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Abstract—We consider the class of piecewise state feedback polyhedral regions and associating with each region ardiffe
control laws applied to discrete-time systems, motivated o  ent affine state update equation.

recent work on the computation of closed-form MPC con- . . ) . . .
trollers. The on-line evaluation of such a control law requies ~ For piecewise affine systems thmnstrained finite time

the determination of the state space region in which the optimal control(CFTOC) problem can be solved by means
measured state lies, in order to decide which ‘piece’ of the of multi-parametric programmingp], [7], [1], [21] and the
piecewise control law to apply. This procedure is called the resulting solution is a time-varying piecewise affine state

point location problem, and the rate at which it can be solved .
determines the minimal sampling time of the system. In this feedback control law. If the solution to the CFTOC problem

paper we present a novel and computationally efficient searc IS used in areceding horizon contro[26], [23] strategy
tree algorithm utilizing the concept of bounding boxes and (or model predictive contro(MPC)) the time-varying PWA
interval trees that significantly improves this point-location  state feedback control law becomes time-invariant and can
search for piecewise control laws defined over a large number serve as a control ‘look-up table’ on-line, thus enabling
of (possibly overlapping) polyhedra. Furthermore, the reqiired . .

off-line preprocessing is low and so the approach can be receding horizon control to_be u;ed for fast sampled systems
applied to very complex controllers. The algorithm is compaed ~ However, due to the combinatorial nature of the problem the
with existing methods in the literature and its effectivenss is number of state space regions over which the control look-up

demonstrated for large examples. table is defined grows in the worst case exponenti&lly[§]

Keywords—eonstrained systems, discrete-time systems, point and thgrefore eff|C|enF on-line search strategies are regui
location problem, set membership test, explicit control, gbrid 0 achieve fast sampling rates.

systems, piecewise affine systems, multi-parametric progm- |, this paper we present a novel, computationally efficient
ming, receding horizon control, MPC. . . . .
algorithm that performs the aforementioned point-loaatio
search forgeneral closed-form piecewise (possibly non-
[. INTRODUCTION linear) state feedback control laws defined over a finite
number of polyhedra or over a finite number of regions for
In this paper we consider thgoint-locationor set mem- which a bounding boxJ] computation is feasible. Moreover,
bership problem[28§] for the class of discrete-time control control laws that do not form a polyhedral partition, but
problems with linear state and input constraints for whickyyre composed of a collection of/erlappingpolytopic sets,
an explicit time-invariant piecewise state feedback aantr gre included naturally in the algorithm. The proposed point
law over a set of possibly overlapping polyhedral regiongcation search algorithm offers a significant improvement
is given. The point-location problem comes into play onin computation time at the cost of a low additional memory
line when evaluating the control law. One must identify th%torage demand aneery low pre-computatiotime for the
state space region in which the measured state lies at thénstruction of the search tree. This enables the algorithm
current sampling instance. As the number of defining regions work for controller partitions with a large number of
grows, a purelysequential searclalso known agxhaustive regions, which is demonstrated on numerical examples. In
search) through the regions is not sufficient to achieve higlorder to show its efficiency, the algorithm is compared with
sampling rates. Hence, it is important to find an efficient onthe procedure proposed iB(] where a binary search tree is
line search strategy in order to evaluate the control acti%re-computed over the controller state space partition.
‘in time’ without the need of a heavy additional memory
and preprocessing demand. Il. NOTATION

; . , 7| denotes the cardinality of the discrete $etB(?) is the
developments in the field of controller synthesis for hybri rojection of the sef3 onto thed-th dimension, andz]q

systems31], [15], [29], [5], [19]. A significant amount of the refers to thed-th component of some vectar
research in this field has focused on solving constraineid opt

mal control problems, both for continuous-time and diseret
time hybrid systems. We consider the class of constrained
discrete-timepiecewise affindPWA) systems 29 that are We now considerarbitrary discrete-time control problems
obtained by partitioning the extended state-input spate inwith a closed-form (possibly nonlinear) time-invariantége-

