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Abstract

This note illustrates how Voronoi diagrams and Delaunay triangula-

tions of point sets can be computed by applying parametric linear pro-

gramming techniques. We specify parametric linear programming prob-

lems that yield the Delaunay triangulation or the Voronoi Diagram of an

arbitrary set of points S in R
n.

1 Introduction

It is the purpose of this note to establish a link between the methodology of
parametric linear programming (PLP) [3, 10, 14], Voronoi diagrams and De-
launay triangulations. Voronoi diagrams, Dirichlet tesselations and Delaunay
tesselations are the concepts introduced by the mathematicians: Dirichlet [7],
Voronoi [15, 16] and Delaunay [6].

It is shown in this note that the solution of an appropriately specified PLP
yields the Voronoi diagram or the Delaunay triangulation, respectively. The fol-
lowing introduction to Voronoi diagrams and Delaunay triangulation is derived
from [9].

Given a set S of d distinct points p in R
n, the Voronoi diagram is a partition

of R
n into d polyhedral regions. The region associated with the point p is

called the Voronoi cell of p and is defined as the set of points in R
n that are

closer to p than to any other point in S. Voronoi diagrams are well known
in computational geometry and have been studied by many authors [4, 5, 8, 9,
13, 17]. Voronoi Diagrams are a fundamental tool in many fields due to their
wide ranging applications. For example the breeding areas of fish, the optimal
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placement of cellular base stations in a city and searches of large databases can
all be described by Voronoi Diagrams [1].

The Delaunay complex of a set of points S is a partition of the convex hull of
S into polytopical regions whose vertices are the points in S. The convex hull of
the nearest neighbour set of a Voronoi vertex v is called the Delaunay cell of v.
The Delaunay complex of S is a partition of the convex hull of S into the Delau-
nay cells of Voronoi vertices together with their faces. The Delaunay complex is
not in general a triangulation (we use the term triangulation, throughout this
note, in the sense that it represents the generalized triangulation, i.e., a division
of polytope in R

n into n- dimensional simplicies) but becomes a triangulation
when the input points are in general position or non-degenerate (i.e. no points
are cospherical or equivalently there is no point c ∈ R

n whose nearest neighbour
set has more than n + 1 elements and the convex hull of the set of points has
non–empty interior). The Delaunay complex is dual to the Voronoi diagram in
the sense that there is a natural bijection between the two complexes which re-
verses the face inclusions. The Delaunay triangulation has been used in several
publications in the control literature (e.g., [2, 12]), in order to compute explicit
minimum time state-feedback controllers.

Both the Voronoi diagram and the Delaunay triangulation of a random set
of points are illustrated in Figure 1.
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(a) Voronoi diagram.
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(b) Delaunay triangulation.

Figure 1: Illustration of a Voronoi diagram and Delaunay triangulation of a
random set of points.

2 Preliminaries

Before proceeding, the following definitions and preliminary results are needed.

Definition 1 A convex polyhedron is the intersection of a finite number of
closed half-spaces. A convex polytope is a closed and bounded polyhedron.
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Let N , {1, 2, . . . , } denote the set of positive integers and for a positive integer
q let Nq , {1, 2, . . . , q} denote the first q positive integers. Let d(x, y) , ((x −
y)′(x − y))1/2 denote the Euclidan distance between two points x and y in R

n.

Definition 2 Given a set of S , {pi ∈ R
n | i ∈ Nq}, the Voronoi cell associated

with point pi is the set V (pi) , {x | d(x, pi) ≤ d(x, pj), ∀j 6= i, i, j ∈ Nq} and
the Voronoi diagram of the set S is given by the union of all of the Voronoi
cells: V(P ) ,

⋃

i∈Nq
V (pi).

Definition 3 The convex hull of a set of points S , {pi | i ∈ Nq} is defined as

convh(S) =

{

x

∣
∣
∣
∣
∣
∃λ, x =

q
∑

i=1

piλi, λi ≥ 0,

q
∑

i=1

λi = 1

}

Remark 1 Note that the convex hull of a finite set of points is always a convex
polytope.

Definition 4 A triangulation of a point set S is the partition of the convex hull
of S into a set of simplices such that each point in S is a vertex of a simplex.
A simplex is a polytope defined as the convex hull of n + 1 vertices.

Definition 5 For a set of points S in R
n, the Delaunay triangulation is the

unique triangulation DT (S) of S such that no point in S is inside the circum-
circle of any triangle in DT (S).

