Cycling dynamics of the internal kink mode in non-linear two-fluid MHD simulations

F.D. Halpern, H.Lütjens, J.-F. Luciani

1CRPP, École Polytechnique Fédérale de Lausanne, Suisse
2Centre de Physique Théorique, CNRS, École Polytechnique, France

September 27th, 2011
Sawtooth oscillations are marked by sudden, periodic relaxations of the plasma core profiles. Reconnecting internal kink mode with $q = m/n = 1/1$ helicity can lead to heat, current, momentum, and fast particle redistribution during the reconnection event, which takes place on a 100 μs timescale. Long, quiescent ramps take place between crashes. This is important for reactor operation, yet not fully understood. The experiments show somewhat perplexing behavior, such as “mini-crashes,” snakes, and helical states, which indicate partial magnetic reconnection.
Introduction

- Sawtooth oscillation are marked by sudden, periodic relaxations of the plasma core profiles
 - Reconnecting internal kink mode with $q = m/n = 1/1$ helicity
 - Heat, current, momentum, fast particles are redistributed during reconnection event taking place in $100\,\mu s$ timescale
 - Long, quiescent ramp takes place between crashes
Introduction

- Sawtooth oscillation are marked by sudden, periodic relaxations of the plasma core profiles
 - Reconnecting internal kink mode with $q = m/n = 1/1$ helicity
 - Heat, current, momentum, fast particles are redistributed during reconnection event taking place in 100μs timescale
 - Long, quiescent ramp takes place between crashes
- Important for reactor operation, yet not fully understood
Introduction

- Sawtooth oscillation are marked by sudden, periodic relaxations of the plasma core profiles
 - Reconnecting internal kink mode with \(q = m/n = 1/1 \) helicity
 - Heat, current, momentum, fast particles are redistributed during reconnection event taking place in \(100 \mu s \) timescale
 - Long, quiescent ramp takes place between crashes
- Important for reactor operation, yet not fully understood
- The experiments show somewhat perplexing behavior
 - ”Mini-crashes”, snakes, helical states, partial magnetic reconnection...
Objectives

We aim to:

- Improve the understanding of the cyclic behavior of sawteeth using three-dimensional, fully non-linear fluid simulations.
- Characterize the steady-state (τ_η, ω_*) cyclic regimes of the internal kink with respect to τ_η, ω_* to find diamagnetic thresholds for sawtoothing.
- Attempt to respect some of the experimental timescales set by plasma heat and current sources.
Objectives

- We aim to:
 - Improve the understanding of the cyclic behavior of sawteeth using three dimensional, fully non-linear fluid simulations
Objectives

▶ We aim to:
 ▶ Improve the understanding of the cyclic behavior of sawteeth using three dimensional, fully non-linear fluid simulations
 ▶ Characterize the steady-state (τ_η timescale) cyclic regimes of the internal kink respect to τ_η, ω_* to find diamagnetic thresholds for sawtooothing
Objectives

- We aim to:
 - Improve the understanding of the cyclic behavior of sawteeth using three dimensional, fully non-linear fluid simulations
 - Characterize the steady-state (τ_η timescale) cyclic regimes of the internal kink respect to τ_η, ω_* to find diamagnetic thresholds for sawtoothing

- We will attempt to respect some of the experimental timescales set by plasma heat and current sources
Why use computer simulations?
Why use computer simulations?

- The analytical theory predicts a multitude of asymptotic limits.
Why use computer simulations?

- The analytical theory predicts a multitude of asymptotic limits
- Different regimes depending on pressure, shaping, resistivity, viscosity, heat transport, diamagnetic flows, kinetic effects...
Why use computer simulations?

- The analytical theory predicts a multitude of asymptotic limits
- Different regimes depending on pressure, shaping, resistivity, viscosity, heat transport, diamagnetic flows, kinetic effects...
 - Instabilities evolve in different timescales and can drive magnetic reconnection at different rates
Why use computer simulations?

