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S U M M A R Y
Rock joints are often filled with weak medium, for example, saturated clay or sand, of vis-
coelastic nature. Their effects on wave propagation can be modelled as displacement and
stress discontinuity conditions. The viscoelastic behaviour of the filled joint can be described
by either the Kelvin or the Maxwell models. The analytical solutions for wave propagation
across a single joint are derived in this paper by accounting for the incident angle, the non-
dimensional joint stiffness, the non-dimensional joint viscosity and the acoustic impedance
ratio of the filled joint. It is shown that the viscoelastic behaviour results in dissipation of wave
energy and frequency dependence of the reflection and transmission coefficients. Based on
curve fitting of the experimental data of P-wave propagation across a single joint filled with
saturated sand, both the Kelvin and Maxwell models are found to reproduce the behaviour of
the filled joint, in terms of the amplitude and frequency contents. Then, wave transmission
across a filled joint set is studied with the virtual wave source method and the scattering matrix
method, where multiple wave reflections among joints are taken into account. It is shown that
the non-dimensional joint spacing and the number of joints have significant effects on the
transmission coefficients.

Key words: Body waves; Seismic anisotropy; Seismic attenuation; Wave propagation;
Rheology and friction of fault zones.

1 I N T RO D U C T I O N

Joints, which are parallel fractures, are important mechanical features of rock masses. When a wave propagates through a rock mass, the
wave attenuation is mainly due to the presence of joints (King et al. 1986). Many studies have been performed on wave propagation across
non-filled joints (Schoenberg 1980; Cai & Zhao 2000). Natural joints, however, are often filled with saturated sand, clay, soil or weathered
rock of viscoelastic deformational behaviour, and hence, wave propagation across them needs to be studied. This is of great importance in
geophysics, earthquake engineering, non-destructive evaluation and rock mechanics.

With the layered medium model, a filled joint is treated as a perfectly bonded thin layer sandwiched between two background half-spaces.
The sandwiched thin layer can be elastic (Brekhovskikh 1980) or viscoelastic (Fehler 1982). Across the two interfaces between the filled
thin layer and the background half-spaces, both the displacements and stresses are continuous. However, the reflection and transmission
coefficients across a filled joint are very complicated, especially when multiple wave reflections between the two interfaces are taken into
account.

The wave scattering theory treats the filled joint as a plane boundary with a distribution of small cracks and voids (Hudson et al. 1996).
Wave propagation across the filled joint is determined by crack geometry, crack distribution, crack density, saturation and other parameters.
The fact that detailed crack distribution, geometry and density are difficult to derive limits the application of the wave scattering theory to the
seismic response of filled joints.

The displacement discontinuity model (Schoenberg 1980; Pyrak-Nolte et al. 1990) and the displacement and velocity discontinuity
model (Pyrak-Nolte et al. 1990; Suárez-Rivera 1992) treat the joint as a non-welded interface across which stresses are continuous, but
displacements are discontinuous. However, given that the density of the filled medium is not negligible compared with the density of the
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half-spaces, the initial mass of the filled joint should be taken into account, and the stresses across it considered to be discontinuous (Rokhlin
& Wang 1991).

Wave propagation across a single joint has been extensively studied (Schoenberg 1980; Pyrak-Nolte et al. 1990; Gu et al. 1996a).
However, when multiple parallel joints are present, wave propagation will be more complicated due to multiple wave reflections among joints
(Schoenberger & Levin 1974; Cai & Zhao 2000; Zhao et al. 2006a,b,c).

In this paper, combined with the displacement and stress discontinuity model, the complete analytical solutions for wave propagation
across a single filled joint of viscoelastic behaviour are first derived, where the joint is described by the Kelvin and the Maxwell models. Then,
parametric studies on the magnitude of reflection and transmission coefficients and energy loss across a single filled joint are performed.
Subsequently, with reference to modified split Hopkins pressure bar experimental data on P-wave propagation across a joint filled with saturated
sand, curve fitting between the measured spectral amplitudes and predicted spectral amplitudes is performed. Finally, wave propagation across
a filled joint set of viscoelastic behaviour is studied with the virtual wave source method (VWSM) and the scattering matrix method (SMM),
where multiple wave reflections among joints are considered.

