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Daniel Thalmann3, Pascal Fua1, and Ronan Boulic1

1 EPFL, Switzerland
2 INRIA-Rennes, France

3 NTU, Singapore

Abstract. This paper is motivated by the objective of improving the
realism of real-time simulated crowds by reducing short term collision
avoidance through long term anticipation of pedestrian trajectories. For
this aim, we choose to reuse outdoor pedestrian trajectories obtained
with non-invasive means. This initial step is achieved by analyzing the
recordings of multiple synchronized video cameras. In a second off-line
stage, we fit as long as possible trajectory segments within predefined
paths made of a succession of region goals. The concept of region goal is
exploited to enforce the principle of “sufficient satisfaction”: it allows the
pedestrians to relax the prescribed trajectory to the traversal of succes-
sive region goals. However, even if a fitted trajectory is modified due to
collision avoidance, we are still able to make long-term trajectory antic-
ipation and distribute the collision avoidance shift over a long distance.

Keywords: Motion trajectories, Collision handling

1 Introduction

The present paper is motivated by two goals: first producing more plausible
pedestrian crowds by reusing pedestrian trajectories captured with non invasive
means, and second, relying on general principles of human behavior to minimize
the computing cost when reusing as large as possible trajectory segments. We
believe that a first step towards the ecological validity of the crowd motion is
to capture pedestrian trajectories in an outdoor pedestrian area. Second, this
material has to be obtained through a non-invasive means; for this reason we
exploited multiple overlapping video cameras.

Instead of inferring a characterization of the captured pedestrian area, such
as in term of a force field, we chose to completely decouple the measured tra-
jectories from their initial context by searching how they could fit to a new
spatial environment. Our objective is to assemble as fast as possible and adjust
as little as possible large segments of real pedestrian trajectories to obtain a
plausible variety of crowd motions. In particular we wish to reduce the occur-
rences of implausible short term collision avoidance by taking advantage of the
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short term future of the pedestrian paths. The adjustment to the trajectories
are designed to be minimal owing to the interaction of two general principles of
human behavior identified in Psychology [29, 21, 25] and already partly exploited
in crowd simulation [11, 3]. The principle of least efforts [29] states that people
selects the action that require the least effort when given multiple choices to
accomplish a task. It has been exploited in [11] to justify the choice of energy
minimizing path (both movement and turning effort) when moving through a
crowd. However Simon [21] pointed out that humans do not necessarily search
for the optimal solution based on all the available solution because they lack
the cognitive resources. They rather “satisfice”, a term he coined by combining
“satisfy” and “suffice”, i.e. they reach good-enough solution through simplifying
heuristics despite their occasional failing [25]. Within this frame of mind, we ad-
vocate for generalizing the concept of region goals introduced in [3] for steering
an isolated pedestrian towards an oriented region goal. In the present case we
intend to select real trajectories so that they fit in a succession of region goals
and to adjust them through collision avoiding shifts that satisfy those region
goals. One key advantage is the reduced cost of the adjustment step that allows
to distribute the trajectory shift long before the potential collision occurrence.

The next section recalls the main background material mostly on crowd sim-
ulation. The human trajectory extraction is described in section three while
section four presents the new approach for the reuse of long term trajectory
segments and their on-line adjustment. Section five and six respectively shows
some result and offer some directions for future work.

2 Related Works

The topic of crowd simulation has stimulated a large number of contributions.
For this reason we focus in priority on those exploiting pre-existing real or synthe-
sized trajectories or force fields. Brogan and Johnson [5] have built a walking path
model from measurements from which they construct a heading chart ensuring
trajectories with minimal radius of curvature towards a goal while avoiding static
obstacles. By construction the chart is dedicated to the original environment and
suited for the goals that were recorded. Chenney proposed to assemble flow tiles
over the whole environment to guide pedestrians [6]; it has a clear interest for
low cost background movement but it lacks the natural variety of human move-
ments. Likewise [16] combines the attractive force field of a guiding trajectory
with other standard force fields. These ideas are also developed in [18]. In [22] the
proposed guiding flow is based on the concept of natural movement stating that
humans have the tendency to follow their line of sight [9]. The work of Treuille et
al offers an elegant solution based on a dynamic potential field for guiding groups
of pedestrians with the same goals in large scale environments [23]. Reitsma and
Pollard evaluate the suitability of an environment to a set of recorded move-
ment organized as a motion graph [20]. In [14] an agent model is learned from
recorded aerial view of group motion and is able to reproduce a wide range of
behaviors; it is still limited by its computing cost. Similarly [7] exploits crowd
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video footage but here to extract time series of velocity fields that are later used
to advect people along a time varying flow. An alternate approach is proposed
in [15] in which local relative movements are identified from video and stored in a
database. Then the database is searched on-line to derive short term movements
from the closest found pattern. The computing cost of this type of approach is
still high. Yersin et al have proposed the concept of Crowd patch that can be
assembled on the fly to allow the travel through a potentially infinite inhabited
virtual city [28]. Periodic trajectories running through multiple patch constitute
the core element of this contribution. Multiple contributions have focused on the
simulation of groups [13, 12, 26] but this is beyond the scope of the present paper
as we don’t address the constitution and the controlled deformation of groups.