This work is motivated, but not limited, by the recent%

IIl. POINT LOCATION PROBLEM
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wise state feedback control law of the form = Aqz(t) + Bau(t) + aq, if {zgm € Dy, (2)
p(a(t) = pi(x(t)), it z(t) € P, (1) wheret > 0, the domainD := uNP Dy of fewal(e, *)
wherei = 1, ..., Np. z(t) € R"= denotes the state of the IS @ hon-empty compact set ilR"+ " with J{[\LD <
controlled system at time > 0, 1z;(+) € R™ are nonlinear °c the number of system dynamics, afdg},”, de-
control functions (or oracles), and the s@sare compact NOtes a polyheﬂral partition  of theo domai®, i.e.
and possiblyoverlapping i.e. there exists; and P; with ~ Da = {[&] e Rratm | Dgz + Dgu < Dy} andint(Dg)N
i # j such thatP; N P; is full-dimensional. Moreoverp :=  int(D;) =0 for all d # ;.
{Pi};; denotes the collection of sefs,. Remark IV.1 (Constraints). Note that linear state and in-
In an on-line application the closed-form piecewise cdntrgut const_raints of the general formflﬂ”{v + C'u < C° are
law is u(t) = u(x(t)), whereu € R™ denotes the control naturally incorporated in the description B¥;. 0
input. In order to evaluate the control one needs to identify _ S _
the state space regigh; in which the measured statgt) B. Constrained Finite Time Optimal Control

lies at the sampling instandg .e. As an example we define for the aforementioned piecewise

Algorithm [1.1 (Control evaluation) affine system ) the constrained finite time optimal control
1. measure the statgt) at time instance (CFTOC) problem
2. search for the index set of regichsuch that:(t) € P; TE(2(0)) = min Jr(2(0). U 3a
forallieT T(‘T( )) . H[}}fn T(x( )7 T) ( )
IF Z =0 THEN problem infeasiblesToP ¢ z(t+1) = fowa(z(t), u(t)) (3b)
IF |Z| > 1 THEN pick one element* € T ' z(T) € X7,

3. apply the control input(t) = p;+ (x(t)) to the system

4. wait for the new sampling time+ 1, goto (1.) where

T-1
Jr(z(0),Ur) == ¢ T))+ L(z(t), u(t 3c
The second step in Algorithriil.1 is also known as the 7(2(0), Ur) r(@(T)) ; ((t), u(t)) (3¢)

oint-locationor the set membership problef2§]: in other . . .
\F/Jvords, given a point € R™= and a Se? of Se[%)]i}g\ﬁ,l, the 1S the cost function(also calledperformance index ¢(-, «)

goal is to list the set of indice% such thatz € P; for all the stage costfr(-) the final penalty functionUr is the
ieT ! optimization variabledefined as the input sequentie :=

{u(t) tT:’Ol, T < oo is the prediction horizonand &/

is a compacterminal setin R"=. With a slight abuse of
notation, when the CFTOC probler3g—(3b) has multiple
solutions, i.e. when the optimizer is not uniqug;(x(0)) :=

An interesting example of control problems where point{u*(t)}tT:_o1 denotes one (arbitrarily chosen) realization from
location plays an important role is described in the follogvi the set of possible optimizers.

The CFTOC problem3a—(3b) implicitly defines the set of
feasible initial statestr C R"= (z(0) € X7) and the set of
Piecewise affingPWA) systems are equivalent to manyfeasible inputd/r_, C R™ (u(t) € Ur—¢,t =0,...,T-1),
other hybrid system classe®d, [16] such as mixed logical cf- RemarkiV.1. In the context of this paper, the goal in this
dynamical systems3], linear complementary systemgg, ~ Section is to give an explicit (closed form) expression for
and max-min-plus-scaling systemtd] and thus form a very «*(t) : Xr = Ur—y, t =0,..., T — 1.

general class of linear hybrid systems. Consider the two following restrictions to the CFTOC prob-
Moreover, piecewise affine systems can be used to idelgm

t_ify or ap_proximat_e generic nonl_inear §ystems via multiplesroplem V.2 (PWA system, 1-bo-norm based cost).
linearizations at different operating point®9], [11], [27].

