
A LOGARITHMIC-TIME SOLUTION TO THE
POINT LOCATION PROBLEM FOR

CLOSED-FORM LINEAR MPC

C.N. Jones ∗P. Grieder ∗∗ S.V. Raković ∗∗∗

∗ Control Group, Department of Engineering University of
Cambridge, Trumpington Street Cambridge CB2 1PZ, UK
∗∗ Automatic Control Laboratory, Swiss Federal Institute of
Technology, Physikstrasse 3, ETL K13.2, CH-8092 Zurich

∗∗∗ Imperial College London, Exhibition Road, London SW7 2BT,
United Kingdom

Abstract: Closed-form Model Predictive Control (MPC) results in a polytopic
subdivision of the set of feasible states, where each region is associated with an
affine control law. Solving the MPC problem on–line then requires determining
which region contains the current state measurement. This is the so-called point
location problem. For MPC based on linear control objectives (e.g., 1- or ∞-norm),
we show that this problem can be written as an additively weighted nearest
neighbour search that can be solved on–line in time linear in the dimension
of the state space and logarithmic in the number of regions. We demonstrate
several orders of magnitude sampling speed improvement over traditional MPC
and closed-form MPC schemes.

Keywords: Predictive Control, Parametric Programming, Controller Complexity

1 INTRODUCTION

It is standard practice to implement an MPC
controller by solving on–line an optimal control
problem that, when the system is linear and the
constraints are polyhedral, amounts to comput-
ing a single linear or quadratic program at each
sampling instant depending on the type of control
objective. In recent years, it has become well-
known that the optimal input is a piecewise affine
function (PWA) defined over a polyhedral parti-
tion of the feasible states (Borrelli, 2003). Sev-
eral methods of computing this affine function
can be found in the literature (e.g., (Tøndel et
al., 2003a; Bemporad et al., 2002; Borrelli, 2003)).
The on–line calculation of the control input then
becomes one of determining the region that con-
tains the current state and is known as the point
location problem.

The complexity of calculating this function is
clearly dependent on the number of affine regions
in the solution. This number of regions is known
to grow very quickly and possibly exponentially,
with horizon length and state/input dimension
(Bemporad et al., 2002). The complexity of the
solution therefore implies that for large problems
an efficient method for solving the point location
problem is needed.

The key contributions to this end have been made
by (Tøndel et al., 2003b) and (Borelli et al., 2001).
In (Tøndel et al., 2003b), the authors propose to
construct a binary search tree over the polyhedral
state-space partition. Therein, auxiliary hyper-
planes are used to subdivide the partition at
each tree level. Note that these auxiliary hyper-
planes may subdivide existing regions. The nec-
essary on–line identification time is logarithmic
in the number of subdivided regions, which may

be significantly larger than the original number
of regions. Although the scheme works very well
for smaller partitions, it is not applicable to large
controller structures due to the prohibitive pre-
processing time. If R is the number of regions
and F̄ the average number of facets defining a
region, then the approach requires the solution to
R2 · F̄ LPs 1 . However, the scheme in (Tøndel et
al., 2003b) is applicable to any type of closed–form
MPC controller, whereas the algorithm proposed
in this paper considers only the case in which
controllers are obtained via a linear cost. The
approach proposed here is not directly applicable
to non-convex controller partitions and can only
be applied to controllers obtained for a quadratic
cost if the solution exhibits a specific structure.

In (Borelli et al., 2001) the authors exploit the
convexity properties of the piecewise affine (PWA)
value function of linear MPC problems to solve
the point location problem efficiently. Instead of
checking whether the point is contained in a
polyhedral region, each affine piece of the value
function is evaluated for the current state. Since
the value function is PWA and convex, the region
containing the point is associated to the affine
function that yields the largest value. Although
this scheme is efficient, it is still linear in the
number of regions.

In this paper, we combine the concept of re-
gion identification via the value-function (Borelli
et al., 2001) with the construction of search
trees (Tøndel et al., 2003b), by using the link
between parametric linear programming, Voronoi
Diagrams and Delaunay triangulations, recently
established in (Raković et al., 2004). We demon-
strate that the PWA cost function can be inter-
preted as a weighted power diagram, which is
a type of Voronoi diagram, and exploit recent
results in (Arya et al., 1998) to solve the point
location problem for Voronoi diagrams in logarith-
mic time at the cost of very simple pre-processing
operations on the controller partition.

