximation error is around 1.5% for most of the time. This error is the
experimental validation of the approximation explained in Section 7.1.

Another possible source of inaccuracy is represented by the presence of
noise affecting measurements done by thermal sensors. This noise is called
measurement noise. The following simulation shows the amplitude of this
noise and the impact that it has on the estimation of the thermal profile.

112 Sensor Placement

The plot of Figure 7.2 compares the maximum chip temperature with the one
estimated by thermal sensors measurements. As it can be noted, errors up to

5 5.5 6 6.5 7
time [s]

measured temperature
real temperature

Figure 7.2: Maximum chip temperature estimation (in Kelvin degrees): real
versus thermal sensors.

2◦C can be made using thermal sensors. The method presented in following
section will solve this problem.

7.1.2 Temperature estimation by observability

A better approach to estimate these temperatures is to use a state estimator
[33]. A state or thermal profile estimator is an algorithm able to derive the
current thermal profile based on measurements in some specific locations on
the chip with a specific rate. This method enables a reduction in the num-
ber of sensors and also the sensors sampling noise. Equation 7.4 models the
temperature measurement process.

t̃τ = Ctτ (7.4)

The output t̃τ ε <s of our system is the temperature observed by the s on-
chip thermal sensors placed in the silicon layer. Matrix C ε Bs×n, B = {0, 1},
represents a selection matrix that models the placement of a sensor on the
silicon die. Since we are assuming to have distinct measurements coming from
distinct sensors, C has only 1 nonzero element per row and each column can
have at most 1 nonzero element. Figure 7.3 shows a graphical representation of
selection matrix C for the case study floorplan described in the experimental
setup chapter. Cells of the floorplan are numbered starting from the bottom
left corner and ending on the top right corner of the floorplan. Namely ci,j

7.1. Thermal Profile Estimation 113

Figure 7.3: Graphical representation of selection matrix C for the case study
floorplan described in the experimental setup chapter.

is equal to 1 if thermal sensor i is located inside the cell j. For technological
reasons thermal sensors can be placed only on the silicon layer.

The parameter that measures how much a system is observable is called
observability. Observability refers to the property of a system that enables the
reconstruction of the state variables given the inputs [33]. It means that we
are able to reconstruct completely the thermal profile of the chip given the
inputs only by looking at the measurements coming from the sensors, placed
in locations specified by the matrix C. This means that we are assuming to
have in the output vector s distinct temperature measurements coming from
s distinct cells. The rank of the observability matrix Q expresses the number
of states that can be reconstructed from the measurement vector t̃τ . The
observability matrix Q is expressed by the following equation (see [33]):

Q = [C;CA; . . . ;CAn−1] (7.5)

If matrix Q is full-rank, the state vector can be reconstructed completely from
the measurements, the input vector p and matrices A and B identifying the
thermal dynamics of the system (see Equation 3.2).

The problem of selecting the right placement of thermal sensors to both
minimize the number of sensors and maximize observability is the problem of
choosing the matrix C with the minimum number of rows that maximize the
rank of the observability matrix Q. Given an MPSoC model, this problem
depends on the location and the number of sensors inside floorplan (matrix
C). The sensor sampling frequency (f) has as well an influence on the observ-
ability. In next paragraphs we propose a placement algorithm to deal with
just mentioned problem.

114 Sensor Placement

Figure 7.4: Proposed method block diagram

7.2 Full Model Placement Algorithm

This methodology is based on a complete design space exploration of all pos-
sible sensor placements. Then, according to user defined constraints, the con-
figuration that maximizes the observability of the system is chosen. This
approach is a method performing a complete design exploration on the full
model without any model order reduction techniques.

7.2.1 Methodology

The block diagram of the proposed procedure is presented in Figure 7.4. The
method is consists of four steps.

In the first step, experimental data of hot spots locations are recorded dur-
ing the runtime execution of the system. Data can be obtained from real chip
temperature measurements or from simulations using tools such as Hotspot.
These data will point out in which locations an accurate monitoring is needed
in order to identify the rising of potential hotspots. It is important to notice
that these data are not used to define the placement for the sensors. They are
used by the algorithm as a criterion to rank among different sensor placements
having the same observability properties.

In the second step the design space exploration is done on all the possible
sensor placement configurations. First the model is sampled using a frequency
f that ranges from Fmin to Fmax. After that, the number of sensors employed
in the placement is varied from 1 to n. A value of 1 means having only 1
sensor in the whole MPSoC floorplan. At this stage for every value of s and

7.2. Full Model Placement Algorithm 115

f , a total of
(

n
s

)
sensor placement configurations are generated. The possible

configurations have only one sensor per cell. This leads to have a matrix
C having one nonzero element per row and a total of s rows. The rank of
the observability matrix Q is computed for each configuration. In the case
of the experimental setup we are considering described in Section 5.2, the
floorplan consists of 24 cells and the overall computational effort requested
by this approach is feasible. For larger floorplans the model order reduction
method proposed in Section 7.3 may result more appropriate.

The third step performs an optimization based on data collected on both
previous steps plus some additional data. This step performs a selection of the
number of all analyzed sensor placement configurations. First, configurations
that do not allow the estimation of area of the chip that are relevant to the
designer are discarded. If a full profile estimation is needed by the designer,
then, placements leading to observability matrices with rank less than 2n are
discarded. As a second criterion, configurations where sensors are placed on
experimental hot-spots locations (see step 1 of the algorithm) are preferred to
other ones. Remaining placements are ranked according to metrics to measure
the observability of a system (i.e.the observability Gramian [86]-[10]). Finally
according to aforementioned metrics, Pareto point placements are computed.
A specific sensor placement is corresponding to every Pareto point in the plane
sensor number s versus sensor sampling frequency f .

The last step selects the best placement according to the designer defined
criteria based on area occupation(related to s), power consumption(related to
s and f) and sensor sampling frequency (related to f).

7.2.2 Placement results

We applied the proposed algorithm to the case study described in Section
5.2. The overall computation of the proposed algorithm on a INTEL CoreTM2
duo laptop having a frequency of 2GHz (T7200) in the case of a modelling
performed using 24 states took 3.44 minutes. After the first step, we obtain the
design space exploration results of all possible sensor placement configurations.
By plotting the percentage of the observable states over the overall states of
the MPSoC versus the number of sensors used and their sampling frequency,
we obtain the plot of Figure 7.5. As it can be noted from the graph, for a fixed
percentage of the observable states, there are many options. The graph shows
that the number of sensors can be reduced by increasing the sensors sampling
frequency and vice-versa. It is important to notice also that there are many
possible sensor placement configurations associated with any point in previous
graph.

At this stage, among all possible placement configurations we identify
Pareto points inside the design space. Trade-offs are between the number
of sensors and their sampling frequency. The reason is because for a given
observability target, the lower bound of thermal sensors employed depends on
the thermal sensor sampling frequency (see Figure 7.5). According to sim-

116 Sensor Placement

0
20

40
60

80
100

0

100

200

300

400

500
50

60

70

80

90

100

number of sensors [%]sensors sampling frequency [Hz]

ob
se

rv
ab

le
 s

ta
te

s
[%

]

Figure 7.5: Design space exploration of the case study (step 2)

Figure 7.6: Pareto points (steps 3+4) and comparison with [5],[6].

ulations and results from [24] and [43], in our case study, critical areas for
hotspots are the cores and the crossbar located in the central part of the chip.
Moreover, we are interested in monitoring 100% of the states of our MPSoC. In
this case study, the overall Pareto points computation step takes few seconds.
The graph identifying the resulting Pareto points in the plane sensors number
versus sensors sampling frequency is shown in Figure 7.6.

In the last step of the proposed methodology (see Figure 7.4), we assume
a maximum of 3 thermal sensors as possible design constraint on the MPSoC.

7.2. Full Model Placement Algorithm 117

Moreover we want to have a sensor sampling frequency as low as possible.
According to Figure 7.6, the corresponding Pareto point is a 3 sensor con-
figuration with a sampling frequency of 250Hz. This means that if we want
to make the system observable with only 3 sensors, we need to sample them
every 4ms and we need to place them in a specific configuration. This specific
placement is shown in Figure 7.6. This sensor configuration supports a com-
plete estimation of the system and so a complete reconstruction of the thermal
profile of the MPSoC. This operation can be implemented by using conven-
tional estimation techniques (i.e. Kalman filter [33]). This will also correct for
potential noise sources present in thermal sensors.

