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Abstract— The efficiency of distributed sensor networks de-
pends on an optimal trade-off between the usage of resources
and data quality. This workshop paper addresses the problem
of optimizing this trade-off in self-configured distributed sensor
networks. In our case-study example, we investigate a quadtree
network topology and describe how we integrate a fully
distributed node controller and field estimation algorithm. In a
further step, we present a variant control algorithm, which
continuously adapts network sampling and node activity to
match spatio-temporal field variability. Realistic simulations
are performed on the e-puck robot platform, and show that
the proposed sampling strategy potentially economizes 20% of
resource usage.

I. INTRODUCTION

Since the beginnings of research on sensor networks in

the 1970s, the monitoring of environments and habitats has

become one of its major application fields [3]. Technological

advances in embedded systems, such as the development

of reliable wireless communication, and miniaturization and

improved efficiency of microcontrollers and sensors have

have answered key needs, and encouraged an increasing

deployment of wireless sensor networks as a main tool to

monitor spaces [8]. Still, one of the challenges presented with

the deployment of sensor networks is the accurate estimation

of fields with unpredictable environmental phenomena, while

simultaneously addressing the critical issues of resource

usage such as local memory, communication and processing

constraints.

With networks often consisting of a considerable number

of sensor nodes, the necessity of limiting energy consumption

as well as bandwidth requirements increases. Research in

the domain of ad hoc wireless routing has produced a range

of algorithms which propose solutions for these problems.

Improved routing algorithms have been developed which aim

to accomplish in-network load balancing and an increased

system lifetime, employing techniques that are mostly based

on system information such as remaining energy levels and

routing capacities.

A. Spatial & Temporal Suppression

There are two main approaches to optimizing the energy

consumption of sensor networks. In temporal suppression

schemes, each node uses its own history of measurements
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to determine if a new value can be inferred by the network

sink instead of being transmitted, or even to avoid sampling

and local processing entirely. A simple example would be

transmitting measurements only when they differ from the

previous value. Typically these approaches make use of much

more complex models, often providing bounded error.

The Probabilistic Adaptable Query (PAQ) system is one

notable such scheme based on time series forecasting [23].

It uses autoregressive models maintained locally per sensor

node in order to keep from sending data directly to the sink.

Instead, nodes communicate model parameters as necessary

in order to keep the sink’s predictions within some defined

error bound. Tulone and Madden extend this work with their

Similarity-based Adaptive Framework (SAF) [24], adding

robustness to quick changes in data trends as well as a

location-independent clustering technique that allows the

detection of redundant nodes.

On the other hand, spatial suppression exploits spatial

correlations between nearby sensor nodes in order to reduce

communication load. Many spatial suppression algorithms

attempt to detect and deactivate sets of redundant nodes.

Arici and Altunbasak propose using a first-order model to

determine the predictability of particular nodes [1]. They de-

fine some of the nodes in the network as macronodes which

attempt to fit a plane over their neighbors’ positions and

data, commanding easily predictable nodes to stop reporting

measurements for some period of time. Similarly, Willett et

al. define the idea of a fusion center that is responsible for

estimating a field based on received sensor measurements

and then directly deactivating redundant nodes [26].

Chu et al. propose the use of replicated dynamic proba-

bilistic models between the sink and disjoint cliques of data

sources [4]. The sink then uses these models to predict future

sensor data. If the root of a clique observes data inconsistent

with the sink’s current prediction model, a subset of the

clique’s recent observations are sent and the sink’s model

is updated as necessary.

B. Motivation

In our work, we address the problem of designing dis-

tributed sensor networks for surveillance and monitoring.

It is clear from [14] that self-configuration is a necessary

element for effective as well as efficient performance of

such networks. The proposed design paradigm suggests

hierarchical topologies, following a top-down control and

bottom-up reconfiguration principle. Here, we build upon

this design rule, implementing a distributed, multi-layer tree-

based routing algorithm and combining it with a threshold-



based clustering strategy which is adaptive to the state of

the field being estimated. Our algorithm leans on established

field estimation methods described in [18] and [26]. The

approach is similar to the one described by Arici et al. in

[1], which describes an adaptive sensing method also based

on a tree-like, hierarchical network structure. Their method

exploits the fact that a manual deployment of sensors may

offer more information than necessary (over time and space)

to reconstruct an accurate field estimate. They propose a

self-configuration algorithm which will put nodes into pas-

sive mode when their measurements become ‘predictable’.