We focus on MPC problems with 1- or ∞-norm
objectives and show that evaluating the optimal
PWA function for a given state can be posed as a
nearest neighbour search over a finite set of points.
In (Arya et al., 1998) an algorithm is introduced
that solves the nearest neighbour problem in n
dimensions with R regions in time O(cn,εn log R)
and space O(nR) after a pre-processing step tak-
ing O(nR log R), where cn,ε is a factor depending
on the state dimension and an error tolerance ε.
Hence, the optimal control input can be found on–
line in time logarithmic in the number of regions
R.

1 It is possible to improve the pre-processing time at the
cost of less efficient (non-logarithmic) on-line computation
times.

The remainder of this paper is organised as fol-
lows. In Section 2 the basic MPC problem is for-
mulated, the structure of the closed-form solution
is discussed and the problem addressed in this
paper is formally defined. Section 3 demonstrates
that the point location problem can be posed as a
nearest neighbour search over R points. Section 4
provides a brief overview of the logarithmic near-
est neighbour algorithm from (Arya et al., 1998).
Section 5 provides numerical examples and com-
pares the approach to the current state of the art.
Finally, conclusions are given in Section 6.

DEFINITIONS AND NOTATION

Definition 1. (Grünbaum, 2000) A polyhedron is
the intersection of a finite number of halfspaces:
P � {x ∈ R

n |Ax ≤ b}. A polytope is a bounded
polyhedron.

Definition 2. (Face) F is a face of the poly-
tope P ⊂ R

n if there exists a hyperplane{
x ∈ R

n
∣∣ aT x = b

}
, where a ∈ R

n, b ∈ R, such
that F = P ∩ {

x ∈ R
n | aT x = b

}
and aT x ≤ b

for all x ∈ P .

Given any integer q let Nq � {1, 2, . . . , q}.

2 PROBLEM FORMULATION

We consider discrete-time, linear, time-invariant
models:

x+ = Ax + Bu,

where A ∈ R
n×n, B ∈ R

n×m, (A, B) is control-
lable and x+ is the state at the next point in time
given the current measured state x ∈ R

n and the
input u ∈ R

m. The state x and the input u are
constrained to lie in the polytopic sets X ⊂ R

n

and U ⊂ R
m respectively at each point in time,

where we assume that the origin is in the interior
of X and U .

The MPC problem is defined, as usual, by speci-
fying a finite-horizon optimal control problem:

V �(x) = min
u

N−1∑
k=0

(∥∥Qxk

∥∥
p

+
∥∥Ruk

∥∥
p

)
+

∥∥QfxN

∥∥
p

subject to
xk−1 ∈ X , uk−1 ∈ U , ∀k ∈ NN

xN ∈ Xf ⊆ X , x0 = x,

xk = Axk−1 + Buk−1, ∀k ∈ NN

(1)

where u � {u0, u1, . . . , uN−1}. If the p–norm used
is the 1– or the ∞–norm, then (1) can be re-
written as a linear program (LP):

V �(x) = minimize
y

cT y

subject to (x, y) ∈ P ,
(2)

by introducing an appropriate set of l slack vari-
ables which are concatenated with u to form y.

The polyhedron P is closed and incorporates all
constraints from (1). The interested reader is re-
ferred to (Borrelli, 2003; Bemporad et al., 2000)
for details on how to compute an appropriate
polyhedron P and cost c such that (2) is equiva-
lent to (1).

The first Nm dimensions of the optimiser y�(x)
of LP (2) defines the optimal control sequence
u�(x) �

{
u�

0(x), . . . , u�
N−1(x)

}
for the optimal

control problem (1). In MPC, the problem (1) is
solved at each sampling instant, and the control
law κ(·) is defined as the first element in the
optimal input sequence:

κ(x) � u�
0(x).

2.1 Solution Structure

Since the problem (2) is an LP, it can be solved
off-line as a parametric linear program (pLP). See,
for instance, (Borrelli, 2003) for an algorithm for
computing the solution to a pLP. First, we need
to introduce the notion of a complex of polytopes:

Definition 3. (Grünbaum, 2000) A finite family C
of polytopes in R

n is a complex if

• Every face of a member of C is itself a
member of C

• The intersection of any two members of C is
a face of each of them

If a polytope Q is a member of a complex C we
call Q a face of C and write Q ∈ C . Faces of
dimension n are called cells of the complex.