7.2.3 Comparison with state-of-the-art methods

We compare the method with the approaches proposed by Memik et al. [56]
and Sharifi and Rosing [80]. The algorithm proposed by Memik et al. [56]
finds the sensor placements that provides the best estimation accuracy for a
certain number of sensors, according to experimental hot-spots locations. The
algorithm is based on an interpolation technique based on experimental data
derived from simulations. The algorithm proposed by Sharifi and Rosing [80]
minimizes the temperature differences among the hot-spot temperature and
the one detected by the thermal sensor. Both these algorithms are based on
techniques trying to catch hot spots by using the minimum number possible
of sensors for a certain accuracy.

Our method is not targeting hot spots but the observability of the system.
Once the system is observable, hot spots are automatically detected. The
reason is because the portion of the thermal profile of the chip that is relevant
to the designer can be completely reconstructed from sensors measurements.
The advantage is a strong reduction in the number of required sensors. In our
case study, the cores may run with independent frequencies. This imply that
hot spots are uncorrelated from core to core. Consequently, according to the
works proposed by Memik et al. [56] and Sharifi and Rosing [80] at least one
sensor per independent unit is required to monitor those elements and detect
potential hot spots. Thus, a minimum of 9 sensors (8 sensors for the cores plus
1 sensor for the crossbar) are needed by both techniques to detect all possible
hot spots. Conversely our method needs only 3 sensors, i.e. a reduction of
3×. Moreover Figure 7.6 shows that the gain can reach 4.5× at a sampling
frequency of 500Hz. The proposed method enables the full thermal profile
estimation of the MPSoC by using a number of sensors that is smaller than
the number of the location of potential hot-spots formation regions.

118 Sensor Placement

7.3 Model Order Reduction Placement
Algorithm

This method finds the sensor placement configuration that maximizes the ob-
servability of the system with a greedy algorithm. The algorithm is based on
a model order reduction performed on the thermal model of the MPSoC.

7.3.1 Introduction

In the model described by Equations 3.2 and 7.4, a state is required for every
block of the floorplan, because we need n states to store n temperatures values.
This requirement is expensive in terms of computational cost. The higher the
number of states modelling the MPSoC is, the higher the number of sensors
required for its state estimation is. This could be a problem in case of a
detailed model of a complex 3D-MPSoC including liquid cooling.

This approach finds the best locations inside the 3D-MPSoC where thermal
sensors can be placed using a greedy technique. The advantage is an efficient
method to solve both the sensor placement and the model order reduction of
the MPSoC. Complex MPSoC models are indeed reduced in complexity with
an inaccuracy in the order of few percents. As a result the thermal model
is simpler that the original one and the computational cost of the thermal
management algorithm will be reduced.

The block diagram of the proposed algorithm is presented in Figure 7.7.
The proposed methodology consists of two phases: a design-time phase and a
run-time phase.

During the design phase the thermal management system model is de-
fined. The reduced order MPSoC thermal model and the sensor placement
are the outputs of this off-line phase. The concept behind the proposed sensor
placement technique is based on an analysis of the the balanced state-space
realization of the 3D-MPSoC system and its Hankel singular values decay rate
(see [46], [33] for more details). The number of states of the reduced order
model is fixed according to user designer accuracy requirements, and a specific
location is assigned to each sensor.

During the run-time phase the reduced order system state vector x is es-
timated thanks to a simple state estimator (i.e. Kalman filter) and measure-
ments coming from thermal sensors. Then, this information is used by the
thermal model to perform the optimization on the reduced-order 3D-MPSoC
model pre-defined in the design-time phase.

7.3.2 Model: from structure-centric to energy-centric

First, an accurate 3D-MPSoC thermal model is created according to the model
presented in previous section. This will determine matrices A and B according
to Equation 7.6. We assume here that all temperatures are offsets from room

7.3. Model Order Reduction Placement Algorithm 119

Figure 7.7: Proposed method block diagram

temperature. This way we can omit vector w from Equation 3.2.

tτ+1 = Atτ + Bpτ (7.6)

Locations that the policy needs to monitor to ensure safe working conditions
are determined by the following relation:

t̃τ = Ctτ (7.7)

Equation 7.7 describes the choice of relevant locations to monitor inside the
MPSoC. Matrix C ε B = {0,1}s×n is a selection matrix. In this model we
assume that we want to control locations on the silicon layer of each tier. We do
this to ensure a full MPSoC temperature control in every location containing
an active device on the silicon layer. We assume that s is the total number of
those locations. Namely ci,j is equal to 1 if thermal sensor i is located inside
the cell j.

In the case study of the 3D-MPSoC described in Section 6.2, the number
of states that is also the the number of temperature values for each cell com-
posing the 3D-MPSoC floorplan is 200. This means that the number of cells
composing the silicon layers as well as the ones composing the copper layer is
100. Thus matrix A consists of 104 entries and matrix C has 100 rows.

120 Sensor Placement

To determine the states with negligible contribution to the MPSoC ther-
mal dynamics, the system is balanced using a Gramian-based balancing of
state-space realizations [46]. This technique computes a balanced state-space
realization for the stable portion of the system. For stable systems, the output
is an equivalent system for which the controllability and observability Grami-
ans are equal and diagonal, their diagonal entries forming the vector g ε <n

of Hankel singular values. These values provide a measure of energy for each
state in the system. If the corresponding Hankel singular value for a certain
state is a relatively small number, this means that that state has a small influ-
ence in the dynamic of the system. The second output of the Gramian-based
balancing [46] is the balancing state transformation matrix T ε <n×n that
converts the original system into the balanced one.

The rationale behind this operation is to change the 3D-MPSoC thermal
model system perspective. The original model belongs to a geometric and
physical view of the 3D-MPSoC where states are related to physical properties.
The new model generated by the Gramian-based transformation is energy
centric and every states is a heat propagation dynamic. This representation
emphasizes how much the thermal dynamic represented by that specific state
is relevant to the heat propagation response of the system. The ith row of the
conversion matrix T describes the contribution that the temperature of each
thermal cell in the original model gives to the ith most important (in terms of
energy) thermal dynamic of the new generated system.

7.3.3 Identification of relevant states

Here we elaborate information related to Hankel singular values vector g. Fig-
ure 7.8 shows the state energy distribution for our case study. As Figure 7.8
shows, the energy magnitude drops quite fast and most of the states gives al-
most negligible contributions to the input-output response of the system. To
define a threshold level to distinguish between relevant and not relevant states,
we look at the rate of decay of the state energy.

Figure 7.8 shows the decay rate for the normalized energy related to Hankel
singular values for our case study. Red arrows points to change in the rate
of the decay rate. To identify transition points we look at peaks in the third
derivative of the function defined by vector g. In Figure 7.8 they are high-
lighted with red circles. All these points represent a set of possible threshold
point to distinguish between relevant states and negligible states. This means
that by adding points after these transition points the advantage of adding
states would be smaller in terms of reducing the approximation error.

Figure 7.9 shows the model approximation error in percentage versus num-
ber of states in the reduced model for our case study. As Figure 7.9 shows,
the decay rate is fast. It is important to notice that only threshold points
have been considered in this plot. They are marked with ’*’. Results show
that an approximation error of 6 · 10−2 in percentage can be achieved with
only 20 states and 180 can be easily discarded with a reduction factor of 10×

7.3. Model Order Reduction Placement Algorithm 121

Figure 7.8: Decay rate analysis for the normalized energy related to Hankel
singular values for our case study. Red arrows points to change in the decay rate.

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

A
pp

ro
xi

m
at

io
n

er
ro

r
[%

]

Number of states

Figure 7.9: Model approximation error [%] versus number of states in the reduced
model for our case study.

122 Sensor Placement

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

S
en

so
r

lo
ca

tio
n

State number

Figure 7.10: Sensor location according to the most relevant component identify-
ing each state of the new thermal model. Horizontal lines delimits one layer from
another

for the given accuracy. It is also important to notice that it does not make
much sense to go for higher accuracies because inaccuracies in the silicon, in
the power model or in thermal sensors will add uncertainty in the results.

