IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012 23

Neural Network-Based Thermal Simulation of
Integrated Circuits on GPUs

Arvind Sridhar, Student Member, IEEE, Alessandro Vincenzi, Student Member, IEEE,
Martino Ruggiero, Member, IEEE, and David Atienza, Member, IEEE

Abstract—With the rising challenges in heat removal in
integrated circuits (ICs), the development of thermal-aware
computing architectures and run-time management systems has
become indispensable to the continuation of IC design scaling.
These thermal-aware design technologies of the future strongly
depend on the availability of efficient and accurate means for
thermal modeling and analysis. These thermal models must
have not only the sufficient accuracy to capture the complex
mechanisms that regulate thermal diffusion in ICs, but also
a level of abstraction that allows for their fast execution for
design space exploration. In this paper, we propose an innovative
thermal modeling approach for full-chips that can handle the
scalability problem of transient heat flow simulation in large
2-D/3-D multiprocessor ICs. This is achieved by parallelizing
the computation-intensive task of transient temperature tracking
using neural networks and exploiting the computational power
of massively parallel graphics processing units. Qur results show
up to 35x run-time speedup compared to state-of-the-art IC
thermal simulation tools while keeping the error lower than
1°C. Speedups scale with the size of the 3-D multiprocessor
ICs and our proposed method serves as a valuable design space
exploration tool.

Index Terms—2-D/3-D integrated circuits (ICs), graphics pro-
cessing unit (GPU), neural networks (NNs), thermal modeling.

I. INTRODUCTION

N IMPORTANT side effect of the continued scaling

and miniaturization of CMOS technology is the ever
increasing device power density. The resulting difficulties in
managing temperature, especially local hot spots, have been
recognized as one of the major challenges for designers of
electronic circuits in the latest technology nodes [1]. Although
energy consumption is one of the main sources of temperature
increase, a purely power-aware control and design is not
an optimal solution to the thermal issues [2]. Power and
energy are indeed regarded as cumulative quantities, whereas

Manuscript received February 7, 2011; revised June 29, 2011 and September
27, 2011; accepted October 6, 2011. Date of current version December 21,
2011. This work was funded in part by the Nano-Tera RTD Project CMOSAIC
(ref. 123618), which is financed by the Swiss Confederation and scientifically
evaluated by SNSF, as well as by the PRO3D STREP Project (ref. FP7-ICT-
248776) financed by the EC in the 7th Framework Program. This paper was
recommended by Associate Editor P. Li.

The authors are with the Embedded Systems Laboratory, Ecole Poly-
technique Fédérale de Lausanne, Lausanne 1015, Switzerland (e-mail:
arvind.sridhar@epfl.ch; alessandro.vincenzi @epfl.ch; martino.ruggiero@epfl.
ch; david.atienza@epfl.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2174236

thermal issues appear because chips tend to warm-up in a
nonuniform way, which leads to hot-spots and spatial gradients
that can cause timing errors and physical damage. In fact,
both spatial and temporal distribution of power consumption
in integrated circuits (ICs) are relevant in the relationship
between power/energy and temperature. As a consequence,
thermal modeling and analysis has developed into a distinct
area of study (with respect to power and energy modeling) that
has gained considerable attention over the last decade due to
the large power density increase in ICs [3]-[7].

In addition, the situation will be exacerbated by upcoming
3-D IC stacking [1]. 3-D stacking also brings disruptive and
distinctive challenges related to thermal dissipation, which in
this case involves cooling a volume instead of just cooling a
planar IC surface [8]. In fact, neglecting thermal information
during the design of 3-D ICs would imply excessive over-
design, due to the extremely conservative constraints that
designers may impose in order to guarantee correct circuit
operation under all possible running conditions and resulting
temperature transients.

As a result, new thermal modeling technologies that can
capture the transient thermal behavior of hardware elements
and their interaction with the software running on them are
required to enable thermal-aware chip design and validation
of dynamic thermal management strategies. In addition to
possessing sufficient accuracy to capture the complex mecha-
nisms that regulate thermal diffusion and radiation, these novel
thermal modeling approaches also need to have a sufficiently
high level of abstraction that allows for fast execution [8], [9].

In recent years, a number of full-chip 2-D/3-D thermal
simulators, based on finite-element and compact models, have
been proposed that provide detailed temperature distribu-
tions [6], [9], [10], [11]. However, thermal analysis using
conventional methods is a resource-consuming and time-
consuming task that can be strongly influenced by accuracy
requirements, as well as the complexity of the run-time 2-D/3-
D IC execution scenario under study, making them unfeasible
for large-scale IC design.

Nevertheless, recently graphics processors have become
increasingly competitive in speed, programmability, and price.
Graphics processing units (GPUs) have already been used
to implement many computationally intensive algorithms in
various areas, including high-performance computing, scien-
tific computation, and image processing [12]-[14]. Indeed,
the main advantage of GPUs over central processing units

0278-0070/$26.00 © 2011 IEEE

24 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012

(CPUys) is the high computational throughput at a relatively
low cost, which is achieved through their massively parallel
architecture. Hence, efficient GPU usage and exploitation have
already been identified as the next breakthrough in electronic
design automation (EDA) tools [15].

However, it is difficult to structure algorithms to take
advantage of massively parallel processors, such as GPUs.
Even if existing thermal models of ICs can potentially exhibit
a high level of parallelism, it is difficult to translate this paral-
lelism into an efficient software implementation on commodity
GPUs—only one attempt has been proposed until today [8].
Even though this approach has not yet been validated for real
3-D ICs with liquid cooling support, this paper outlines the po-
tential capabilities of GPUs for thermal modeling. Therefore,
novel GPU-friendly modeling technologies and capabilities are
needed to support accurate and fast 2-D/3-D full-chip thermal
analysis and simulation.

In this context, neural networks (NNs) can represent an
optimal parallelizable solution to this problem. NN is an
information processing method that was inspired by the way
biological nervous systems, such as the brain, function to
process information [16]. It is composed of a large number of
highly interconnected processing elements (neurons) working
in unison, and can be trained to solve complex problems,
such as thermal modeling of specific IC layouts [17]. On
one hand, NNs are very flexible and can be trained to mimic
the behavior of any physical system with relative ease of
implementation. On the other hand, a major drawback of
NNs is their potentially long training time (several hours
or even days) because they are very computation and data-
intensive [18]. Nevertheless, their capacity to execute a large
number of operations simultaneously and with relatively low
data transfer makes them a potentially attractive concept for
GPU computing [19].

Therefore, in this paper our goal is to utilize and exploit the
power of GPUs, in combination with NNs, to develop a fast
and accurate thermal modeling approach for transient thermal
analysis of 2-D/3-D ICs. The main contributions of this paper
are the following.

1) We present a new full-chip thermal modeling technology
based on NNs and GPUs. The model is transient and
can accurately predict the temporal evolution of both
planar and 3-D chip temperatures. We have validated
the accuracy of the model by comparing our results with
3D-ICE [9], a state-of-the-art thermal simulation tool for
3-D ICs.

2) We propose a methodology for the optimal training of
the proposed NNs for thermal modeling. The one-time
training is performed using state-of-the-art (but slow)
thermal modeling tools. This step enables the removal
of the unnecessary state variables in our presented NN-
based thermal model (such as the temperatures of layers
in which the user is not interested), which, in turn,
drastically improves computational efficiency.

3) We introduce an innovative approximation, namely, the
proximity-based reduction, which further reduces the
computational complexity of our thermal model, while

negligibly affecting model accuracy (an error of less than
1°0).

4) Our NN-based thermal model specifically targets GPU
platforms because they are architectures on which the
matrix-vector multiplication is easily parallelizable. On
the contrary, state-of-the-art thermal simulators like
HotSpot [6] or 3D-ICE [9] are based on sequential
operations that cannot be ported efficiently on massively
parallel architectures. Thus, GPU exploitation in our
proposed NN-based thermal modeling approach resulted
in considerable time-savings (35x run-time speedup),
especially for large IC problem sizes and detailed layout
models, while incurring an error lower than 1°C in
comparison to state-of-the-art IC thermal simulation
tools.

5) Once trained, our NN-based thermal simulator on GPU
platforms can be reused any number of times with
different 2-D/3-D IC floorplan configurations as long
as the area of the dies remains constant—which is
indeed the case in most thermal-aware placement algo-
rithms [20], [21]. Hence, our proposed thermal modeling
approach enables fast thermal-aware design space and
floorplanning exploration based on GPU technology.

The rest of this paper is organized as follows. First, Sec-

tion II reviews the previous research done on thermal modeling
of ICs and GPU acceleration. Then, Section III describes the
compact thermal model, which forms the basis for the training
of the proposed NN-based simulator. Section IV presents the
proposed new NN-based simulator, the training methodology,
and the paradigms for accurate and optimal training. Section V
presents the implementation scheme of the proposed model on
a GPU platform. Finally, Section VI describes our experimen-
tal results, and Section VII summarizes the main conclusions
of this paper.