Definition 6 The map L(·) : R
n → R

n+1 is called the lifting map and is

defined as L(x) ,
[
x′ x′x

]′
.

Definition 7 Given the surface f(z) = 0, where f(·) : R
p → R the tangent

plane Hf (z∗) to the surface f(z) = 0 at the point z = z∗ is

Hf (z∗) , {z | (∇f(z∗))′(z − z∗) = 0} (2.1)

where ∇f(z∗) is gradient of f(z) evaluated at z = z∗.

Let x ∈ R
n and θ ∈ R and let g(·) : R

n+1 → R be defined as g(x, θ) , x′x − θ,

then the gradient of g(x, θ) is ∇g(x, θ) =
[
2x′ −1

]′
. The tangent hyperplane

at a point ri = L(pi) =
[
p′i pi

′pi

]′
for any i ∈ Nq is then given by:

Hg(ri) = {(x, θ) | 2pi
′(x − pi) − (θ − p′ipi) = 0}

= {(x, θ) | hi(x, θ) = 0}

where
hi(x, θ) = 2pi

′(x − pi) − (θ − p′ipi) (2.2)

Definition 8 Let S , {pi ∈ R
n | i ∈ Nq} be a set of points and U , {ri =

L(pi) | i ∈ Nq} be the lifting of S. The upper envelope of the set of points R is

defined by UE(R) , {(x, θ) | hi(x, θ) ≤ 0, ∀i ∈ Nq} where hi(x, θ) is defined in
(2.2).
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Definition 9 Let S , {pi ∈ R
n| i ∈ Nq} be a set of points, U , {ri = L(pi) ∈

R
n+1 | i ∈ Nq} be the lifting of S and let convh(U) ⊂ R

n+1 be the convex hull
of U . A facet of convh(R) is called a lower facet if the halfspace defining the
facet is given by {(x, θ) ∈ R

n ×R | α′x+βθ ≤ γ} and β is less than zero. The
surface formed by all the lower facets of convh(U) is called the lower convex hull
of U and is denoted by lconvh(R).

In the following the properties of parametric linear programs are restated
[3, 10]:

Theorem 1 Consider the parametric linear program

P(x) : J◦(x) = min
θ

{〈c,
[
x′ θ′

]′
〉 | Mx + Nθ ≤ p},

where x ∈ R
n, θ ∈ R

m and the objective c ∈ R
n+m. Then the set of feasible

parameters Xf given by {x | ∃θ : Mx + Nθ ≤ p} is convex and there exists an
optimiser θ◦ : Xf → R

m that is continuous and piecewise affine (PWA):

J◦(x) = 〈c,
[
x′ θ◦(x)′

]′
〉

θ◦(x) = Tix + ti
, if x ∈ Ri (2.3)

where Ri form a polyhedral partition of Xf .

3 Computation of Voronoi Diagrams

In this section it will be shown how to compute the Voronoi diagram via a PLP
for a given finite set of points S , {pi ∈ R

n | i ∈ Nq}.

3.1 Introduction to Voronoi Diagrams

We will here show how the equality (2.2) relates to the Euclidian distance be-
tween two points, which is used in the Voronoi diagram Definition 2.

Let f(·) : R
n → R be defined by f(x) , x′x and let x and y be two points

in R
n, then:

d2(x, y) = (x − y)′(x − y) = f(x) − θ̂(x, y) (3.1)

where θ̂(x, y) , 2y′x − y′y. Let

θi(x) , θ̂(x, pi) = 2p′ix − p′ipi, i ∈ Nq (3.2)

Obviously, the square of the Euclidian distance of any point x ∈ R
n from any

point pi ∈ S is given by d2(x, pi) = f(x)−θi(x). Furthermore, given any x ∈ R
n,

θi(x) is just a solution of Equation (2.2):

hi(x, θ) = 0 ⇔ 2pi
′(x − pi) − (θ − p′ipi) = 0. (3.3)

Let θ̄(x) be defined by:
θ̄(x) , max

i∈N
+
q

θi(x) (3.4)
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Figure 2: Voronoi Lifting

It is clear that,
hi(x, θ) ≤ 0, ∀i ∈ Nq ⇔ θ ≥ θ̄(x) (3.5)

The lifting of the set S and the resulting calculation of the Voronoi cells is
shown in Figure 2.

Lemma 1 Let x be in R
n and S = {pi ∈ R

n | i ∈ Nq}, then the Voronoi cell
associated with the point pi is:

V (pi) = {x | θ̄(x) = θi(x)} (3.6)

where θ̄(x) and θi(x) are defined in (3.4) and (3.2), respectively.

