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Abstract

The flexible transmission benchmark was proposed in the European
Journal of Control to evaluate some robust digital control approaches in
1995. With progress in convex optimization algorithms new methods for
robust controller design are developed. A recently proposed fixed-order
robust controller design method is applied to this benchmark problem and
the results are compared with the existing results. The proposed method
is based on open-loop shaping with frequency-domain constraints on the
closed-loop sensitivity functions in the Nyquist diagram. The method
needs only the frequency response of the model and can consider the
multimodel uncertainty. A controller is designed by a convex optimization
algorithm that meets all the required performance specifications for the
benchmark with the lowest controller complexity.

1 Introduction

There is an enormous number of methods for designing robust controllers in
literature. These methods are based on different assumptions on the model
uncertainty, use different control objectives and different mathematical tools for
solving the robust control problems. Since a theoretical comparison of different
methods is not possible, the benchmarking seems to be the best way to compare
fairly different robust control approaches.

One of the well-known benchmarks for robust controller design was presented
in the second European Control Conference in Rome (ECC 1995) and the results
were published in a special issue of European Journal of Control (Vol. 1 No.
2, 1995). The benchmark problem is to design a low-order robust controller
for a flexible transmission system in three different loadings (Landau et al,
1995b). The model of system contains two low-damped resonance modes whose
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frequencies change drastically with load. The control specifications are given in
terms of time-domain performance for tracking and disturbance rejection and
frequency-domain performance in terms of the constraints on the magnitude of
the sensitivity functions. The problem is challenging, because the large model
uncertainty is located at low frequencies where the performance is required.

Many robust control design approaches have been already applied to the
flexible transmission benchmark. Some of them are published in the special
issue dedicated to the benchmark and the others ulteriorly with new progress
in robust control approaches. At the time being the following solutions can
be found in literature: four H., solutions (Jones and Limebeer, 1995; Walker,
1995; Kwakernaak, 1995; Ferreres and Fromion, 1999), two controllers based
on Quantitative Feedback Theory (QFT) (Kidron and Yaniv, 1995; Nordin and
Gutman, 1995), three controllers using pole placement with sensitivity shaping
(Landau et al, 1995a; Landau and Karimi, 1998; Langer and Constantinescu,
1999), one Generalized Predictive Controller (GPC)(Decker et al, 1995), one
fractional order controller by CRONE control (Oustaloup et al, 1995) and one
model-free approach based on Iterative Feedback Tuning (IFT) (Hjalmarsson
et al, 1995). Although all the conrollers stabilize the system and achieve good
performance, only two controllers meet all required specifications for all load-
ings with relatively high-order controllers. The first controller that satisfied all
specifications was a QFT controller with 20 parameters. Later on, a controller
using convex optimization achieved the same performances with 16 parameters.
Although the complexity of the controller was not among the benchmark con-
straints, it was added for evaluation of the solutions in a synthesis paper by the
proposers of the benchmark problem (Landau et al, 1995b).

In the benchmark problem three discrete-time models of the flexible trans-
mission in different loadings (no-load, half-load and full-load) are given. The
main difficulty for most of the design methods is to deal with the multimodel
uncertainty. Although this type of uncertainty is very common in industry, few
methods dealing directly with multimodel uncertainty have been developed.
Approximating the multimodel uncertainty by unstructured frequency domain
uncertainty, leads usually to a conservative design and poor performance.

In this paper, the method presented in (Karimi and Galdos, 2010) is ap-
plied to the flexible transmission benchmark problem. Moreover, discrete-time
controller design is explicitly presented and open-loop shaping is considered as
main control criterion. This method can be used for robust fixed-order controller
design using convex optimization for Linear Time Invariant (LTI) systems repre-
sented by nonparametric spectral models. In this approach the nonconvex set of
fixed-order H,, controllers is approximated by a set of convex constraints with
respect to the parameters of a linearly parameterized controller. These convex
constraints are obtained graphically from the Nyquist diagram of the open-loop
system. The proposed method can be used for PID controllers as well as for
higher order linearly parametrized controllers in discrete or continuous time.
Additionally, this approach can treat directly the multimodel uncertainty which
is not the case for the standard H., problem.