II. RELATED WORK

A considerable amount of research has gone into devel-
oping thermal models for planar ICs with conventional heat-
sink based cooling. In [22], the authors presented different
and detailed full-chip thermal models. These models provide
detailed temperature distribution information across the silicon
die and can be solved efficiently. Unfortunately, a limitation of
the above model lies in the fact that they rely on some over-
simplifications, in particular for the package thermal model.
In comparison, there are also several package-level thermal
models [11], [23] leveraging compact modeling techniques.
These thermal models consist of networks of thermal re-
sistances, whose values are extracted by data-fitting from
the results of accurate but time-consuming detailed numeri-
cal package thermal model simulations (e.g., finite element
method). Therefore, they are not fully parameterized and
cannot be easily used to explore new system designs.

The finite difference (FD) method is the traditionally pre-
ferred approach used in the thermal simulation of ICs because
it guarantees the best accuracy in modeling the complex
3-D structures of 3-D ICs, while retaining a sufficiently high
level of abstraction. However, accurate 3-D thermal analysis

SRIDHAR et al.: NEURAL NETWORK-BASED THERMAL SIMULATION OF INTEGRATED CIRCUITS ON GPUS 25

using FD method can be very expensive, which requires
solving a huge system of linear equations with multimillion
unknowns [10]. Other methods present simplified thermal
models for steady-state simulations and provide no informa-
tion about the transient thermal behavior of the ICs [3]. The
methods in [6] and [7] use a finite-difference based method
to generate a compact thermal model for the IC. In addition,
while a high-level interconnect model is developed in [6] to
simulate the effects of interconnect self-heating, [7] applies
the alternative direction implicit technique for obtaining fast
and stable transient results.

None of the above thermal models takes advantage of
the computational power provided by modern GPUs. It must
be noted that GPU-based parallel computing has also been
employed in various EDA tools, such as analysis of large scale
power distribution networks [13], physical synthesis [24], and
gate-level simulation [25].

The only paper that proposes GPU-based full-chip thermal
simulation methods for 3-D ICs with integrated microchannel
cooling is [8]. This paper proposes an iterative methodology
that uses a two-step relaxation based preconditioner for a
conventional multigrid conjugate gradient method. This paper
relies on modifying established simulation methodologies to
suit the GPU architecture for faster and more efficient com-
puting. However, being an iterative technique brings with it
the typical limitations of slow convergence and sensitivity to
initial conditions and initial guess. In addition, the accuracy
of their thermal model has not been validated with respect to
real measurements or other tools.

Our approach is based on NN modeling. Our NN model
is a direct-method based simulator and hence, contrary to
iterative techniques, the results are immediate. The authors
in [17] already used a very different NN-based method for
thermal modeling of a planar chip. However, their model is
not applicable to 3-D ICs and has been designed for run-time
thermal management. It uses online readings from on-chip
temperature sensors for continuous training of the NN, and
thus, it is not suited for design space exploration.

The enormous benefits that NN can bring while running
on GPUs have been widely demonstrated in the literature.
During the last few years, many different methods have
been investigated to improve the performance of NNs on
GPUs. Generic NNs have been implemented on GPUs in
the recent past using shaders to modify the GPU’s rendering
pipeline [12]. This is a significantly less convenient approach,
requiring the programmer to formulate the algorithm in terms
of pixels, textures, vertices, and other graphics primitives. GPU
programmability has considerably improved thanks to CUDA,
which offers a much more flexible and intuitive programming
platform. In [26], one of the first NNs for the unified shader
architecture using CUDA was implemented.

III. COMPACT THERMAL MODELING

Thermal simulation of ICs is conventionally performed
using compact modeling [6], [27]. This makes use of the
analogy between heat diffusion in solids and current flow in
electrical systems governed by parabolic differential equations,
like an RC circuit. In this paper, we will use the compact

ot
P

| sio, | sio,

Y
vl

| sio, |

Si Si Si

Fig. 1. Discretization of an IC into “thermal cells.”
Top N
h Py v, .
— Bottom

1 R

Fig. 2. Equivalent circuit of a solid thermal cell.

modeling method to characterize the thermal behavior of an
IC, and then use the results to train the NN.

The conventional compact modeling for heat conduction in
solids is done by applying the finite-difference approximation
to the governing equations of heat transfer in solids [27]. This
involves dividing the different layers in an IC into cuboidal
“thermal cells” as shown in Fig. 1. Next, the well-known
analogy between heat and electrical conduction is invoked here
with the temperature represented as voltage and the heat flow
represented as electric current [6] to convert each thermal cell
into an equivalent electrical circuit as shown in Fig. 2. Finally,
the nodes of these thermal cells are connected to the nodes of
their neighboring cells through the interfaces by computing
the equivalent conductances between them. The boundary
conditions are given by convective resistances connecting the
top layers of the IC to the ambient temperature. Although
strictly speaking the convective resistance to the ambient is
temperature dependent, in most early-stage thermal modeling
and thermal-aware designs it is customary to assume a constant
convective resistance to the ambient [6]. This results in a linear
time invariant (LTI) system for thermal analysis and the fol-
lowing system of ordinary differential equations is generated:

GX(r) + CX(r) = U(r) (D)

where X(7) is the vector of all node temperatures (as a function
of time), C is a diagonal matrix of all cell capacitances, and
U(z) is a vector of inputs (heat sources as a function of time)
wherever they exist. G is a sparse symmetric block tri-diagonal
conductance matrix, where the nonzero non-diagonal elements
represent the connections between neighboring nodes. The
formulation of heat flow equations, as described above, can
be extended to structures containing multiple layers of thermal
cells. The boundary conditions are given as source terms in
the U vector. For example, if the top layer is connected to
the ambient via some silicon-to-air thermal resistance, then
the nodes on the top layer are grounded to the ambient
temperature via that conductance term. This method can be
used to generate a compact thermal model for any general
heterogeneous structure like an IC die, and the 3-D temporal
evolution of heat inside the 3-D IC can be accurately modeled.

26 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012

For more information about the compact thermal modeling
used in this paper, please refer to [9].

A “thermal grid” matrix is hence generated by connecting
individual thermal cells in the entire IC. Cell dimensions used
for the discretization of the heterogeneous IC structure are
dependent upon the accuracy and speed requirements of the
designer. In our experiments, we found that cell sizes of few
hundred micrometers are sufficient for a typical IC thermal
modeling accuracy [2], as they can incur errors of less than
1°C.

The next step is the formulation of equations for the
simulation of the thermal grid. For this, (1) is integrated
numerically using the backward Euler method as follows:

(G . ;IZC) X(t1) = %cxm) FUG)
= AX(e1) = BX() + TU(t0s1) @)

where h is the time-step used for the numerical integration,
A =G+ 4C, B =,C, and I is the identity matrix. Here, 1,
denotes the nth time point during the transient simulation. The
system of linear equations in (2) can be solved using direct
or iterative solvers. However, there are inherent disadvantages
in using either approach. Direct solvers typically involve some
form of sparse factorization of matrix A, such as LU decompo-
sition [28], and the subsequent execution of forward-backward
substitutions for each time point in the simulation time interval
to obtain the temperatures of the IC as a function of time.
Both the factorization and the forward-backward substitutions
are essentially serial operations and cannot be implemented
on parallel computing platforms to speed up the simulations.
On the other hand, iterative techniques such as Gauss—Jacobi
relaxation are memory efficient and highly parallelizable but
suffer from very slow convergence when applied to problems
containing smooth spatial distribution of state variables such
as temperatures in an IC [29]. In addition, these methods are
very sensitive to changes in the inputs to the system and hence,
would become very slow if power inputs change drastically
or if the floorplan configuration of the IC is changed, as is
commonly done during design space exploration.

We propose an alternative to these approaches, which is a
thermal simulator based on artificial NNs. In the next section,
the theory and the implementation of the proposed NN-based
thermal simulator will be described and its advantages over
direct and iterative solvers will be demonstrated. For this
paper, the thermal grids for the test cases were built and the
training data for the NN was generated using 3D-ICE [9], an
open source thermal simulation software based on the compact
modeling technique.

IV. NN-BASED THERMAL SIMULATION

Artificial NNs are multi-input multi-output operators, which
can be trained to mimic the behavior of any mathematical
function through learning the input-output dependencies of
that function from some test data. Fig. 3 shows a simple 4-
input 3-output linear NN. The various inputs of this NN are
connected to the outputs via weighted links. Hence, the outputs

Fig. 3. Simple linear NN.
Delay
X(t,)
Neural
> X(ty41)
U(t,..) Network

Fig. 4. Linear NN for thermal simulation of ICs.

can be expressed as a weighted sum of the inputs as follows:
yi= Z WX j 3)
J

where w;; connects input x; to output y;. A zero weight
indicates the absence of a connection, meaning the input under
consideration does not influence the output.