2 A NA LY T I C A L S O LU T I O N S F O R WAV E P RO PA G AT I O N A C RO S S A S I N G L E F I L L E D
J O I N T O F V I S C O E L A S T I C B E H AV I O U R

The incident as well as the reflected and transmitted harmonic waves are represented, in vector form, by

un = Anbn exp[(iω/Cn)pn · X − iωt], (1)

where un is the particle displacement vector, An is the wave amplitude, bn is the wave motion unit vector, Cn is the wave velocity, pn is the wave
number unit vector, X is the position vector, the subscript n denotes different waves including incident P-wave (IP), incident SV -wave (ISV ),
incident SH-wave (ISH), reflected P-wave (RP), reflected SV -wave (RSV ), reflected SH-wave (RSH), transmitted P-wave (TP), transmitted
SV -wave (TSV ) and transmitted S-wave (TSH). Fig. 1 shows the incident, reflected and transmitted waves upon one joint, where the media
of opposite sides of the joint are assumed to be identical.

Thus, for incident P-wave : pIP = sin θ i − cos θk, bIP = pIP. (2)

For incident SV -wave : pISV = sin φi − cos φk, bISV = j × pISV . (3)

For incident SH -wave : pISH = sin φi − cos φk, bISH = j. (4)

For reflected P-wave : pRP = sin θ i + cos θk, bIP = pIP. (5)

For reflected SV -wave : pRSV = sin φi + cos φk, bRSV = j × pRSV . (6)

For reflected SH -wave : pRSH = sin φi + cos φk, bRSH = j. (7)

For transmitted P-wave : pTP = sin θ i − cos θk, bTP = pTP. (8)

For transmitted SV -wave : pTSV = sin φi − cos φk, bTSV = j × pTSV . (9)

For transmitted SH -wave : pTSH = sin φi − cos φk, bTSH = j. (10)

where i, k and j is the unit vector in the x, z and y direction.
When the density of the filled material is not negligible compared with the rock density, the initial mass of the filled joint can affect wave

propagation (Rokhlin & Wang 1991). With the consideration of the initial mass terms of the filled joint, besides the displacements, the stresses
across the filled joint are also discontinuous. In fact, the density of the filled material, which is usually saturated sand or clay, is comparable
with the rock density. Therefore, the displacement discontinuity model (Schoenberg 1980; Pyrak-Notle et al. 1990) is not appropriate to study
wave propagation across filled joints. The boundary conditions to represent the filled joint used in this study are termed as the displacement
and stress discontinuity model. It should be pointed out that the displacement discontinuity is the generalized form of velocity discontinuity.

The Kelvin model (one spring and one dashpot in parallel) is usually adopted to describe the dynamic and seismic response of saturated
soil (Verruijt 2010; Das & Ramana 2011). However, Suárez-Rivera (1992) found that the Maxwell model (one spring and one dashpot in
series) is better for studying shear wave propagation across a thin clay layer. In this study, both joints of the Kelvin and the Maxwell viscoelastic
deformational behaviours are studied. To be convenient, we will term the joint of the Kelvin and the Maxwell viscoelastic deformational
behaviour as the Kelvin joint and the Maxwell joint, respectively.

With the displacement and stress discontinuity model, the boundary conditions (see Fig. 1) are

τ a
zz − τ b

zz = −ω2mnub
z , (11)

τ a
zx − τ b

zx = −ω2mt u
b
x , (12)

ua
z − ub

z =
(

1

κn − iωηn

)
τ b

zz, (13)
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Figure 1. Incident, reflected and transmitted waves upon a joint for (a) P-wave incidence; (b) SV -wave incidence and (c) SH-wave incidence.
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Figure 1. (Continued.)

for a Maxwell joint, where τ is the stress, the subscript zz, zx, x and z refer to the direction of stresses and displacements, the superscripts a
and b refer to opposite sides of the joint, mn is termed as the normal mass, mt is termed as the tangential mass, κn and κt are the normal and
shear joint specific stiffness, respectively, ηn and ηt are the normal and shear joint specific viscosity, respectively.