Our own approach relies on the one described in [19] for the stage of general
trajectory planning producing a set of variant paths for large group of pedes-
trians between two regions in a virtual environment. We differ in the way the
variant paths are exploited to produce the individual pedestrian trajectories.
Our contribution is to fit the longest possible real trajectory segment within the
path variant and to adjust them on the fly by taking advantage of the three
zones of interest proposed in [27].

3 Extracting Human Trajectories from a Real Scene

Extracting human trajectories in a crowded scene is an active domain in the
vision community. There exist several methods for reliable tracking in long se-
quences [2, 4]. Our multiple people tracking relies on pedestrians detections from
multiple cameras [8], and multiple object tracking [2]. As the pedestrians detector
requires multiple synchronized and calibrated cameras, we initialize our process-
ing pipeline with calibrating the cameras using the Tsai calibration model [24].
Then, we subtract the background and the shadows from the video frames and
feed only the binary foreground-background masks to the pedestrians detector.
The pedestrians detector integrates the binary masks from all the cameras. The
ground-plane is partitioned into grid cells. In each frame, the people detector
estimates the probability of each grid cell to be occupied by a person [8]. Next,
the tracking algorithm efficiently solves the detection association task by formu-
lating it as a global optimization problem, which is solved using the K-Shortest
Paths algorithm (KSP) [2]. Finally, we post-process the trajectories in order to
obtain smooth and accurate trajectories. In the following subsections, we explain
in great detail the different algorithms used in this work.

3.1 Background Subtraction and Shadows Removal

The background subtraction produces binary images, in which static parts are
labeled differently than the dynamic ones. This technique is efficient, but it can
be sensitive to differences in lighting conditions, colors of subjects similar to
the background and shadows. For our system we used the EigenBackground
algorithm [17], which models the background using eigenvalue decomposition of
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several reference images. It is capable of dealing with global illumination changes,
but does not remove pedestrians shadows as they are dynamic as well.

Elimination of shadows in the footage was made additionally difficult due
to low quality of our video sequences and lack of distinct colors in the clothing
of the pedestrians present. This meant that we could not use different statisti-
cal properties of the surface which are usually used to detect shadows such as
texture information. Our method uses the fact that the shadows are (i) darker
variations of the background color and (ii) have a distinct shape usually spread
in the horizontal direction, which is the main difference from the human shapes
which are primarily oriented in the vertical direction. After simple background
subtraction each pixel in the foreground can be classified into one of 8 labels
based on which angular direction has the largest number of foreground pixels
(the dominant orientation, Fig 1(c)). By specifying the expected dominant orien-
tation of the shadows, we can substitute the appropriate pixels with the original
background color (Fig 1(d)) or remove them from the foreground map used by
the tracking algorithm (Fig 1(e)). Since this approach is possible due to con-
sistency in the shadow direction, it needs to be refined to handle dynamically
changing shadows or shadows with dominant penumbra component.

Fig. 1. Shadows removal process. (a) Original frame with shadows; (b) Foreground
map after simple background subtraction; (c) Dominant orientations of each foreground
pixel. Notice that the shadow areas have consistent classification compared to the rest of
the human body; (d) Final video frame, with shadow pixels re-colored with background
color; (e) Final foreground map

3.2 Multiple Pedestrian Detection and Tracking

We adopt the multiview people detector of [8]. In each frame, the detector in-
tegrates the binary background-foreground information from different cameras
with respect to their calibration, and estimates the positions of the pedestri-
ans on the ground plane. The ground plane is partitioned into uniform, non-
overlapping grid cells, typically with size of 25 by 25 (cm). The detector provides
an estimation of the probability of each grid cell to be occupied by a person.
Hence, it produces a Probability Occupancy Map (POM) [8]. We use the publicly
available implementation of the algorithm4.