Although hybrid systems (and in particular PWA systems) Oz (t),u(?) = 1Qz(t)|lp + | Ru(t)p, (4a)
are a special class of nonlinear systems, most of the namline br(2(T)) := ||P2(T)||,, (4b)
system and control theory does not apply because it requires .

certain smoothness assumptions. For the same reason we ¥/§6"€ [l *[l» with p € {1, 00} denotes the standard vector
cannot simply use linear control theory in some approximatk/oc-norm [18], and

manner to design controllers for PWA systems. Problem V.3 (Constr. LTI system, quadratic cost).

IV. CONSTRAINED FINITE TIME OPTIMAL CONTROL FOR
LINEAR HYBRID SYSTEMS

A. Linear Hybrid Systems

Consider the class of discrete-time, stabilizable, lirrgdorid . o [a(t)

systems that can be described as constraimetbwise affine Fown(x(t), u(t)) := Az(t) + Bu(t), if {U(t)} €D, (53)

(PWA) systems of the following form L(x(t),u(t)) := z(t)' Qu(t) + u(t) Ru(t), (5b)
z(t+1) = fpwalz(t),u(t)) lp(x(T)) := x(T) Px(T). (5¢)



In both, CFTOC ProblemV.2 and IV.3, the solution is that the domain of the control law is a non-overlapping
a time-varying piecewise affine state feedback control lapolyhedral partition of the state space. (Note that this is
defined over a polyhedral partition, which is stated in thenore restrictive than the algorithm presented here, cf- Sec
following theorem and proved in e.g24], [5]. tion | and VI1.) [13], [12] aim at pre-computing a minimal

Theorem V.4 (Solution to CETOC). The solution to the polyhedral representation of the original controller ftizm

optimal control problem3a—(3b), restricted to ProblertV.2 in order to ref’”‘:? s‘toragfe and' ;ea}rch complexity. However,
. . . \ i : . the computation is ‘practically’ limited to a small number
or IV.3, is a time-varying piecewise affine function of the

initial state(0) of regions with a small number of facét§l4], since the
pre-computation time grows exponentially. Relaxations to
wpwa(2(0),8) = Kp—y;2(0) + Lp_y;,  if 2(0) € P; larger number of regions is possible at the cost of datagéora

with u*(t) = ppwa(x(0),t), wheret = 0,...,7 — 1, and and a higher search complexity.

{P;})¥7. is a polyhedral partition of the set of feasible stateé\n alternative approach, which will be used here for com-
z(0), Xr = UNEP;, with the closure ofP; given by P; = parison, was proposed by Tegndet al. in [30], where
{x eR™ | Pfz < PY}. m a binary search tree is constructed on the basis of the
geometric structure of the polyhedral partittidoy utilizing
In the case that aeceding horizon(RH) control policy or the facets of the regions as separating hyperplanes toedivid
a model predictive controlle(MPC) [26], [23] is used in the polyhedral partition at each tree level. This howevan, ¢
closed-loop, the control is given as a time-invariant stateead to a worst case combinatorial number of subdivisions
feedback control law of the form of existing regions and therefore to an additional increase
. in the number of regions to be considered during the search
pri(a(t)) = Kria(t) + Lrg, i a(t) €Pi, (6) procedure. The on-line point-location search time is in the
wherei = 1,..., Np andu(t) = uru(z(t)) for t > 0. Note best case logarithmic in the number of regioNs, but
that the closed-form receding horizon control la@ {s a Wworst case linear in the total number of facets, which makes
special case of control lawi), considered in this paper.  the procedure equivalent to sequential search in the worst
case. Moreover, note that the total number of facéis,
V. ALTERNATIVE SEARCH APPROACHES is typically larger than the original number of regions in
the partition, i.e.Ng > Np. Although the scheme works
very well for polyhedral partitions that have a ‘simple’