Here, mn = ρ0h, which determines the stress difference in the normal direction, is the mass of the filled medium of a unit area
of the joint plane and termed as the normal mass, where ρ0 is the density of the filled medium, h is the joint thickness. mt = qmn =
[1 − (Cplate/Ci )2 sin2 χi ]mn , which determines the stress difference in the tangential direction, is the effective mass in the tangential direction
and named as the tangential mass. q is a parameter dependent on the plate velocity of the filled medium Cplate =

√
E0/[ρ0(1 − υ2

0 )], where
E0 and υ0 are Young’s modulus and Poisson’s ratio of the filled medium, respectively, the incident angle χi and the wave velocity of the rock
corresponding to the type of the incident wave Ci (Ci = CP , χi = θ for P-wave incidence, or Ci = CS , χi = φ for S-wave incidence). When
the wave is normally incident upon the joint, q = 1 and thus, mt = mn . The joint specific stiffness κ , which is defined as the ratio of stress to
deformation with unit Pa m−1, is different from the usually used joint stiffness defined as the ratio of force to deformation with unit N m−1.
The specific joint viscosity η, which is defined as the ratio of stress to flow velocity with unit Pa·s m−1, is different from the usually used
viscosity defined as the ratio of stress to flow velocity gradient with unit Pa·s.

With Hooke’s law, the stresses can be obtained.

τzz = λ
∂ux

∂x
+ (λ + 2μ)

∂uz

∂z
, (19)

τzx = μ

(
∂ux

∂z
+ ∂uz

∂x

)
, (20)

where λ and μ are Lamé’s constants of the rock.
From eqs (1–20), the complete analytical solutions for the reflection and transmission coefficients across a single viscoelastic joint, in

matrix form, are

A

⎡
⎢⎢⎢⎣

RP→P

RP→SV

TP→P

TP→SV

⎤
⎥⎥⎥⎦ = B (21)

for P-wave incidence,

A

⎡
⎢⎢⎢⎣

RSV →P

RSV →SV

TSV →P

TSV →SV

⎤
⎥⎥⎥⎦ = C (22)
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for SV -wave incidence and

D

[
RSH→SH

TSH→SH

]
= E (23)

for SH-wave incidence, where R and T are reflection and transmission coefficients, respectively, the subscript means the type of incident wave
(before the arrow) and the type of the reflected or transmitted waves across the joint (after the arrow), and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos 2φ −c sin 2φ − cos 2φ + icd cos θ −c sin 2φ + icd sin φ

c sin 2θ cos 2φ c sin 2θ − iqd sin θ − cos 2φ + iqd cos φ

cos θ − sin φ cos θ − i cos 2φ

cK ′
n

sin φ − i sin 2φ

K ′
n

sin θ cos φ − sin θ + ic sin 2θ

K ′
t

cos φ − i cos 2φ

K ′
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

B =

⎡
⎢⎢⎢⎣

− cos 2φ

c sin 2θ

cos θ

− sin θ

⎤
⎥⎥⎥⎦ , (25)

C =

⎡
⎢⎢⎢⎣

−c sin 2φ

− cos 2φ

sin φ

cos φ

⎤
⎥⎥⎥⎦ , (26)

D =

⎡
⎢⎣ 1

i cos φ

K ′
t

− 1

i cos φ i cos φ + qd

⎤
⎥⎦ , (27)

E =
[

−1
i cos φ

]
, (28)

where 1
K ′

n
= 1

Kn−iHn
and 1

K ′
t

= 1
Kt −iHt

are effective joint stiffnesses for the Kelvin joint, 1
K ′

n
= 1

Kn
− 1

iHn
and 1

K ′
t

= 1
Kt

− 1
iHt

are effective
joint stiffnesses for the Maxwell joint, Kn = kn/(ωZS) and Kt = kt/(ωZS) are the non-dimensional normal and tangential joint stiffness,
respectively, Hn = ηn/ZS and Ht = ηt/ZS are the non-dimensional normal and tangential joint viscosity, respectively, ZS is the rock
impedance for S-wave, c is the ratio of the velocity of S-wave to that of P-wave and is determined by the Poisson ratio of the rock,
d = Ze

ZS
= ωmn

Zs
= ωρ0h

Zs
is non-dimensional and termed as the impedance ratio of the filled joint, Ze is the effective acoustic impedance of the

filled medium, which can be regarded as the acoustic impedance of the filled medium when the wavelength is equal to 2πh.
The solution for a purely elastic joint, corresponding to the case where the joint is non-filled and dry, or a purely viscous joint,

corresponding to the case where there is one thin viscous liquid film in the joint and the joint plane is perfectly smooth, can be obtained from
the solution for a Kelvin joint by setting the specific viscosity to zero or the specific stiffness to zero, respectively.

By setting the incident angles to be zero in eqs (21)–(28), the reflection and transmission coefficients for normally incident wave
propagation across a single viscoelastic joint can be derived.