This paper is organized as follows: In Section 2 the flexible transmission



benchmark problem is presented. Section 3 introduces the control design method-
ology based on the convex constraints in the Nyquist diagram. The solution to
the benchmark problem is given in Section 4. Finally, some concluding remarks
are given in Section 5.

2 Flexible Transmission Benchmark

2.1 System description

The flexible transmission system is a laboratory setup designed and constructed
in Laboratoire d’Automatique de Grenoble (INPG-CNRS), France. This system
consists of three horizontal pulleys connected by two elastic belts. The input
of the system is the reference position for the first pulley controlled by a DC
motor in closed-loop. The output of the system is the position of the third
pulley measured by a potentiometer. The schematic diagram of the system is
given in Figure 1. The goal is to control the position of the third pulley which
can be loaded with small disks. A PC is used to control the system with a
sampling frequency of fs = 20Hz (sampling period of 50 ms).

The system has two oscillatory modes with damping factors of less than 0.05
that vary significantly in different loadings. The discrete time models of the
system for the no load, half load (1.8 kg) and full load (3.6 kg) configurations
have been identified with a low magnitude Pseudo Random Binary Sequence
(PRBS) input. The amplitude of the frequency characteristics is represented in
Figure 2 where a normalized frequency for the discrete time system is used. In
this diagram and all other frequency diagram of this paper the Nyquist frequency
is divided by fs, which leads to a discrete frequency range from 0 to .

The discrete-time transfer functions of the system are given by:

~1y _ 9 Bi(a™") ,
Gi(qg) ) i=1,2,3
where ¢~ is the backward shift operator and the pure time delay d = 2 for all
models. The corresponding identified and validated models are :
Unloaded model:

1

Ai(g™Y) = 1—1.14833¢~" + 1.58939¢ 2
—1.31608¢ 3 4 0.88642¢ 4
Bi(g7') = 0.28261¢7" + 0.50666¢ >
Half loaded model:
As(qgh) = 1—1.99185¢ " + 2.20265¢ 2
—1.84083¢ 3 4 0.89413¢*
Bo(qg™') = 0.1027¢"' +0.18123¢ 2
Fully loaded model:
As(g™h) = 1—2.09679¢ " + 2.31962¢ 2
—~1.93353¢7% + 0.87129¢*
Bs(g™') = 0.06408¢~" + 0.10407¢ 2
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Figure 1: Schematic diagram of the flexible transmission.
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Figure 2: Frequency characteristics: Full loaded (red), Half loaded (green) and
Unloaded (blue)
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Figure 3: Structure of RST controller

2.2 Benchmark specifications

A discrete-time two-degree of freedom polynomial form RST controller (see
Fig.3) has to be designed. The canonical form of the RST controller is given
by:

S(gHu(t) =T(q )r(t) — R(g™y(t) (1)

where u(t) is the plant input, y(¢) the plant output, r(¢) the desired reference

and R,S,T are polynomials in ¢~ 1.

The controller should be designed to satisfy the following specifications:
1. A rise time (90% of the final value) of less than 1s.
2. Overshoot of less than 10%.

3. Rejection of 90% of the output disturbance p(t) filtered by 1/A; in less
than 1.2s.

4. Perfect rejection of a constant disturbance (using integral action).

5. Disturbance attenuation at low frequencies (less than 0.2Hz). It means
that the gain of the output sensitivity function:

Ai(¢H)S(eh)
Ai(g")S(g ) + ¢ ?Bi(q " )R(¢ )

should be less than one, for frequencies less than 0.2Hz (or 0.027 of nor-
malized frequency).

Si(g™") =

6. Maximum of the output sensitivity function less than 6dB (modulus mar-
gin greater than 0.5).

7. A delay margin of at least 40 ms (0.8 of sampling periode).



8. A maximum value of less than 10dB for the input sensitivity function
defined by:

Ai(¢HR(gY)
Ai(qg1)S(¢7Y) + ¢ 9Bi(¢ Y )R(¢™ 1)

at high frequencies (between 8 to 10 Hz).