- The analytical theory predicts a multitude of asymptotic limits
- Different regimes depending on pressure, shaping, resistivity, viscosity, heat transport, diamagnetic flows, kinetic effects...
 - Instabilities evolve in different timescales and can drive magnetic reconnection at different rates
 - Linear thresholds could predict the crash onset... Which branch?
Why use computer simulations?

- The analytical theory predicts a multitude of asymptotic limits
- Different regimes depending on pressure, shaping, resistivity, viscosity, heat transport, diamagnetic flows, kinetic effects...
 - Instabilities evolve in different timescales and can drive magnetic reconnection at different rates
 - Linear thresholds could predict the crash onset... Which branch?
- Describing a sawtooth cycle (ramp, precursor, crash, ramp) requires switching between different instabilities and dynamic timescales at arbitrary mode amplitude
Why use computer simulations?

- The analytical theory predicts a multitude of asymptotic limits
- Different regimes depending on pressure, shaping, resistivity, viscosity, heat transport, diamagnetic flows, kinetic effects...
 - Instabilities evolve in different timescales and can drive magnetic reconnection at different rates
 - Linear thresholds could predict the crash onset... Which branch?
- Describing a sawtooth cycle (ramp, precursor, crash, ramp) requires switching between different instabilities and dynamic timescales at arbitrary mode amplitude
- This behavior is only tractable with numerical simulations!
Outline

Simulation model and setup
Outline

Simulation model and setup

Internal kink mode cyclic regimes
 Cyclic regimes in $S - \omega_*$ phase space
Outline

Simulation model and setup

Internal kink mode cyclic regimes
 Cyclic regimes in $S - \omega_*$ phase space

Diamagnetic thresholds
 Thresholds for cyclic regimes
Outline

Simulation model and setup

Internal kink mode cyclic regimes
 Cyclic regimes in $S - \omega_*$ phase space

Diamagnetic thresholds
 Thresholds for cyclic regimes

Discussion
The simulations are carried out using the XTOR-2F code

The system evolved is a subset of the Braginskii two-fluid equations

\[
\begin{align*}
\partial_t \rho &= -\rho \nabla \cdot \mathbf{v} - \mathbf{v} \cdot \nabla \rho - \alpha \nabla p_i \cdot \nabla \times \mathbf{B} / B^2 + \\
&\quad \nabla \cdot D_\perp \nabla (\rho - \rho_{t=0}), \\
\rho \partial_t \mathbf{v} &= -\rho (\mathbf{v} + \mathbf{v}_{*i}) \cdot \nabla \mathbf{v} + J \times \mathbf{B} - \nabla p + \nu \nabla^2 \mathbf{v}, \\
\partial_t p &= \Gamma p \nabla \cdot \mathbf{v} - \mathbf{v} \cdot \nabla p - \alpha \Gamma \frac{p}{\rho} \nabla p_i \cdot \nabla \times \mathbf{B} / B^2 + \\
&\quad \nabla \cdot \chi_\perp \nabla_\perp (\rho - \rho_{t=0}) + \nabla \cdot \chi_\parallel \nabla_\parallel p \\
\partial_t \mathbf{B} &= \nabla \times (\mathbf{v} \times \mathbf{B}) + \alpha \nabla \times \nabla_\parallel \mathbf{p}_e / \rho - \nabla \times \eta J \\
\mathbf{v}_i &= \mathbf{v}_E \times \mathbf{B} + \mathbf{v}_\parallel + \mathbf{v}_{*i}, \ J = e n_e (\mathbf{v}_i - \mathbf{v}_e), \\
\alpha &= (\omega_{ci} \tau_a)^{-1} = \frac{c}{\alpha \omega_{pi}}, \ \mathbf{v}_* \propto \alpha
\end{align*}
\]

Terms in red are corrections due to \(\omega_* \) effects
Plasma equilibrium

- Equilibrium computed using CHEASE code
- Circular equilibrium, $A = \epsilon^{-1} = 2.7$, $\beta_p = 0.22$, $\partial_r \beta_p \approx 0$
- Parabolic q profile, $q_0 = 0.77$, $q_a = 5.2$, $(\psi/\psi_s)^{1/2}(q=1) \approx 0.4$
- Warning: Initial equilibrium never recovered after first crash