7.3.4 Balanced state transformation analysis

Here we elaborate information related to conversion matrix T. The ith row of
T describes the contribution that the temperature of each thermal cell in the
original model gives to the ith most important (in terms of energy) thermal
dynamics of the new generated system. For this reason at this stage for each
row i of T, we identify the most relevant component in absolute value. We call
this component j. This means that if we place a sensor in the jth cell in the
original model, among all the possible sensor locations, this position would be
the one that will contribute more in terms of energy to the ith most important
thermal dynamic of the new generated system.

Figure 7.10 shows the most relevant component identifying each state of
the new thermal model. Horizontal lines delimit one layer from another. They
are placed at multiples of 25 because each layer according to our case study
consists of 25 cells. As Figure 7.10 shows, there are no sensors in the copper
layer. The reason is because we decided to add this technological limitation
as a constraint in the definition of the most relevant sensor location for each
state.

7.3. Model Order Reduction Placement Algorithm 123

7.3.5 Reduced order model and sensor placement

At this stage the user-defined parameter that is missing to complete the sensor
placement is the desired accuracy of the reduced order model. If we accept an
approximation error of 6 · 10−2 in percentage, we fix the number of states to
20. By doing this operation we reduce by a factor of 10 the number of states
in the model and so the computational complexity of Equation 7.6.

At this point a new reduced order model is obtained from the original one
after the balancing using a Gramian-based balancing of state-space realizations
[46]. States corresponding to Hankel singular values smaller than a predefined
threshold (in our case we selected the 20th) are discarded. Thus the full MPSoC
thermal model is now described by the following system of equations:

xτ+1 = Ãxτ + B̃pτ (7.8)

t̃τ = C̃xτ (7.9)

Where matrix Ã ε <l×l and matrix B̃ ε <l×p. The number of states of the
new thermal model is l and p is the number of inputs in the MPSoC model.
Equation 7.8 describes the state update for the reduced order model of the
MPSoC. This equation is analogous to Equation 7.6. The only difference is
that, in this case, the states do not represent directly temperature values inside
each cell. Matrix C̃ ε <s×l in Equation 7.9 relates the value of the states to
temperature in s specific locations (every cell in all silicon layers) inside the
MPSoC. This equation is analogous to Equation 7.7 and describes how the
temperature measurements can be derived from the state vector x. In our
case we were interested in knowing all the cells temperatures of every silicon
layer, for this reason s = 100.

The purpose of sensor placement is to get reliable information on the 3D-
MPSoC thermal profile. The reason is because every time any policy is applied,
it operates on reliable thermal profile temperature values. The key for this is to
obtain the state vector x. In Section 7.3.3, the balancing state transformation
matrix T converts the original system into the balanced one. Thanks to this
matrix, to obtain the estimate of the reduced state vector x, it is sufficient to
multiply the thermal profile by matrix T.

For the system identified by Equation 7.6, it means that we are able to
reconstruct completely the thermal profile of the chip given the inputs only
by looking at the measurements coming from the sensors, placed in locations
specified by the matrix C ′.

t̃τ = C′tτ (7.10)

Matrix C′ ε <s′×l in Equation 7.10 is a selection matrix that describes the
sensor placement inside the 3D-MPSoC. This means that we are assuming to
have in the output vector s′ distinct temperature measurements coming from
s′ distinct cells every Ts seconds where Ts is the sensors sampling period. The
rank of the observability matrix Q expresses the number of states that can be

124 Sensor Placement

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 a

cc
ur

at
e

th
er

m
al

 p
ro

fil
e

es
tim

at
io

n

Number of sensors

Figure 7.11: Sensor placement algorithm: percentage of accurate temperature
estimation according to the number of sensors placed with the proposed method-
ology

reconstructed from the measurement vector t̃τ . The observability matrix Q is
expressed by the following equation (see [33]):

Q = [C′;C′A; . . . ;C′An−1
] (7.11)

If the rank of matrix Q equals n, the state vector x can be reconstructed
completely from the measurements, the input vector p and matrices A and B
identifying the thermal dynamics of the system (see Equation 7.6).

The problem of selecting the right placement of thermal sensors to both
minimize the number of sensors and maximize observability is the problem of
choosing the matrix C′ with the minimum number of rows that makes the rank
of the observability matrix Q equal n. Given an MPSoC model, this problem
depends on the location and the number of sensors inside floorplan (matrix
C′) and the sensor sampling period Ts.

To choose the sensor placement we used the information about the loca-
tions that contribute most to each of the states in the balanced model. The
algorithm is a greedy technique that adds a sensor position according to the
placement suggested in Section 7.3.4. Figure 7.10 shows the most relevant
component identifying each state of the new thermal model and the algorithm
starts from the most relevant state (state number 1) and goes on adding sen-
sors until the rank of the observability matrix equals the rank of A. Figure
7.11 shows the percentage of states that can be estimated versus the number of
sensors placed. As it can be noted, for each sensor that is placed as suggested
by Figure 7.10, there is an increase in the number of states of the reduced
order model that can be estimated. The complete estimation is achieved with

7.4. Summary 125

Figure 7.12: Sensor placement for our case study with sensors (marked as red
stars on the floorplan) sampling frequency Ts of 1ms

25 sensors for our case study. This means that with only 25 sensors it is pos-
sible to estimate the thermal profile of the 3D-MPSoC. This means that we
achieved a reduction of a factor 8 in the number of required sensors. Figure
7.12 shows the resulting placement assuming a sensors sampling frequency Ts

of 1ms.

7.4 Summary

In this chapter we present three approaches to estimate the thermal profile
from sensors located in some specific locations on the MPSoC floorplan.

The first method derives the thermal profile by means of many sensing
devices placed on the silicon layer. The derivation is presented here by working
on the different heat propagation dynamic between the cell and its neighbors.

The second approach is based on a complete design space exploration of all
possible sensor placements. Then, according to user defined constraints, the
configuration that maximizes the observability of the system is chosen. This
approach is a method performing a complete design exploration on the full
model without any model order reduction techniques.

The third technique finds the sensor placement configuration that maxi-
mizes the observability of the system with a greedy algorithm. The algorithm
is based on a model order reduction performed on the thermal model of the
MPSoC.

Experimental Framework 8
In this chapter we describe the simulation infrastructure that we used to vali-
date and test thermal management systems, models and algorithms proposed
in this thesis.

127

128 Experimental Framework

Figure 8.1: Global infrastructure block diagram

8.1 Global Infrastructure Overview

To simulate thermal management policies in a realistic environment, I created
an infrastructure based on many tools interacting each others. The architec-
ture consists of three main blocks. The block diagram is shown in Figure 8.1.

8.1.1 Thermal policy computation

The first block is written in MATLAB and it is the responsible for the thermal
management policy. This code receives information from a file and produces
another file containing the frequency assignment. If the system has liquid
cooling, it generates also the velocities for the fluid circulating in each layer of
the 3D-MPSoC.

The policy is an algorithm that runs at runtime and it is based on the
receding horizon philosophy described in previous chapters. This algorithm
needs from the MPSoC simulation infrastructure current power consumption
data and both the requested and the executed workload.

Temperature sensors temperature measurements are also provided from the

8.1. Global Infrastructure Overview 129

thermal simulator block. These data are temperature measurements performed
in some specific locations on the thermal profile. These data are used by the
MATLAB block to generate the thermal profile of the MPSoC every time the
thermal management optimization is performed.

During the runtime execution of the MATLAB code, the simulation is
frozen until the completion of the algorithm that usually takes few milliseconds
on the CORE2 DUO computer we used in our setup.

8.1.2 MPSoC simulation infrastructure

The second block is written in SystemC and it is the responsible for the MP-
SoC simulation infrastructure. This unit simulates in an accurate way the
MPSoC system. This design space exploration engine supports hardware ab-
straction level and continuity between architectural and hardware design, and
at the same time it fully supports multiprocessing. This block models the
2D-MPSoC and 3D-MPSoC of our simulation setup described in Sections 5.2
and 6.2 respectively.

It collects information related to current run-time MPSoC setting, freezes
the SystemC simulation and starts the MATLAB block that implements the
thermal management policy. Just collected information is passed to this func-
tion. The thermal policy is applied every Tpol seconds. Once the solution is
computed, this unit unfreezes the simulation and waits a specific amount of
time Tcp before setting frequencies and voltages among the cores and the in-
terconnect. In the case of a 3D-MPSoC with liquid cooling, the flux velocity
is also set for each layer. Tcp models the time needed by the actual hardware
implementation of the policy to solve the frequency assignment problem. In
our case we assumed a worse case scenario by setting Tcp equal to 50µs.