. iy with i geometric structure and/or have a small number of regions,
space region®, can grow exponentially with its parameters;; ;g computationally prohibitive in the preprocessing ¢éim

in the worst caseq, [4]. Hence, for general control prob- for more complex controller partitions. This is due to the

Iemg,_ a purely sequennal _Se‘?‘mh through the regions 1S "Lt that the first step of the pre-processing is to determine
su_f_flment_lr! an on-Il_ne application. It IS the_refore IMPOTLIO ) \yhich side of every facet defining hyperplane each region
utilize efficient (_)n-llr_le gearch §trateg|es in order to eatd lies, which require@ Nz Ny linear programs, thereby making
the .c.ontrol action ‘in time’ without the need of a he"’“/ythis method untenable for moderate to large problems, i.e.
additional memory demand. greater thari0 000 regions, cf. SectioVIII-C. The memory
Several authors addressed the point-location/memorggtor storage requirement for the binary search tree is (in thestwor
issue but with moderate success for geometrically complease) in the order ofi, Ng.

regions or controllers defined over a large number of regions

Due to the combinatorial nature of the CFTOC probl&a)-
(3b), the controller complexity, or the numbé&p of state

A few interesting ideas are mentioned in the following. For VI. THE PROPOSEDSEARCH ALGORITHM
the solution to the particular CFTOC Probldiwvi2 when,
additionally, the system is constrained and linear, i.e. The proposed search algorithm is based on minimal volume

i z bounding boxe$3; for each regiorP;, which are defined as
fowa(a(t), u(t)) = Az(t) + Bu(t), with [7)] €D, g g

the authors in §] propose a search algorithm based on
the convexity of the piecewise affine value function. EveRyhere the lower and upper bountisandu; are given by

though this algorithm reduces the storage space signifigant

the storage demand as well as the search time are sfil},u;) :=argmin vol (B(l,u))

linear in the number of regions2(] addresses this issue bu

for the same CFTOC problem class by demonstrating a link subj. to B(l,u) ={z e R™ [ <z <u} 2P
between the piecewise affine value function@jfdnd power

diagrams (extended Voronoi diagrams). Utilizing standard *A facet of a polyhedrorP of dimensionn, is any (. —1)-dimensional

. . intersection ofP with a tangent hyperplane.
Voronoi search methods the search time then reduces EjéEven though in the introduction o8() it is mentioned that overlapping

O(IOg(NP)>- regions and ‘holes’ in the domain of the controller are haddby the
, d algorithm, th t licitly tremtettie algorith
To the author’s knowledge only two other approaches tack {opoSea @A, "mese ases are ro expIctly resrane agon

e ‘hor it is directly apparent how this will influence the comyite of the
the more general problem, where the only restriction isigorithm.

Bii={zeR"™ |[; <z <u},
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Fig. 1: Overlapping collection of polytopic sef'§Pi}§:1 with bounding Fig. 2: Projection Bgl) of the bounding boxes of the polytopic set-

box By of Py. collection {731-};7‘:1 of Figure 1 onto thex;-space sorted by the region’s

index. Indicators for the construction of the first node lewe the first
dimension of the interval tree are represented in green.

In other words, B; is the ‘smallest’ axis-alignedn,- bounding boxes in an,-dimensional space inte, separate
dimensional hyper-rectangle that contaiRs An example one-dimensional sequential or parallel searches, be¢hase
bounding boxi3; can be seen in Figure bounding boxes are all axis-aligned.

Remark VI.1. Note that if the regionsP; are polytopes, The basic steps for constructing the search tree are given in
then a minimal volume bounding box can be computed usirglgorithm VI.3.