The thermal model for an IC structure is a deterministic
system. More specifically, we assume that the thermal prop-
erties of the materials in an IC do not vary with temperature,
as it occurs in large ranges of operating conditions of ICs.
These thermal properties could be calculated for a worst-
case IC operating temperature. Therefore, the equations in
(1) represent a LTI system that can be represented using a
linear single layer NN. The goal of our NN-based simulator,
as shown in Fig. 4, is to approximate the following function
derived from (2):

X(ty1) = PX(#) + QU(t+1) “)

where P = (G+1C)™'1C and Q = (G+1C)™". The NN
here is trained using 3D-ICE. Once trained, the weights of
this NN reflect the coefficient of these matrices, and the
NN is able to run as a stand-alone simulator on massively
parallel computing platforms, such as GPUs, to give significant
speedups when compared to the conventional techniques. The
accuracy and the computational advantages of the proposed
NN-based simulator come from various aspects of our model
and will be discussed in the ensuing subsections.

A. Training of the NN

Learning in NN essentially consists of finding the correct
set of weights for each connection in the NN, such that the
input-output relationship of the system is emulated accurately
for all possible cases. In other words, in a fully connected NN
for the thermal simulation of an IC, the weights correspond to
the elements of matrices P and Q in (4). Training is performed
by supplying to the NN a finite set of inputs and outputs from
3D-ICE over a specific simulation interval (N, time points)
as shown in Fig. 5. During each training iteration, the outputs
from NN and the target output from 3D-ICE are compared and

SRIDHAR et al.: NEURAL NETWORK-BASED THERMAL SIMULATION OF INTEGRATED CIRCUITS ON GPUS 27

> { Xspiceltun) }

3D-ICE
!
{xw} Training
Algorithm
{ Ut }——1 y
' Neural
Network
— { Xunlter) }
] sns=s NTJ'uirr
Fig. 5. NN-based thermal simulator trained using 3D-ICE.
Dissipation into .
the ambient | | Die #2
Interconnect layers Die #1
Substrate
Active Interconnect layers
layer
Substrate

Fig. 6. Layers in a 3-D IC and the path of heat dissipation.

based on the error incurred, the weights of the NN are updated
using some training algorithm and the new set of outputs
from NN are compared again with 3D-ICE. These iterations
are continued until convergence is reached based on some
predefined error tolerance. Once the training is finished, these
weights can be stored and can be reused for future simulations.

ICs are heterogeneous structures and consist of layers of
different materials. The composition of a given IC affects its
thermal characteristics. Hence, all the structural and material
heterogeneity of the IC must be taken into account in the
construction of the compact model (Section III) for accurate
simulation. However, designers who want to study the design-
time or run-time thermal characteristics of an IC are typically
interested only in the temperatures of the active regions of
the IC, that are the layers of silicon where the devices are
fabricated and where bulk of the power is dissipated, as
shown for a two-die 3-D IC stack in Fig. 6. Moreover, during
the design space exploration, typically only the floorplan
configuration and the routing parameters are varied while
keeping all the technological parameters, such as the materials,
the thickness of substrate, the number of interconnect layers,
and so on constant. Hence, it would be sufficient to train
and run the NN to simulate temperatures for only the active
layers. In addition, since the thermal grid is assumed to be
an LTI system, the sources representing the ambient can
be eliminated by considering a zero ambient temperature,
invoking the principle of superposition, and later adding the
actual ambient temperature to the results of the simulation.
Hence, the number of neurons (outputs) in the reduced NN
would equal the number of thermal cells in the active layers
of the IC, and the number of inputs would be equal to twice
that number, namely, the temperatures of the cells in the

active layer from the previous time point plus the sources
representing the power dissipation for the same cells. This
results in the minimum possible problem size, greatly reducing
the computational complexity of the NN.

B. Training Length and Method

Since the intended application for the NN is to replace
a conventional thermal simulator, the training process must
ensure that the NN is capable of predicting temperatures for
all possible power inputs and initial temperature states. Hence,
a minimum number of time points of temperature data (Ntyain)
must be supplied to the training algorithm for a comprehensive
training. This minimum number of training points (NTrin, min)
depends upon the nature and the size of the thermal grid being
solved. The method to compute it is as follows.

In a NN consisting of [neurons (outputs) {y1, ¥2..., Yi..., Y1}
and m inputs {xi, Xs..., Xj..., X,y }, there are a total of Im
weights to be computed, assuming a fully connected network.
However, as it can be seen from (3), each neuron y; is affected
by only m weights w;;,1 < j < m. Hence, the training
of these m weights is dependent only upon the output y;
and the corresponding target output #; from 3D-ICE. That is,
each set of m weights is trained simultaneously within the
set, and is independent of the other sets. Each training time
point provides information about how a particular combination
of known inputs {x{, x5..., X;..., X,,} results in a known target
output #;. These form the coefficients in the training algorithm.
Since there are m unknown variables (weights) per neuron, at
least m equations, or training time points, are needed to find
a unique solution. In other words

NTrain,min =m. (5)

In our thermal simulations, given n¢s number of thermal cells
in an active layer of an IC, there are 2n.¢s inputs to the NN
(past temperatures plus the power inputs for each cell), related
to outputs as follows:

Ulty1) ©
where W is a ngeps X 2nces matrix containing the weights
of the NN. Hence, Nrwinmin = 2ncens. However, it is recom-
mended to train the NN using a higher number of data points
to hasten the convergence of the training algorithm and to
obtain a much more accurate solution when simulating. In our
experiments we used a value of Nrpi, which is 20%-50%
higher than Ntyin min-

Since a simultaneous training of the weights over the entire
training data set must be performed to obtain the correct solu-
tion, a batch training algorithm (as opposed to an incremental
training algorithm) must be used. In all our experiments we
used the RPROP batch training algorithm [30], which is one
of the fastest training algorithms available.

X(tpe1) = W - { X(ta) }

C. Proximity Based Model Reduction

A significant reduction in computational and memory com-
plexity can be achieved by relaxing the requirement of a fully
connected NN for thermal simulation. Given the diffusive

28 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012

I
r—

Fig. 7. “Neighborhoods” of neurons in a floorplan.
Core | Core | Core | Core Core | Core | Core | Core
L2 Cache L2 Cache L2 Cache | L2 Cache
L2 Tag | Meml L2 Tag L2 Tag l Mem | L2 Tag
E“L;m CLK Crosshar FPU B:;er B:;cr Buﬁer Crosshar FPU CLK
L2 Tag | Mem [L2 Tag L2 Tag Mem | L2 Tag
L2 Cache L2 Cache L2 Cache | L2 Cache
Core | Core | Core | Core Core | Core | Core | Core
(a) (b)
Fig. 8. Floorplan of the UltraSPARC T1 (Niagara-1) chip. (a) Original and

(b) alternate.

nature of the heat flow in an IC, as shown in Fig. 6, much
of the heat flows vertically upward from the source to the
ambient, following the path of least resistance, with little
lateral spreading of heat. In other words, there is very little heat
flow/interaction between thermal cells that are far apart within
the same layer. Hence, the connection of individual neurons
in the network can be limited to neighbors lying within some
distance r from each other, as defined by the user.

In our experiments, given the floorplan of an IC discretized
into thermal cells for compact modeling as shown in Fig. 7,
rectangular regions of “neighborhood” were defined around
each neuron based on r, and only the cells lying within this
region were connected to the neuron in the network. Two such
neurons (cells on the floorplan) and their corresponding neigh-
borhoods are highlighted in Fig. 7. Hence, the W matrix in (6)
would no longer be a full-matrix but very sparse, leading to
considerably lower memory consumption, and faster training
and simulation using the NNs. However, this approximation
still leads to a certain error, which we quantitatively analyze
in Section VI

D. Randomization of Training Input

One of the major advantages of the proposed NN-based
approach is the reusability of the NN, to enable fast design
space exploration of ICs for thermal reliability. Hence, the
NN, once trained, must be capable of simulating with accuracy
a variety of floorplan configurations. This, in turn, means
that the learning of the NN must incorporate uncertainty
of future floorplan configurations and power dissipation
patterns. If the NN is trained for a particular floorplan, say
that of the UltraSPARC T1 (Niagara-1) architecture from Sun
Microsystems as shown in Fig. 8(a) [2], [31], then all thermal
cells which lie within one of its elements would always be
fed with identical power values at all times. As a result,
the weights associated with these inputs would be identical

£

. s AW

¥

7 A 1741

VA 4
Wl - 7
P A A

P a7 S O o Fa

(a) (b) (c)