Here, also motivated by previous research in the domain

of distributed sensor node controllers as presented in [7],

we develop a fully distributed node controller that is easily

implemented on resource constrained and noisy hardware,

which aims to optimize system performance by finding

a trade-off between use of resources and data quality. In

contrast to the methods described in [2, 13, 27], we base

our clustering strategy on field data, rather than on system

information. Also, our resulting data aggregation method

follows a multi-layer bottom-up principle, which enables

global abstraction of the target field, different from the

local collaborative processing methods of [15, 28]. Lastly,

in contrast to [18] and [26] we focus on the whole system

rather than only on communication and routing activities, and

our work in [19] demonstrates the approach on real hardware

by comparing the performance to theoretical predictions.

The method in this work especially targets heterogeneous

sensor-networks, given its non-homogeneous communication

constraints. This allows for the deployment of large numbers

of cheap sensor nodes to increase granularity, while more

expensive, robust sensor nodes are placed at strategically

important positions. Nevertheless, in order to guarantee the

scalability and robustness of the system, redundancy must be

foreseen by implementing efficient role selection strategies.

Finally, although our current algorithm does not explicitly

take into account node mobility, its design easily accom-

modates extensions such as node redeployment or network

reconfiguration. This capability may equally be deployed

non-homogeneously throughout the sensor network.

II. SPATIAL SUPPRESSION USING HIERARCHICAL

NETWORK TOPOLOGIES

In accordance with our above-mentioned motivation to

port our algorithms onto mobile platforms, we base the

following elaborations on robotic sensor networks. As sug-

gested in the theoretical work of [26], we superpose a

quadtree (Fig. 1) on the robotic sensor network. Especially

when computing spatial problems typical in computer aided

design and geo-data applications [12], the quadtree data

structure has proven an efficient and powerful tool [11, 20].

An early work in [10] shows how an active quadtree network

facilitates image representation and analysis. Also, a recent

study in [9] shows how a quadtree can be utilized for in-

network data querying in a fully distributed wireless network.
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Fig. 1. A 16-node quadtree structure. The quadtree hierarchy is decom-
posed into 3 hierarchy levels. A node will participate in either of the 3
subsets: {L0}, {L0, L1} or {L0, L1, L2}.

A. Distributed Network Organization

Here, although our controllers and models are general

to any hierarchical topology, we showcase our study on a

quadtree based network with each robotic node within our

sensor field representing a leaf node in the tree structure. The

robots are distributed on a regular grid in a square arena. In

a network of a total n nodes, assuming that the robots are

aware of their location, each one allocates itself to one of

n sensing cells in the decomposed space. We thus obtain a

robotic sensor network ordered by the intrinsic hierarchy of

the quadtree. Adapted and implemented in a fully distributed

sensor network, this hierarchy can be explored in terms of

i) communication channels and ii) fine-tuning the spatial

resolution of the sensor network. Whereas exploring i) is

relatively straightforward as we can directly exploit the

quadtree hierarchy, there are many approaches to ii)—our

chosen approach will be discussed later in Section II-B.2.

On a global level, the quadtree structure depends only on

the number of nodes (implicitly a power of 4), and can be

constructed in a distributed manner, assuming that all nodes

know their location. As is evident in Fig. 1, a single node

may have multiple roles within the network, depending on

the status of the network. Thus, we create the notion of

layers Li. In a network of 4K nodes, we have K + 1 layers

(L0, ..., LK), and a node’s current role in the network is

defined by its current processing layer Lcurrent. Every node

Ni has a maximum layer Lkmax
with Ni ∈ Lkmax

such that

there is no k > kmax with Ni ∈ Lk. Also, any node Ni in

Lk, k > 0 is a clusterhead, with four descending nodes in

Lk−1 as its cluster children (including itself). Lastly, for the

sake of clarity, we don’t go into the details of an eventual

clusterhead rotation or election strategy.