U(q™") =

3 Robust Controller Design in Nyquist Diagram

3.1 Class of models

The class of causal stable discrete-time LTT-SISO systems with bounded infinity
norm is considered. It is assumed that the plant model belongs to a set G
containing m spectral models :

G={Gi(e77°),Ga(e77),...,Gpn(e™); we[0,7]} (2)

This type of models can be obtained from a parametric model or by spectral
analysis from a set of input/output data.

In the sequel, for the sake of simplicity, we develop the method for only one
nominal discrete-time model G € G. However, it will be shown that the results
are applicable to the multimodel case as well.

3.2 Class of controllers

Linearly parameterized controllers are given by :

Kz p)=p"o(z71) (3)

where
p" = 1lp1,p2,- - pul; (4)
T () =z, g2z, dn(zT ), (5)

n is the number of controller parameters and ¢;(271) are stable discrete-time
transfer functions chosen from a set of orthogonal basis functions. Consider for
example the Laguerre basis (Heuberger et al, 2005):

pu(ay = VI € = ] (6)

1—az"! |[1-¢&271

with |{] < 1 or a simpler FIR (Finite Impulse Response) basis:
$i(z7h) =27 (7)

It is clear that for a low-order controller, the choice of basis functions becomes
important. However, the influence of this choice, e.g. £ for Laguerre basis, is



reduced when the controller order increases. An algorithm to choose the basis
functions is proposed in (Karimi and Galdos, 2010).

The main property of this parameterization is that every point on the Nyquist
diagram of the open-loop transfer function L(e™7*, p) can be written as a linear
function of the controller parameters p:

L(e ™, p) = K(e. p)Gle ) = p (e 7)Gle ) ®

3.3 Control criterion

The control objective is open-loop shaping by minimizing the following criterion:

J(p) = IIL(p) = Lall3 (9)

where L4(z71) is the desired open-loop transfer function. This criterion is a
quadratic function with respect to the controller parameters and therefore can
be used in a convex optimization problem. It should be noted that according
to the function approximation theorem based on orthogonal basis functions,
this norm can be made arbitrarily small by increasing the number of controller
parameters (Heuberger et al, 2005).

The two-norm can be approximated when only a finite number N of fre-
quency points are available. In this case we have

N
J(p) = SOIL(e 7, p) — La(e )P (10)
k=1

Note that since the criterion is defined in the frequency domain, we need only
the frequency response of L; which can be computed from a discrete-time or a
continuous-time transfer function (i.e., Ly(e 7“*) can be replaced by Lg(jw)).

The choice of Ly is related to control specifications. In general, it should
have high gain at low frequencies and low gain at high frequencies. A simple
choice is the frequency response of an integrator : Lg = w./(jw), where w,. is the
desired crossover frequency that determines the desired closed-loop bandwidth.
An alternative is to choose Ly based on a desired reference model M for the
closed-loop system. In this case we have M = Ly/(1 + Lg4) which leads to
Lyg=M/(1-M).

3.4 Frequency-domain constraints

It is clear that minimizing the criterion (10) does not lead necessarily to a
stabilizing controller. The stability, robustness and some other performances
can be represented by some infinity-norm constraints on the closed-loop transfer
functions. The basic idea of a new approach to fixed-order H, controller design
for systems represented by nonparametric frequency-domain models (Karimi
and Galdos, 2010) is used to define these constraints. Although this method
can be applied to continuous-time and unstable systems, here for simplicity of
presentation only discrete time models and stable systems are considered.



In the benchmark problem some constraints on the magnitude of the output
sensitivity function

Slahp)=0+Lig ™ (11)
and input sensitivity function
Ulg~tp) =K@ )L+ Lg )" (12)

are imposed. These constraints can be represented in a general form as:
Wi (e™)S(e ™, p)| < 1 Wov (13)

Wa(e ) U(e, ) <1 Ve (14)

where Wi (e79%) and Wa(e™7*) are weighting functions. Multiplying these con-
straints by |1 + L(e™7%, p)| gives:

(Wi(e™)| <1+ L(e™, p)| Vw (15)

[Wa(e ™)K (e, p)| < 1+ L(e™, p)| Vuw (16)

These constraints represent a nonconvex set. The following Theorem is a
special case of Theorem 1 in (Karimi and Galdos, 2010) and represents a convex
inner approximation of this nonconvex set.