For normally incident P wave, the reflection and transmission coefficients across a single viscoelastic joint are

RP = i/K ′
n P − idP

2 − idP − i/K ′
n P

, (29)

TP = 2

2 − idP − i/K ′
n P

, (30)

where dP = Ze
Z P

= ωmn
Z P

= ωρ0h
Z P

, 1
K ′

n P
= 1

Kn P −iHn P
for the Kelvin joint, 1

K ′
n P

= 1
Kn P

− 1
iHn P

for the Maxwell joint, Kn P = kn/(ωZ P ) is the
non-dimensional normal joint stiffness for P wave, Hn P = ηn/Z P is the non-dimensional normal joint viscosity for P wave, Z P is the rock
impedance for P wave.

For normally incident SV -wave, the reflection and transmission coefficients across a single viscoelastic joint are

RSV = i/K ′
t − id

2 − id − i/K ′
t

, (31)

TSV = 2

2 − id − i/K ′
t

. (32)
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For normally incident SH-wave, the reflection and transmission coefficients are

RSH = id − i/K ′
t

2 − id − i/K ′
t

, (33)

TSH = 2

2 − id − i/K ′
t

. (34)

Figs 2 and 3 show the magnitude of reflection and transmission coefficients across a Kelvin and a Maxwell joint, respectively, versus
the incident angles for incident P, SV and SH waves. It is assumed that the P-wave velocity of the rock is 6131 m s−1, the S-wave velocity
of the rock is 3830 m s−1, the plate velocity of the filled medium is 1000 m s−1, all of which can be obtained when the Young’s modulus
and Poisson’s ratio of the rock and the filled medium are known (Zhao 1996). Thus, c = 0.6247, the critical angle for SV -wave incidence is
38.66◦, and q can be derived for the specific incident wave. Since interface waves will not be studied in detail, the SV -wave incident angle
is confined to range from 0◦ to 38.66◦. It is also assumed that Kn = Kt = 1, Hn = Ht = 1 and d = 0.1, which can correspond various
combinations of rock material, rock joints, filled medium and incident waves.

As seen from Figs 2 and 3, for both the Kelvin and the Maxwell joints, when the incident angle of P wave and SH wave approaches 90◦,
|RP→P | and |RSH→SH | approach one, while the other reflection and transmission coefficients are vanishing. This indicates that all wave energy
is reflected and conserved in the reflected wave with the same wave type as the incident wave when the wave incident direction is parallel
to the joint plane. When the incident angle of SV -wave approaches the critical angle, except |RSV →SV |, the other reflection and transmission
coefficients increase rapidly for both the Kelvin and the Maxwell joints. In fact, at the critical angle, a large-amplitude head wave is produced,
and beyond the critical angle, inhomogeneous P interface wave is generated (Gu et al. 1996b).

Another interesting phenomenon is that |RP→P |, |RSV →SV | and |RSH→SH | approach zero for certain incident angles for both the Kelvin
and the Maxwell joints. In fact, in some cases, |RP→P |, |RSV →SV | and |RSH→SH | can be exactly equal to zero for certain incident angles, which
can be obtained by setting |RP→P | = 0, |RSV →SV | = 0 and |RSH→SH | = 0 in eqs (21)–(24). The general trend of reflection and transmission
coefficients versus incident angles is similar for the Kelvin and the Maxwell joints, although the magnitudes can be quite different.

Besides the incident angle, the non-dimensional joint stiffness, the non-dimensional joint viscosity and the impedance ratio of the filled
joint also affect the magnitude of reflection and transmission coefficients. Figs 4 and 5 show the magnitudes of reflection and transmission
coefficients across a Kelvin joint and a Maxwell joint, respectively, as a function of Kn P , Hn P and dP for normal P-wave incidence. The
changing trend of the magnitudes of the reflection and transmission coefficients for normal S-wave incidence as a function of Kn , Hn and d
is the same as that for normal P-wave incidence.

It is found that for both the Kelvin and the Maxwell joints, with increasing Kn P or Hn P , the magnitude of reflection coefficients is always
non-increasing, while the magnitude of transmission coefficients is always non-decreasing except when Hn P is smaller than a value around
one for the Kelvin joint.