Fig. 9. Thermal cells receiving the same power inputs while (a) training and
different power inputs while (b) simulating. The solution to handle the worst
case: (c) a different floorplan element for every thermal cell.

to each other at the end of the training since any training
algorithm, in response to identical input values from multiple
sources, would act in the same manner upon each of them.
To illustrate this, consider Fig. 9(a), which shows the
relation between a floorplan element and the thermal cells
inside it. The individual floorplan elements, such as the one
shown in this figure, are projected onto a grid of thermal
cells in the discretized IC structure. At any time point during
the preparation of the training set, the heat dissipated by
this floorplan element is divided equally between all the
highlighted cells in this figure. The range of inputs given to
this group of cells is then limited by the maximum power
density (heat dissipation per unit area) of the floorplan
element. If the training is performed using this particular
floorplan configuration, then all the highlighted thermal cells
receive identical power values during training and hence, the
weights connecting these inputs to the outputs in the NN
would turn out to be identical. However, if this NN is used
to simulate another floorplan configuration (even if the new
configuration is obtained by rearranging the same floorplan
elements), the thermal cells that had previously belonged to a
specific floorplan element used for training might now receive
inputs belonging to a different range of values pertaining to
a different floorplan element. This scenario is illustrated in
Fig. 9(b), where the same group of thermal cells is split into
four different blocks. Large errors would result during run-time
because the NN training process was blind to this scenario
of nonidentical power values amongst these sets of thermal
cells. In addition, if the maximum power density of one of
the four new floorplan elements in this location is higher than
the power density of the floorplan element in Fig. 9(a) used
for training, then the neurons that compute the temperature
of these cells might receive as input a value that has not been
considered for them while generating the training set. This
would also result in significant errors during the simulation.
One straightforward way to solve this problem is to random-
ize the inputs during training. That is, once the discretization
size of the thermal cells is fixed, each thermal cell in all the
active layers must be given different and random input power
values in order to train the NN for the worst-case situation
where every thermal cell receives inputs from a different
floorplan element. This solution is represented in Fig. 9(c).
Once the NN is trained in this manner, virtually any floorplan
configuration can be simulated with the error being bounded
purely by the training algorithm. In addition, each of these
floorplan elements must be given the entire range of power
density values that could be encountered in future floorplan
configurations. For this, in our experiments, the maximum
possible power density (heat dissipation per unit area) for

SRIDHAR et al.: NEURAL NETWORK-BASED THERMAL SIMULATION OF INTEGRATED CIRCUITS ON GPUS 29

any floorplan element was used as the benchmark. During the
training process, an input power density that is higher than this
value was applied to the entire active layer, and the input power
value for each thermal cell was randomized between zero (to
account for idle times of different floorplan elements when
they do not dissipate any significant energy) and the selected
power density. This ensures that the training is comprehensive
and covers all scenarios. For the Niagara chip described above,
the maximum possible power density for any floorplan element
was found to be about 37 W/cm?. Hence, a power density
higher than this value was used in all our trainings.

E. Convergence of the NN Training

For the proposed NN model to work as an independent
thermal simulator, it is essential that the training process
converges under all scenarios. This subsection provides the
proof of the proposed model’s convergence. For this, let
us reconsider (6) describing the NN-based modeling of the
thermal behavior of the system. For simplicity of illustration,
let there be only two temperature nodes in the system. Hence,
the equations for the proposed NN-based model can be written
as follows:

X](t”)
|:xl(tn+l):|=|:wll w2 Wiz Wig Xo(t))
X2(tne1) Wy W W3 Wy u1(fne1)

usr(tp+1)

As described in Section IV-B, the training of each row of
weights in this system is independent of the other. Hence,
it is sufficient to consider the convergence of one of the
rows. For instance, given four training (consecutive) input data
{x1(t1-4), x2(t1-4), u1(t2-5), u2(t2-s)}, and the corresponding
four training target data, {x;(#,—s)}, the NN equations for the
first row can be written as follows:

xi(twiy + xo(fPwin + ui(B)wiz + uz()wig = x1(f)
x1(t)wiy + xa(L)wiz + u1(B3)wiz + uz(t3)wig = x1(43)
xi(B3)wig + x2(B3)wi + u(twis + ux(tg)wis = x1(t4)
X1t wyy + xo(t)wiz + u(f5)wiz + uz(ts)wig = x1 ().

®)

Hence, the NN training process is akin to solving the above
system of linear equations for the unknown vector w written
as follows:

Mw =N)

T
where w = [w1l W2 w3 Wi4]

The physics and the deterministic nature of the system
require the weights w to be unique, i.e., at the end of the
training, the weights converge to the elements of the matrices
P and Q in (4). Once so trained, these weights should mimic
the LTI thermal system exactly. These unique weights can
be calculated by ensuring sufficient variance in the training
set such that the equations in (8) are linearly independent
and well-conditioned. This is part of the motivation behind
randomizing the training data set in Section I'V-D.

Now, given that a system of linear equations is linearly
independent, it is well known that a method like least squares
can be used to solve them since there is a unique local (and
global) minimum for the residual of the system, which is equal
to zero. Hence, for any training method which minimizes the
gradient of the error function at each step of solving (such
as the gradient descent algorithm), convergence is guaranteed
for such a system. The NN training process essentially does
this. Since the training algorithm RPROP [30] used in our
model works toward minimizing the gradient of the error,
convergence in our model is also guaranteed.

However, it must be noted that the quality of the output (i.e.,
the error in the final solution during run-time) and the speed
of convergence during the training process depends upon: 1)
the approximations applied to the structure of the system and
the quality of the training sample, and 2) the nature of the
training algorithm. First, depending upon the approximations
applied to the relationship between inputs and outputs in the
NN (refer to Section IV-C), it is possible that the unique local
minimum (the error function during the training process) might
not approach zero, but some finite number. This is not an
artifact of the training process but a limitation imposed by
the physics of the problem and the structure/complexity of the
NN used to represent it. This can be solved by increasing the
complexity of the NN, by increasing the ‘“neighborhood dis-
tance” r (see Section IV-C) depending upon the accuracy/speed
requirements of the user. In addition, sufficient variability in
the training samples is required for faster convergence and
accuracy. This is because diverse input power values result in a
well-conditioned set of coefficients in the system of equations
to be solved [rows and columns of M in (9)], aiding the
training process. This can be ensured by applying a very wide
range of random power input values for the system during the
training process. Second, the nature of the training algorithm
(essentially the algebraic space in which it looks for a solution
of weights for the NN) might limit its capacity to approach the
exact solution vector indefinitely, and instead be constricted
to some finite distance away from it (i.e., the solution vector
is a non-Cauchy sequence, with the error function oscillating
between two values around the minimum). This can be solved
by combining multiple training algorithms in the training
process, each complementing the other for speed and accuracy.
It must be remembered that, in either scenario described above,
there is still a convergence.

A detailed analysis of the numerical stability of the proposed
NN-based model is provided in the appendix, while a study of
the final error as a function of the approximations introduced
in the model is presented using experimental results in Sec-
tion VI. Our results indicate that the rate of the convergence
depends upon the quality of the training inputs, the size of
the problem, and the number of coefficients that need to be
computed.

V. IMPLEMENTATION OF THE PROPOSED NN-BASED
SIMULATOR ON GPUs

The proposed NN for thermal modeling of complex inte-
grated circuits has been implemented for running on modern

30 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012

time point n (even) time point n+1 (odd)

Temperatures X(t) | Power values Ut} | | Temperatures X(t,) |

—

Temperatures Xit, .} | Power values U[t, .}

Temperatures X(t,)

Fig. 10. Memory usage in the GPU implementation of the NN-based simu-
lator.

GPUs. Since the training phase is needed just once for a given
IC, we focused more on the porting of the NN execution on
GPU. Clearly, our ultimate goal is to speed up the thermal-
aware design time for complex ICs, which can require several
NN runs with different floor plan configurations.

A. GPU Architecture and CUDA Programming Model

The Fermi-based GPU used in this paper is an NVIDIA
GeForce GTX 480 [32], a parallel computing machine com-
prising two levels of shared memory and 480 streaming
processors (SPs) organized in 15 streaming multiprocessors
(SMs). Streaming multiprocessors manage the execution of
programs using ‘“warps’—groups of 32 threads. Each SM
features two warp schedulers and two instruction dispatch
units, allowing two warps to be issued and executed con-
currently. All instructions are executed in a single instruction
multiple data fashion, where one instruction is applied to all
threads in the warp. This execution method is called single
instruction multiple threads. All threads in a warp execute
the same instruction or remain idle (different threads can
perform branching and other forms of independent work).
Warps are scheduled by special units in SMs in such a way
that, without any overhead, several warps execute concurrently
by interleaving their instructions.