![Graph showing q and pressure profiles]
Simulation setup

- Simulations must be advanced until the cycle period and amplitude stabilizes or until cycles stop.
- Retained toroidal harmonics have $n = 0, 1, 2, 3$, with $n - 4 \leq m \leq n + 7$ for $n = 1, 2, 3$.
Internal kink timescales

- The internal kink cycles are affected by the interplay between:
 - \(S = \tau_\eta = 1/\eta = 10^6 - 10^7 \) (resistive time)
 - \(\tau_\eta = 30\tau_{\chi_\perp}, \chi_\parallel/\chi_\perp \approx 10^7 \) (energy diffusion times)
 - \(\omega_*'s \) introduce additional timescale through growth rate of internal kink (\(\gamma_\eta \sim S^{-1/3} - \alpha \)), we consider \(\alpha = 0-0.2 \)
Internal kink timescales

- The internal kink cycles are affected by the interplay between:
 - $S = \tau_\eta = 1/\eta = 10^6 - 10^7$ (resistive time)
 - $\tau_\eta = 30\tau_{\chi_\perp}$, $\chi_\parallel/\chi_\perp \approx 10^7$ (energy diffusion times)
 - ω_*’s introduce additional timescale through growth rate of internal kink ($\gamma_\eta \sim S^{-1/3} - \alpha$), we consider $\alpha = 0-0.2$

- Pressure dynamics follows magnetic field lines
 - Parallel temperature perturbations are strongly damped
 $\nabla_\parallel T \approx 0$, so $\omega_{*i} \approx 9\omega_{*e}$
Cyclic regimes

Distribution of cyclic regimes in $S - \omega_*$ parameter space:

We now describe briefly each regime...
$m/n = 1/1$ helical states

- First regime: Equilibrium due to low-shear saturated kink (axisymmetric boundary and $m/n = 1/1$ helical core)
 - [Internal kink: Waelbrock, Phys.Fluids 31, 1217 (1988)]
 - [Equilibrium state: Cooper, NF 51 072002 (2011)]
Resistive kink cycles (Kadomtsev’s sawteeth)

- Diamagnetic stabilization allows access to cycling regime
- They are characterized by slow, collisional crashes \((\tau_{\text{crash}} \sim S^{-1/2}) \) [Baty et al., Phys.Fluids B 5, 1213 (1993)]
- The ramp is never quiescent, large \(m/n = 1/1 \) island present
Sawtooth cycles

- Cycles have quiescent ramps, precursor and postcursor modes
- Fast, collisionless crashes (weak scaling of τ_{crash} vs S)
- Sometimes a "mini-crash" is observed
Magnetic field cross sections
Diamagnetic thresholds for internal kink cyclic regimes

Critical diamagnetic stabilization thresholds have the form

$$\alpha_{\text{crit},1} = \alpha_1 S^{-0.34}$$
$$\alpha_{\text{crit},2} = \alpha_2 S^{-0.60}$$
Diamagnetic thresholds for internal kink cyclic regimes

Critical diamagnetic stabilization thresholds have the form

\[\alpha_{\text{crit}, 1} = \alpha_1 S^{-0.34} \]
\[\alpha_{\text{crit}, 2} = \alpha_2 S^{-0.60} \]
Diamagnetic thresholds for internal kink cyclic regimes

Critical diamagnetic stabilization thresholds have the form

\[\alpha_{\text{crit}, 1} = \alpha_1 S^{-0.34} \]
\[\alpha_{\text{crit}, 2} = \alpha_2 S^{-0.60} \]

Transition at \(\alpha_{\text{crit}, 1} \): Stabilization of resistive branch of internal kink with \(\gamma \sim S^{-1/3} - \alpha \)
Diamagnetic thresholds for internal kink cyclic regimes