Proof: The proof uses (3.1) and the fact that d(x, y) ≥ 0, so that:

V (pi) , {x | d(x, pi) ≤ d(x, pj), ∀j ∈ Nq}

= {x | d2(x, pi) ≤ d2(x, pj), ∀j ∈ Nq}

= {x | f(x) − θi(x) ≤ f(x) − θj(x), ∀j ∈ Nq}

= {x | − θi(x) ≤ −θj(x), ∀j ∈ Nq}

= {x | θi(x) ≥ θj(x), ∀j ∈ Nq}

= {x | θ̄(x) = θi(x)}
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3.2 Parametric linear programming formulation

of Voronoi Diagrams

In this section we will assume that the parameter θ(x) is no longer a function
of x but is instead a free variable, henceforth denoted by θ. It will be shown
how a parametric optimization problem can be posed for the variables θ and x,
such that the solution to the PLP is a Voronoi diagram.

Let the set Ψ ⊆ R
n+1 be defined by:

Ψ , {(x, θ) | hi(x, θ) ≤ 0, ∀i ∈ Nq} (3.7a)

= {(x, θ) | θ ≥ θ̄(x)} (3.7b)

¿From (3.2), (3.4) and (3.7) we have

Ψ = {(x, θ) | Mx + Nθ ≤ p} (3.8)

where M , N and p are given by:

M =








2p′1
2p′2
...

2p′q








, N =








−1
−1
...

−1








, p =








p′1p1

p′2p2

...
p′qpq








(3.9)

Consider the cost function

g(x, θ) = 0x + 1θ (3.10)

and the following parametric program PV (x):

PV (x) : go(x) = min
θ

{g(x, θ) | (x, θ) ∈ Ψ} (3.11)

= min
θ

{0x + 1θ | Mx + Nθ ≤ p}. (3.12)

The parametric form of PV (x) is a standard form encountered in the literature
on parametric linear programming [3, 10]. It is obvious from (3.7) and (3.11)
that the optimiser θ◦(x) of PV (x) is equal to θ̄(x).

Theorem 2 Let S , {pi ∈ R
n | i ∈ Nq}. The explicit solution of the para-

metric problem PV (x) defined in (3.11) yields the Voronoi Diagram of the set
of points S.
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Proof:

The optimiser θ◦(x) for problem PV (x) is a piecewise affine function of x [3,10]
and it satisfies, for all x ∈ R

n =
⋃

i∈Nq
Ri:

θo(x) = Tix + ti = θ̄(x), ∀x ∈ Ri (3.13)

By Lemma 1, Ri is the Voronoi cell associated with the point pi. Hence, com-
puting the solution of PV (x) via PLP yields the Voronoi Diagram of S.

4 Computation of the Delaunay Triangulation

In this section it will be shown how to compute the Delaunay triangulation via
a PLP for a given finite set of points S , {pi ∈ R

n, i ∈ Nq}.

4.1 Introduction to Delaunay Triangulation

The Delaunay triangulation of the set S , {pi ∈ R
n | i ∈ Nq} of vertices is a

projection on R
n of the lower convex hull of the set of lifted points U , {L(pi) |

pi ∈ S} ⊂ R
n+1. It is well known [9] that the Delaunay triangulation of the

set S can be computed in two steps. First, the lower convex hull of the lifted
point set S is computed: U , lconvh({L(pi) | pi ∈ S}). Second, each facet Fi

of U , is projected to R
n: Ti , ProjRnFi. If U has Nt facets, then the Delaunay

triangulation of S is given by:

DT (S) ,

Nt⋃

i=1

Ti

This is illustrated in Figure 3.

4.2 Parametric linear programming formulation

of Delaunay triangulation

This section shows how the Delaunay triangulation can be computed via an
appropriately formulated parametric linear program. Let S = {pi ∈ R

n | i ∈
Nq} be a finite point set and U = {L(pi) | pi ∈ S} be the lifted point set. From
Definition 9, the lower convex hull of U can be written as:

lconvh(U) = {(x, γ◦) ∈ convh(U) | γ◦ = argmin{γ | (x, γ) ∈ convh(U)}}.
(4.1)

Equation 4.1 is equivalent to the following parametric linear program:

PD(x) : γo(x) = min
γ

{γ | (x, γ) ∈ convh(U)} (4.2)

A 4.1 Throughout this section we assume that:
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L(p3)

p2p1 p3

x′x

︸ ︷︷ ︸︸ ︷︷ ︸

T1 T2
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F2

Figure 3: Calculation of a Delaunay Triangulation

(i) Convex hull of S has non–empty interior, interior(convh(S)) 6= ∅ and

(ii) There does not exist n + 2 points that lie of the surface of the same n-
dimensional ball.

