

Global two-fluid simulations of tokamak Scrape Off Layer turbulence

Introduction

- ▶ the Scrape Off Layer (SOL) turbulence is studied by means of a linear eigenvalue solver and the non-linear Global Braginskii Solver (GBS) code
- ▶ the linear and non-linear results are compared in order to investigate the linear phase and the non-linear saturation mechanism related to the two main instabilities, the Drift Wave (DW) and the Resistive Ballooning (RB)
- ▶ the effect of the magnetic shear on both the linear and the non-linear evolution is analyzed

The Global Braginskii Solver (GBS) code

- ▶ the code is based on the non-linear, drift-reduced two-fluid Braginskii equations
- self-consistent global evolution of the equilibrium and the fluctuations
- ▶ we study the SOL turbulence as the self-consistent result of plasma source from the core and losses at the divertor or limiter
 - ▶ open magnetic field lines, ending on a limiter
 - $ightharpoonup T_i \ll T_e$, cold ion limit
 - $\triangleright \beta \ll$ 1, electrostatic approximation
 - ► simple, circular magnetic geometry
 - $ightharpoonup \epsilon \ll$ 1, large aspect ratio approximation
 - ▶ coordinates: $x \rightarrow$ radial, $y \rightarrow$ binormal, $z \rightarrow$ parallel

The drift-reduced Braginskii equations [1]

Continuity:
$$\frac{\partial n}{\partial t} = \frac{c}{B} [\Phi, n] + \frac{c}{eRB} (\hat{C}p_e - n\hat{C}\Phi) - \frac{\partial (nV_{||e})}{\partial z}$$

Vorticity:
$$\frac{\partial \nabla_{\perp}^{2} \Phi}{\partial t} = \frac{c}{B} \left[\Phi, \nabla_{\perp}^{2} \Phi \right] + \frac{B}{m_{i} cnR} \hat{C} p_{e} - V_{||i} \frac{\partial \nabla_{\perp}^{2} \Phi}{\partial z} + \frac{m_{i} \Omega_{ci}^{2} \partial j_{||}}{e^{2} n} \frac{\partial j_{||}}{\partial z}$$

Ohm's law:
$$m_{e}n\frac{\partial V_{||e}}{\partial t} = m_{e}n\frac{c}{B}\left[\Phi, V_{||e}\right] - m_{e}nV_{||e}\frac{\partial V_{||e}}{\partial z} - T_{e}\frac{\partial n}{\partial z} + en\frac{\partial \Phi}{\partial z} - 1.71n\frac{\partial T_{e}}{\partial z} + \frac{en}{\sigma_{||}}j_{||}$$

Parallel ion velocity:
$$\frac{\partial V_{||i}}{\partial t} = \frac{c}{B} \left[\Phi, V_{||i} \right] - V_{||i} \frac{\partial V_{||i}}{\partial z} - \frac{1}{nm_i} \frac{\partial p_e}{\partial z}$$

Electron temperature:
$$\frac{\partial T_e}{\partial t} = \frac{c}{B} \left[\Phi, T_e \right] + \frac{2c}{3eRB} \left(\frac{7}{2} T_e \hat{C} T_e + \frac{T_e^2}{n} \hat{C} n - T_e \hat{C} \Phi \right) + \frac{2}{3} \frac{T_e}{en} 0.71 \frac{\partial j_{||}}{\partial z} - \frac{2}{3} T_e \frac{\partial V_{||e}}{\partial z} - V_{||e} \frac{\partial T_e}{\partial z} \right)$$

red: v_{EXB} convection

magenta: v_{ExB} convection (curvature contribution)

green: *v_{de}* convection

blue: $v_{||e}$ convection

Curvature operator: $\hat{C} = -2 \left| \sin \theta \frac{\partial}{\partial x} + \left(\sin \theta \frac{y \hat{s}}{a} + \cos \theta \right) \frac{\partial}{\partial y} \right|$

Laplace operator :
$$\nabla_{\perp}^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + 2 \frac{y \hat{s}}{a} \frac{\partial^2 \Phi}{\partial x \partial y} + \left[1 + \left(\frac{y \hat{s}}{a}\right)^2\right] \frac{\partial^2 \Phi}{\partial y^2}$$

Poisson Bracket :
$$[f, g] = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial g}{\partial x} \frac{\partial f}{\partial y}$$

linear analysis

	Resistive Ballooning (RB)	Drift wave (DW)
drive	∇ <i>p</i> & R	$oldsymbol{E} imes oldsymbol{B} \ \& \ abla ho$
growth rate	$\sim c_s \sqrt{rac{2}{RL_n}}$	$\sim rac{c_{ m s}}{L_n}$
parallel dynamics	$ k_{ } \sim rac{1}{qR}$	$ k_{ } eq 0$
perpendicular dynamics	$k_{min} < k_{y} < k_{max}$	$k_{y}\rho_{s}\approx 1$
physical properties	destabilized by resistivity (non adia electrons)	destabilized by resistivity or electron in- ertia (non adiabatic electrons)

shear = 0

▶ identification of the RB and DW instabilities in the $q - L_n/R$ plane

 $ightharpoonup L_n/R = 0.01$: identification of the DW instability for steep gradients

instability for weak gradients

non-linear simulations

Drift Waves

Electric potential, shear=1

- ▶ simulation parameter: q = 4, $\nu = 0.01$, $m_i/m_e = 200$, $L_v/\rho_s = 400$, $R/\rho_s = 500$
- $k_V \approx 0.3$, identification of the DW, but still presence of a ballooning component, $L_n/R \approx 0.07$
- ▶ difference between the linear and the non-linear case: the DW is not completely damped by the shear, as expected from the linear analysis: what is the mechanism driving the non linear DW instability? Possible explanations currently under investigation [2]

shear = +1

► enhancement of the RB zone of influence due to the positive shear

 $ightharpoonup L_n/R = 0.01$: suppression of the DW instablity due to the magnetic shear

 $ightharpoonup \hat{s} = 1$ is expected to slightly enhance the RB growth rate (linear results with a simplified model for the RB instability)

Resistive Ballooning

Electric potential, shear=0

Electric potential, shear=1

Electric potential, shear=-1

Electric potential, shear=-1

- ▶ simulation parameter: q = 16, $\nu = 0.01$, $m_i/m_e = 200$, $L_v/\rho_s = 400$, $R/\rho_s = 500$
- ▶ $k_{\parallel} \approx 0 \rightarrow m \approx nq = 16 \rightarrow k_{V} \approx 0.25 \rightarrow \text{identification of the RB regime, } L_{n}/R \approx 0.15$
- ▶ the positive shear causes a spread of the instability along the poloidal angle, while the negative shear localizes the instability in the unfavourable curvature region [3]

shear = -1

suppression of the RB zone of influence due to the negative shear

- Drift Wave, Ln/R=0.01
- ► $L_n/R = 0.01$: suppression of the DW instability due to magnetic shear (symmetry in the shear

influence on the DW instability)

Resistive Ballooning, Ln/R=0.1 $ightharpoonup L_n/R = 0.1$: suppression of the RB

instability due to negative magnetic

Conclusions

Inear suppression of the DW due to magnetic shear and linear suppression of the RB due to negative shear

shear

- discrepancies between linear and non-linear simulations for DW under investigations
- agreement between the linear and non-linear simulations for RB

- References:
- [1] A. Zeiler et al., Phys. Plasmas, Vol. 4, Issue 6, 1997 [2] J. F. Drake et al., Phys. Rev. Lett., Vol. 75, Issue 23, 1995
- [3] T. M. Antonsen et al., Phys. Plasmas, Vol. 3, Issue 6, 1996