Theorem 1 Consider a nonparametric model G € G and a linearly param-
eterized controller K (271, p) defined in (3). This controller stabilizes G and
satisfies the nonconvex constraints in (13) and (14) if

(Wi(e™ )1+ La(e™)]| = Re{[1 + Lg(e ™)1 + L(e™, p)]} <0 Vw (17)

[Wa(e™ ) K (e, p)[1 + La(e™*)]|—
Re{[1+ Ly(e7)][1 + L(e™, p)]} <0 Vw (18)

where Lq(e™7) should not encircle the critical point and L} (e™7%) is its complex
conjugate.

Proof: The proof is based on the fact that the real part of a vector is less than
or equal to its magnitude, so we have:

Re{[1 + Ly(e )L+ L(e™, p)]} < [[1+ L(e )L+ L(e™7, p)]|  (19)

Replacing R {[1+ L};(e “)][L+ L(e 7%, p)]} in (17) and (18) by the right hand
side of the above inequality, the constraints in (15) and (16) are obtained re-
spectively. On the other hand from (17), we have:

Re{[1+ L(e™ )L + L(e™, p)]} > 0 (20)

that means [1 + Li(e 7*)][1 + L(e 7, p)] will not encircle the origin. Since
Lg(e™%) and L}(e~7) do not turn around the critical point the winding number



of [L+ L(e™7%, p)] around the origin is also zero. This shows the stability of the
closed-loop system with the controller K(¢~!, p) and completes the proof. W

The quality of this inner approximation depends on the desired open-loop
frequency function Lq(e™7). Assume that p° is a feasible point of the nonconvex
set in (15) and (16). It means that there exists 0 < v < 1 such that :

WiS(p°)| <y and  [Wald(p®)| <~  WVw
On the other hand we have:
Re{[1+ Ly][1+ L(p°)|} = [1 + Ly|[1 + L(p°)| cos & (21)

where
a=|Z[1+ L(p°)] — Z[1 + Ld]|

is a function of w. Replacing the right hand side of (21) in (17) and (18), one
obtains:

[W1S(p°)] < cosa and [Wald(p°)| < cos Yw

It is clear that p° satisfy the above constraints if v < cosa. In other words the
phase difference between L; and L(p°) defines the level of conservatism of the
convex approximation in Theorem 1. If a = 0, Vw, there is no conservatism and
smaller « leads to less conservatism.

3.5 Optimization problem

Consider the control criterion in (10) and convex constraints in (17) and (18)
that represent a convex optimization problem with an infinite number of con-
straints (because the constraints are defined for all w). This problem can be
converted to a Semi Definite Programming (SDP) problem if a frequency grid
with N samples between 0 and 7 is used.

N
min L(e 7wk — Lg(e™99k)|?
in 32 [L(e, ) — Lafe %)
k=1
Subject to:

[Wi(e 7)1+ La(e™7")]| = Re{[1 + Lge™7")][1 + L(e™**, p)]} <0 (22)

[Wa(e™ /) K (€77, p)[L + La(e™7**)]|—
Re{[1+ La(e™7)][1 + L(e™*, p)]} <0 (23)

fork=1,...,N.

Remarks:



1. The solution of the above optimization problem will satisfy the constraints
on the sensitivity functions and stabilizes the closed-loop system. How-
ever, it is not the optimal solution of the nonconvex problem because of
the conservatism introduced in Theorem 1 for the convexification of the
constraints.

2. Suppose that p* is the optimal solution of the nonconvex optimization
problem, then p* will be a solution to the above convex optimization
problem if the phase difference between L(p*) and L, is zero for all w.

3. Smaller phase difference between L4 and L(p*) will reduce the conser-
vatism of the convex approximation. This suggests an iterative approach
in which Ly, = K(pi—1)G, where Ly, is the desired open-loop transfer
function at i-th iteration and p;_; is the optimal solution from the previ-
ous iteration.

4. The number of frequency points should be sufficiently large such that
L(e’) between wy, and w1 is well approximated by linear interpolation
of L(e7“r) and L(e/**+1). The effects of this discretization on the stability
and performance of this method are studied in (Galdos et al, 2010).