Critical diamagnetic stabilization thresholds have the form

\[\alpha_{\text{crit},1} = \alpha_1 S^{-0.34} \]
\[\alpha_{\text{crit},2} = \alpha_2 S^{-0.60} \]

- Transition at \(\alpha_{\text{crit},1} \): Stabilization of resistive branch of internal kink with \(\gamma \sim S^{-1/3} - \alpha \)
- Transition at \(\alpha_{\text{crit},2} \): Stabilization of deep-ideal-MHD-stable branch of internal kink with \(\gamma \sim S^{-3/5} - \alpha \) (tearing like)
Diamagnetic thresholds for internal kink cyclic regimes

Instability regimes appear to inhabit different regions of stability diagram during the ramp:

\[\frac{\lambda H}{\gamma \eta} \sim -1, \text{ move toward } \frac{\lambda H}{\gamma \eta} = 0 \]

\[\text{Precursor} \]

\[\text{Ramp} \]

\[\omega_n * e/\gamma \eta \]

\[S = 10 \]

\[S = 6.66 \times 10^6 \]

\[S = 3.33 \times 10^6 \]

\[(\omega_n * e \omega_i)*^{1/2}/\gamma \eta \]
Diamagnetic thresholds for internal kink cyclic regimes

Instability regimes appear to inhabit different regions of stability diagram during the ramp:

- Kink cycles have $\lambda_H/\gamma \eta \sim -1$, move toward $\lambda_H = 0$
- Sawteeth have more strongly negative $\lambda_H/\gamma \eta$
- Compare to [Migliuolo, NF 33 (1993) 1721]:

![Graph showing diamagnetic thresholds for internal kink cyclic regimes](image)
Measuring ramp, precursor, and crash times
Ramp, precursor, crash timescales

$\tau_{\text{ramp}}, \tau_{\text{precursor}}, \tau_{\text{crash}}$ are shown for cases with $S = 10^7$
Role of diamagnetic stabilizations at crash onset

Well within the "sawtooth" regime:

\[r_{\text{max}}(q=1) \text{ at } t=2.856 \times 10^5 \tau_a \]
Role of diamagnetic stabilizations at crash onset

Just below the diamagnetic threshold:

- The crash time is increasing, with $\tau_{\text{crash}} + \tau_{\text{precursor}} \approx \tau_{\text{ramp}}/2$
- Rate of energy release accelerates, without any effect on the crash time

![Graph showing pressure and kinetic energy over time]
Interpretation of results

Regime transitions can be described as a competition between relaxation timescales of pressure, current, reconnection drive, and ω^* stabilization.

- Ramp: Quiescence is determined by ω^* stabilization of $m/n = 1/1$ mode with $\gamma \sim S^{-3/5}$ (similar to resistive tearing).

- Precursor stage: Competition between resistive tearing instability and ω^*. If resistive instability is strongly stabilized, fast crash takes place.

- Postcursor stage: Pressure must increase fast enough to overcome reconnection drive, slow enough not to destabilize pressure-driven flat q mode.

Access to sawtoothing regime requires that all three conditions are fulfilled.
Interpretation of results

- Regime transitions can be described as a competition between relaxation timescales of pressure, current, reconnection drive, and ω_* stabilization.
Interpretation of results

- Regime transitions can be described as a competition between relaxation timescales of pressure, current, reconnection drive, and ω_* stabilization.
 - Ramp: Quiescence is determined by ω_* stabilization of $m/n = 1/1$ mode with $\gamma \sim S^{-3/5}$ (similar to resistive tearing).
 - Precursor stage: Competition between resistive tearing instability and ω_*. If resistive instability is strongly stabilized, fast crash takes place.
 - Postcursor stage: Pressure must increase fast enough to overcome reconnection drive, slow enough not to destabilize pressure driven flat q mode.
 - Access to sawtoothing regime requires that all three conditions are fulfilled.
Interpretation of results