2ng linear programs of dimension, [2]. o Algorithm VI.3 (Building the search tree)

For a given query point, or measured state), the proposed 1. compute the bounding bd; for eachP;

algorithm operates in two stages. First, afi§tof bounding 2. project each bounding baf; onto each dimension
boxes containing the point(t) is computed, i.ex(t) € B; d=1, ..., n,: defineB{"” as the resulting interval
for all i € Z% (SectionVI-A). Second, for each indexe 3. build ann,-dimensional interval tree

I8, the regionP; is tested to determine if it containgt)

(SectionVI-B). In the following z(t) is simply denoted by Note that Step 2 of Algorithriv].3 for axis-aligned bounding

x for brevity. boxes is merely a coordinate extraction of the corner points
The first stage of this procedure is extremely efficient antf andw;.

computationally ‘inexpensive’, since the containing béing  The proposed search algorithm is an extension to the well
boxes can be reported in logarithmic time. This can be dongown concept ofinterval trees[9], [8]. Standard interval

by breaking the search down into one-dimensional rangfees are efficiently ordered binary search trees for deter-
queries, which is possible due to the axis-aligned nature gfining a set of possibly overlapping one-dimensional line
the bounding boxes. The complexity of the second stag@gments that contain a given point or line segment. Conside
of the algorithm is a function of the overlap between thggyre2, in which the intervals of the bounding boxes in the
bounding boxes of adjacent regions. A significant advantaggst dimension for the example in Figueare shown. The

of the proposed search tree is a very simple and effectiygiervals are spread vertically, ordered by their respecti
preprocessing step, which allows the method to be appliefjexi to make them easier to see.
to controllers defined over a very large number of region

i.e. several tens of thousands. As is shown in Sectth,
there are several large problems of interest to control lvhi
have a structure that makes this procedure efficient.

%ach node of the search tree, cf. FigBrand2, is associated
with a median point}/. For example the root nod€ in
Figure 3 is associated with the point; in Figure 2. The
node splits the set of intervals into three sets: The et
Remark V1.2 (Overlapping regions). Note that overlap- consisting of those entirely on the left of the poihf, R
ping regions are treated naturally and without any addéionthose entirely on the right ant#t, those that intersect it. The
heuristics by the algorithm. O  setM is stored in the node and the left and right branches
of the tree are formed by choosing points above and below

M and repeating this procedure ghand R, respectively.
In this section we will detail the procedure for reportingBY choosing the poinfl/ to be the median

the set of indices? of all bounding boxes that contain a 1

given pointz. The algorithm relies on the fact that one can M = 3 (min{[li]d} + max{[ui]d})
decompose the search of a query paint R™= in a set of es e

A. Bounding Box Search Tree



Fig. 3: Two-dimensional interval tree for the collection of polyes P in Figure 1. The gray indicated node id = 1 is explored further ind = 2.

of the considered interval§ at a given step, the number of testing a set membershipe P; for all i € Z5.
intervals at each level of the tree drops logarithmicallyisT

;tandard interval tree_ for the example in Fig@rés shown ProblemIV.2 is convex, one can use the approachGjfif
in the left (@ = 1) of Figure3. which the local search can be performed(#m, + 2)|Z5]
The tree can then be used on-line to determine theZ8et arithmetic operations.

of intervals containing a given poirit];, which is the first

dimension of the query point, as follows. Beginning at the VII. COMPLEXITY

root nodeT, the point[z]; is compared to the poind/, ]

associated with the root node. If we assume that the poifit Preprocessing

[z], s larger thanM,, then it is contained in all intervals in 1o preprocessing phase for the proposed algorithm occurs
the setM whose right endpoirit;, is larger thariz],, since iy o steps. First, the bounding boxes for each region

M is less thanz], and is also contained in the interval. Note, .o computed, and then the.-dimensional interval tree is
that this search over the sétl can be done in logarithmic 1 iit The calculation of a bounding box requires two linear
time by pre-sorting the endpoints of the intervals M. ,roqrams per dimension per region. Therefore, if there are
Finally, the tree is followed down the right branch, denoteqvp regions, then the calculation of the bounding boxes
T .grin F.igure3,.and this procedure is repegted recursivelyfequireS exacty2n, N linear programs of dimension,.