The phenomenon that for the Kelvin joint, |TP | decreases with increasing Hn P when Hn P is smaller than certain value results from the
wave dissipation due to the viscosity of the joint. As shown in Fig. 6(a), the wave energy loss is the largest when the value of Hn P is close to
one. For the Kelvin joint, when either Kn P or Hn P approaches infinity, |RP | approaches zero, which indicates that all energy is transmitted
and dissipated. For the Maxwell joint, when either Kn P or Hn P approach infinity, only the non-infinity Hn P or Kn P determine |RP | and |TP |,
and thus both |RP | and |TP | are approximately constant but non-zero.

From eqs (29) and (30), it can be found that for the Maxwell joint, |RP | approaches zero only when both Kn P and Hn P approach infinity.
For both the Kelvin and the Maxwell joints, |RP | and |TP | change little with increasing dP when dP is small. While dP is sufficiently large,
|TP | approaches 1, while |RP | approaches zero. However, this phenomenon is only meaningful in mathematics. In nature, the value of dP is
usually small.

From eqs (29) and (30), it is found that |RP |2 + |TP |2 < 1, which is due to the energy dissipation from the viscosity and initial mass of
the filled joint. Figs 6 and 7 show the energy loss ratio (eloss), which is defined as the ratio of dissipated energy to the energy of the incident
wave, across a Kelvin joint and a Maxwell joint, respectively, as a function of Hn P and dP for normally incident P wave. The changing trend
of eloss for S-wave incidence is the same as that for P-wave incidence.

It is found that for both the Kelvin and the Maxwell joints, eloss arrives at the maximum value when log10(H P
n ) is close to zero. When H P

n

approaches zero, eloss approaches zero for the Maxwell joint, but eloss is non-zero for the Kelvin joint. It is because dP does not result in any
energy dissipation when Hn P approaches zero for the Maxwell joint, while dP does for the Kelvin joint. When Hn P approaches infinity, eloss

approaches zero for the Kelvin joint, but eloss is non-zero for the Maxwell joint. It is because dP does not result in any energy dissipation when
Hn P approaches infinity for the Kelvin joint, but dP does for the Maxwell joint. For both the Kelvin and the Maxwell joints, with increasing
dP , eloss first increases to the maximum value, then it decreases to zero. As mentioned before, it should be noted that the value of dP is usually
small in nature.

3 E X P E R I M E N TA L DATA A N D C U RV E F I T T I N G

3.1 Experimental data

A modified split Hopkinson pressure bar (SHPB) test was performed to study wave propagation across a filled rock joint (Li & Ma 2009). As
shown in Fig. 8, a sand layer was sandwiched between the incident and transmitted granite pressure bars. The two bars have 5 cm diameter
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Figure 2. Reflection and transmission coefficients across a single Kelvin joint versus incident angles for (a) P-wave incidence; (b) SV -wave incidence and (c)
SH-wave incidence.

and lengths 97 and 100.5 cm, respectively. A pendulum hammer is used to generate a P-wave pulse applied to the left boundary of the incident
bar. The sand layer is contained in a plastic tube to prevent outflow of the sand. Four strain gauges are used to obtain the wave recordings.
The density of the granite is 2650 kg m–3, the P-wave velocity is 4758 m s–1, the swing-angle of the hammer is 40◦, the thickness of the
filled joint is 3 mm, the water content and density of sand are 5 per cent and 1592.2 kg m–3, respectively. With the measured wave recordings,
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Figure 3. Reflection and transmission coefficients across a single Maxwell joint versus incident angles for (a) P-wave incidence; (b) SV -wave incidence and
(c) SH-wave incidence.

incident, reflected and transmitted waves can be obtained after different waves are separated. Fig. 9 shows the incident and transmitted waves
upon the filled joint.

3.2 Curve fitting

To examine the spectral contents of the measured pulses, a window function (also known as the tapering function) is used to extract a particular
pulse from the original one. The amplitude of the windowing function is zero everywhere except along a finite time interval with unitary
amplitude, defined as the width of the window. The product of the windowing function and the original pulse results in the desired isolated

C© 2011 The Authors, GJI, 186, 1315–1330

Geophysical Journal International C© 2011 RAS



Seismic response of viscoelastic filled joint 1323

Figure 4. Reflection and transmission coefficients across a Kelvin joint versus (a) the non-dimensional joint stiffness, where Hn = 1 and d = 0.1; (b) the
non-dimensional joint viscosity, where Kn = 1 and d = 0.1; (c) the impedance ratio of the filled joint, where Kn = 1 and Hn = 1, for normal P-wave incidence.

pulse. It should be noted that the same windowing function is used for the measured incident and transmitted waves to ensure that the results
of the spectral contents are comparable with each other. In this study, Hann window, whose function is 0.5 × {1 − cos[2πn/(N − 1)]}, where
n varies from 0 to N – 1, is used as the window function (Harris 1978). The amplitude spectra are then calculated by performing a fast Fourier
transform (FFT) on the tapered waveforms, as shown in Fig. 10.