This algorithm needs from the thermal management algorithm the fre-
quency setting and in the case of a 3D-MPSoC with liquid cooling, the flux
velocity for each layer. This blocks produces as outputs the power consump-
tion and the requested and executed workloads. This information is sent to
the thermal policy to compute the frequency setting for the next Tpol seconds.
The frequency setting along with the flux velocities and power consumption
data are sent to the thermal simulator to compute the thermal profile of the
MPSoC.

8.1.3 Thermal simulator

This block is written in C++ and it is the responsible for the thermal profile
generation of the overall MPSoC structure. This code receives information
from a file and produces at runtime the evolution of the thermal profile of
the MPSoC. These information are the frequency setting along with the flux
velocities and power consumption data.

The output of this block is used for two reasons. The first one is to vali-
date and compare the performance of the thermal policies under comparison.

130 Experimental Framework

Figure 8.2: Global infrastructure block diagram

The second one is used to simulate thermal sensors placed in some specific
locations on the MPSoC. These data are used by the MATLAB block to gen-
erate the thermal profile of the MPSoC every time the thermal management
optimization is performed.

The thermal simulator is the one described in Section 8.5 and 8.4 of this
thesis. This simulation tool models with high accuracy also all the cooling
system infrastructure such as microchannels, the cooling liquid temperature
and the heat spreading layer in the case of air cooling.

8.2 Thermal policy: Matlab code architecture

To implement the thermal management policy algorithm, we created a software
architecture based on many functional blocks interacting each others. The
block diagram is shown in Figure 8.2.

8.2.1 Optimization algorithm

The main optimization algorithm is surrounded by the orange box called re-
ceding horizon based controller. The algorithm minimizes a pre-specified cost
function J over a prediction horizon of L time frames. The cost function

8.3. MPSoC emulator: SystemC code architecture 131

is different for every policy, however, all cost functions have the same input
parameters and the all generates the same outputs. The outputs are the fre-
quency assignment and if the system has liquid cooling, also the velocities for
the fluid.

The receding horizon based controller receives many input parameters. It
receives the executed workload, the required workload and the power con-
sumption directly from the SystemC simulation framework. It receives also
the thermal profile of the MPSoC and its reduced order thermal model from
two distinct MATLAB functions.

8.2.2 Reduced order thermal model

Information about the thermal model is used in the MATLAB code for two
specific purposes. The model is used by the optimization algorithm to predict
the thermal response of the MPSoC to control. This model indeed computes
the thermal profile according to power consumption values and a specific fre-
quency setting. The second purpose is to estimate the thermal profile of the
MPSoC from thermal sensors measurements coming from specific locations on
the MPSoC.

8.2.3 Thermal profile estimator

The MATLAB function responsible for the thermal profile estimation can be
implemented in many ways. In this thesis we used three methods. The first
one is based on a least squares minimization (see the work by Boyd et al. [11]
for more details). The second one is based on a Kalman filter (see the work
by Franklin et al. [33] for more details). The last method methods requires
a matrix multiplication and it is proposed by Zanini et al. [98]. The first
two methods are more computationally expensive but they are less sensitive
to thermal noise affecting thermal sensors measurements. The last method
requires a small number of operations to estimate the thermal profile, however,
it is more sensitive to thermal noise.

8.3 MPSoC emulator: SystemC code
architecture

8.3.1 Virtual Platform Environment

The block diagram of our MPSoC simulation infrastructure is shown in Figure
8.3. The simulation architecture is a SystemC-based simulation platform based
on MPARM (see Benini et al. [3] for more details). The main device consists
of eight 32-bit cores, and 4 shared memories (L2 Cache Banks(0..3)). Private
memories are assumed to be in side each core (as core we refer to a processing
unit and a private memory). All these units communicate among each others

132 Experimental Framework

Figure 8.3: Simulation infrastructure block diagram

by a crossbar interconnect. A floating point unit is also connected to it. A
DRAM interface connects to main memory. The virtual platform environment
provides also power statistics for the several hardware modules in the simulated
platform. The simulation is based on applications generating functional data
traffic on the target architecture.

8.3.2 DVFS Support

The virtual platform supports different working frequencies and voltages for
each processor core. For this purpose, a variable clock tree generator (see
Equation 5.1), programmable registers and a synchronization module have
been integrated in the simulation platform. The clock tree generator feeds the
hardware modules of the platform (processors, memories, etc.) with indepen-
dent and frequency scaled clock trees. The frequency scaled clock trees are
generated by means of frequency dividers (shift counters), whose delay can be
configured by users at design-time.

Scaling the clock frequency of the processors creates a synchronization issue
with the system bus, which is assumed to work at the maximum frequency.
The processing cores and the bus interface communicate by means of a hand-
shaking protocol which assumes the same working frequency at both sides.
Therefore, a synchronization module was designed, containing two dual-ported
FIFOs wherein data and addresses sent by the bus interface to the processor
and vice versa are stored. This module works with a dual clock: one feeding
the core side and one feeding the bus interface side. Finally, as shown in Figure
8.3 the module also takes care of properly interfacing processor to bus signals,
and a dedicated sub-module is implemented for this purpose.

8.4. Thermal Simulator 133

8.3.3 Support for Thermal Management Policies

To simulate thermal management policies, we added a thermal management
(TM) unit to the network of Figure 8.3. This unit is a SystemC module
that supports an intercommunication between the thermal policies written in
Matlab with the systemC-based Platform. This collects information related to
current run-time MPSoC setting, freezes the SystemC simulation and starts
a Matlab-based function that implements the thermal management policies.
Just collected information are passed to this function. The Matlab function
analyzes these data and solves the frequency assignment problem (see previous
sections).

The solution represents the frequency setting for the next cycles, until
the thermal policy is applied again after Tpol seconds. Once the solution is
computed, the TM unit unfreezes the simulation and waits a specific amount
of time Tcp before setting frequencies and voltages among the cores and the
interconnect. In the case of a 3D-MPSoC with liquid cooling, the flux velocity
is also set for each layer. Tcp models the time needed by the actual hardware
implementation of the policy to solve the frequency assignment problem. In
our case we assumed a worse case scenario by setting Tcp equal to 50µs.

8.4 Thermal Simulator

8.4.1 Challenges in thermal simulators design

To study the thermal profile of a processor, many tools have been proposed.
The most important ones (in relation to hotspot computation) have been de-
scribed by Skadron et al. [81] and Paci et al. [64]. In this section we analyze
limitations that these tools show from a thermal management designer oper-
ating viewpoint.

In Hotspot, the first limitation is that, to change the position of an ele-
ment in the floorplan, the user has to measure the exact position of all the
other elements contained in it. This way of describing the system is very time
consuming and increases the probability of making a mistake. Another conse-
quence of this way of measuring is that it is quite complicate to rearrange the
blocks inside the floorplan since it’s quite difficult to establish the new position
of them.

A limitation in the thermal simulator proposed by Paci et al. [64] is that
to simulate rectangular blocks, a big matrix must be filled and its dimension
is inversely proportional to the size of the smallest square element inside the
floorplan. A further problem is that, to simulate the system, power values of
each component for each simulation step must be specified into a file by hand.
This is an additional overhead that the user has to face to have the simulation
done.

Another problem is that output information of both toolboxes is a file
in which temperature values of all toolboxes for every simulation step are

134 Experimental Framework

Figure 8.4: First example of a description using the new description language.

reported. This is a very non-intuitive way of showing results. Other represen-
tations of outputs must be generated by the tool.

8.4.2 Proposed syntax and output types

A new language to describe layouts has been introduced. We call this language
”rearranging notation” and it is based on the fact that blocks positions on
the floorplan are described in a way that makes the floorplan reconfiguration
and power traces generation easier to reconfigure as compared to preceding
systems. The following picture of Figure 8.4 gives an example of this new
floorplan description language.

Rearranging Notation Semantics

Using this new language to describe floorplans it is possible to insert comments
and notes in the text by using the symbol ”#”. After that a command called

8.4. Thermal Simulator 135

”cell” specifies the cell dimension. This number specifies the resolution with
whom the floorplan is specified. In this case it is equal to 300µm.