From the point of view of writing application codes, it is
important to take into account the organization of the work,
i.e., use 32 threads simultaneously. The code that does not
break into 32 thread units can have a lower performance.
The hardware chooses which warp to execute during each
cycle, and it switches between them without penalties. If we
compare with CPUs, this process is similar to the simultaneous
execution of 32 programs that (can) switch at every cycle
without penalties. CPU cores can indeed execute only one
program at a time and switching to other programs costs
hundreds of cycles.

B. Runtime Execution of NN on GPU

Once the NN has been trained, the entire NN is described
by means of the weight matrix W. This sparse matrix is
stored in the GPU global memory according to the compressed
sparse row format as required by the cuSparse library [33].
Every time-step of the thermal simulation corresponds to
a matrix-vector multiplication between matrix the W and
the input vector, which consists of the temperature in the
previous step and power input for the different cells. The
matrix-vector multiplication is performed using the function

4
3.5
3
— 25
-4
c
= 2
g
@ 15
1 4
0.5 *—‘ﬁ\‘
0
-100% -80% -60% -40% -20% 0% 20% 40% 60% B8O% 100% 120%
Percentage number of Training time points
(with respect to maximum number of connections per neuron)
Fig. 11. Run-time error of the NN-based simulator as a function of the

number of training time points of data supplied.

cusparseDcsrmv of cuSparse library [34]. It computes the
operation y = ¢Ax + By.« will be set to 1 while 8 will be
0 to erase the previous content of y and overwrite the result.
This function call requires three main parameters: the matrix
A (I rows x m columns), an input vector x (m elements), and
an output vector y (/ elements).

Every input vector stores all the temperatures X(#,) in the
first half and all the power values U(#,) in the second half
(see Fig. 10). The matrix-vector multiplication between the
weights matrix and this input vector gives the temperatures
X(#,+1) in one simulation step. This set of values represents
the thermal state to be used as input again in the following
simulation step. Therefore, to avoid one memory copy at each
step, we allocate on GPU two vectors with as many elements
as the number of inputs and we swap their address at every
iteration.

Before starting the simulation, we download the initial
thermal state of the chip at the beginning of the first input
vector in the GPU global memory. When the simulation starts,
at every step, the CPU computes and downloads to GPU the
new power values, writing them in the second half of the
current input vector. CPU then calls the cusparseDcsrmv
function to execute the matrix-vector multiplication and to
write the result at the beginning of the other input vector.
Before starting the next iteration, we swap the addresses of
the two vectors in such a way that the vector used as output
and containing the updated thermal state will be filled with the
new set of power values and used as input. The vector used
as input in the previous step will behave, as a consequence,
as the output vector in the next step.

VI. EXPERIMENTAL RESULTS

Since the results for 2-D ICs can be extrapolated to 3-D
ICs, in the ensuing experimental studies, we used a 2-D IC as
an illustrative example for the sake of simplicity (henceforth
referred to as the Test IC). Test IC contains two layers:
one made of silicon with the UltraSPARC Niagara floorplan
[Fig. 8(a)] fabricated on it and the other an interconnect layer
conducting heat to the ambient. As explained in Section IV-A,

SRIDHAR et al.: NEURAL NETWORK-BASED THERMAL SIMULATION OF INTEGRATED CIRCUITS ON GPUS 31

1.800
L}
1.600 4 1000pum X 1000um
1.400 M 500um X 500um
1.200
o
"-"_: 1.000
5 osoo—*
I
0.600
- *
0.400 * f
n
“EEE BN
0.200 : . B
0.000
0 2000 4000 6000 BODO 10000 12000 14000 16000
Value of r(in pm)
Fig. 12. Run-time error versus neighborhood distance r.
& ——3D-ICE '
e .
< o9l Neural Nelwork
E]
%WV\/‘N\/‘W
£
B 27
23 24 2.5 2.6 2.7 2.8 2.9
Time (s)
(a)
31
8 30
T
229
o
8 28
E
A
27
23 2.4 25 2.6 27 2.8 29
Time (s)
(b)
Fig. 13. Comparison of temperature waveforms for Case (a): the same

training-time and run-time floorplans, and Case (b): different training-time
and run-time floorplans. (a) Training with the floorplan Fig. 8(a) and run with
Fig. 8(a). (b) Training with the floorplan Fig. 8(a) and run with Fig. 8(b).

the NN in each experiment was trained using the 3D-ICE
simulator [9]. Each of the following experiments demonstrates
the basis of the various aspects of our implementation, and
highlights the resulting advantages in computational complex-
ity and accuracy of the proposed NN-based thermal simulator.

A. Training Length

The length of the training data set and the use of a batch
training scheme are fundamental to the accuracy and reliability
of the proposed NN-based thermal simulator. As discussed
in Section IV-B, temperature and input data for a minimum
number of training time points (Npwminmin) that equals the
maximum number of weights (or connections) for any neuron
in the NN must be supplied for a complete learning of the
weights (note that every neuron in a floorplan has a different
number of neighbors as shown in Fig. 7), namely

NTrain,min = m?X m;. (10)

TABLE 1
ERROR AND NUMBER OF WEIGHTS VERSUS NEIGHBORHOOD DISTANCE r
. 1000 um x 1000 um 500 um x 500 um
Distance r Error (K) | # Weights | Error (K) | # Weights
500 um - 420 1.684 14k
1000 pem 0.841 3440 0.512 38k
3000 um 0.441 16k 0.345 224k
5000 pum 0.387 33k 0.278 497k
7000 pm 0.325 52k 0.263 794k
9000 pm 0.333 68k 0.270 1.07M
11000 um 0.272 80k 0.233 1.27M
13000 pum 0.279 87k 0.231 1.39M
Fully connected 0.270 88k 0.225 1.41M
s Maximum #terations -—.‘. - - - 100
s Average Hterations — [Y y
2600 -|===1; nodes with error <0.1 /./' 1 80
Be s e
2100 /f
70 w
0w [
= 1 =
S 1600 1 / 60 E
; ﬁ 5
= "IN | ®
* 1100 - . 50
40
'. l | | I 30
100 L i_ | | | 1 i E 1 | | l 1 l 1 20

10 20 30 37 40 50 60 70 80 90 100 110
Power Density used in Training (W/cm?)

Fig. 14. Maximum temperature error, maximum number of training itera-
tions, and average number of training iterations versus maximum training-time
power density applied.

To illustrate this, the Test IC was discretized into thermal cells
of dimensions 1000 um x 1000 um and simulated using 3D-
ICE for approximately 400 time points, and the temperature
and input data were stored.

Next, a NN was created for this experiment, as described
in Section IV-C with a neighborhood distance r = 2000 pum.
Next, a series of training routines were run using Nrp, data
points from 3D-ICE, where Ny, was either lower than, equal
to or higher than Nypyin min. Post training, the NN was run for
the remaining inputs in the data and the resulting maximum
run-time temperature error with respect to the output from 3D-
ICE (over all time points and all neurons) was recorded. These
results are plotted in Fig. 11. Here, a negative percentage value
in the x-axis, for example —80%, means the Nty is 80%
less than Nryin min. 0% indicates that Nryin = NTrain,min, and
a value of +40% indicates Ntpin = 1.4NTrinmin- As Fig. 11
shows, the error drops quickly as Nt approaches Ntrin min
and then remains fairly constant, indicating the significance of
this training criteria.

B. Effect of Proximity Based Model Reduction

As described in Section I'V-C, exploiting the physics of heat
transfer in an IC to reduce the connectivity in the proposed
NN-based simulator greatly reduces memory consumption and
computational complexity. However, its effect on the accuracy
of the results must be first studied before using it as an effec-
tive simulation strategy. For this purpose, two different cases

32 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012

TABLE I
SIMULATION TIME COMPARISON FOR 54K TIME POINTS FOR VARIOUS
NEIGHBORHOOD DISTANCES r

Discretization Distance r Simulation Time (5)

3D-ICE | NN-CPU | NN-GPU

1000 um 5 1.92

3000 wm 7 1.89

5000 xm 9 2.08

1000 um x 1000 em | "COOKM | 5oy 1 224

9000 ym 13 2.44

11000 wm 15 2.53

13000 wm 16 2.5

Fully connected 16 2.53

1000 m 12 2.88

3000 um 34 3.34

5000 pxm 44 4.79

500 em x 500 um 7000 m 98.45 70 6.37

9000 wm 96 7.61

11000 um 102 8.61

13000 wm 107 9.12

Fully connected 107 9.06

100
T
c
8
2
v
£ .
c
o
k-1
=
=1
% 0.1

o001 4

20000 30000 40000
Number of run-time time points
Fig. 15. Simulation time comparison between 3D-ICE (run on CPU) and

the various cases of NN-based thermal simulators (run on GPU).

were studied, namely: 1) Test IC discretized into thermal cells
of dimensions 1000 xm x 1000 um, and 2) Test IC discretized
into thermal cells of dimensions 500 um x 500 um. In each
case, the neighborhood distance r was increased from 500 um
up to an area covering the full chip (i.e., a fully connected NN,
where each output depends upon all the inputs in the IC).