4 POM: http://cvlab.epfl.ch/software/pom
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Given the person locations estimated by POM, we use the K-Shortest Path
(KSP) tracker [2]. The KSP formulates the tracking task as a global optimiza-
tion problem on a Directed Acyclic Graph (DAG), yielding a convex objective
function. Its computational complexity is O(k(m+ n log n)), where m, n, and k
are the number of graph nodes, edges, and trajectories. The algorithm is suitable
for tracking people in large areas for a long time period. However, even though
the KSP has a space complexity of O(n), this turns out to consume a lot of
memory resources. Using the publicly available version of the algorithm5, we
could only process 2000 frames. Therefore, we introduced a pruning mechanism
for reducing the consumed memory. Using the POM results, we kept only the
detections that were above a certain threshold Thr1 = 0.75, in addition to their
spatio-temporal neighborhood. We defined the neighborhood as all the cells that
are proximate less than Thr2 = 12 cells to a cell with a detection. Using this very
low threshold we managed to keep the tracking performance high, and still to
prune more than half of the graph’s edges. Thus, we have the ability to process
more than 6000 frames, in one batch.

3.3 Trajectory rectification

As was mentioned in the previous subsection, positions of human trajectories
have been extracted from 25 cm square grid cells. Because of this approxima-
tion, we couldn’t avoid the problem of rough trajectories. Besides, other issues
depicted in Fig 2 gave us the motivation to design rectification steps as follows:

1. Generate local and global confidences of all the frames and trajectories
– Local confidence: defines reliability of a single frame in a trajectory
– Global confidence: defines reliability of the entire trajectory

2. Remove low local confidence frames (issues #1 and #3 in Fig 2)
3. Remove low global confidence trajectories (issue #2)
4. Fill missed frames in each trajectory
5. Smoothing rough trajectories (issue #4)

Local confidence Two different formulations have been defined for local con-
fidence. One from distance measure and the other one from speed at a given
frame (see upper and lower equation of Fig 2). We defined two different distance
measures d1 and d2, which represents distance to the border of capture area and
distance between two trajectory positions at the same frame, respectively. The
speed (m/s) is defined by subtracting the current position to the previous frame.
In the upper equation, Cd(d), constant k, which defines the slope of the logistic
function, was set to 3. In the lower equation of Fig 2, Cs(s), constants S1 and
S2 are respectively the average human walking speed 1.4 and the width of the
gaussian function defined as 24.5 (full width at half maximum 3.5). We pruned
frames to Cd(d1) < 0.55 and Cs(s) < 0.6.

5 KSP: http://cvlab.epfl.ch/software/ksp
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Fig. 2. Problems statement and their relation to local confidence equations. Bold red
texts state problems of reconstruction and blue texts starting with “⇒” their solutions.
On the right, shows two different local confidence equations with their pruning thresh-
old (horizontal dashed line). Each equation’s y-axis gives a value range [0,1], which
represents the reliability of a reconstructed frame.

Global confidence The global confidence, Cg = (
∑

k∈Tr ρk)/|Tr|, is a general
measure that defines how high were the probabilities of the detections. It is
based on the sum of detection probabilities ρk at each location k which belong
to the trajectory Tr. This sum is normalized by the length of the trajectory |Tr|.
By construction, the KSP algorithm provides trajectories with global confidence
Cg > 0.5. During the rectification process, we solve the “issue #2” stated in
Fig 2. We first check if two trajectory positions at a given frame is Cl(d2) < 0.5,
and remove one of them by comparing Cg of both trajectories.

Smoothing Smooth filtering was exploited for the purpose of removing noisy
effect on the trajectories. We applied different smoothing filters such as Moving
average, Savitzky-Golay, and Local Regression with various span parameters from
0.1% to 5.0%. All filters were processed in the 2nd polynomial degree. Among
them, we found Local Regression with 0.5% had more similarity to the rough
trajectories with low noisy effects.

4 Re-using Human Trajectories in a Virtual Scene

4.1 Generating path from given trajectories

Environment setup with navigation graph A typical trajectory capture
session should result in a few hundreds trajectory segments with a wide variety
of lengths. Each trajectory maintains the information of position, direction and
speed of each frame. The first problem we want to address is to fit the longest
possible trajectory segment within a set of region-to-region path variants pre-
computed according to the approach described in [19]. The path variants are
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constructed from a navigation graph where nodes are (static) collision-free cir-
cular regions called vertices (Fig 3 left). Each path variant is defined by a set
of successive vertices that link two potentially distant regions of the virtual en-
vironment (Fig 3 right). By construction, the path variants may share vertices
in narrow parts of the scene, so it is also necessary to address dynamic collision
detection as we show later.