The keyword ”dimensions :” denotes the starting of a new session in which
all the basic components of the floorplan are specified. The first column is an
ascii character that specifies the specific component on the floorplan. The
second and the third column specifies respectively the component width and
length in cell numbers. The last column specifies the power in Watt consumed
by the specific component. The last element type called ”u” in the table
specifies the null element used for wiring. The empty spaces in the floorplan
description will be automatically filled by this ”u” elements by the tool.

The keyword ”positions :” denotes the starting of the last session in which
positions of all the chip components are located in the floorplan. To the
floorplan in fact has been overlapped a coordinate system having the x axis
on the bottom side of the chip. The y axis is located on the left side of the
chip. They both have the 0 located on the bottom left edge of the chip. For
every line in this section, the first column is an ascii character that specifies
the component type.

The following columns specify the position of the bottom left corner of the
block. The second one is composed by 2 ascii characters. They both could be
any of the following ones: ”c”, ”b” or ”−”, leading to a total of 9 possible
combinations. The meaning is the following: the first one describes how the
x coordinate system is derived, while the second one the y one. The letter
”c” means that the value of the coordinate will be directly specified. The
letter ”b” means that the position will be the one of the previous block plus
the dimension of it. This enables to place very easily blocks close to each
others without caring about their coordinate. The symbol ”−” means that
the position is the same as the one of the previous block.

The third and fourth columns are related respectively to the x and y axis
and their meaning is related to the type of the characters respectively present
at the first and second place of second column. If the symbol is a ”c”, the
number expresses directly the coordinate. If the symbol is a ”−” or a ”b” it
describes offset in relation to the starting position specified by the symbol.

Layout Description Example

Just to make an example, by looking at Figure 8.4 in the first line of section
positions :, a block of type ”a” is explicitly set in position (0,4). The second
line states that a block of type ”d” is placed with an offset of 2 in the vertical
position in relation to preceding position, so at the location 4+2=6. It says
also that the block is placed with an offset of 2 in the horizontal position
starting from the end of block ”a”. This means that the block is located in
the horizontal position 0+3+2=5.

136 Experimental Framework

Figure 8.5: Niagara, chip thermal profile at time 1.255ms.

Output Types

This way of describing the floorplan adapts the Cartesian reference system to
the one that our perceptual system in our brain uses to describe things that
work by proximity. This notation is very compact and supports a complete
description with very few lines of code.

The way the output is shown to the user makes use of all the system that
our brain uses to receive information, that are numeric, video and images.

This enables the user to get all the needed information in the fastest way
possible without loosing details. Figure 8.5 gives an example of possible output
of this new temperature simulation tool. This figure shows the thermal profile
of our case study resembling the Niagara chip at time 1.255ms. This is an
example of picture output. A movie of the MPSoC warming up is also provided
as output as well as the same information using a 3D matrix. In Figure 8.5
all temperature are shown in terms of colors. Cold colors (i.e. blue, green)
correspond to low temperatures while hot colors (i.e. orange, red) correspond
to hot temperatures. On the top of Figure 8.5 there is a small legend showing
the minimum and the maximum MPSoC temperature with the corresponding

8.4. Thermal Simulator 137

Figure 8.6: Functional block diagram of the developed framework

color. Each block is labelled with a string. The first letter identifies the block
type (i.e. a, b, c ...). The last number of the string identifies the occurrence
of that block in the layout. For example, the string ”c 1” means that that is
the block number 1 of type c.

8.4.3 Functional diagram of the simulator

The block functional diagram of the new developed framework is shown in
Figure 8.6.

Input data needed to run the system are the black solid boxes on the top of
Figure 8.6. Needed information are the floorplan using the new notation, power
data for each block composing the MPSoC and the user-defined simulation
parameters.

Output results are represented by the round black boxes on the bottom
of Figure 8.6. Snapshots of the thermal profile are provided, as well as video
outputs as well as a matrix containing the temperature of each cell composing
the floorplan at every simulation time step.

The floorplan generator block generates a snapshot of the floorplan using
colors to highlight blocks of the same type. It generates also the state-space
model of the MPSoC.

The power traces generator provides the power traces needed by the ther-
mal simulator using benchmarks and user-defined simulation parameters (i.e.:
the average duty cycle of the generated workload).

The thermal simulator is the one described in Section 8.5 of this thesis. The

138 Experimental Framework

Figure 8.7: Thermal simulator design flow

precision of the proposed differential equations integration solver is shown by
looking at the digits after the dot in the min and max temperature measure-
ments. In this case it’s 10−6.

The output elaboration box transforms the simulation output in a form
that is easier to the human mind to understand than a numeric form such as
video and thermal profile pictures. A Matlab-compatible matrix notation is
also generated as output.

8.5 Adaptive Thermal Simulation Algorithm

In Chapter 3 we analyzed some integration methods for state-of-the-art ther-
mal simulators and we have proposed a generic way to represent them using
a matrix-based state space representation. Parameters affecting the accuracy
and the speed of the simulation have been analyzed both theoretically and ex-
perimentally. This section presents a design flow that determines the thermal
simulator that shows the better speed/accuracy trade-off for the desired simu-
lation constraints. The proposed methodology exploits the previously derived
results for the various simulation methods.

8.5.1 Methodology

The block diagram of the design flow for thermal simulation is shown in Figure
8.7. The design and simulation flow has the following as input parameters:

8.5. Adaptive Thermal Simulation Algorithm 139

Figure 8.8: Design space exploration using our adaptive thermal simulator

MPSoC floorplan, power traces for the functional units (optional), desired
simulation accuracy and simulation speed. The flow produces two outputs:
1) The state-space representation of the chip thermal profile (see Section 3).
This output is also useful for the thermal management policies that require a
model of the MPSoC to perform optimizations. 2) The design of a thermal
simulator, including a set of choices regarding the order of the ODE solver, the
simulation time step, and the parameters described in Section 3.2 to maximize
the simulation speed for a given accuracy.

The thermal simulator does three main steps. The first one performs a pre-
processing of input parameters. It computes the maximum allowable ∆max by
using Eqn. 3.45, 3.43, 3.41 and 3.40. Then, it simulates the thermal behavior
of the MPSoC by using randomly generated power traces or real-life power
traces. This simulation takes a short time, and is executed by using a coarse-
grid granularity. More specifically, ∆max is used as simulation time step and
the selected grid granularity is equal to the dimension of the smallest functional
block of the floorplan. In our case study, we simulated the system for a total
simulation time of 100ms, and the simulation was repeated for all the solvers
(FE, BE, CN and RK4). The goal of this pre-processing phase is to identify
the order of the solver and the order of magnitude of the parameters that will
maximize the performance of our solver for the given constraints. For this
reason there is no need to perform thermal simulations with higher accuracy
(and longer simulation time).

The second phase performs a design space exploration in the range of values

140 Experimental Framework

identified by the pre-processing phase. This phase varies all parameters by a
few multiplicative factors and simulates the MPSoC for a longer time. Since
matrices used by the solvers are temperature dependent, the simulation has
to be long enough to generate temperature differences in the MPSoC thermal
profile, to make the position of each Pareto point (shown in Figure 8.8) more
reliable. More specifically, in the 8-core case study, we simulated the overall
system for 10 seconds for all the combinations of the following parameters:
two grid granularity values (block size/cell size = 1; 2), three step size values
(∆τ = ∆max; ∆max/2; ∆max/4), and three values of matrix calculation period
(TMC = ∆τ ; 5∆τ ; 9∆τ).

To measure the accuracy error, the 4th order ODE solver with a small
simulation time step and a high grid granularity is used as the baseline. The
last post-processing step of the design phase creates the two outputs in Figure
8.7 with the optimum parameters, as discussed in the next section.

8.5.2 Experimental validation results

This section presents an experimental validation of the method proposed in
the previous section. The calculation of ∆max for different grid resolutions has
already been shown in Figure 3.4. Following the proposed design method, we
simulate the system for a very short time (100ms) with ∆τ = 3E − 3s and a
coarse-grid resolution with the block size to cell size ratio equal to 1. At this
point we identify the order of the solver, and the proposed simulator design flow
automatically refines our simulation until we obtain the desired optimum point
in the design space. We simulated the case study for the parameters described
in previous sections for all the simulators (FE, BE, CN, RK4). Results are
shown in Figure 8.8.