In each case, training was performed using 3D-ICE and the
NN-based simulator was then run independently for 10000
time points. Results from run-time were compared with the
corresponding output from 3D-ICE and the maximum tem-
perature error between the two were recorded. These results
are shown in a scattered plot in Fig. 12. The results are also
tabulated in Table I along with the corresponding number of
NN weights to be computed for each case. As our results
outline, even a very loosely connected network, such as
r = 3000 um, results in negligible error (<0.5°C) while
resulting in large computational and memory savings. The case
of 1000 um x 1000 um with r = 500 um is not shown to
preserve the scale of the plot, since the run-time error began
to explode as soon as the simulation started.

120
100 i -
= B NN-CPU '
r = NN-GPU
E 60 -
s
E 40 I I
=3
E |
g =
R .;»69 49@ oe.‘}zb
&
&

Value of r (in pm)

Fig. 16. Simulation time comparison between NN run on CPU and GPU.

| [
Chre| Core | &
80
78
70
66
Gon Lore’ Lore &0
(b)

Fig. 17. Thermal maps of two UltraSPARC T1 (Niagara) chips stacked one
on the top of the other (Case A in Section VI-E). (a) Bottom die. (b) Top die.

C. Effect of Randomization of Training Input

As described in Section IV-D, for the NN-based simulator to
be reusable (i.e., able to work on any floorplan configuration),
the training must be performed on an input data set that covers
all the possible scenarios during run-time. To illustrate this
problem, the NN-based simulator was trained for the Test
IC with the floorplan configuration as shown in Fig. 8(a),
With NTrain = NTrain,min- Once trained, the NN-based simulator
was used to simulate two cases: 1) a Test IC with the same
floorplan configuration and power dissipation functions as
Fig. 8(a), and 2) another Test IC, which contains the same
floorplan elements and the power dissipation functions for
the elements as the original floorplan but having a slightly
different floorplan configuration as shown in Fig. 8(b).

The resulting run-time temperature behavior comparison
between 3D-ICE and the NN-based simulator for both cases
are shown in Fig. 13(a) and (b), respectively. The maximum
run-time temperature error for case 1) was 0.26°C while
that for case 2) was 2.51°C, about an order of magnitude
difference.

Next, the training was performed, as described in Sec-
tion IV-D, using distinct and random input power dissipation
functions for each thermal cell (neuron) in the floorplan, and
then the simulator was used to simulate the original Niagara
floorplan in Fig. 8(a). To see the effect of the maximum am-
plitude of the training power values on the run-time accuracy,
different power densities (power dissipated per unit area) were

SRIDHAR et al.: NEURAL NETWORK-BASED THERMAL SIMULATION OF INTEGRATED CIRCUITS ON GPUS 33

applied to the Test IC and randomly distributed among the
thermal cells during the training. The maximum power density
for any floorplan element in the Niagara floorplan (computed
from the steady state power dissipation data for UltraSPARC
T1 [2], [31]) was found to be 37 W/cm?. This means that the
run-time power density would not exceed this value anywhere
in the IC. Hence, the above experiments were run with a set of
training-time power densities lower than, equal to, and higher
than this value.

The resulting run-time error distribution for each case is
plotted in Fig. 14. This figure shows the percentage of nodes
in the system which show an error less than 0.1 °C. In addi-
tion, the maximum and average number of RPROP training
iterations required for each experiment is plotted in the same
graph. The case of the training-time maximum power density
equaling the run-time maximum power density has been high-
lighted. Our results indicate that, while the percentage of nodes
which show an error less than 0.1 °C increases and converges
to 100%, the number of training iterations (and hence the
computational effort) also increases with increasing training-
time power density. Hence, an optimal point, depending upon
the requirements of the user, can be attained given that the
run-time maximum power density of an IC is known.

D. Speedups the

Simulator

Using Proposed NN-Based Thermal

To illustrate the simulation time savings of the proposed
approach compared to the conventional techniques, the NN-
based simulator was trained and then run on the GeForce GTX
480 GPU platform with 480 CUDA cores running at 1.4 GHz
with 1.5 GB GDDRS, and the simulation times for various
numbers of time points of simulation were compared with
the corresponding simulation using 3D-ICE run on Intel(R)
Core(TM) 17 920 2.67 GHz processor with four cores and
6 GB RAM. The resulting simulation times recorded for the
case of 500 um x 500 um discretization with various neigh-
borhood distances r are plotted in Fig. 15 on a semilog scale,
as a function of the number of time points in the simulation.
In our experiments, the NN-based simulators were found to be
up to 35x faster than 3D-ICE during runtime. This speedup
is primarily achieved due to the extreme parallelizability of
the NN-based simulator as opposed to the 3D-ICE run-time
operations (forward-backward substitutions of matrix factors),
which are serial in nature.

Next, to highlight the need for GPUs in the proposed ap-
proach, the same NN-based simulators trained for Test IC with
500 um x 500 um discretization were run on both the CPU
platform [four threads running on the Intel(R) Core(TM) i7
920 2.67 GHz processor] and the GPU platform (the GeForce
GTX 480 processor), and the simulation times were compared.
The results (for a simulation of 54k time points) are plotted
in Fig. 16 as a function of the neighborhood distance r. In
addition, the simulation times from the above experiments are
tabulated in Table II.

E. Simulation of a 3-D IC

1) Case A: As mentioned earlier, the analytical study
and the implementation of NN-based simulator as applied to

ﬁ‘??

t]

I
1
15 |

|
I
I

lcache : juaEmy
%
(c) (d)

75 80 B85 a0 95

Fig. 18. Thermal maps of four dies (two cores and two memories with
floorplan architecture from [35]) stacked one on the top of the other (Case B
in Section VI-E). (a) Die #1. (b) Die #2. (c) Die #3. (d) Die #4.

2-D ICs above can be extrapolated in a straightforward manner
to 3-D ICs. In order to demonstrate this, a test 3-D IC was
considered by stacking two Test ICs one on top of the other
[both containing the UltraSPARC T1 floorplan configuration
as shown in Fig. 8(a)]. Heat dissipation values were obtained
from measurements of the switching activity of the individual
elements [31]. A neighborhood distance of » = 4000 um was
found to be sufficient to generate accurate results. The NN-
based simulator was trained with a data set containing 20%
more points than Ny min. Post training, the simulator was
run for 400 time points and the results were compared with
3D-ICE. The resulting temperature distribution map for the
two active layers of Test 3-D IC is shown in Fig. 17. The
results from the NN-based simulator matched well with 3D-
ICE and at the end of the simulation, 88.2% of the neurons
were found to show an error less than 1 °C.

2) Case B: Another test stack was created with 4-dies.
This time, the floorplan was changed to the one discussed
in [35]—splitting the cores and the memories of the Sun
UltraSPARC Niagara architecture into separate dies. The test
stack contained two dies made up of cores and the other
two dies made up of caches. Each die in this example is
lcm x 1.1 cm in size. Power traces were obtained, again, from
the measurements of the switching activity. As in the previous
example, a neighborhood distance of r = 6000 um was found
to be sufficient to generate accurate results. The NN-based
simulator was trained with a data set containing 20% more
points than Nrpin min- Post training, the simulator was run for a
simulation time interval of 2 h of switching activity, containing
36000 time points and the results were compared with 3D-
ICE. The resulting temperature distribution map for the four
active layers of this 3-D IC is shown in Fig. 18 (dies numbered

34 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012

100 7

2-norm of W1 matrix

01 ¢

001 -

1500 2500 3500 4500 5500

Value of r {in um)

Fig. 19. 2-norm of the W; matrix for the Test IC, against increasing
proximity distance r.

500 um

1500 um
2500 um
3500 um
4500 um
5500 um

-
(=]
)

=
[=]

Absolute error {°C)

05 1 1.5 2 25 3 35
Time (sec)

Fig. 20. Temporal evolution of the absolute value of error at a single node
when the NN-models for Test IC built using various proximity distance values
are used to simulate the temperatures for some random sequence of input heat
fluxes.

from bottom to top). At the end of the simulation 94% of the
nodes were found to show an error less than 1 °C.

VII. CONCLUSION

In this paper, we presented an innovative full-chip thermal
modeling approach that exploits NNs and the computational
power of modern GPUs. This approach tackles the scalability
problem of transient heat flow simulation in large 2-D/3-D
multiprocessor ICs by parallelizing a NN-based temperature
tracking model on GPUs. Our experiments with realistic mul-
ticore IC designs show that the proposed approach achieves up
to 35 x run-time speedups, while keeping the error below 1 °C,
in comparison to state-of-the-art thermal simulation tools.