A basic result on the nature of the solution to a
parametric linear program is given next:

Theorem 1. (Solution to a pLP).
Let P ⊂ R

n+ny be a polyhedron and

π(P) � {x ∈ R
n | ∃y ∈ R

ny such that (x, y) ∈ P}.
For each x in π(P), let

V �(x) � inf
y
{cT y | (x, y) ∈ P} (3)

where c ∈ R
ny .

Then V � : R
n → R is a convex, piecewise

affine function defined over a complex C whose
cells partition π(P). Furthermore, there exists a
continuous, piecewise affine function 2 υ : R

n →
R

ny such that cT υ(x) = V �(x) for every x ∈ π(P).

Thus by Theorem 1, the optimal cost of (2) is a
convex, piecewise affine function of the state x,
taking R

n to R and is defined over a complex
C = {R1, . . . ,RR}:

2 Note that in general, the optimiser of (3) is set-valued.

V �(x) = FT
r x + fr, if x ∈ Rr, r ∈ NR, (4)

where each cell Rr is a polytope. Furthermore, the
optimiser of LP (2) is a piecewise affine function
of x taking R

n to R
N(m+l) as is the control law

κ(·), which takes R
n to R

m and is defined over the
same complex:

κ(x) = u�
0(x) = Trx + tr, if x ∈ Rr , r ∈ NR.

2.2 Point Location Problem

Problem 1. Given a measured state x and com-
plex C = {R1, . . . ,RR}, determine any integer 3

i(x) ∈ NR such that polytope Ri(x) contains x.

The function i(x) defines the control law κ(x) as

κ(x) = u�
0(x) = Ti(x)x + ti(x).

As V �(x) is convex, the calculation of i(x) can be
written as (Borelli et al., 2001):

i(x) = arg max
r∈NR

{
FT

r x + fr

}
. (5)

As was proposed in (Borelli et al., 2001), i(x) can
be computed from (5) by simply evaluating the
cost FT

r x + fr for each r ∈ NR and then taking
the largest. This procedure requires 2nR flops and
has a storage requirement of (n + 1)R.

In the following sections we will show that with
a negligible pre-processing step, (5) can be com-
puted in logarithmic time, which is a significant
improvement over the linear time result of (Borelli
et al., 2001).

3 POINT LOCATION AND NEAREST
NEIGHBOURS

In this section we show that for pLPs, the point
location problem can be written as an additively
weighted nearest neighbour search, or a search over
R points in R

n to determine which is closest to the
state x.

Consider the finite set of points called sites S �
{s1, . . . , sR} and the weights W � {w1, . . . , wR},
where (si, wi) ∈ R

n × R, ∀i ∈ NR. Given a
point x in R

n, the weighted nearest neighbour
problem is the determination of the point sr ∈ S
that is closest to x, for all (sj , wj) ∈ S × W,
j ∈ NR. Associated with each site is a set of points
Lr ⊂ R

n such that for each x ∈ Lr, x is closer to
sr than to any other site:

Lr � {x | ∥∥sr − x
∥∥2

2
+ wr ≤ ∥∥sj − x

∥∥2

2
+ wj ,

∀j ∈ NR}. (6)

Note that the sets Lr form a complex CV �
{L1, . . . ,LR}(Aurenhammer, 1991). If the weights

3 The state may be on the boundary of several regions.

wr are all zero, then the sets Lr form a Voronoi
diagram, otherwise they are called a power dia-
gram (Aurenhammer, 1991).

We now state the following result:

Theorem 2. If C is a solution complex, then C is
a power diagram.

PROOF. It suffices to show that for any solution
complex of pLP (2), C � {R1, . . . ,RR}, it is
possible to define a set of sites and weights such
that their power diagram is equivalent to C .

It follows from Theorem 1 and (4)–(5) that x is
contained in cell Rr if and only if

FT
r x + fr ≥ FT

j x + fj , ∀j ∈ NR,

or equivalently, if and only if:

−FT
r x − fr ≤ −FT

j x − fj , ∀j ∈ NR.