Fig. 3. The Navigation graph [19] illustrated in this city scene (top view) guarantees
that no collision with static elements of the environment can occur within the sampled
circular regions (left); path variants are automatically built to link distant regions
through a list of vertices (right)

Preprocessing path trajectory The detailed process of determining a path
trajectory is illustrated in Fig 4. The process is off-line and we have the guarantee
that the match will succeed owing to a sufficient pool of short trajectory segments
and to the relatively large size of the vertices. In order to ensure some variety of
trajectory, we randomly initialize the candidate trajectory segment as follows:
1) random position of the starting position (P1 in V0) within the start vertex
and 2) random orientation of the candidate segment start-to-end vector within
the angular sector under which the target vertex (P2 in Vend) is viewed. At
the end of the matching process we apply a local smoothing, by bezier curve
approximation, in the region linking successive segments.

4.2 Real-time collision handling

The advantage of reusing known trajectories is the possibility to estimate col-
lision long time ahead. Based on future trajectory information, we formulated
a real-time collision avoidance algorithm illustrated in Fig 5. For the collision
avoidance model we first define two circular shape areas as follows. The first
circle represents a colliding area (inner circle) which represents average breast
width of human, and second circle represents a shift influencing area (dashed
circle) which represents an area where people feel threat of collision. We admit
that the shape of shift influencing area is rather an elliptic or more complex
shape [15] [10], however, in this paper we simplify our approach for real-time
simulation, and to compensate this area simplification, we gave more weights to
the collision threat coming from forward walking direction.



8 Junghyun Ahn et al.

V
0

V
1

V
2

V
3

V
4

Dmin

Dmax

V
6

V
7

V
8

x

x

x

[Prepara�ons] Aligned trajectories and Path Variants:

(a) align all trajectories and sort them by euclidian distance

(b) generate all path variants

[Step 1] Loop starts:

(a) set the star�ng point P1 inside Vstart (ini�ally set a random point inside V0)

(b) set a random guiding point P2 inside Vend that will guide the path direc�on

(c) set Dmin and Dmax based on P2 posi�on

[Step 3] Loop ends:

(a) from the longest candidate, check if the paths are valid

(b) if valid found, set Vstart to Vend and Vend to V8, otherwise set Vend to Vend-1

(c) repeat Loop un�l Vstart reach V8

[Output] Complete trajectory path along a Path Variant {V0, V1, ... V8}:

selec�on of T1, T3, and T4 with a set of points {Pa, Pb, Pc, Pd}

[Step 2]

(a) check Dmin and Dmax for candidate trajectories

(b) if no candidate found set Vend to Vend-1 

(c) repeat Step 1 and 2 un�l candidates found

[Input] Recorded trajectory segments:

start posi�ons are translated to the origin

[Constraint] Path Variant (PV) {V0, V1, ... V8}:

trajectory matching is responsible of associa�ng each PV

with a list of trajectory segments through an itera�ve process

T
0

T
1

T
2

T
3

T
4

T
1

T
3 T

4
x

(x)

(z)

Pa

Pb

Pc

Pd

P1

P2

P1

P2

P1

Valid trajectory

V
5

V
end

V
start

V
end

V
start

V
start

V
end

Fig. 4. A fully detailed process of trajectory path generation on a path variant.

The proposed collision avoidance method has mainly two steps: generating 1)
direction and 2) magnitude of trajectory shift. The detail of getting this instan-
taneous avoiding direction is as follows. At a given time t0, a virtual character
Hi checks its collision by looking up trajectory paths ahead. In the present im-
plementation we sub-sampled future positions every Nf frames. We denote tc
as the time of a destined collision detected at time t0, and tf as the time after
the collision such that tf -tc is equal to tc-t0. When Hi detects a destined col-
lision at tc, it analyzes the relative positions of all the other characters (Hij)
in the current View Frustum (VF). Here the relative positions Hij(t0), Hij(tc),
and Hij(tf ) are the positions of Hij in Hi local coordinate. For each character
Hij two line segments lij(tc) and lij(tf ) are built (see Fig 5). Given these line
segments, we are able to compute the shift influence vectors vs

ij(tc) as in

Eq 1. First, we define a vector vl
ij(tc), which represents the minimum distance

vector from lij(tc) to Hi. The vector vs
ij(tc) is generated by re-scaling vl

ij(tc)
with the radius of the shift influencing area Rs. The vector vs

ij(tf ) is calculated
in a similar way by replacing tc by tf .

vs
ij(tc) =

Rs − |vl
ij(tc)|

|vl
ij(tc)|

vl
ij(tc) (1)

By accumulating all the shift influence vectors (
∑

j∈V F (wcv
s
ij(tc)+wfvs

ij(tf ))),
we finally get a trajectory shift vector vi(t0), which guides Hi to avoid col-
lision at time t0. The weighting factors wc and wf are defined as 2/3 and 1/3.
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Fig. 5. The collision avoidance mechanism of character Hi; Left: the trajectory shift
vector vi(t0); Right: shifting trajectory at run time.

