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Abstract— We consider the class of piecewise state feedback
control laws applied to discrete-time systems, motivated by
recent work on the computation of closed-form MPC con-
trollers. The on-line evaluation of such a control law requires
the determination of the state space region in which the
measured state lies, in order to decide which ‘piece’ of the
piecewise control law to apply. This procedure is called the
point location problem, and the rate at which it can be solved
determines the minimal sampling time of the system. In this
paper we present a novel and computationally efficient search
tree algorithm utilizing the concept of bounding boxes and
interval trees that significantly improves this point-location
search for piecewise control laws defined over a large number
of (possibly overlapping) polyhedra. Furthermore, the required
off-line preprocessing is low and so the approach can be
applied to very complex controllers. The algorithm is compared
with existing methods in the literature and its effectiveness is
demonstrated for large examples.

Keywords—constrained systems, discrete-time systems, point
location problem, set membership test, explicit control, hybrid
systems, piecewise affine systems, multi-parametric program-
ming, receding horizon control, MPC.

I. I NTRODUCTION

In this paper we consider thepoint-location or set mem-
bership problem[28] for the class of discrete-time control
problems with linear state and input constraints for which
an explicit time-invariant piecewise state feedback control
law over a set of possibly overlapping polyhedral regions
is given. The point-location problem comes into play on-
line when evaluating the control law. One must identify the
state space region in which the measured state lies at the
current sampling instance. As the number of defining regions
grows, a purelysequential search(also known asexhaustive
search) through the regions is not sufficient to achieve high
sampling rates. Hence, it is important to find an efficient on-
line search strategy in order to evaluate the control action
‘in time’ without the need of a heavy additional memory
and preprocessing demand.

This work is motivated, but not limited, by the recent
developments in the field of controller synthesis for hybrid
systems [31], [15], [29], [5], [19]. A significant amount of the
research in this field has focused on solving constrained opti-
mal control problems, both for continuous-time and discrete-
time hybrid systems. We consider the class of constrained
discrete-timepiecewise affine(PWA) systems [29] that are
obtained by partitioning the extended state-input space into

polyhedral regions and associating with each region a differ-
ent affine state update equation.

For piecewise affine systems theconstrained finite time
optimal control(CFTOC) problem can be solved by means
of multi-parametric programming [5], [7], [1], [21] and the
resulting solution is a time-varying piecewise affine state
feedback control law. If the solution to the CFTOC problem
is used in areceding horizon control[26], [23] strategy
(or model predictive control(MPC)) the time-varying PWA
state feedback control law becomes time-invariant and can
serve as a control ‘look-up table’ on-line, thus enabling
receding horizon control to be used for fast sampled systems.
However, due to the combinatorial nature of the problem the
number of state space regions over which the control look-up
table is defined grows in the worst case exponentially [5], [4]
and therefore efficient on-line search strategies are required
to achieve fast sampling rates.

In this paper we present a novel, computationally efficient
algorithm that performs the aforementioned point-location
search for general closed-form piecewise (possibly non-
linear) state feedback control laws defined over a finite
number of polyhedra or over a finite number of regions for
which a bounding box [2] computation is feasible. Moreover,
control laws that do not form a polyhedral partition, but
are composed of a collection ofoverlappingpolytopic sets,
are included naturally in the algorithm. The proposed point-
location search algorithm offers a significant improvement
in computation time at the cost of a low additional memory
storage demand andvery low pre-computationtime for the
construction of the search tree. This enables the algorithm
to work for controller partitions with a large number of
regions, which is demonstrated on numerical examples. In
order to show its efficiency, the algorithm is compared with
the procedure proposed in [30] where a binary search tree is
pre-computed over the controller state space partition.

II. N OTATION

|I| denotes the cardinality of the discrete setI, B(d) is the
projection of the setB onto thed-th dimension, and[z]d
refers to thed-th component of some vectorz.

III. POINT LOCATION PROBLEM

We now considerarbitrary discrete-time control problems
with a closed-form (possibly nonlinear) time-invariant piece-
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wise state feedback control law of the form

µ(x(t)) := µi(x(t)), if x(t) ∈ Pi, (1)

wherei = 1, . . . , NP . x(t) ∈ R
nx denotes the state of the

controlled system at timet ≥ 0, µi(·) ∈ R
nu are nonlinear

control functions (or oracles), and the setsPi are compact
and possiblyoverlapping, i.e. there existsPi and Pj with
i 6= j such thatPi ∩Pj is full-dimensional. Moreover,P :=
{Pi}

NP

i=1 denotes the collection of setsPi.