If the point [z], is less than},, then a similar procedure The construction of the interval tree can be performed in
is carried out on the lower bqunQS and the left branch & (n, Np log(Np)) [9] and as can be seen from the examples
followed, which is labeled™. ., in Figure3. in Section VIII, the required computation is insignificant
Now this standard method is extended to higher dimensioesmpared to the computation of the bounding boxes.

by building an interval tree over the sefsl at each node Ngte that as the preprocessing for this algorithm requires t
using the next dimensioin]s, i.e.d = 2. In Figure3, the tree  jinear programs per region, it is guaranteed to take signifi-
on the left resembles the interval tree for the first measur%nuy less time than the initial computation of the corienol
dimension|x] 1. The root nodel’ contains seve_ral elements i tollows that this approach can be applied to any system for
M = {1,3}, i.e. [M| > 1, and therefore an interval tree, yhich an explicit controller can be calculated. Note alsat th
labeled".p in Figure 3, over the second dimensiod & 1,5 nding boxes are computed in some parametric solvers as

2) is constructed for this node, in which only the element§,q solution is computed®p], making the additional off-line
{1, 3} are considered and where the search is performed fEBmputation negligible.

the second dimension of the measured varigdble only.
This tree is shown on the right of the figure. By continuing ing Storage
this manner, the approach is extended to arbitrary dimassio

If the cost function associated with a solution of a CFTOC

Ng. The algorithm requires the storage of the defining inegealit
for each region as well as the structure of the tree. The tree
B. Local Search has a3-ary structure, two branches for the left and right, and

one for the next dimension. In each non-leaf node of the tree
As already mentioned, the interval search tree only pravidés stored a median poirdt/; and pointers for each of the three
a list of candidateg” that are possible solutions to the point-branches, totaling four numbers. The leaf nodes then store
location problem. In order to identify the particular indeet  the indices of the bounding boxes that will be checked during
T C 7" that actually contains the measured poaiiit), cf. the local search. A completely unbalanced tree in which each
Step 2 of Algorithmlll.1, a local search algorithm needs toleaf node contains exactly one bounding box is the most
be executed on the list of candidate regions by exhaustivetpace consuming configuration. This ‘worst case’ tree would



have Np — 1 non-leaf nodes andVp leaves for a worst 35
case total storage requirementdfNp — 1) + Np numbers
(pointers or reals). Note that this worst case complexity is
linear in the number of regions and independent of the state
dimension.

C. On-line Complexity

relative occurrence [%]
[ &)
o

ot

The interval tree can be traverseddlog(Np)+|Z5]) time,
where|Z?| is the number of intervals returneé] [ However, ® 510 1b 20 25 30 335 40
all current methods of doing the secondary search over tr%_e 4 Hist fh # cl)ftlreglons to Cheﬂ?‘ ber of forgi
. . . . . 1g9. 4. AIstogram O e relative occurrence o e numbper o ons
Il_st of |ZB| potential regions ret.urn.ed must be done in lineay; " ine example of SectiolIlI-A .

time. The worst-case complexity is therefore determined by

the maximum number of regions that can be returned by

the interval tree search, or equally the maximum numbep order for the proposed method to identify the control law
of bounding boxes that contain a single point. In the wors§n.jine, one has to perform07 floating point operations to
case, a point would exist that is contained in every boundingaverse the interval tree in the worst case. Since the tree
box and therefore the local search for this case would ignly provides a necessary condition for the point-location
fact be a complete global search and the resulting worssroplem, one has to perform a local search on the regions
case efficiency would b¢Z”| = Np. It is demonstrated jgentified by the tree as possible candidates (SedtioB).

by example in the following section that there exist controkg provide a worst case bound, an exhaustive check for all
problems for which the proposed method offers a significaffossible intersections of the intervals stored in the priese

improvement over current approaches. tree was performed. In the worst ca3é regions need to
be checked using the method d@,[ which corresponds to
VIIl. N UMERICAL EXAMPLES 216 flops. However, as can be seen from Figdra unique
control law is automatically reported by the here proposed
A. Constrained LTI System search tree ir81 % of all cases without the requirement of

_ _ _ doing a secondary local search. In addition, approximately
The proposed algorithm of Sectiodl was applied to the 90 % of all search queries do not require an exhaustive check
following linear system with three states and two inputs  of more thanl5 regions.