Define the R sites and weights as:

sr � Fr

2

wr � −fr −
∥∥∥∥Fr

2

∥∥∥∥
2

2

= −fr −
∥∥sr

∥∥2

2

(7)

For all r ∈ NR and a given x it follows that:∥∥sr − x
∥∥2

2
+ wr = −FT

r x − fr +
∥∥x

∥∥2

2

Recalling the definition of Lr in (6) we obtain the
following ∀j ∈ NR:

Lr �
{

x

∣∣∣∣∣
∥∥sr − x

∥∥2

2
+ wr

≤ ∥∥sj − x
∥∥2

2
+ wj ,

}

=

{
x

∣∣∣∣∣ −FT
r x − fr +

∥∥x
∥∥2

2

≤ −FT
j x − fj +

∥∥x
∥∥2

2
,

}

=
{
x

∣∣−FT
r x − fr ≤ −FT

j x − fj,
}

=
{
x

∣∣ FT
r x + fr ≥ FT

j x + fj ,
}

= Rr

Thus the equivalence of the power diagram of the
set of sites and weights (7) and the solution com-
plex C of a corresponding pLP is established. �

A very important consequence of Theorem 2 is
that the point location problem (5) can be solved
by determining which site sr is closest to the
current state x:

i(x) =

{
r ∈ NR

∣∣∣∣∣
∥∥sr − x

∥∥2

2
+ wr ≤∥∥sj − x
∥∥2

2
+ wj ,

∀j ∈ NR

}

= min
r∈NR

∣∣∣∣
∣∣∣∣
(

sr√
wr

)
−

(
x
0

) ∣∣∣∣
∣∣∣∣

Since this problem has been well studied in the
computational geometry literature we propose to
adapt an efficient algorithm introduced in (Arya
et al., 1998) that solves the nearest neighbour

problem in logarithmic time and thereby solves
the point location problem in logarithmic time.
The next section will give a brief introduction to
the algorithm introduced in (Arya et al., 1998).

Remark 1. In (Aurenhammer, 1987) it was shown
that a complex is a power diagram if and only
if there exists a piecewise affine, continuous and
convex function in R

n+1 such that the projection
of each affine piece of the function from R

n+1 to
R

n is a cell in the complex. This piecewise affine
function is called a lifting of the complex. From
the proof of Theorem 2, it is clear that the solution
complex of every pLP has a lifting.

Remark 2. If a 2–norm is used in the formulation
of the MPC problem (1) then the resulting so-
lution complex may or may not have a lifting.
Although it is not difficult to find problems for
which a lifting does not exist, general conditions
for the existence of a lifting for quadratic costs
are not known. See (Aurenhammer, 1991; Ryb-
nikov, 1999) for details on testing when a complex
has an appropriate lifting.

4 APPROXIMATE NEAREST NEIGHBOUR:
LOGARITHMIC SOLUTION

In this section, the key aspects of the approximate
nearest neighbour search algorithm presented in
(Arya et al., 1998) will be restated. Given a point
q ∈ R

n, a positive real ε and a set of R points in
R

n, the point p is a (1 + ε)-approximate nearest
neighbour of q, if its distance from q is within
a factor of (1 + ε) of the distance from the true
nearest neighbour.

Remark 3. The ε error is required in order to
prove the logarithmic search time (Arya et al.,
1998). As the optimal feedback κ(x) can be chosen
to be continuous (see Theorem 1) this error in
determining the region translates into a maximum
error in the input that is proportional to ε. There-
fore, the error in the control input can be made
arbitrarily small with an appropriate selection of
ε.

As shown in (Arya et al., 1998), it is possible
to pre-process the R data points in O(nR logR)
time and O(nR) space, such that the approximate
nearest neighbour can be identified in O(cn,εlogR)
time, where cn,ε is a factor depending only on
state-space dimension n and accuracy ε.

The authors in (Arya et al., 1998) propose to
construct a so called balanced box-decomposition
tree or BBD-tree. The BBD-tree is a hierarchi-
cal decomposition of the state-space into hyper-
rectangles (cells) whose sides are orthogonal to
the coordinate axes. The BBD tree has two key

properties which are vital in obtaining the loga-
rithmic runtime bounds. Namely, as one descends
the BBD-tree, the number of points associated to
each cell decreases exponentially and the aspect
ratio (ratio of longest to shortest side of each cell)
is bounded by a constant.