5. The above results can be extended to multimodel uncertainty by repeating
the constraints for each model in the model set and minimizing the sum of
two-norm errors for all models. This will be detailed in the next section.

4 Solution to the Benchmark Problem

The design procedure described in Section 3 is applied to the flexible transmis-
sion benchmark. We consider the following linearly parameterized two-degree-
of-freedom RST controller :

R(g™") = pi+pgt+. 4 pag M
S = 1-¢!
T(qg') = to

For open-loop transfer function shaping this structure is equivalent to taking
K(z71) = R(271)/S(271) that leads to:

Kz =plo(z"")
with the following basis functions:

1
o (27 = ﬁ[l’ 27 272
-z

The fixed term (1 — ¢~1) in S(g™!) is to assure the integral action of the
controller (spec. 4). The time-domain performances (spec. 1,2 and 3) are tuned

10



using the following reference model:

w2

. R 24
$2 + 2wpés + w2 (24)

M(s) =

This leads to the following desired open-loop transfer functions:

w2

La,(s) = S5+ 260m) Séwn) (25)

for i=1,2,3 (same desired open-loop transfer function for three models). Choos-
ing w, = 3.2 rad/s and £ = 0.7 gives a reference model with a rise time of 0.8 s
and 5% overshoot which satisfies easily time-domain specifications (spec. 1 and
2).

It has been shown in (Landau and Karimi, 1998) that a delay margin of one
sampling period is guaranteed if

L—[1—e 97t <|S(e™)| <1+ |1 —ed¥| 7! Yw € [0, 7 (26)
The above constraint can be reformulated as :
[Wu(e7)S(e™ ) <1 and |[Wi(e™7“)S(e™ %) > 1 Yw e [0, m] (27)
where

[1—e 7|

gy e
W (e79%)| = .
| U(e )| |1767]w|71

~ e W el =
The delay margin constraints in (27) can be converted to linear constraints
using (17) in Theorem 1. This will guarantee a delay margin of 50 ms for
the controlled system which is more than the desired delay margin of 40ms.
However, we did not add this constraint because this specification (spec. 7) was
met even without this constraint.

Because of two very oscillatory modes in the plant models, the output step
disturbance filtered by 1/A; will be very oscillatory such that spec. 3 cannot
be met. The disturbance rejection time can be reduced indirectly by adding a
bound on the infinity-norm of the closed-loop transfer function between distur-
bance and output, S;/A;. This constraint can be represented by :

S
A;
and be considered in the proposed approach by taking a performance filter

In addition, a performance filter

<%
oo

Wi(e—7) = 1 for 0 <w <0.027
! T 1/10920 =05 for 0.02r < w < 7

11



is chosen in order to assure a maximum of less than 6dB (spec. 6) for the output
sensitivity function (modulus margin of 0.5) and an attenuation band of 0.2Hz
(spec. 5). These performances can be given by one weighting function for each
model defined as follows:

Wii(e™) = max[|Wi(e™7)|, [Ws, (e™7*)]]

The specification for the input sensitivity function |U;(e™7¥)| < 10dB at high
frequencies, between 8Hz and 10Hz, is transformed to (spec. 8):

HWQUZHOQ <1

where
0 for 0 < w < 0.87

—Jwy _
Wa(e™7*) = { 1/10%0/20 for 0.87 <w <

The controller is tuned in two steps. In the first step the feedback controller
is tuned based on the proposed method and by solving the following optimization
problem:

3 N
min > 3 [T é(e I )Gi(e*) — L, (e79%)]3
p 1=1 k=1
Subject to:

W1, (e77)[1 + La, (e774)]| -
Re{[1+ Ly, (e77M)][L+ pT (e M) Gi(e )]} <0 (28)

[Wa, (754 )T e =7* ) 1 + La, (9%)] |-
ReA[1+ Ly, (e77“)][L+ pTg(e ™ )Gi(e™ )]} <0 (29)
fork=1,...,N and ¢ = 1,2, 3, where:
1

e k) = T 7or [1,e 9wk ... ,e_("_l)j“’“]

In the second step, the unique parameter in T'(¢~!) is taken equal to the sum
of the parameters of R(¢~!) giving a unit gain to the closed-loop system. The
frequency response of the three models are computed at N=>500 equally spaced
frequency points between 0 and 7 (Nyquist frequency).

