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Introduction

The drift-reduced Braginskii equations [1]

» the Scrape Off Layer (SOL) turbulence is studied by means of a linear eigenvalue solver
and the non-linear Global Braginskii Solver (GBS) code

» the linear and non-linear results are compared in order to investigate the linear phase and
the non-linear saturation mechanism related to the two main instabllities, the Drift Wave
(DW) and the Resistive Ballooning (RB)
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» identification of the RB and DW » Lp,/R = 0.01: identification of the » Lp/R = 0.1: identification of the RB
instabilities in the g — L,/R plane DW instability for steep gradients instability for weak gradients » simulation parameter: g = 4, v = 0.01, m;/me = 200, Ly /ps = 400, R/ps = 500

» ky ~ 0.3, identification of the DW, but still presence of a ballooning component, L,/R ~ 0.07

h o 1 » difference between the linear and the non-linear case: the DW is not completely damped by the shear, as expected
snear = + from the linear analysis: what is the mechanism driving the non linear DW instability? Possible explanations currently
‘ under investigation [2]
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» L,/R = 0.01: suppression of the
DW instablity due to the magnetic
shear
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enhance the RB growth rate (linear
results with a simplified model for
the RB instability)

y

» enhancement of the RB zone of
Influence due to the positive shear
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» suppression of the RB zone of DW instability due to magnetic > Ln/R = 0.1: suppression of the RE > Kj~0—m=ng=16 — ky ~ 0.25 — identification of the RB regime, L,/R ~ 0.15
Al : . iInstability due to negative magnetic " . . . . . .
influence due to the negative shear _shear (symmetry in the she_a_lr <hear » the positive shear causes a spread of the instability along the poloidal angle, while the negative shear localizes the
Influence on the DW instabllity) instability in the unfavourable curvature region [3]
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Conclusions

- linear suppression of the DW due to magnetic shear and linear suppression of the RB due to negative
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