The group of robotic nodes uses wireless communication

as a means of inter-node organization. There are two classes

of messages being used within the network: control messages

and data messages (measurements). The messages typically

contain the following elements: control or measurement data,

i and k, with i the id of the sender node Ni and Lk its

current processing layer. Control messages are sent top-down

through the network structure, and measurement messages

bottom-up. Nodes throughout the network or within the com-

munication range of the transmitting node may receive mes-

sages at all times and asynchronously from various senders.
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Fig. 2. The node is currently processing data in layer Lk . Measurement
messages are sent bottom-up and control messages are sent top-down the
quadtree structure.

A clusterhead will only accept measurement data from nodes

belonging to its cluster, and following the top-down control

principle, a node will only accept control messages from its

clusterhead. Fig. 2 illustrates the communication protocol.

B. Control of the Robotic Node

We elaborate two control variants: first, a naive sensing

strategy (NS), and second, an improved threshold-based

sensing strategy (TBS). With NS, the nodes are in one of

three possible states, whereas with TBS, the nodes are in

one of four possible states. The controller is simple and

distributed, homogeneous on all nodes.

1) State Machine: The controller can be represented by

a simple state-machine, and is depicted in Fig. 3. Initially,

a node is in the sample state. Each time a node takes a

measurement, it will transition to the process state. If the

node is a leaf node (its processing layer is Lcurrent = Lkmax

at all times) it will transition directly to the broadcast state,

send its measurement and then return to the sample state. If

the node is a clusterhead, it will increment its processing

layer Lcurrent once it has received (and aggregated) the

data from all the nodes in its cluster, and will enter the

broadcast state if it has reached its maximal layer Lkmax
.

Otherwise, it will re-enter the sample state. Finally, upon

sending the (collected) measurement data in the broadcast

state, the clusterhead will return to the sample state.

In a further step, we develop the controller for TBS, with

the goal of optimizing the use of resources by reducing the

number of messages sent and measurements taken. The aim

is to prune certain node-clusters off the quadtree by putting

the nodes in those clusters to sleep. A clusterhead will then

replace measurement values of all its descendant nodes with

its own. A fourth state is added to the NS controller, and is

illustrated by dashed line on the right-hand side in Fig. 3. If

a node has received a relevant pruning control message, it

will be absorbed by the idle state.

2) Threshold-Based Pruning Algorithm: In TBS, a clus-

terhead makes the decision to prune or not prune its child

nodes. Thus, we implemented a threshold-based pruning

algorithm, which builds on the theoretical formula proposed

in [18]. Assuming that the field is anisotropic, the chosen

approach is to prune sensor-node clusters which are sampling

values in isotropic subparts of the field. The resulting field

estimator will display a higher sensing resolution along the

boundaries of the anisotropic field and lower resolution in

the isotropic subparts. This principle is illustrated by the

sample broadcast

process

idle PRUNED

¬ PRUNED

L current = L kmax

L current ≠ L kmax

L current ≠ L kmax

L current = L kmax

BRANCHED

Fig. 3. Schematic illustration of two variant state-machines implemented
for the quadtree structure. (a) NS (without dashed line): A node samples
environmental events. Measurement data from cluster nodes is received and
processed. When the cluster data is complete, a node will broadcast the
collected data. (b) TBS (with dashed lines): A node which is shut down is
absorbed by the idle state. If change is perceived an idle node may re-enter
the sampling state.
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Fig. 4. The graphs show the calculated power of an acoustic event at a
given moment. Each of the 16 cells is occupied by one robotic sensor node.
An acoustic source is located in the bottom left corner of the arena. (a) A
snapshot of the true field values (b) The data sent out of the network by
the top-level node after completion of the pruning algorithm

example in Fig. 4. Fig. 4 (a) and (c) show a fully active

(un-pruned) quadtree and the values transmitted by the full

network, whereas Fig. 4 (b) and (d) show a pruned quadtree

and the values transmitted by the remaining active nodes.

The following formal details are as previously elaborated

in [19]. From [18] we have

f̂n = argmin
f(θ),θ∈Θn

R(f(θ), x) + 2s2p(n)|θ| (1)

where s2 is the signal noise variance and p(n) a mono-

tonically increasing function of the total number of nodes.