In an on-line application the closed-form piecewise control
law is u(t) = µ(x(t)), whereu ∈ R

nu denotes the control
input. In order to evaluate the control one needs to identify
the state space regionPi in which the measured statex(t)
lies at the sampling instancet, i.e.

Algorithm III.1 (Control evaluation)
1. measure the statex(t) at time instancet
2. search for the index set of regionsI such thatx(t) ∈ Pi

for all i ∈ I
IF I = ∅ THEN problem infeasibleSTOP
IF |I| > 1 THEN pick one elementi? ∈ I

3. apply the control inputu(t) = µi?(x(t)) to the system
4. wait for the new sampling timet + 1, goto (1.)

The second step in AlgorithmIII.1 is also known as the
point-locationor theset membership problem[28]: in other
words, given a pointx ∈ R

nx and a set of sets{Pi}
NP

i=1, the
goal is to list the set of indicesI such thatx ∈ Pi for all
i ∈ I.

IV. CONSTRAINED FINITE TIME OPTIMAL CONTROL FOR

L INEAR HYBRID SYSTEMS

An interesting example of control problems where point-
location plays an important role is described in the following.

A. Linear Hybrid Systems

Piecewise affine(PWA) systems are equivalent to many
other hybrid system classes [29], [16] such as mixed logical
dynamical systems [3], linear complementary systems [15],
and max-min-plus-scaling systems [10] and thus form a very
general class of linear hybrid systems.

Moreover, piecewise affine systems can be used to iden-
tify or approximate generic nonlinear systems via multiple
linearizations at different operating points [29], [11], [27].
Although hybrid systems (and in particular PWA systems)
are a special class of nonlinear systems, most of the nonlinear
system and control theory does not apply because it requires
certain smoothness assumptions. For the same reason we also
cannot simply use linear control theory in some approximate
manner to design controllers for PWA systems.

Consider the class of discrete-time, stabilizable, linearhybrid
systems that can be described as constrainedpiecewise affine
(PWA) systems of the following form

x(t + 1) = fPWA(x(t), u(t))

:= Adx(t) + Bdu(t) + ad, if
[

x(t)
u(t)

]

∈ Dd, (2)

where t ≥ 0, the domainD := ∪ND

i=dDd of fPWA(·,·)
is a non-empty compact set inRnx+nu with ND <
∞ the number of system dynamics, and{Dd}

ND

d=1 de-
notes a polyhedral partition of the domainD, i.e.
Dd :=

{

[ x
u ] ∈ R

nx+nu | Dx
dx + Du

du ≤ D0
d

}

andint(Dd)∩
int(Dj) = ∅ for all d 6= j.

Remark IV.1 (Constraints). Note that linear state and in-
put constraints of the general formCxx + Cuu ≤ C0 are
naturally incorporated in the description ofDd. �

B. Constrained Finite Time Optimal Control

As an example we define for the aforementioned piecewise
affine system (2) the constrained finite time optimal control
(CFTOC) problem

J∗
T (x(0)) :=min

UT

JT (x(0), UT ) (3a)

s.t.

{

x(t + 1) = fPWA(x(t), u(t))
x(T ) ∈ X f ,

(3b)

where

JT (x(0), UT ) := `T (x(T )) +

T−1
∑

t=0

`(x(t), u(t)) (3c)

is thecost function(also calledperformance index), `(·,·)
the stage cost, `T (·) the final penalty function, UT is the
optimization variabledefined as the input sequenceUT :=
{u(t)}

T−1
t=0 , T < ∞ is the prediction horizon, and X f

is a compactterminal set in R
nx . With a slight abuse of

notation, when the CFTOC problem (3a)–(3b) has multiple
solutions, i.e. when the optimizer is not unique,U∗

T (x(0)) :=

{u∗(t)}
T−1
t=0 denotes one (arbitrarily chosen) realization from

the set of possible optimizers.

The CFTOC problem (3a)–(3b) implicitly defines the set of
feasible initial statesXT ⊂ R

nx (x(0) ∈ XT ) and the set of
feasible inputsUT−t ⊂ R

nu (u(t) ∈ UT−t, t = 0, . . . , T−1),
cf. RemarkIV.1. In the context of this paper, the goal in this
section is to give an explicit (closed form) expression for
u∗(t) : XT → UT−t, t = 0, . . . , T − 1.

Consider the two following restrictions to the CFTOC prob-
lem

Problem IV.2 (PWA system, 1-/∞-norm based cost).

