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Introduction

◮ the Scrape Off Layer (SOL) turbulence is studied by means of a linear eigenvalue solver
and the non-linear Global Braginskii Solver (GBS) code

◮ the linear and non-linear results are compared in order to investigate the linear phase and
the non-linear saturation mechanism related to the two main instabilities, the Drift Wave
(DW) and the Resistive Ballooning (RB)

◮ the effect of the magnetic shear on both the linear and the non-linear evolution is
analyzed

The Global Braginskii Solver (GBS) code

◮ the code is based on the non-linear, drift-reduced two-fluid Braginskii equations

◮ self-consistent global evolution of the equilibrium and the fluctuations

◮ we study the SOL turbulence as the self-consistent result of plasma source from the core
and losses at the divertor or limiter

◮ open magnetic field lines, ending on a limiter

◮ Ti ≪ Te, cold ion limit

◮ β ≪ 1, electrostatic approximation

◮ simple, circular magnetic geometry

◮ ǫ ≪ 1, large aspect ratio approximation

◮ coordinates: x → radial, y → binormal, z → parallel

The drift-reduced Braginskii equations [1]

Continuity:
∂n
∂t

=
c
B

[Φ, n] +
c

eRB

(
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red: vExB convection

magenta: vExB convection (curvature
contribution)

green: vde convection

blue: v||e convection
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linear analysis

Resistive Ballooning (RB) Drift wave (DW)
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perpendicular dynamics kmin < ky < kmax kyρs ≈ 1

physical properties destabilized by resistivity (non adiabatic
electrons)

destabilized by resistivity or electron in-
ertia (non adiabatic electrons)

shear = 0
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Drift Wave, Ln/R=0.01
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Resistive Ballooning, Ln/R=0.1
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◮ identification of the RB and DW
instabilities in the q − Ln/R plane

◮ Ln/R = 0.01: identification of the
DW instability for steep gradients

◮ Ln/R = 0.1: identification of the RB
instability for weak gradients

shear = +1
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Drift Wave, Ln/R=0.01
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Resistive Ballooning, Ln/R=0.1
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◮ enhancement of the RB zone of
influence due to the positive shear

◮ Ln/R = 0.01: suppression of the
DW instablity due to the magnetic
shear

◮ ŝ = 1 is expected to slightly
enhance the RB growth rate (linear
results with a simplified model for
the RB instability)

shear = −1
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Resistive Ballooning, Ln/R=0.1
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◮ suppression of the RB zone of
influence due to the negative shear

◮ Ln/R = 0.01: suppression of the
DW instability due to magnetic
shear (symmetry in the shear
influence on the DW instability)

◮ Ln/R = 0.1: suppression of the RB
instability due to negative magnetic
shear

non-linear simulations

Drift Waves

◮ simulation parameter: q = 4, ν = 0.01, mi/me = 200, Ly/ρs = 400, R/ρs = 500

◮ ky ≈ 0.3, identification of the DW, but still presence of a ballooning component, Ln/R ≈ 0.07

◮ difference between the linear and the non-linear case: the DW is not completely damped by the shear, as expected
from the linear analysis: what is the mechanism driving the non linear DW instability? Possible explanations currently
under investigation [2]

Resistive Ballooning

◮ simulation parameter: q = 16, ν = 0.01, mi/me = 200, Ly/ρs = 400, R/ρs = 500

◮ k‖ ≈ 0 → m ≈ nq = 16 → ky ≈ 0.25 → identification of the RB regime, Ln/R ≈ 0.15

◮ the positive shear causes a spread of the instability along the poloidal angle, while the negative shear localizes the
instability in the unfavourable curvature region [3]

Conclusions

◮ linear suppression of the DW due to magnetic shear and linear suppression of the RB due to negative
shear

◮ discrepancies between linear and non-linear simulations for DW under investigations
◮ agreement between the linear and non-linear simulations for RB
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