To achieve the best fit between the measured transmitted wave and the predicted transmitted wave derived from the analytical solutions,
an algorithm that minimizes the least-squares differences between the two series of values is used. With iterative computations, the best fit
mechanical parameters of the joint are determined as follows: kn = 33.748 GPa m–1, ηn = 1.2919 MPa s m–1 for the Kelvin model (Fig. 10a);
kn = 31.566 GPa m–1, ηn = 150 MPa s m–1 for the Maxwell model (Fig. 10b).

It can be seen from Fig. 10 that the analytical solutions from both the Kelvin and the Maxwell models agree well with the experimental
results. Therefore, the Kelvin and the Maxwell models can both be used to describe the seismic response of joints filled with sand for
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Figure 5. Reflection and transmission coefficients across a Maxwell joint versus (a) the non-dimensional joint stiffness, where Hn = 1 and d = 0.1; (b) the
non-dimensional joint viscosity, where Kn = 1 and d = 0.1; (c) the impedance ratio of the filled joint, where Kn = 1 and Hn = 1, for normal P-wave incidence.

P-wave incidence. In addition, like the displacement discontinuity model, the filled joint model presented in this study also functions as a
high-frequency filter. The high-frequency components across the joint attenuate much more than the low-frequency components.

4 WAV E P RO PA G AT I O N A C RO S S A F I L L E D J O I N T S E T

Wave propagation across a joint set is more complicated due to the multiple wave reflections among joints. With the same joint mechanical
parameters as mentioned earlier, normally incident P-wave propagation across a filled Kelvin joint set and a filled Maxwell joint set is studied
in the following. For S-wave incidence, the changing trend is the same as that for P-wave incidence. The virtual wave source method (VWSM)

C© 2011 The Authors, GJI, 186, 1315–1330
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Figure 6. The energy loss ratio across a Kelvin joint versus (a) the non-dimensional joint viscosity, where Kn = 1 and d = 0.1; (b) the impedance ratio of the
filled joint, where Kn = 1 and Hn = 1, for normal P-wave incidence.

and the scattering matrix method (SMM) are used to obtain the transmitted wave across a filled joint set, where multiple wave reflections are
taken into account. The results obtained are compared and validated.

4.1 The VWSM

Combined with the equivalent medium model, Li et al. (2010) introduced a concept of virtual wave source (VWS) to obtain the equivalent
viscoelastic moduli of the jointed rock mass.

Zhu et al. (2011) extended VWSM to study joint described by the displacement discontinuity model. Combined with the discontinuous
model, VWS exists at the joint position and represents the mechanical properties of the joint. Each time when an incident wave propagates
across the joint (VWS), VWS produces one or two reflected waves and one or two transmitted waves depending on the incident wave directions
and types, which can be directly derived by using the reflection and transmission coefficients obtained earlier. The transmitted wave across a
joint set is the result of wave superposition of different transmitted waves created by VWSs. To obtain the transmitted wave of the incident
transient wave, FFT and inverse FFT are used to transform between frequency domain and time domain. Detailed description of VWSM can
be found in the reference of Zhu et al. (2011).

4.2 The SMM

The scattering phenomenon that takes place when an elastic wave impinges on a discontinuity can also be analysed by the SMM (Aki &
Richards 2002; Perino et al. 2010), which is borrowed from the study of electromagnetic wave propagation and the theory of transmission
lines such as coaxial cables, optical fibres and strip-lines (Collin 1992).

In the case of a joint, incident, reflected and transmitted plane waves have the same transverse wave vector and the respective amplitudes
are related by a 2 × 2 block matrix as follows:(

c−
1

c+
2

)
=

(
S11 S12

S21 S22

) (
c+

1

c−
2

)
, (35)
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Figure 7. The energy loss ratio across a Maxwell joint versus (a) the non-dimensional joint viscosity, where Kn = 1 and d = 0.1; (b) the impedance ratio of
the filled joint, where Kn = 1 and Hn = 1, for normal P-wave incidence.