The BBD-tree is constructed through the re-
peated application of two operations, splits and
shrinks. A split subdivides a cell into two equally
sized children by adding an axis-orthogonal hy-
perplane. This operation guarantees the exponen-
tial decrease in the number of points associated
to each cell but it cannot give bounds on the
aspect ratio. The shrink, partitions a cell into
two subcells by using a hyper-rectangle which is
located in the interior of the parent cell. The
shrink operation corresponds to ‘zooming in’ to
regions where points are highly clustered. A sim-
ple strategy to construct the BBD-tree is to apply
splits and shrinks alternately. This procedure is
repeated until the number of points associated to
each cell is at most one.

In order to describe the on-line search, we will
introduce the following definition: the distance
between a point q and a cell is the closest distance
between q and any part of the cell. Given a query
point q, the algorithm first identifies the associ-
ated leaf cell by a simple descent through the tree
in O(log R) time. It is possible to enumerate the c
cells closest to q in increasing order in O(cn log R)
time (Arya et al., 1998). The necessary number
of cells c is bounded by a constant which can
be determined without constructing the BBD-
tree (Arya et al., 1998). Each cell is then visited
(closest cell first) and the closest point seen so far
is stored as p. As soon as the distance from a cell
to q exceeds dist(p, q)/(1 + ε), it follows that the
search can be terminated and p can be reported
as the approximate nearest neighbour (Arya et
al., 1998).

5 EXAMPLES

In this section we consider various systems and
compare the on–line calculation times of the
method proposed in this paper to the scheme
in (Borelli et al., 2001). Although the scheme in
(Tøndel et al., 2003b) may lead to more significant
runtime improvements than (Borelli et al., 2001),
the necessary pre-processing time is prohibitive
for large partitions and we therefore refrain from
performing a comparison to that scheme.

5.1 Large Random System

Example 1. Consider the following 4-dimensional
LTI system:

xk+1 =

⎡
⎢⎢⎣

0.7 −0.1 0 0
0.2 −0.5 0.1 0
0 0.1 0.1 0

0.5 0 0.5 0.5

⎤
⎥⎥⎦xk +

⎡
⎢⎢⎣

0 0.1
0.1 1
0.1 0
0 0

⎤
⎥⎥⎦uk

Subject to constraints ||uk||∞ ≤ 5 and ||xk||∞ ≤
5.

Example 1 was solved for the infinity norm p = ∞,
prediction horizon N = 5 and for weighting ma-
trices Q = I and R = I. The resulting controller
partition consists of R = 12, 290 regions. The
construction of the search tree required 0.03 sec-
onds. In comparison, the approach in (Tøndel et
al., 2003b) would require the solution to approx-
imately 151, 000, 000 LPs, which is clearly pro-
hibitive in terms of runtime. For ε = 0.01, the av-
erage and worst-case number of floating point op-
erations to compute the input using ANN (Mount
and Arya, 1998) are 29, 450 and 36910 respec-
tively. In comparison, the approach in (Borelli
et al., 2001) always takes exactly 160, 000 oper-
ations.

5.2 Randomly Generated Regions

In this section we compare the computational
complexity of the approach presented in this pa-
per with that discussed in (Borelli et al., 2001)
for very large systems. The currently available
multi-parametric solvers (Kvasnica et al., 2003)
produce reliable results for partitions of up to
approximately 30, 000 regions. However, methods
are currently being developed that will provide
solutions for much larger problems. Therefore, in
order to give a speed comparison we have ran-
domly generated vectors Fr and fr in the form
of (5). The code developed in (Arya et al., 1998),
which is available at (Mount and Arya, 1998), was
then used to execute 1, 000 random queries and
the worst-case is plotted in Figure 1. For all of
the queries the error parameter ε was set to zero
and therefore the solution returned is the exact
solution. It should be noted that the preprocessing
time for one million regions and 20 dimensions is
merely 22.2 seconds.

Figure 1 shows the number of floating point opera-
tions (flops) as a function of the number of regions
for the two approaches and the dimension of the
state-space. Note that both axes are logarithmic.

A 3.0GHz Pentium 4 computer can execute ap-
proximately 800 × 106 flops/second. It follows
that for a 10 dimensional system whose solution
has one million regions, the control action can
be computed at a rate of 20kHz using the pro-
posed method, whereas that given in (Borelli et
al., 2001) could run at only 35Hz.