Remark 2 Assumption 4.1 ensures that the Delaunay triangulation exists, is
unique and is in fact a triangulation. [9, 13,17].

We will now show how (4.7) can be formulated in the standard form for para-
metric linear program solvers. The convex hull of the lifted point set U can be
written as:

convh(U) ,

{

(x, γ)

∣
∣
∣
∣
∣
∃λ,

[
x

γ

]

=

q
∑

i=1

λi

[
pi

p′ipi

]

,

q
∑

i=1

λi = 1, λi ≥ 0

}

(4.3)

=

{

(x, γ)

∣
∣
∣
∣
∃λ,

MIx + NIγ + LIλ ≤ bI

MEx + NEγ + LIλ = bE

}

(4.4)

where MI , NI , LI and bI are given by:

MI = 0, NI = 0, LI = −I, bI = 0 (4.5)

and ME , NE, LE and be are given by:

ME =





I

0

0



 , NE =





0

1
0



 , LE =





−S
−Y
1



 , bE =





0

0

1



 (4.6)
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where S , [p1 p2 . . . pq] and Y ,
[
p′1p1 p′2p2 . . . p′qpq

]
.

Problem PD(x) can now be written in standard form as:

PD(x) : γo(x) = min
γ

{

0x + 0λ + 1γ

∣
∣
∣
∣

MIx + NIγ + LIλ ≤ bI

MEx + NEγ + LIλ = bE

}

(4.7)

The explicit solution of the parametric problem PD(x) is a piecewise affine
function:

γo(x) = Gix + gi, x ∈ Ri, i ∈ Nt (4.8)

Theorem 3 Let S , {pi ∈ R
n | i ∈ Nq} be a given point set. Then the

explicit solution of parametric form of PD(x) defined in (4.7) yields the Delaunay
triangulation.

Proof: From Assumption 4.1 it follows that the Delaunay triangulation exists
and is unique [9, 13, 17], i.e., the facets of the lower convex hull of the lifted
point set U are n dimensional simplices. It follows from the construction of
lconvh(U) that the optimiser for problem PD(x) is a piecewise affine function
of x and that (x, γo(x)) is in lconvh(U), for all x ∈ convh(S). Furthermore, the
optimiser γo(x) in each region Ri obtained by solving PD(x) (4.7) as a para-
metric program is affine, i.e., γo(x) = Tix + ti if x ∈ Ri. Thus, each region Ri

is equal to the projection of a facet Fi, i.e. Ri = Proj
RnFi, i ∈ Nt. Hence the

PLP PD(x) defined in (4.7) solves the Delaunay triangulation problem.

5 Numerical Examples

In order to illustrate the proposed PLP Voronoi and Delaunay algorithms a
random set of points S in R

2 was generated and the corresponding Voronoi
diagram and Delaunay triangulation are shown in Figures 4. Figure 5 shows
the Voronoi partition and Dalaunay triangulation for a unit-cube.

6 Conclusion

This note demonstrated that Voronoi diagrams, Delaunay triangulations and
parametric linear programming are connected. It was shown how to formu-
late appropriate parametric linear programming problems in order to obtain
the Voronoi diagram, or the Delaunay triangulation of a finite set of points
S. Numerical examples were provided to illustrate the proposed algorithms.
These algorithm are not necessarily the most efficient algorithms for performing
computation of Voronoi diagrams and Delanuay triangulations but are easily
generalized to arbitrary dimensions. Moreover, the link which is established
between recent parametric programming techniques and Voronoi diagrams and
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(a) Voronoi diagram
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(b) Delaunay triangulation

Figure 4: Illustration of a Voronoi diagram and Delaunay triangulation for a
given set of points S.

(a) Voronoi diagram (b) Delaunay triangulation

Figure 5: Illustration of the Voronoi diagram and Delaunay triangulation of a
unit-cube P in R

3.

Delaunay triangulation motivates further research on combining the known re-
sults of computational geometry with some of the results in control theory, in
which parametric programming has been applied.

The presented algorithms are contained in the MPT toolbox [11] and can be
downloaded from http://control.ee.ethz.ch/~mpt.
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