Additional shift influence vectors Besides these shift influence vectors, other
factors were also considered for calculating trajectory shift vector. Each trajec-
tory path may not surpass the limit of the current path variant’s vertex. We
check the magnitude of the sum of the shifting vectors accumulated from pre-
vious simulation loops, and apply an additional shift influence vector heading
toward the original trajectory. Moreover, in case of ideal linear frontal collision
without any other intruder could fail to avoid each other. To solve this problem,
we give a weak left or right shift influence on forward walking direction. The
trajectory shift vector vi is normalized after adding all shift influence vectors.

Magnitude of trajectory shift vector For a realistic collision avoiding move-
ment, we formulated a magnitude mi, which gives an instantaneous distance to
deviate path. For each simulation loop, if a character Hi detect a collision threat
at time tc, it analyzes the scaling factor mi(t0) (see Eq 2), which will be mul-
tiplied by the given normalized vector vi(t0) for shifting Hi’s trajectory. Eq 2
computes the instantaneous collision avoidance speed for the current time step.
The durations ∆ts(t0) and ∆tv are respectively the current inverse of display
rate at time t0, and the inverse of captured video rate (constant 0.04sec.). The
distances Rc and min(|vl

ij(t)|) are respectively the radius of collision area and
the minimum distance among the different j. Finally, the parameter fc(t0) is the
number of frames left before collision at time t0. A maximum magnitude has
been also defined to reduce jerky motions.

mi(t0) =
∆ts(t0)(Rc −min(|vl

ij(tc)|))
∆tvfc(t0)

(2)
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5 Results

From the video capture, we obtained 30,000 frames recorded at 25-fps. Among
them, 10,000 frames have been selected as rough trajectories and 297 trajectories
were generated by the reconstruction and rectification process. By the smoothing
process, we tried to apply optimal filtering method and parameter, so that we
could keep more originality of trajectory with less noisy effects.

Fig 6 illustrates the results of our approach. The city scene consists of 357
path variants over the entire walkable area. For each path variant, in average,
around 135 successive navigation graph vertices are connected. A vertex is shared
by a number of path variants which makes possible to generate lots of variant
paths. In our result, one trajectory path was generated for each path variant.
The size of preprocessed 357 trajectory paths was 161 MB in ASCII format.

Fig. 6. Top left: reconstructed and rectified real trajectories from video capture; Top
right: real trajectory scene with free viewpoint; Bottom left: preprocessed trajectory
paths; Bottom right: trajectory reused scene with collision avoidance (500 characters).

An experiment of simulation speed was conducted by varying number of char-
acters. We compared to a previous work [27] and the results shows as in Table 1.
The computing cost of our approach was slightly higher than the previous work.
However, from the movie at http://iig.epfl.ch/movies, we could see that
real trajectory can produce more plausible animation when a character avoids
collision or follows its animation path. We also noticed that characters following
real trajectories looks more realistic with various speed and movement along
a path. In case of 1,000 characters simulation, about twice of computation is
needed than motion simplification method [1]. However, the collision avoidance
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was not considered. Our collision avoidance algorithm didn’t work perfectly in
a high density crowd scene. We think this problem can be solved by considering
the speed variation on trajectory shifting.

# of characters 250 500 1000 2000

Yersin et al [27] 60.0 27.7 14.7 7.7
Our approach 60.0 25.6 13.6 6.6

Table 1. A display rate (fps) comparison between two different methods from the same
camera view point (environment: NVidia GTX 460 1GB).

6 Conclusion

The methods presented in this paper cover the whole pipeline for automating
non-invasive pedestrian trajectories processing and reuse in arbitrary scenes.
Contributions encompass both the real trajectories recovery from multiple video
cameras, for which large speedups have been obtained, and the trajectory reuse
for long-term prediction and avoidance of collisions. We will proceed to exten-
sive benchmarking to evaluate whether the simplified circular shape of the shift
influence area is detrimental for the plausibility of the resulting crowd motion.
More comparisons with prior approaches would be beneficial although none have
adopted our reuse strategy for collision avoidance. Future work will also focus
on the exploitation of this know-how in Augmented Reality to demonstrate the
efficient editing of the original captured crowd (e.g. adding lifelike pedestrians
or removing existing pedestrians).
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