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

N
r

M
i
l
l
i
o
n
s

o
f

F
l
o
p
s

+ Dim = 2
x Dim = 10

−− Borelli et al. [6]
− ANN [1]

Fig. 1. Comparison of ANN (Solid lines) to
(Borelli et al., 2001) (Dashed lines)

It is clear from Figure 1 that the calculation speed
of the proposed method is very good for systems
with a large number of regions. Furthermore note
that controller partitions where ANN does worse
than (Borelli et al., 2001) are virtually impossible
to generate, i.e. a partition in dimensions n = 10
with less than R = 100 regions is very difficult
to contrive. Hence, it can be expected that for
all systems of interest, the proposed scheme will
result in a significant increase in speed. Since
explicit feedback MPC is generally being applied
to systems with very fast dynamics, any speedup
in the set-membership test is useful in practice,
i.e. the scheme proposed here is expected to sig-
nificantly increase sampling rates.

6 CONCLUSION

This paper has presented a method of solving
the point location problem for linear-cost MPC
problems. If the controller partition exhibits a
specific structure, the proposed scheme can also
be applied to quadratic-cost MPC problems. It
has been shown that the method is linear in the
dimension of the state-space and logarithmic in
the number of regions. Numerical examples have
demonstrated that this approach is superior to the
current state of the art and that for realistic ex-
amples, several orders of magnitude improvement
in sampling rates are possible.

The examples in this paper have been prepared
with the MPT toolbox (Kvasnica et al., 2003)
and Figure 1 was calculated using the ANN li-
brary (Mount and Arya, 1998).

References

Arya, S., D.M. Mount, N.S. Netanyahu, R. Sil-
verman and A.Y. Wu (1998). An optimal
algorithm for approximate nearest neighbor
searching fixed dimensions. Journal of the
ACM 45(6), 891–923.

Aurenhammer, F. (1987). A criterion for the affine
equivalence of cell complexes in R

d and con-
vex polyhedra in R

d+1. Discrete and Compu-
tational Geometry 2, 49–64.

Aurenhammer, F. (1991). Voronoi diagrams –
a survey of a fundamental geometric data
structure. ACM Computing Surveys.

Bemporad, A., F. Borrelli and M. Morari (2000).
Explicit solution of constrained 1/∞–norm
model predictive control. In: Proceedings of
the 39th IEEE Conference on Decision and
Control.

Bemporad, A., M. Morari, V. Dua and E.N.
Pistikopoulos (2002). The explicit linear
quadratic regulator for constrained systems.
Automatica 38(1), 3–20.

Borelli, F., M. Baotić, A. Bemporad and
M. Morari (2001). Efficient on-line compu-
tation of constrained optimal control. In:
Proceedings of the 40th IEEE Conference
on Decision and Control. Orlando, Florida.
pp. 1187–1192.

Borrelli, F. (2003). Constrained Optimal Control
Of Linear And Hybrid Systems. Vol. 290 of
Lecture Notes in Control and Information
Sciences. Springer-Verlag.

Grünbaum, B. (2000). Convex Polytopes. second
ed.. Springer-Verlag.

Kvasnica, M., P. Grieder, M. Baotić and
M. Morari (2003). Multi Parametric Tool-
box (MPT). In: Hybrid Systems: Computa-
tion and Control. Lecture Notes in Computer
Science. Springer Verlag. http://control.
ee.ethz.ch/∼mpt.

Mount, D. and S. Arya (1998). Ann: Library
for approximate nearest neighbor searching.
http://www.cs.umd.edu/∼mount/ANN/.

Raković, S.V., P. Grieder and C. Jones (2004).
Computation of Voronoi Diagrams and De-
launay Triangulation via Parametric Linear
Programming. Technical Report AUT04-03.
Automatic Control Lab. ETHZ, Switzerland.
http://control.ethz.ch/.

Rybnikov, K. (1999). Stresses and liftings of cell
complexes. Discrete and Computational Ge-
ometry 21(4), 481 – 517.

Tøndel, P., T. A. Johansen and A. Bemporad
(2003a). An algorithm for multi-parametric
quadratic programming and explicit MPC
solutions. Automatica 39(3), 489–497.

Tøndel, P., T. A. Johansen and A. Bempo-
rad (2003b). Computation of piecewise affine
control via binary search tree. Automatica
39(5), 945–950.