/10 =10 0 /10 0 - : VI,
2t+1)= | s —1 Yio| 2(t) + |10 1| u(t). maen | Aain (30 | o8
0 /10 /10 /10 0 number of LPs (off-line) — 5370622 15408
. . . ) runtime (off-line) — 10384 secs 10 secs
The system is subject to input constraintshly < u(t) < on-line arithm. operations| 44 295 110 923
519, and state constraints;2013 < z(¢) < 2013, where (worst case)
1, :=[11 ... 1) € R™ The CFTOC ProblenV.2 is Tab. I: Computational complexity for the example of Sectighl-A .
solved withp =1, T =8,Q = I3, R= I, andP =
0s3x3. The receding horizon state feedback control &y ( )
consists of2 568 polyhedral regions ifR3. B. Constrained PWA System
As can be seen from Tablg the algorithm presented in Consider the following piecewise affine system frob|[
SectionVI is required to solve - 3 - 2568 = 15408 linear .
programs in the preprocessing phase and needs to stofg; 1 1) = Aqz(t) + Bu(t), if [0, 1., 0)x(t) <1,
15 408 real numbers to represent the bounding boxes, as well Azz(t) + Bu(t) + a, otherwise

as4 424 pointers in order to represent the tree. Since the coglhere

function for this example is piecewise affine and convex, it

i i i 11/2 3/10 11/5 3/10 0 3/10

is possible to use the method if] ffor the local search, cf. A; = [0 11 } ,Ay = {o 1y 1 ] ,B = h} a4 = { 1/ ] )
SectionVI-B, which requires an additional storagel®f272 001 00 1 0
real numbers. The system is subject to input constraints] < u(t) <

H !
In comparison, the binary search tree 86 for this case 1+ and state. ﬁonstramts[,—lo, =5, —10]" < I(t)l <
consists 0of815 unique hyperplanes. For each such hyperL107 5, 10)'. With p = 1, T =17, Q = I3x3, R = 1/,
plane2 N LPs must be solved in the preprocessing phase ﬂPd P - Osx3- Th(_a squu_on to the CFTOC Problef.2
compute the index set which correspondd i®5 840 linear res_ulted in a receding horizon st_ate fgedgback control Bw (
programs. An actual additionall84 782 linear programs are defined over2222 polyhedral regions irk".
needed to construct the tree, which does not correspond Tbe off-line construction of the interval search tree fasth
the worst case scenario. example requiredi3 332 LPs to be solved, compared to
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[~} w = [ [=2}
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[=}
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35 40
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# o%"reglons to check
Fig. 5: Histogram of the relative occurrence of the number of ‘lbcal Fig. 6: Ball & Plate laboratory setup. The ball follows a pre-specifi
regions for the example of Sectidnll-B . trajectory.

7.9 - 10° linear programs which are needed to construcissumed to be constrained byl0 < u < 10. In order to
the binary search tree of3(] (this does not correspond take the tracking requirements into account, the stateovect
to the worst case scenario). Since the cost function of ia extended with an additional element, which contains the
given CFTOC solution is not necessarily convex, one cannotference signal, hence the augmented state vectorRS.in
use the method of6] to perform the local search, and The model {) was then discretized with sampling tirfig =
therefore one must perform a sequential search as outlinéd3 and a closed-form PWA feedback control la@) (vas

in SectionVI-B on possible candidates. Using the samelerived for the CFTOC ProblenV.3, where the following
methodology as in the previous example, it was found thgtarameterd” = 10, @ = diag([6, 0.1, 500, 100, 6]), R =

at most39 regions have to be searched exhaustively. Thid, andP = @ were considered. The controller obtained using
however, takes at mogt720 flops. The worst case numberthe Multi-Parametric Toolbox22] for MATLAB ® is defined

of floating point operations needed to traverse the intervalver 22 286 regions inR®.