The optimum configurations of parameters (or Pareto points) provide the
highest accuracy for a given simulation speed or vice versa. These configu-
rations are automatically selected by our simulation framework according to
the required accuracy or simulation speed for the given MPSoC design. Once
these Pareto points in the design space are computed, our thermal simulator
design can select the one closer to the input constraints specified. Figure 8.9
compares the speed and the accuracy of the proposed method with state-of-the-
art-thermal simulators like HotSpot [81] and the FE-based thermal simulator
presented in [64]. All three groups of results (Proposed method, HotSpot,
FE-based simulator) have inaccuracy values with respect to a 4th order ODE
solver with a small simulation time step and a high grid granularity. The setup
time has been taken into account. The simulation time step is constant in both
implementations. These results indicate that our adaptive simulation frame-
work, which utilizes various ODE methods, can improve the simulation speed
up to 70% with respect to HotSpot, while resulting in 6× higher accuracy.

8.6. Summary 141

Figure 8.9: Normalized comparison of the proposed method (accuracy=3 ·
10−3 ◦C) with RK4-based thermal simulators (as HotSpot) and (FE)-based ther-
mal simulators.

8.6 Summary

In this chapter we describe the simulation infrastructure that we used to vali-
date and test thermal management systems, models and algorithms proposed
in this thesis.

The first three sections give an overview of the overall simulation infrastruc-
ture. A functional description of each one of its components is also provided.

Section 4 and Section 5 describe in detail the thermal simulator we proposed
to test, validate and compare the thermal policies proposed in this thesis.

Conclusions 9
9.1 Thesis Summary and Contributions

In this thesis, I have proposed improvements in three major fields of thermal
management for MPSoCs. Chapter 2 gives a background on state-of-the-art
techniques about the fields related to this work. Modeling, algorithms and
system design are the main areas described by this survey.

The first field is Modeling. Chapter 3 introduces mathematical models used
in this thesis. Models are related to the heat transfer model of the MPSoC
with special emphasis to the way the system cools down (i.e. micro-cooling,
natural heat dissipation etc.) and the heat propagates inside the MPSoC. A
liquid cooling model of a 3d-MPSoC is also provided. Chapter 4 introduces the
concepts developed to model the workload of an MPSoC system. Moreover
some considerations are made about the system energy models used in this
thesis. Workload prediction is also introduced and two estimation techniques
are presented.

The second contribution is related to thermal management policies. New
algorithms based on model predictive control have been proposed to maximize
performance, increase reliability and minimize MPSoC power consumption.
The proposed policies manage MPSoC working frequencies and micro-cooling
systems to reach their goals in the most effective possible way and consum-
ing the lowest possible amount of resources. Chapter 5 introduces air cooling
algorithms. Four families of policies are analyzed and compared by both the-
oretical studies and experimental tests. We also provide a classification of
the policies according to their problem formulation complexity and their com-
putational effort requirements. The 2D-MPSoC case study used to run the
simulations is also presented in detail. Chapter 6 introduces liquid cooling al-
gorithms. Two novel algorithms are proposed here. The first one is based on a

143

144 Conclusions

centralized controller based on convex optimization. The second controller is a
distributed structure based on the interaction between a global unit and many
small controllers. The 3D-MPSoC case study used to run the simulations is
also presented in detail.

Finally we implemented the proposed policies and methods with an in-
novative hardware simulation platform. Contributions in this field deal with
constraints and problems related to the implementation of the proposed poli-
cies in 3D MPSOC systems. Chapter 7 introduces techniques to perform a
detailed thermal profile estimation of the MPSoC structure. Two techniques
are presented here to achieve a temperature estimation by using few ther-
mal sensors placed in specific locations on the MPSoC. Chapter 8 presents
the thermal simulation infrastructure used to test and compare policies pre-
sented in this thesis. The infrastructure consists of many parts written with
three different programming languages and simulated on different simulation
platforms.

9.2 Future Work

Although much research has been devoted to thermal management systems
design, this area has not yet reached complete maturity. Contributions pro-
posed in this thesis can be extended in various interesting directions. In the
sequel I will point some interesting points.

In this thesis, the MPSoC thermal model has been studied and modelled
by linearizing the thermal properties of materials. An interesting point could
be to define the model in a way that could take into account nonlinearities of
coefficients.

In the thermal model I developed, the integration method can be made
more accurate and possibly with a variable integration step. Moreover the
density of the wiring on the metal layer has been assumed as constant over the
overall floorplan. This assumption can be removed by allowing the thermal
model to consider different wiring densities in the metal layer.

The power management algorithms I presented assume workloads that
change over time and are non-stationary. However, the workload prediction
methods I have proposed are reliable only for a horizon that is shorter than
50ms-100ms. New innovative solutions can be proposed to make the prediction
more accurate for longer time horizons.

System designers become more conscious of power dissipation issues and an
increasing number of power-optimized commodity components is made avail-
able. The software design methodology I presented is user driven and would
greatly benefit from automation. A new generation of power optimization tools
is needed to choose and manage such components. Some optimizations can be
automated at the design time. A system can be developed that can guide the
designer in selection and implementation of appropriate design criteria.

Energy-efficient design and utilization at the system level will continue to

9.2. Future Work 145

be a critical research topic in the next few years as there are still many unsolved
problems and open issues to be solved.

Bibliography

[1] Ims research report. http://www.imsresearch.com/, 2009.

[2] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit
linear quadratic regulator for constrained systems. In Automatica, 2002.

[3] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri.
“Mparm: Exploring the multi-processor soc design space with systemc”.
Journal of VLSI Signal Processing, Springer, 2005.

[4] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli. “Policy
optimization for dynamic power management”. TCAD, 1999.

[5] L. Benini and G. De Micheli. Dynamic Power Management: Design
Techniques and CAD Tools. Kluwer Academic Publishers, 1998.

[6] A. Bhunia, K. Boutros, and C. Chung-Lung. High heat flux cooling
solutions for thermal management of high power density gallium nitride
hemt. In ISCTP, 2004.

[7] W. L. Bircher and L. John. Complete system power estimation using
processor performance events. In Transactions on Computers, 2011.

[8] B. Black, A. Murali, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh1,
D. McCauley, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley,
S. Shankar, J. Shen, and C. Webb. Die stacking (3d) microarchitecture.
In IEEE MICRO, 2006.

[9] P. Bose. Power-efficient microarchitectural choices at the early design
stage. In PACS, 2003.

[10] T. Boukhobza and F. Hamelin. State and input observability recovering
by additional sensor implementation: a graph theoretic approach. In
Automatica, 2009.

[11] S. Boyd, , and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

147

148 Bibliography

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[13] S. Boyd and B. Wegbreit. Fast computation of optimal contact forces.
In IEEE Transactions on Robotics, 2007.

[14] T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B. Wunderle,
H. Oppermann, and H. Reichl. Interlayer cooling potential in vertically
integrated packages. In Microsystem Technologies, 2008.

[15] T. Brunschwiler, S. Paredes, U. Drechsler, B. Michel, W. Cesar, G. Toral,
Y. Temiz, and Y. Leblebici. Validation of the porous-medium approach
to model interlayer-cooled 3d chip stacks. In 3DIC, 2009.

[16] T. Brunschwiler, H. Rothuizen, U. Kloter, H. Reichl, B. Wunderle,
H. Oppermann, and B. Michel. Forced convective interlayer cooling po-
tential in vertically integrated packages. In ITHERM, 2008.

[17] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks Cole, 2000.

[18] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and frequency
scaling based on workload decomposition. In Proceedings of the 2004
international symposium on Low power electronics, 2004.

[19] R. J. Cochran and S. Reda. Consistent runtime thermal prediction and
control through workload phase detection. In DAC, 2010.

[20] A. K. Coskun, D. Atienza, T. Rosing, T. Brunschwiler, and B. Michel.
Energy-efficient variable-flow liquid cooling in 3d stacked architectures.
In DATE, 2010.

[21] A. K. Coskun, J. L. Ayala, D. Atienza, and T. S. Rosing. Modeling and
dynamic management of 3d multicore systems with liquid cooling. In
VLSI-SoC, 2009.