Figure 8. The configuration of the modified split Hopkinson pressure bar (SHPB) test.

where c1
+ and c2

− are the amplitudes of the waves incident on the joint, whereas c1
− and c2

+ are the amplitudes of the scattered waves
(reflected and transmitted), Sii have the meaning of reflection coefficients at the two sides of the joint, and Sij have the meaning of transmission
coefficients. Since elastic waves have three possible polarization states (P, SV , SH), the submatrices have a size of 3 × 3. The values of Sii

and Sij can be derived with the analitical solutions obtained in Section 2.
To extend the SMM to the case of N parallel joints, one may compute the scattering matrix for each of them. Then, by using a ‘chain

rule’ procedure, the global scattering matrix is defined. This is a combination of the components of the scattering matrix for each joint and
represents the effect on elastic wave propagation due to the N discontinuities. The global scattering matrix contains the global reflection and
transmission coefficients of a joint set, where multiple wave reflections among the joints are taken into account.
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Figure 9. The measured incident and transmitted wave signals of the modified SHPB test.

Figure 10. Spectra of the measured incident wave, measured transmitted wave and transmitted wave predicted with (a) the Kelvin model; (b) the Maxwell
model.

4.3 Parametric studies

Without losing generality, a normally incident half-cycle sinusoidal P wave is assumed to be applied at the boundary of a filled joint set with
viscoelestic behaviour, that is,

vI (t, 0) =
{

I sin(ω0t)

0
, when

0 ≤ t ≤ π/ω0

others
, (36)

where I is the amplitude of the incident wave which is assumed to be one, ω0 is the angular frequency of the incident wave which is taken
as 2π KHz. The properties of the rock and of the filled material are the same as those of the experiment described in the previous section.
The specific joint stiffness and viscosity of the Kelvin and Maxwell joints are those determined through the best fit of the experimental data
described in the same section.
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Figure 11. Transmission coefficients across N (N = 2, 3, 5, 8) Kelvin joints versus non-dimensional joint spacing (ξ ) with VWSM and SMM.
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Figure 12. Transmission coefficients across N (N = 2, 3, 5, 8) Maxwell joints as a function non-dimensional joint spacing (ξ ) with VWSM and SMM.

Figs 11 and 12 show the magnitude of transmission coefficients across N (N = 2, 3, 5, 8) Kelvin joints and N Maxwell joints (|TN |),
respectively, versus the non-dimensional joint spacing (ξ ) based on VWSM and SMM. The non-dimensional joint spacing is defined as the
ratio of the joint spacing to the incident wavelength, which is equal to 2πCP/ω0.

It is found that the results obtained by VWSM and SMM agree well with each other. Therefore, the capability of these two methods to
study wave propagation across multiple viscoelastic joints is verified.

It is also found that although the general changing trend of |TN | versus ξ is the same for the Kelvin and Maxwell joints, the amplitudes
are somewhat different. It indicates that even though both the Kelvin and the Maxwell models can be used to study P-wave propagation
across a single viscoelastic joint filled with sand, the seismic response of multiple parallel Kelvin and Maxwell joints is somewhat different.
Further experiments on wave propagation across multiple parallel joints filled with saturated sand are needed to determine which model is to
be preferred.

It is noted that for both the Kelvin and Maxwell joints, |TN | first increases to the maximum value, with increasing ξ , before it decreases
to a constant. It is also shown that when ξ is sufficiently large, it has no effect on |TN |, which indicates that the multiple wave reflections
among joints have no effect on |TN |. This is because the arriving time difference between the first transmitted wave and later transmitted
waves from multiple wave reflections is large enough to eliminate the influence of later arriving transmitted waves on |TN |. While ξ is small,
the multiple wave reflections among joints have great effects, and |TN | is dependent on ξ . It is also noted that |TN | decreases with the number
of joints increasing.