`(x(t), u(t)) := ‖Qx(t)‖p + ‖Ru(t)‖p, (4a)

`T (x(T )) := ‖Px(T )‖p, (4b)

where ‖·‖p with p ∈ {1,∞} denotes the standard vector
1-/∞-norm [18], and

Problem IV.3 (Constr. LTI system, quadratic cost).

fPWA(x(t), u(t)) := Ax(t) + Bu(t), if
[

x(t)
u(t)

]

∈ D, (5a)

`(x(t), u(t)) := x(t)′Qx(t) + u(t)′Ru(t), (5b)

`T (x(T )) := x(T )′Px(T ). (5c)



In both, CFTOC ProblemIV.2 and IV.3, the solution is
a time-varying piecewise affine state feedback control law
defined over a polyhedral partition, which is stated in the
following theorem and proved in e.g. [24], [5].

Theorem IV.4 (Solution to CFTOC). The solution to the
optimal control problem (3a)–(3b), restricted to ProblemIV.2
or IV.3, is a time-varying piecewise affine function of the
initial statex(0)

µPWA(x(0), t) = KT−t,i x(0) + LT−t,i, if x(0) ∈ Pi

with u∗(t) = µPWA(x(0), t), wheret = 0, . . . , T − 1, and
{Pi}

NP

i=1 is a polyhedral partition of the set of feasible states
x(0), XT = ∪NP

i=1Pi, with the closure ofPi given by P̄i =
{x ∈ R

nx | P x
i x ≤ P 0

i }. �

In the case that areceding horizon(RH) control policy or
a model predictive controller(MPC) [26], [23] is used in
closed-loop, the control is given as a time-invariant state
feedback control law of the form

µRH(x(t)) := KT,i x(t) + LT,i, if x(t) ∈ Pi, (6)

wherei = 1, . . . , NP andu(t) = µRH(x(t)) for t ≥ 0. Note
that the closed-form receding horizon control law (6) is a
special case of control law (1), considered in this paper.

V. A LTERNATIVE SEARCH APPROACHES

Due to the combinatorial nature of the CFTOC problem (3a)–
(3b), the controller complexity, or the numberNP of state
space regionsPi, can grow exponentially with its parameters
in the worst case [5], [4]. Hence, for general control prob-
lems, a purely sequential search through the regions is not
sufficient in an on-line application. It is therefore important to
utilize efficient on-line search strategies in order to evaluate
the control action ‘in time’ without the need of a heavy
additional memory demand.

Several authors addressed the point-location/memory storage
issue but with moderate success for geometrically complex
regions or controllers defined over a large number of regions.
A few interesting ideas are mentioned in the following. For
the solution to the particular CFTOC ProblemIV.2 when,
additionally, the system is constrained and linear, i.e.

fPWA(x(t), u(t)) := Ax(t) + Bu(t), with
[

x(t)
u(t)

]

∈ D,

the authors in [6] propose a search algorithm based on
the convexity of the piecewise affine value function. Even
though this algorithm reduces the storage space significantly,
the storage demand as well as the search time are still
linear in the number of regions. [20] addresses this issue
for the same CFTOC problem class by demonstrating a link
between the piecewise affine value function of [6] and power
diagrams (extended Voronoi diagrams). Utilizing standard
Voronoi search methods the search time then reduces to
O(log(NP)).

To the author’s knowledge only two other approaches tackle
the more general problem, where the only restriction is

that the domain of the control law is a non-overlapping
polyhedral partition of the state space. (Note that this is
more restrictive than the algorithm presented here, cf. Sec-
tion I and VI .) [13], [12] aim at pre-computing a minimal
polyhedral representation of the original controller partition
in order to reduce storage and search complexity. However,
the computation is ‘practically’ limited to a small number
of regions with a small number of facets1 [14], since the
pre-computation time grows exponentially. Relaxations toa
larger number of regions is possible at the cost of data storage
and a higher search complexity.

An alternative approach, which will be used here for com-
parison, was proposed by Tøndelet al. in [30], where
a binary search tree is constructed on the basis of the
geometric structure of the polyhedral partition2 by utilizing
the facets of the regions as separating hyperplanes to divide
the polyhedral partition at each tree level. This however, can
lead to a worst case combinatorial number of subdivisions
of existing regions and therefore to an additional increase
in the number of regions to be considered during the search
procedure. The on-line point-location search time is in the
best case logarithmic in the number of regionsNP , but
worst case linear in the total number of facets, which makes
the procedure equivalent to sequential search in the worst
case. Moreover, note that the total number of facets,NF,
is typically larger than the original number of regions in
the partition, i.e.NF > NP . Although the scheme works
very well for polyhedral partitions that have a ‘simple’
geometric structure and/or have a small number of regions,
it is computationally prohibitive in the preprocessing time
for more complex controller partitions. This is due to the
fact that the first step of the pre-processing is to determine
on which side of every facet defining hyperplane each region
lies, which requires2NFNP linear programs, thereby making
this method untenable for moderate to large problems, i.e.
greater than10 000 regions, cf. SectionVIII-C . The memory
storage requirement for the binary search tree is (in the worst
case) in the order ofnxNF.