APPENDIX
NUMERICAL STABILITY OF THE NN-BASED MODEL

The proposed NN-based thermal model, like all numerical
techniques used for transient system analyses, incurs an error
that accumulates over time. This is because the temperatures
at a given time point depends partly on the temperatures at
the previous time point. Therefore, part of the error incurred
at the very first time point of solving is propagated to any
future time point. This is called the propagation error €. The
propagation error from all previous time points together with
the local truncation error € incurred at each time point ¢,
due to the numerical approximation in the current computation,
gives the global error €, of the simulator. Since the exact

solution is usually not known, it is customary to estimate the
global error as the local truncation error at a given time point,
multiplied by the number of time points preceding it.

As an example, it is well known that the backward Euler
method—the method used in 3D-ICE as shown in (2)—has a
local truncation error of € pp = O(h?), where h is the step-
size used [36]. Hence, decreasing the step-size h, the local
truncation error at each time step decreases in a quadratic
fashion. However, the estimate of the global error at the end
of an interval of simulation of length 7 seconds is as follows:

€= %O(hz) = O(h). (11)

Hence, the global error at the end of simulation using the
backward Euler method decreases linearly with smaller and
smaller step-sizes. Using extremely small step-sizes can help
reduce this error. But it comes at a huge computational
overhead. Thus, what is practical—and more important—in
these problems is to ensure that the accumulated error is
bounded and does not increase indefinitely. In other words, it
must be ensured that the method used for solving the equations
is numerically stable.

Backward Euler method is one of the very few uncon-
ditionally stable methods. Usage of this method in 3D-ICE
ensures that increasing the step-size A to any value however
large (provided the resulting error is acceptable to the user)
does not lead to the blowing up of the simulation results
and the error is still bounded. Since the proposed NN-based
model is trained using 3D-ICE, which is numerically stable,
the proposed model also retains this feature. This can be shown
using the following analysis.

The conditions that determine the numerically stability of a
method can be phrased as follows: at each step of simulation,
the contribution of error from a previous step must be progres-
sively diminished. In other words, the propagation error term
from a previous time step in the global error estimate of the
current time step must approach zero as we move farther and
farther away from that time step. For the proposed NN-based
model, this can be illustrated by considering (6) and rewriting
it by expanding the weight matrix W as follows:

X(#) }
U(tn+l)

where W, and W, are square matrices, containing the NN
weights pertaining to the temperatures from the previous step
and the heat sources, respectively. Let us assume that starting
from the given initial state X, the estimated temperature
states for the next n + 1 time points ({t, t>...t,,, t,+1}) are
{X1,X5...X,, X;+1} and the corresponding solution from 3D-
ICE are {T,, T,...T,, T4}, respectively. For the purposes of
the following analysis, let us consider the temperatures from
3D-ICE to be the reference. The global error, with respect to
the results from 3D-ICE, at the last time point n + 1 is thus
given by

X(tpe1) = [W(|W2] - [(12)

€on+l = Tn+1 - Xn+l~ (13)
From (12) and (4), the above equation can be written as
€gn+l = (PTn + QUn+1) - (Wlxn + WZUn+1)- (14)

SRIDHAR et al.: NEURAL NETWORK-BASED THERMAL SIMULATION OF INTEGRATED CIRCUITS ON GPUS 35

Rearranging the terms on the right-hand side we get

€on+l = PTn - WIXn + An+1 (15)

where A,+1 = (Q — W))U,;;. Writing P = W, + R, for some
matrix R, we can simplify the above as follows:

€gn+l = W((T, - X,) +RT, + A

=W16g,n +Bn+l (16)

where B,.; = RT,, + A,.;;. The error at time t,, i.e., €, in the
above equation can be written similarly in terms of the error
at the previous time point, €,_1, and so we get

€on+l = Wl(Wleg,n—l + Bn) + Bn+1

=Wieg,1+WB, + B, (17)

This equation can be recursively rewritten until we find the

error at the last time point #,,; in terms of the error at the first
time point of solving #; as follows:
n—1

€gn+l = WYeg,l + Z Wian+17i-
i=0

(18)

In the above equation, the summation term on the right-
hand side depends purely upon the reference solution and the
given input vector. Hence, only the first term represents the
accumulation of error from the first step of solving until the
current step. Taking the euclidean norm on both sides and
using the triangular inequality, we can write

n—1

legnell < [Wiegill+ (> WiBy.i_;
i=0
< [Willll€g |
< W[lleg1ll (19)

For this global error to be bounded the accumulated error term
must progressively diminish with increasing n, as discussed
above. In other words, the stability of the NN-model can be
guaranteed if the weight matrix satisfies |[W;||" — 0 as
n — 00, or

Wil < 1. (20)

This sufficient condition for numerical stability is satisfied by
the matrix P in (4), because by definition, it is an operator for
a numerically stable backward Euler method. In our proposed
NN-based model, the goal of the training is to match the
matrix W; with this matrix as closely as possible (in other
words, R must be ideally equal to zero or negligible). The
idea of proximity-based model reduction (described in Sec-
tion IV-C) approximates this matching process giving memory
and computational savings. That is, when a certain distance
of proximity is applied, the effect on the training is that
certain non-diagonal elements of the P matrix (a dense matrix),
which are relatively small (due to the small contribution of the
corresponding temperatures to the evolution of temperature at
a given location owing to the large distances between them)
are neglected. Hence, the numerical stability of the resulting
NN-based model depends purely on the errors introduced by
this approximation, assuming no other errors are introduced in

the training process. We have studied the relationship between
the stability of the NN-model and the proximity-based model
reduction using some example as described below.

We trained and test-ran an NN-based model for a single
die Test IC with a discretization size of 1000 um x 1000 pm,
increasing the proximity distance (r) from 500 um until
5500 um, and observed the error at a single node in the IC as
a function of time for each case. The entire test simulation run
was for a simulation time interval of 40 s, with a step-time
of 0.2 s (a total of 200 time points of simulation). We also
computed the 2-norms of the corresponding W, matrices in
each case [as required by the stability criterion described in
(20)]. The 2-norms and the evolution of the absolute value of
error with time at a single node for each of these cases are
shown in semi-log scale in Figs. 19 and 20, respectively. These
figures indicate that the case of » = 500 um is clearly unstable,
as indicated by its 2-norm value. The case of r = 1500 um is
right on the border and shows large errors. Note that the errors
in the temperatures reach very high values (tens of °C) even
before the stability threshold is breached. Hence, in all realistic
scenarios, proximity distances chosen by designers are large
enough to negate the possibility of instability in the model.

REFERENCES

[1] ITRS. (2009). International Technology Roadmap for Semiconductors
[Online]. Available: http://www.itrs.net/Links/2009ITRS/Home2009.
htm

[2] A. Coskun, T. Rosing, K. Whisnant, and K. Gross, “Static and dynamic
temperature-aware scheduling for multiprocessor SoCs,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 16, no. 9, pp. 1127-1140, Sep. 2008.

[3] Y. Cheng, P. Raha, C. Teng, E. Rosenbaum, and S. Kang, “ILLIADS-T:
An electrothermal timing simulator for temperature-sensitive reliability
diagnosis of CMOS VLSI chips,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits, vol. 17, no. 8, pp. 668—681, Aug. 1998.

[4] Y. Tal and A. Nabi, “A simple analytic method for converting stan-
dardized IC-package thermal resistances (thetasja, thetasjc) into a two-
resistor model (thetasjb, thetasjt),” in Proc. ISTMM, 2001, pp. 134-144.

[5] W. Huang, E. Humenay, K. Skadron, and M. Stan, “The need for a full-
chip and package thermal model for thermally optimized IC designs,”
in Proc. ISLPED, 2005, pp. 245-250.

[6] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. Stan, “HotSpot: A compact thermal modeling methodology for
early-stage VLSI design,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 14, no. 5, pp. 501-513, May 2006.

[71 T. Wang and C. Chen, “3-D thermal-ADI: A linear-time chip level
transient thermal simulator,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits, vol. 21, no. 12, pp. 1434-1445, Dec. 2002.

[8] Z. Feng and P. Li, “Fast thermal analysis on GPU for 3D-ICs with
integrated microchannel cooling,” in Proc. IEEE/ACM ICCAD, Nov.
2010, pp. 551-555.

[9] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza,
“3D-ICE: Fast compact transient thermal modeling for 3-D ICs with
inter-tier liquid cooling,” in Proc. IEEE/ACM ICCAD, Nov. 2010,
pp. 463-470.