The finite set Θn includes all possible pruning variations

(partitions) of a quadtree with n nodes, and θ is one particular

partition. Then, for the set of partitions Θn, the algorithm

will seek the optimal partition θ which minimizes the cost

of the resulting field estimator, f̂n. This cost is comprised

of two terms. The first term R(f(θ), x) is the approximation

error resulting from the pruned clusters in the partitions. The



error is calculated as in

R(f(θ), x) =

n
∑

i=1

(fi(θ)− xi)
2

where fi(θ) is the estimated value for a node Ni in a

particular partition θ and xi is the true field value. The aim of

the second term in (1), 2s2p(n)|θ|, is to penalize increasing

complexity, where the factor |θ| is the number of not pruned

nodes in the partition. In [17], p(n) = 2/3 log n and s2 is

homogeneous on all sensor nodes.

We can solve equation (1) in a distributed manner by using

the bottom-up messaging protocol mentioned in Section II-A.

The work in [17] confirms that both terms of the estimator

are additive functions, thus the error and the penalty cost

of a subsquare can be calculated by each corresponding

clusterhead independently. Then, following our messaging

protocol, a clusterhead in the quadtree hierarchy will receive

from its 4 child nodes (three child nodes and itself) the field

estimate which minimizes the estimation cost as given by

the formula.

In order to implement the field estimation technique in our

distributed network, we propose a threshold-based pruning

algorithm. We are interested in studying the performance of

a fixed-size sensor network in function of a threshold Tk. At

layer L0, there is no propagated error from lower levels, the

cost f̂i(θL1
) at a clusterhead Ni is thus equal to

f̂i(θL1
) =

{

8s2p if not pruning

R(fi(θL1
), x) + 2s2p if pruning

The algorithm will seek the minimal cost min{f̂i(θL1
)},

therefore the threshold on the approximation error

R(fi(θL1
), x) for layer L1 is

T1,i(s, p) = 6s2p

In other words, if the approximation error

R(fi(θL1
), x) < T1,i(s, p), the cluster will be pruned.

For layers Lk with k > 1, the estimator takes into account

the propagated errors and complexity penalizers from lower

level layers, with

f̂i(θLk
) =

{ ∑

j∈Ck,i
f̂j(θLk−1

) if not pruning

R(fi(θLk
), x) + 2s2p if pruning

where Ck,i is the set of all children nodes of clusterhead Ni

at layer k. Since the network size is fixed, p is constant and

the threshold Tk(s) for level Lk, k > 1 is then

Tk,i(s) = 6s2p+
∑

j∈Ck,i

R(fj(θLk−1
), x) (2)

3) Branching Algorithm: Sensor networks often deal with

non-static environments. In order to take into account these

changes in the environment, we extend the pruning algorithm

elaborated above in order to enable an adaptive pruning

behavior. We develop a branching mechanism, which enables

initially pruned nodes to resume their full activities (sam-

pling, data processing and message sending). This behavior

is illustrated by the left dashed arrow in the state-machine

Fig. 5. The figure shows a screenshot from the Webots simulation environ-
ment. 16 robotic nodes (e-pucks) are evenly spaces out in a 1.5× 1.5m2

large space. The links show the detection of the acoustic source, a 17
th

robot, placed in the top half of the arena.

depicted in Fig. 3. In contrast to the controller described in

Section II-B.2, where pruned clusters remain pruned, nodes

can now potentially receive reactivation signals enabling

entire clusters to branch.

Intuitively, we might implement a simple branching al-

gorithm by defining a constant time interval, at which a

branching control message is sent to all nodes within the

network. Yet, defining an optimal constant branching interval

a-priori may be difficult or even impossible, due to the

unknown and unpredictable characteristics of environmental

phenomena. Thus, we developed a simple distributed strategy

which will branch pruned clusters as a function of change

perceived in the environment by the active nodes. This

strategy exploits the fact that in a dynamic environment,

the boundaries of an anisotropic field are moving. Thus,

according to our threshold-based pruning algorithm, in a

dynamic environment, active nodes may eventually be pruned

as at they no longer cover anisotropic parts of the field.

Each time an active node is pruned, it signals the need for

a reevaluation of the current quadtree partition. Hence, the

quadtree will branch if for a node i

R(fi(θLk
), x) ≤ Tk,i.

Following this additional threshold-based rule, active nodes

in isotropic parts of the field will send branching control

messages to pruned nodes in the quadtree.