4.1 Simulation Results

For controller design, in the first step, Lq, in (25) is used for all models and no
constraint for disturbance rejection is considered (v; too large). Then the num-
ber of controller parameters n is increased step by step to find a feasible solution
for the optimization problem. For solving the convex optimization problem a

12



Table 1: Performance of the controller

Specification No load | Half load | Full load
Rise Time [s] 0.80 0.75 0.70
Overshoot|%] 3.87 3.92 6.56
Dist. rejection [s] 1.15 1.15 1.2
Maximum S [dB] 5.93 4.41 5.12
Delay Margin [ms] 44 95 385
Maximum U [dB] 9.20 9.86 9.99
Attenuation band 0.204 0.206 0.200
[H

standar SDP solver, SeDuMi (Sturm, 1999), is used.The feasible solution satis-
fies almost all specifications except for disturbance rejection time. Then in the
second step 7; is reduced gradually up to the point that all specifications are
met. This procedure led to the first controller K with n = 12 (controller order
equal to 11) and ; = 102/20 (equal to 28dB) for i = 1,2, 3.

In order to reduce the complexity of the controller, a new iteration is car-
ried out by changing the desired open-loop transfer function. The new desired
open loop transfer function is defined as: Lg,(e79%) = Ko(e 7*)Gi(e*). It
should be mentioned that the disturbance rejection time is the most critical
specification to be met. So with this new Lg,, a tighter bound for +; is also
considered. These bounds are chosen as follows: the infinity norm of S;/A; is
measured for the initial controller that gives 21dB, 23dB and 25dB, respectively
for i=1,2,3. Then in order to maintain the performance of the system for dis-
turbance rejection, slightly higher bounds for the infinity norms of S;/A; are
considered. This leads to v1 = 22dB, vy, = 24dB and 3 = 26dB. By running
the convex optimization problem an 8-th order controller K satisfying 100% of
the specifications is obtained. The order is further reduced to n = 7 by using
Lg,(e77%) = Ki(e79%)G;(e77¥) that satisfies all specifications except the dis-
turbance rejection time for the no-load model. This specification is also met by
reducing 1 to 20dB. The final 6th-order controller is given by:

R(g™') = 0.632—1.781¢ ' +1.895¢72 — 1.062¢ 3
+0.5247¢* — 0.3399¢° + 0.1887¢ 6

S = 1-q¢7")

T(g') = 0.05733

Figures 4 and 5 show that the specifications on the input sensitivity function
U; and output sensitivity function S; are satisfied for the three models. Figure
6 shows the step and disturbance rejection responses. The details of achieved
performance for the final controller are shown in Table 1.

Table 2 gives a joint evaluation of the performance and complexity of some
controllers that have already been designed for the benchmark problem and com-
pare them with the proposed controller. It can be observed that the proposed

13
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0.2571 0.57 0.75m ™

Figure 4: U of Unloaded (dashed, blue), Half loaded (solid, green) and Fully
loaded (dashed-dotted, red) systems.

L L
0.25m 0.5m 0.75m ™

Figure 5: S of Unloaded (dashed, blue), Half loaded (solid, green) and Fully
loaded (dashed-dotted, red) systems.
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Output

Figure 6: Step and disturbance rejection of Unloaded (dashed, blue), Half loaded
(solid, green) and Fully loaded (dashed-dotted, red) systems. The straight
dashed lines show the intervals in which the responses should be located.

controller meets all specifications with the lowest complexity.

5 Conclusions

A solution for the flexible transmission benchmark proposed in (Landau et al,
1995b) has been presented in this paper. To the best of knowledge of the authors,
the proposed controller meets all the specifications with the lowest complexity
amongst all controllers proposed for this system in literature. In this approach
the multimodel uncertainty in the benchmark problem are directly considered
in the design. Almost all specifications have been taken into account in the
design procedure straightforwardly. Although the resulting controller has the
smallest order among the benchmark solutions, it cannot be shown that there
is no lower-order controller that can achieve the same performance.
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