tree is 882. Moreover, almosti0% of all search queries The computational results for the respective search tnees a

result in a unique _control law dl_”ing the first phase Otsummarized in Tabldl. Due to the high number of regions,
the algorithm (SectiorVI-A), cf. Figure 5. Therefore no the binary search tree oB(] was not applicable to this

additional sequential see_lrches are necessary in thes_e. Ca_é?ample (denoted by in Tablelll), since it would require
Results on the computational complexity are summarized We solution oB.5.10° LPs already in the preprocessing stage

Tablell. to determine the index set before building the binary search
sequental] ag.im (30 | Alg. Via tree. _In contrast, in the preprocessing stag_e, the here)pe_tnb
search algorithm has to solv@28 860 LPs to obtain the bounding

number of LPs (off-line) — 7913 462 13332 boxes for all regions. The overall time needed to construct

:)L:]’flt;r':‘ee;ﬁf{;r'r']”egperaﬁons — 12810 secs| 48secs | the complete search tree, including the computation of the
(worst case)|| O’ 084 352 2602 bounding boxes, was just0 seconds.9324 pointers are

needed to represent the tree structure, 2221860 floating

Tab. 1l: Computational complexity for the example of Sectighl-B . . . .
P plextty P point numbers are needed to describe the bounding boxes.

To estimate the average and the worst case number of
C. Ball & Plate System arithmetic operations needed to identify the control law on
. . _line, we have investigateti0 000 random initial conditions
The mechanical ‘Ball & Plate’ system was introduced inyer the whole feasible state space. It can be seen from the

[5], [17]. The experiment consists of a ball rolling over apigiogram distribution depicted in Figuiethat the search
gimbal-suspended plate actuated by two independent motofige aigorithm identifies at mosio0 regions as possible
cf. Figure6. The control objective is to make the ball follow .54 4idates in86 % of all tested initial conditions. The

a prescribed trajectory, while minimizing the control effo subsequent sequential search o¥ed regions corresponds
The dynamical model for thg-axis of such a device is given

by
0 1 0 0 0 -
i(t) = [8 o o8 ?} z(t) + [ 8} u(t), (7) sequential] Al in [30] | Alg. VI.3
0 0 0 —34.69 3.1119 search
. c1y number of LPs (off-line) — 3.5-10° 222860
wherez := [y, 9, «, &' is the state.—30 < y < 30 runtime (off-line) _ N 80 secs
and —.15 < g < 15 are the _position and velocity of the | on-line arithm. operations| 4 400178 N 208849
ball with respect to thg-coordinate~0.26 < o < 0.26 and (worst case)

—1 < & < 1 denote the angular position and angular velocityab. 11l: Computational complexity for the example in SectighI-C. x
of the pIate, respectively. The input voItage to the motor igenotes that the algorithm 8@ is not computable for this example.
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for the example of SectioWIII-C.

to 30 000 floating point operations. 189% of all tested cases
the algorithm identifies at mog00 regions for subsequent
local search, which corresponds to at mégn00 flops. In
the worst case, the search tree will identify as mang &t
regions as possible candidates for a sequential searctteNot
that this number represents, in the worst case, ohl§ of
the total number of regions. This amounts to a maximurtidl
of 152640 flops, whereas traversal of the tree contributes
another 56209 flops. The sequential search through allie]
regions, on the other hand, would requiiré-10° operations
and is currently the only other method that can be applieﬂn
to such a large system. The total number of flops which are
needed to be performed on-line is thus (in the worst cas&gl
reduced by at least one order of magnitude. To give a sensitﬂg]
feeling for this number of floating point operations, note
that a 3 GHz Pentium 4 computer can execute approximatelél
800-106 florgsec Given this performance the controlled systen{ 0l
can be run at a sampling rate of 4kHz in the case of the
presented search tree, whereas the sequential search hd&llaE. C. Kerrigan and D. Q. Mayne, “Optimal control of carsted,
limit of 500 Hz.

The presented algorithm is implemented in the Multi

IX. SOFTWARE IMPLEMENTATION

Parametric Toolbox (MPT)22] for M ATLAB ®. The toolbox
can be downloaded free of chargeratt p: / / contr ol . ee.
et hz. ch/ ~npt/
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