III. RESULTS

We designed an experimental setup using the robotic

simulation software Webots [16]. Our robotic nodes are

modeled by simulated e-puck robots [5] (which run on a

microcontroller of the dsPIC30 family). The robots have a

trinaural microphone array, enabling them to detect acoustic

events, and are equiped with radio modules enabling short

range communication [5]. An additional robot plays the role

of a sound source, which will, depending on the experiment,

remain stationary, or move randomly about the arena, avoid-

ing the other robots and boundaries (Braitenberg vehicle

with a speed of one robot-size per second). As elaborated in

previous work by Cianci et. al. [6], the dynamics of the sound

source are accurately modeled, taking into account reflection,
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Fig. 6. Performance with i) NS and ii) TBS. 500 runs were performed per
threshold, for 24 different thresholds with s in [0..12000]. (a) Total active
nodes (b) MSE. The errorbars show a 95% confidence interval.

fading and mixing. Also in [6], the radio communication is

realistically modeled within the simulation software using

a plugin based on OMNeT++ [25], which accurately simu-

lates the physical layer (i.e., with channel fading) and data

link layer (i.e. modulation properties, channel coding, MAC

protocol).

Fig. 5 shows the experimental setup with 16 robotic nodes

spaced out evenly in a 1.5×1.5m2 arena. The sound source

in this setup generates a continuous, local acoustic field.

The robotic nodes in the network sample at a frequency

of approximately 288 kHz, take measurements at regular

intervals of 256 ms, and calculate the power of this acoustic

event. Figured 6 (a) and (b) summarize the behavior of

the two control variants NS and TBS as elaborated above,

with respect to (a) the number of active nodes and (b) the

MSE. We performed 500 runs per threshold, for 24 different

thresholds with s in [0..12000]. For NS, the total number

of active nodes as well as the resulting MSE will remain

constant. As expected for TBS, we observe a decreasing

number of active nodes and an increasing MSE as the

threshold increases.

Figures 7 (a) and (b) show the performance of the sensor

network with four variant control algorithms: NS, TBS, TBS

with random branching and TBS with adaptive branching.
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Fig. 7. The graphs show the MSE and average number of active nodes,
for the quadtree structure implemented with three different controlling
algorithms. The error-bars show the standard deviation.

We see that in comparison with the pruning control TBS,

adaptive branching reduces the resulting MSE for a moving

sound source. Also, the number of active nodes is reduced

by over 20% with respect to a fully active network as in NS.

Post-evaluation of the data gathered by the adaptive pruning

algorithm shows that in 42% of the time, the quadtree was

branched. Thus, in order to better evaluate the adaptive

pruning controller, we implemented a random branching

mechanism with an equivalent branching probability instead

of the threshold-based branching rule. We see that for both

branching mechanisms the MSE is nearly identical, but that

in the case of a dynamic environment, the adaptive algorithm

outperforms the random one.

IV. CONCLUSION & OUTLOOK

In this work we first developed a layer-based fully asyn-

chronous distributed node controller, specific to hierarchical

network topologies, and we implemented a self-configuration

method based on an estimation technique. Whereas the

theory for the estimation technique optimizes communication

costs, we decoupled our performance metric by considering

a sensor-node as either fully active or shut-down. In our

previous work [19], we additionally verified the system’s

performance on hardware, and developed a probabilistic



model that accurately captured the behavior of a real sensor

network. Also, we developed a framework which ultimately

allows for a specific, user-defined trade-off between the cost

and accuracy of a sensor network. Beyond our previous

work, this paper explores the feasibility of an augmented

node control that envisions the reactivation of nodes absorbed

by the idle state through the branching of pruned quadtree

nodes. With our simulation results, we showed how the pro-

posed quadtree branching algorithm may lead to significantly

reduced resource usage without compromising the quality of

the data obtained.

There are a number of possible extensions to this work,

but most importantly, the introduction of clusterhead rotation

cycles and distributed node responsibilities lead to increased

robustness, which is a key factor for large-scale networks.

Building upon the current baseline method, we will explore

how the controlled movement of robotic sensor nodes affects

the spatial resolution of the sensor network as a whole,

thus also affecting its performance. Simultaneously, we will

explore how to optimally allocate nodes in heterogeneous

networks. To this purpose, we will employ SensorScope

stations [21] as well as flying robotic vehicles [22] for

outdoor operation, offering a promising set of tools for

validating our future approaches on mobile systems as well

as in outdoor scenarios.
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