[10] P. Li, L. Pileggi, M. Asheghi, and R. Chandra, “IC thermal simulation
and modeling via efficient multigrid-based approaches,” IEEE Trans.
Comput.-Aided Des., vol. 25, no. 9, pp. 1763-1776, Sep. 2006.

[11] P. Li, L. Pileggi, M. Asheghi, and R. Chandra, “Efficient full-chip
thermal modeling and analysis,” in Proc. [IEEE/ACM ICCAD, Nov. 2004,
pp- 319-326.

[12] D. Steinkraus, I. Buck, and P. Y. Simard, “Using GPUs for machine
learning algorithms,” in Proc. ICDAR, 2005, pp. 1115-1120.

[13] Z. Feng and P. Li, “Multigrid on GPU: Tackling power grid analysis on
parallel SIMT platforms,” in Proc. ICCAD, Nov. 2008, pp. 647-654.

[14] Z. Feng and Z. Zeng, “Parallel multigrid preconditioning on graphics
processing units (GPUs) for robust power grid analysis,” in Proc.
IEEE/ACM DAC, Jun. 2010, pp. 661-666.

36 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 1, JANUARY 2012

[15] J. Croix and S. Khatri, “Introduction to GPU programming for EDA,”
in Proc. IEEE/ACM ICCAD, Nov. 2009, pp. 276-280.

S. Haykin, Neural Networks: A Comprehensive Foundation. Upper
Saddle River, NJ: Prentice-Hall, 1994.

P. Kumar and D. Atienza, “Neural network based on-chip thermal
simulator,” in Proc. ISCAS, May—Jun. 2010, pp. 1599-1602.

T. Ho, P. Lam, and C. Leung, “Parallelization of cellular neural networks
on GPU,” in Proc. Conf. Patt. Recog., 2008, pp. 2684-2692.

K.-S. Oh and K. Jung, “GPU implementation of neural networks,” in
Proc. Conf. Patt. Recog., 2004, pp. 1311-1314.

P. Ghosal, T. Samanta, H. Rahaman, and P. Dasgupta, “Thermal-aware
placement of standard cells and gate arrays: Studies and observations,”
in Proc. ISVLSI, Apr. 2008, pp. 369-374.

K. Chao and D. Wong, “Thermal placement for high-performance
multichip modules,” in Proc. ICCD: VLSI Comput. Processors, Oct.
1995, pp. 218-223.

J. Parry, H. Rosten, and G. Kromann, “The development of component-
level thermal compact models of a C4/CBGA interconnect technology:
The motorola PowerPC 603 and PowerPC 604 RISC microproceesors,”
IEEE Trans. Compon. Packag. Manuf. Technol., vol. 21, no. 1, pp. 104—
112, Mar. 1998.

E. Bosch, “Thermal compact models: An alternative approach,” IEEE
Trans. Compon. Packag. Technol., vol. 26, no. 1, pp. 173-178, Mar.
2003.

Y. Liu and J. Hu, “GPU-based parallelization for fast circuit optimiza-
tion,” in Proc. IEEE/ACM DAC, Jul. 2009, pp. 943-946.

D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level
simulation with GPUs,” in Proc. DAC, Jul. 2009, pp. 557-562.

S. Lahabar, P. Agrawal, and P. J. Narayanan, “High performance pattern
recognition on GPU,” in Proc. Nat. Conf. Comput. Vision, Patt. Recog.,
Image Process. Graph., 2008, pp. 154—159.

F. Incropera, D. Dewitt, T. Bergman, and A. Lavine, Fundamentals of
Heat and Mass Transfer. New York: Wiley, 2007.

J. Demmel, S. Eisenstat, J. Gilbert, X. Li, and J. Liu, “A supernodal
approach to sparse partial pivoting,” SIAM J. Matrix Anal. Applicat.,
vol. 20, no. 3, pp. 720-755, 1999.

K. Stxben and U. Trottenberg, Multigrid Methods: Fundamental Algo-
rithms, Model Problem Analysis and Applications. New York: Springer,
1981.

M. Riedmiller, “Rprop-description and implementation details,” Inst.
Logic Complexity Syst. Deduct., Univ. Karlsruhe, Karlsruhe, Germany,
Tech. Rep. W-76128, Jan. 1994.

A. Leon, J. L. Shin, K. W. Tam, W. Bryg, F. Schumacher, P. Kongetira,
D. Weisner, and A. Strong, “A power-efficient high-throughput 32-thread
SPARC processor,” in Proc. ISSCC, Feb. 2006, pp. 295-304.

NVIDIA GeForce GTX 480 [Online]. Available: http://www.nvidia.com/
object/product_ geforce_ gtx_480_us.html

CUDA Sparse Library [Online]. Available: http://developer.download.
nvidia.com/compute/cuda

N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA,” NVIDIA Corporation, Santa Clara, CA, Tech. Rep. NVR-
2008-004, Dec. 2008.

A. Coskun, D. Atienza, T. Rosling, T. Brunschwiler, and B. Michel,
“Energy-efficient variable-flow liquid cooling in 3-D stacked architec-
tures,” in Proc. DATE Conf. Exhib., 2010, pp. 111-117.

J. Butcher, Numerical Methods for Ordinary Differential Equations. New
York: Wiley, 2003.

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

Arvind Sridhar (S°07) received the B.Eng. degree
in electronics and communication engineering from
the College of Engineering Guindy, Anna University,
Chennai, India, in 2006, and the M.A.Sc. degree in
electronics from Carleton University, Ottawa, ON,
Canada, in 2009. He is currently pursuing doctoral
studies with the Embedded Systems Laboratory,
Ecole Polytechnique Fédérale de Lausanne, Lau-
sanne, Switzerland.

He was a Research Scholar with the Computer-
Aided Design Laboratory, Carleton University from
2006 to 2009, and has interned with the Advanced Thermal Packaging Group,
IBM Research, Zurich, Switzerland, in 2011. He is the author of 3D-ICE, the
first compact transient thermal simulator for 2-D/3-D ICs with liquid cooling,
which is currently being used by researchers in more than 50 universities and
laboratories worldwide.

Alessandro Vincenzi (S’11) received the B.S. and
M.S. (summa cum laude) degrees in computer sci-
ence from the University of Parma, Parma, Italy, and
the University of Verona, Verona, Italy, in 2007 and
2010, respectively. In 2010, he joined the Embed-
ded Systems Laboratory Group, Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland, where
he is currently working toward the Ph.D. degree in
electrical engineering.

His current research interests include thermal mod-
eling of electronic devices, as well as programming
on parallel and high performances architectures.

Mr. Vincenzi received the Best Student Award at the end of his first year
of studies from the University of Parma in 2004.

Martino Ruggiero (M’11) received the M.S. degree
in electrical engineering and the Ph.D. degree from
the University of Bologna, Bologna, Italy, in 2004
and 2007, respectively.

He is currently with the Electronics, Computer
Sciences, and Systems Department, University of
Bologna, and with the Embedded Systems Labo-
ratory, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, where he holds a post-
doctoral position. His current research interests in-
clude embedded system architecture and software
(SW) design, with particular emphasis on low-power architecture design and
SW for ultraportable devices, distributed and parallel computing, development
of a simulation environment at different levels of abstraction for multiproces-
sor systems-on-chip, application partitioning for parallel architectures, and
complete algorithmic techniques for mapping and scheduling.

David Atienza (M’05) received the M.Sc. and
Ph.D. degrees in computer science and engineering
from the Complutense University of Madrid (UCM),
Madrid, Spain, and the Inter-University Micro-
Electronics Center, Heverlee, Belgium, in 2001 and
2005, respectively.

Currently, he is a Professor and the Director of the
Embedded Systems Laboratory (ESL), Ecole Poly-
- technique Fédérale de Lausanne, Lausanne, Switzer-
s*‘ land, and an Adjunct Professor with the Computer

Architecture and Automation Department, UCM.
His current research interests include system-level design methodologies
for low-power embedded systems and high performance systems-on-chip
(SoCs), including new thermal-aware design for 2-D and 3-D multiprocessor
SoCs, design methods, and architectures for wireless body sensor networks,
dynamic memory management and memory hierarchy optimizations, as well
as novel architectures for logic and network-on-chip interconnects. In these
fields, he is a co-author of more than 160 publications in peer-reviewed
international journals and conferences, several book chapters, and two
U.S. patents.

Dr. Atienza received the Best Paper Award at the VLSI-SoC 2009 Confer-
ence, and three Best Paper Award Nominations at the WEHA-HPCS 2010,
ICCAD 2006, and DAC 2004 Conferences. He is an Associate Editor of
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND
SYSTEMS and Elsevier Integration. He has been a member of the Executive
Committee of the IEEE Council on Electronic Design Automation since 2008,
and a GOLD member of the Board of Governors of the IEEE Circuits and
Systems Society since 2010.