[22] A. K. Coskun, T. S. Rosing, and K. C. Gross. Proactive temperature
balancing for low cost thermal management in mpsocs. In ICCAD, 2008.

[23] A. K. Coskun, T. S. Rosing, and K. C. Gross. Temperature management
in multiprocessor socs using online learning. In DAC, 2008.

[24] A. K. Coskun, T. S. Rosing, and K. Whisnant. Temperature-aware task
scheduling. In DATE, 2007.

[25] CoWare. N2c. http://www.coware.com/cowareN2C.

[26] J. Donald and M. Martonosi. Techniques for multi-core thermal man-
agement: Classification and new exploration. In ISCA, 2006.

Bibliography 149

[27] Y. Eldar and D. Palomar. Convex Optimization in Signal Processing and
Communications. Cambridge University Press, 2010.

[28] M. J. Ellsworth and M. K. Iyengar. Energy efficiency analyses and com-
parison of air and water cooled high performance servers. In InterPACK,
2009.

[29] emb. WILO MHIE centrifugal pump.
http://www.wilo.com/cps/rde/xchg/en/layout.xsl/3707.htm.

[30] T. Emi, M. A. Al Faruque, and J. Henkel. Tape: Thermal-aware agent-
based power economy for multi/many-core architectures. In ICCAD,
2009.

[31] B. Falsafi and D. A. Wood. Modeling cost/performance of a parallel
computer simulator. In TOMACS, 1997.

[32] festo. Festo electric automation technology. http://www.festo.com.

[33] G.F. Franklin, J. D. Powell, and M. L. Workman. Digital Control of
Dynamic Systems. McGraw Hill, 2011.

[34] M. Grant and S. Boyd. Cvx: Matlab software for disciplined convex
programming. www.stanford.edu/ boyd/cvx/.

[35] Jan Haase, Markus Damm, Dennis Hauser, and Klaus Waldschmidt.
Reliability-aware power management of multi-core processors. In DIPES,
2006.

[36] T. R. Halfhill. Transmeta breaks x86 low power barrier. In Microproces-
sor Report, 2000.

[37] C. J. Hughes, J. Srinivasan, and S. V. Adve. Saving energy with ar-
chitectural and frequency adaptations for multimedia applications. In
IEEE Micro, 2001.

[38] C.J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. Rsim: Simulat-
ing shared-memory multiprocessors with ilp processors. In IEEE Trans.
on Computer, 2002.

[39] W.-L. Hung, G.M. Link, Yuan Xie, N. Vijaykrishnan, and M. J. Irwin.
Interconnect and thermal-aware floorplanning for 3d microprocessors. In
ISQED, 2006.

[40] JBB. http://www.spec.org/jbb2005/.

[41] S. Joshi and S. Boyd. Sensor selection via convex optimization. In
transaction on signal processing, 2009.

150 Bibliography

[42] H. Jung and M. Pedram. Continuous frequency adjustment technique
based on dynamic workload prediction. In VLSI Design, 2008.

[43] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multi-
threaded sparc processor. In IEEE MICRO, 2005.

[44] M. Kvasnica, P. Grieder, M. Baotic, and F. J. Christophersen. Multi-
parametric toolbox (mpt). 2006.

[45] laing. Laing 12 volt DC pumps datasheets.
http://www.lainginc.com/pdf/DDC3 LTI USletter BR23.pdf.

[46] A. J. Laub, M. Heath, C. Paige, and R. Ward. Computation of sys-
tem balancing transformations and other applications of simultaneous
diagonalization algorithms. In IEEE Trans. Automatic Control, 1987.

[47] H. Lee, Y. Jeonga, J. Shinb, J. Baekc, M. Kanga, and K. Chuna. Package
embedded heat exchanger for stacked multichip module. In Transducers,
Solid-State Sensors, Actuators and Microsystems, 2003.

[48] J. S. Lee, K. Skadron, and S. W. Chung. Predictive temperature-aware
dvfs. In Transactions on Computers, 2010.

[49] A. S. Leon, K. W. Tam, J. L. Shin, D. Weisner, and F. Schumacher.
A power-efficient high-throughput 32-thread sparc processor. In ISSCC,
2006.

[50] P. P. P. M. Lerou, H. J. M. Ter Brake, H. J. Holland, J. F. Burger, and
H. Rogalla. Insight in clogging of mems based micro cryogenic coolers.
In Applied Physics Letters, 90, .

[51] P. P. P. M. Lerou, G. C. F. Venhorst, C. F. Berends, T. T. Veenstra,
M. Blom, J. F. Burger, H. J. M. Ter Brake, and H. Rogalla. Fabrica-
tion of a micro cryogenic cooler using mems-technology. In Journal of
Micromechanics and Microengineering, .

[52] Y. Lu, T. S. Rosing, and G. De Micheli. Software controlled power
management. In CODES, 1999.

[53] M. Dales. Swarm. http://www.dcs.gla.ac.uk/michael/phd/swarm.html.

[54] M. Magno, D. Brunelli, L. Thiele, and L. Benini. Adaptive power control
for solar harvesting multimodal wireless smart camera. In ICDSC, 2009.

[55] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hllberg,
J. Hgberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full
system simulation platform. In IEEE Trans. on Computer, 2002.

[56] S.O. Memik, R. Mukherjee, N. Min, and L. Jieyi. Optimizing thermal
sensor allocation for microprocessors. In IEEE TCAD, 2008.

Bibliography 151

[57] Mentor Graphics. Seamless hardware/software co-verification.
http://www.mentor.com/seamless/products.html.

[58] A. Merchant, B. Melamed, E. Schenfeld, and B. Sengupta. Analysis of
a control mechanism for a variable speed processor. In Transactions on
Computers, 1996.

[59] A. Milenkovic and V. Milutinovic. A quantitative analysis of wiring
lengths in 2d and 3d vlsi. In Microelectronics Journal, Elsevier, 1998.

[60] R. Mukherjee and S. O. Memik. Physical aware frequency selection for
dynamic thermal management in multi-core systems. In ICCAD, 2006.

[61] S.S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow, S. Huss-
Lederman, M. D. Hill, J. R. Larus, and D. A. Wood. Wisconsin wind
tunnel ii: A fast and portable parallel architecture. In PAID, 1997.

[62] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini, and
G. De Micheli. Temperature control of high performance multicore plat-
forms using convex optimization. In DATE, 2008.

[63] A.V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing.
Prentice-Hall, 1989.

[64] G. Paci, F. Poletti, and L. Benini. Exploring temperature-aware design
in low-power mpsocs. In DATE, 2006.

[65] G. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli. Policy opti-
mization for dynamic power management. In Proceedings of the Design
Automation Conference, 1998.

[66] A. Papoulis and S. U. Pillai. Probability, Random Variables and Stochas-
tic Processes. Mc Graw Hill, 2002.

[67] E. Pop. Energy dissipation and transport in nanoscale devices. In
Springer, 2010.

[68] K. Puttaswamy and G. H. Loh. Thermal analysis of a 3d die-stacked
highperformance microprocessor. In GLSVLSI, 2006.

[69] Q. Qiu, Q. Wu, and M. Pedram. “Stochastic modeling of a power-
managed system: construction and optimization”. TCAD, 2001.

[70] J. M. Rabaey. Low Power Design Essentials. Springer, 2009.

[71] A. Ramalingam, F. Liu, S. R. Nassif, and D. Z. Pan. Accurate thermal
analysis considering nonlinear thermal conductivity. In ISQED 2006,
2006.

152 Bibliography

[72] R. Rao, S. Vrudhula, C. Chakrabarti, and N. Chang. An optimal ana-
lytical solution for processor speed control with thermal constraints. In
Proceedings of the 2006 international symposium on Low power electron-
ics, 2006.

[73] Chu R.C. Advanced cooling technology for leading-edge computer prod-
ucts. In 5th International Conference onSolid-State and Integrated Cir-
cuit Technology, 1998.

[74] S. Reda, R. J. Cochran, and A. N. Nowroz. Improved thermal track-
ing for processors using hard and soft sensor allocation techniques. In
Transactions on Computers, 2011.

[75] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete
computer system simulation: The simos approach. In IEEE Parallel and
Distributed Technology: Systems and Applications, 1995.