5 D I S C U S S I O N

Compared with other models, for example, the displacement discontinuity model, the displacement and stress discontinuity model is more
suitable to study wave propagation across filled joints. The displacement and stress discontinuity model for the viscoelstic filled joint used in
this study are approximated from the layered medium model (Brekhovskikh 1980), where the filled joint is a viscoelastic layer sandwiched
between two elastic semispaces, and both displacements and stresses across the two interfaces of the filled joint are continuous. The initial
masses of the filled joint are reflected by the non-dimensional parameter d in the process to obtain the reflection and transmission coefficients
in eqs (24), (27) and (29)–(34). d can be regarded as the ratio of effective impedance of the filled viscoelastic medium to the acoustic
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Figure 13. Reflection and transmission coefficients across a single Kelvin joint versus a full range of incident angles (from 0◦ to 90◦) for SV -wave incidence.

impedance of the background rock. Also, according to the layered medium model, the wave reflection and transmission across each of the
two interfaces of the filled joint are determined by the ratio of the impedance of the sandwiched layer to that of the semispace. Therefore, d
is a key parameter to relate the boundary conditions used in this study, that is, the displacement and stress discontinuity model, to the layered
medium model.

Instead of the specific joint viscosity η, which can be ηn or ηt , non-dimensional parameter H , which can be Hn or Ht , is adopted in this
paper to simplify the mathematical expressions. It should be noted that different from K and d, H is frequency independent. This characteristic
of η is significant when studying the reflected and transmitted waves and determining the joint properties in geophysics exploration and
non-destructive evaluation studies.

Also of interest is to the physical meaning of η. The usually used viscosity is a property of the material and related to its particle velocity
gradient. The specific viscosity used in this study depends on the particle velocity change between opposite sides of the joint. And therefore,
this specific viscosity is a property of the joint.

In addition, η can result in wave energy dissipation. As shown in Figs 6 and 7, the energy loss caused by η is very small or zero when
η is very small or very large; while η is close to 10, the wave dissipation is the largest. This characteristic of the specific joint viscosity is
significant and can be applied to protective design of rock structures.

As proved in the paper, both of the Kelvin and the Maxwell models can be used to describe the viscoelastic behaviour of the filled joint.
As well known, the Kelvin model is composed of a spring (reflected by K in the equations) and a dashpot (reflected by H in the equations) in
parallel, while the Maxwell model is composed of a spring and a dashpot in series. Different configurations of the Kelvin and the Maxwell
model result in different seismic responses. When either H or K approaches infinity, the Kelvin joint functions as a perfectly bonded interface,
and no wave energy is reflected. However, only when both H and K approach infinity, the Maxwell joint can function as a perfectly bonded
interface. When either H or K approaches zero, the Maxwell joint acts as a free surface, and no wave energy is transmitted. However, only
when both H and K approach zero, the Kelvin joint is equivalent to a free surface.

Although interface waves are to be discussed in the future, some comments can also be made here. Based on eqs (22), (24) and (26),
Fig. 13 shows the magnitude of reflection and transmission coefficients versus the incident angle, which varies from 0◦ to 90◦, for an SV -wave
incident upon a Kelvin joint. The other parameters adopted are the same as those in Fig. 2(b). It can be observed that |RSV →P | and |TSV →P |
can be larger than 1.

6 C O N C LU S I O N S

The effects of filled joints of viscoelastic behaviour on wave propagation are of considerable fundamental significance and engineering
interest. As the density of the filled medium, which is usually saturated clay or sand, is not negligible compared with the rock density, the
displacement and stress discontinuity model is found to be suitable to reflect the seismic response of the filled joint.

The stress discontinuity across the filled joint is caused by the normal and tangential masses, which determine their acoustic impedance
ratio. The displacement discontinuity across the filled joint results from the specific joint stiffness and viscosity, which further determine
the non-dimensional joint stiffness and viscosity. It should be noted that the physical implication and unit of the specific joint stiffness and
specific joint viscosity are different from those normally used.

The reflection and transmission coefficients across a single filled joint with viscoelatic behaviour are determined by parameters which
include the incident angle, the non-dimensional joint stiffness, the non-dimensional joint viscosity and the impedance ratio of the filled joint.
The impedance ratio of the filled joint and the non-dimensional joint stiffness are frequency dependent, while the non-dimensional joint
viscosity is not. In addition, the wave energy is dissipated due to the viscosity and the initial mass of the filled joint.

The Kelvin and the Maxwell models, based on modified SHPB tests and curve fitting, are found to describe well the seismic response of
viscoelastic joints filled with sand for P-wave incidence. The most relevant difference between the seismic responses of the Kelvin and the
Maxwell joint depends on the different role the non-dimensional joint stiffness and the non-dimensional joint viscosity play in wave reflection
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and transmission. When a wave propagates across a filled joint set, due to the presence of multiple wave reflections, the non-dimensional joint
spacing is the dominating parameter.
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