- Regime transitions can be described as a competition between relaxation timescales of pressure, current, reconnection drive, and ω_* stabilization
 - Ramp: Quiescence is determined by ω_* stabilization of $m/n = 1/1$ mode with $\gamma \sim S^{-3/5}$ (similar to resistive tearing)
 - Precursor stage: Competition between resistive tearing instability and ω_*. If resistive instability is strongly stabilized, fast crash takes place
Interpretation of results

- Regime transitions can be described as a competition between relaxation timescales of pressure, current, reconnection drive, and ω_* stabilization
 - Ramp: Quiescence is determined by ω_* stabilization of $m/n = 1/1$ mode with $\gamma \sim S^{-3/5}$ (similar to resistive tearing)
 - Precursor stage: Competition between resistive tearing instability and ω_*. If resistive instability is strongly stabilized, fast crash takes place
 - Postcursor stage: Pressure must increase fast enough to overcome reconnection drive, slow enough not to destabilize pressure driven flat q mode
Interpretation of results

- Regime transitions can be described as a competition between relaxation timescales of pressure, current, reconnection drive, and ω_* stabilization
 - Ramp: Quiescence is determined by ω_* stabilization of $m/n = 1/1$ mode with $\gamma \sim S^{-3/5}$ (similar to resistive tearing)
 - Precursor stage: Competition between resistive tearing instability and ω_*. If resistive instability is strongly stabilized, fast crash takes place
 - Postcursor stage: Pressure must increase fast enough to overcome reconnection drive, slow enough not to destabilize pressure driven flat q mode

- Access to sawtoothing regime requires that all three conditions are fulfilled
Summary

XTOR-2F simulations reveal a pattern of 3 cyclic regimes:

- (Non-cyclic) equilibria with $m/n = 1/1$ helicity component
- Resistive kink cycles (Kadomtsev's sawteeth)
- Sawtooth cycles

Established η scaling of critical diamagnetic stabilization:

- $\alpha_{\text{crit}}, 1 = \alpha_1 S^{-1/3}$
- $\alpha_{\text{crit}}, 2 = \alpha_2 S^{-3/5}$

In a two-fluid model with realistic S and ω^*, sawtooth cycles should have a quiescent ramp and a crash in the 100 μs scale.
Summary

- XTOR-2F simulations reveal a pattern of 3 cyclic regimes
Summary

- XTOR-2F simulations reveal a pattern of 3 cyclic regimes
 - (Non-cyclic) equilibria with $m/n = 1/1$ helicity component
Summary

- XTOR-2F simulations reveal a pattern of 3 cyclic regimes
 - (Non-cyclic) equilibria with $m/n = 1/1$ helicity component
 - Resistive kink cycles (Kadomtsev’s sawteeth)
Summary

- XTOR-2F simulations reveal a pattern of 3 cyclic regimes
 - (Non-cyclic) equilibria with $m/n = 1/1$ helicity component
 - Resistive kink cycles (Kadomtsev’s sawteeth)
 - Sawtooth cycles
Summary

- XTOR-2F simulations reveal a pattern of 3 cyclic regimes
 - (Non-cyclic) equilibria with \(m/n = 1/1 \) helicity component
 - Resistive kink cycles (Kadomtsev’s sawteeth)
 - Sawtooth cycles
- Established \(\eta \) scaling of critical diamagnetic stabilization:
 - \(\alpha_{\text{crit},1} = \alpha_1 S^{-1/3} \)
 - \(\alpha_{\text{crit},2} = \alpha_2 S^{-3/5} \)
Summary

- XTOR-2F simulations reveal a pattern of 3 cyclic regimes
 - (Non-cyclic) equilibria with \(m/n = 1/1 \) helicity component
 - Resistive kink cycles (Kadomtsev’s sawteeth)
 - Sawtooth cycles
- Established \(\eta \) scaling of critical diamagnetic stabilization:
 - \(\alpha_{\text{crit},1} = \alpha_1 S^{-1/3} \)
 - \(\alpha_{\text{crit},2} = \alpha_2 S^{-3/5} \)
- In a two-fluid model with realistic \(S \) and \(\omega_* \), sawtooth cycles should have a quiescent ramp and a crash in the 100\(\mu \)s scale