[76] T. S. Rosing and S. P. Boyd. “Managing power consumption in networks
on chips”. T-VLSI, 2004.

[77] M. M. Sabry, A. K. Coskun, and D. Atienza. Fuzzy control for enforcing
energy efficiency in high-performance 3d systems. In ICCAD, 2010.

[78] J. Schtze, H. Ilgen, and W. R. Fahrner. An integrated micro cooling
system for electronic circuits. In IEEE transactions on industrial elec-
tronics, 2001.

[79] O. Semenov, A. Vassighi, and M. Sachdev. Impact of self-heating effect
on long-term reliability and performance degradation in cmos circuits.
In IEEE T-D&M, 2006.

[80] S. Sharifi and T. S. Rosing. An analytical model for the upper bound
on temperature differences on a chip. In GLSVLSI, 2008.

[81] K. Skadron, M. R. Stan, K. Sankaranarayanan, Wei Huang, S. Velusamy,
and D. Tarjan. Temperature-aware microarchitecture: Modeling and
implementation. In TACO, 2004.

[82] slamd. SLAMD Distributed Load Engine. www.slamd.com.

[83] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza.
3d-ice: Fast compact transient thermal modeling for 3d-ics with inter-
tier liquid cooling. In ICCAD, 2010.

[84] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza.
Compact transient thermal model for 3d ics with liquid cooling via en-
hanced heat transfer cavity geometries. In THERMINIC, 2010.

[85] SROECO. Sroeco. http://sroeco.com/solar/solar-electric-cost-
commercial.

Bibliography 153

[86] C. Sumana and C. Venkateswarlu. Optimal selection of sensors for state
estimation in a reactive distillation process. In Process Control, 2009.

[87] P. Tndel, T. A. Johansen, and A. Bemporad. Evaluation of piecewise
affine control via binary search tree. In Automatica, 2003.

[88] D. B. Tuckerman and R. F. W Pease. High-performance heat sinking for
vlsi. In IEEE Electron Device Letters, 1981.

[89] K. Van, D. Verkest, I. Bolsens, and H. De Man. Coware-a design envi-
ronment for heterogeneous hardware-software systems. In DAC, 1996.

[90] K. Waldschmidt. Robustness in soc design. In DSD 2006, 2006.

[91] Y. Wang, K. Ma, and X. Wang. Temperature-constrained power control
for chip multiprocessors with online model estimation. In ISCA, 2009.

[92] J. Warren, S. Schaefer, A. N. Hirani, and M. Desbrun. Barycentric
coordinates for convex sets. In Journal of Advances in Computational
Mathematics, 2007.

[93] G. F. M. Wiegerinck, H. J. M. Ter Brake, J. F. Burger, H. J. Holland,
and H. Rogalla. Thermodynamic optimization of sorption-based joule-
thomson coolers. In Cryogenics, 47.

[94] Y. Xie and W. Hung. Thermal-aware allocation and scheduling for
systems-on-chip. In DATE, 2005.

[95] F. Zanini, , D. Atienza, L. Benini, and G. De Micheli. Multicore thermal
management with model predictive control. In ECCTD, 2009.

[96] F. Zanini, D. Atienza, A. K. Coskun, and G. De Micheli. Optimal
multi-processor soc thermal simulation via adaptive differential equation
solvers. In VLSISoC, 2009.

[97] F. Zanini, D. Atienza, C. N. Jones, and G. De Micheli. Temperature
sensor placement in thermal management systems for mpsocs. In ISCAS,
2010.

[98] F. Zanini, D. Atienza, and G. De Micheli. A combined sensor placement
and convex optimization approach for thermal management in 3d-mpsoc
with liquid cooling. In Integration, the VLSI Journal, 2011.

[99] F. Zanini, David Atienza, G. De Micheli, and S. P. Boyd. Online convex
optimization-based algorithm for thermal management of mpsocs. In
GLSVLSI, 2010.

[100] F. Zanini, C. N. Jones, D. Atienza, and G. De Micheli. Multicore thermal
management using approximate explicit model predictive control. In
ISCAS, 2010.

154 Bibliography

[101] Y. Zhang and A. Srivastava. Adaptive and autonomous thermal tracking
for high performance computing systems. In DAC, 2010.

Curriculum Vitae

155

156 Curriculum Vitae

Francesco Zanini

Education

2007− 20011(exp.) PhD Candidate Computer Science
Swiss Federal Institute of Technology, Lausanne
Lausanne, Switzerland.

2006− 2007 Master in Embedded System Design
Advanced Learning and Research Institute
Lugano, Switzerland.

2005− 2006 Research Master in Microelectronic Engineering
Institute of Microelectronics and Wireless Systems, NUIM
Maynooth, Ireland.

2003− 2005 Master in Microelectronic Engineering
University of Parma
Parma, Italy.

2000− 2003 Bachelor in Electronic Engineering
University of Parma
Parma, Italy.

1995− 2000 Liceo Scientifico
Liceo Scientifico A.Manzoni
Suzzara(MN), Italy.

Publications

Journal Papers

• [J1] F. Zanini, D. Atienza, C.N. Jones, L. Benini, G. De Micheli,
“Online Thermal Control Methods for Multi-Processor Systems”.
submitted, 2011.

• [J2] F. Zanini, M. Sabry, D. Atienza, G. De Micheli, “Hierarchical
Thermal Management Policy for High-Performance 3D Systems with
Liquid Cooling”. JETCAS, 2011.

• [J3] F. Zanini, D. Atienza, G. De Micheli, “A Combined Sensor Place-
ment and Convex Optimization Approach for Thermal Management
in 3D-MPSoC with Liquid Cooling”. INTEGRATION, 2011.

Conference Papers

• [C1] F. Zanini, D. Atienza, G. De Micheli, “Convex-Based Thermal
Management for 3D MPSoCs using DVFS and Variable-Flow Liquid
Cooling”. PATMOS, 2011.

Curriculum Vitae 157

• [C2] F. Zanini, D. Atienza, L. Benini, G. De Micheli, “Thermal-
Aware System-Level Modeling and Management for Multi-Processor
Systems-on-Chip”. ISCAS, 2011.

• [C3] F. Zanini, D. Atienza, C.N. Jones, G. De Micheli, “Temperature
Sensor Placement in Thermal Management Systems for MPSoCs”.
ISCAS, 2010.

• [C4] F. Zanini, C.N. Jones, D. Atienza, G. De Micheli, “Multicore
thermal management using approximate explicit Model Predictive
Control”. ISCAS, 2010.

• [C5] F. Zanini, D. Atienza, G. De Micheli, S.P. Boyd, “Online Con-
vex Optimization-Based Algorithm for Thermal Management of MP-
SoCs”. GLSVLSI, 2010.

• [C6] F. Zanini, D. Atienza, A.K. Coskun, G. De Micheli, “Optimal
Multi-Processor SoC Thermal Simulation via Adaptive Differential
Equation Solvers”. VLSI-SoC, 2009.

• [C7] F. Zanini, D. Atienza, L. Benini, G. De Micheli, “Multicore
Thermal Management with Model Predictive Control”. ECCTD,
2009.

• [C8] F. Zanini, D. Atienza, G. De Micheli, “A Control Theory Ap-
proach for Thermal Balancing of MPSoC”. ASPDAC, 2009.

• [C9] F. Zanini, M. Soudan, R. Farrell, “Methodology for Minimizing
Mismatches in Time-Interleaved ADCs”. IMEKO, 2007.

Bachelor and Master Thesis Projects Papers

• [T1] F. Zanini, L. Fiorin, “Reconfigurability analysis and implemen-
tation of NoC based architectures”. ALaRI Advanced Master,2007.

• [T2] F. Zanini, R. Farrell, “Architectural Improvements Towards an
Efficient 16-18 Bit 100-200 MSPS ADC”. National University of Ire-
land Master,2007.

• [T3] F. Zanini, A. Facen, A. Ricci, A. Boni, “Progetto di un Sis-
tema Integrato di Identificazione Operante in Banda UHF”. Parma
University Master,2005.

• [T4] F. Zanini, D. Vecchi, A. Boni, C. Morandi, “Progetto di un Cir-
cuito di Campionamento per Convertitore A/D a 14-b e 100MS/s”.
Parma University Bachelor,2003.