VI. T HE PROPOSEDSEARCH ALGORITHM

The proposed search algorithm is based on minimal volume
bounding boxesBi for each regionPi, which are defined as

Bi := {x ∈ R
nx | li ≤ x ≤ ui} ,

where the lower and upper boundsli andui are given by

(li, ui) := argmin
l,u

vol (B(l, u))

subj. to B(l, u) = {x ∈ R
nx | l ≤ x ≤ u} ⊇ Pi.

1A facet of a polyhedronP of dimensionnx is any (nx−1)-dimensional
intersection ofP with a tangent hyperplane.

2Even though in the introduction of [30] it is mentioned that overlapping
regions and ‘holes’ in the domain of the controller are handled by the
proposed algorithm, these cases are not explicitly treatedin the algorithm
nor it is directly apparent how this will influence the complexity of the
algorithm.
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i=1 of Figure 1 onto thex1-space sorted by the region’s

index. Indicators for the construction of the first node level of the first
dimension of the interval tree are represented in green.

In other words, Bi is the ‘smallest’ axis-alignednx-
dimensional hyper-rectangle that containsPi. An example
bounding boxB1 can be seen in Figure1.

Remark VI.1. Note that if the regionsPi are polytopes,
then a minimal volume bounding box can be computed using
2nx linear programs of dimensionnx [2]. �

For a given query point, or measured statex(t), the proposed
algorithm operates in two stages. First, a listIB of bounding
boxes containing the pointx(t) is computed, i.e.x(t) ∈ Bi

for all i ∈ IB (SectionVI-A ). Second, for each indexi ∈
IB, the regionPi is tested to determine if it containsx(t)
(SectionVI-B). In the following x(t) is simply denoted by
x for brevity.

The first stage of this procedure is extremely efficient and
computationally ‘inexpensive’, since the containing bounding
boxes can be reported in logarithmic time. This can be done
by breaking the search down into one-dimensional range
queries, which is possible due to the axis-aligned nature of
the bounding boxes. The complexity of the second stage
of the algorithm is a function of the overlap between the
bounding boxes of adjacent regions. A significant advantage
of the proposed search tree is a very simple and effective
preprocessing step, which allows the method to be applied
to controllers defined over a very large number of regions,
i.e. several tens of thousands. As is shown in SectionVIII ,
there are several large problems of interest to control which
have a structure that makes this procedure efficient.

Remark VI.2 (Overlapping regions). Note that overlap-
ping regions are treated naturally and without any additional
heuristics by the algorithm. �

A. Bounding Box Search Tree

In this section we will detail the procedure for reporting
the set of indicesIB of all bounding boxes that contain a
given pointx. The algorithm relies on the fact that one can
decompose the search of a query pointx ∈ R

nx in a set of

bounding boxes in annx-dimensional space intonx separate
one-dimensional sequential or parallel searches, becausethe
bounding boxes are all axis-aligned.

The basic steps for constructing the search tree are given in
Algorithm VI.3.

Algorithm VI.3 (Building the search tree)

1. compute the bounding boxBi for eachPi

2. project each bounding boxBi onto each dimension
d = 1, . . . , nx: defineB(d)

i as the resulting interval
3. build annx-dimensional interval tree

Note that Step 2 of AlgorithmVI.3 for axis-aligned bounding
boxes is merely a coordinate extraction of the corner points
li andui.

The proposed search algorithm is an extension to the well
known concept ofinterval trees[9], [8]. Standard interval
trees are efficiently ordered binary search trees for deter-
mining a set of possibly overlapping one-dimensional line
segments that contain a given point or line segment. Consider
Figure2, in which the intervals of the bounding boxes in the
first dimension for the example in Figure1 are shown. The
intervals are spread vertically, ordered by their respective
index i, to make them easier to see.

Each node of the search tree, cf. Figure3 and2, is associated
with a median pointM . For example the root nodeT in
Figure 3 is associated with the pointM1 in Figure 2. The
node splits the set of intervals into three sets: The setL,
consisting of those entirely on the left of the pointM , R
those entirely on the right andM, those that intersect it. The
setM is stored in the node and the left and right branches
of the tree are formed by choosing points above and below
M and repeating this procedure onL andR, respectively.
By choosing the pointM to be the median

M :=
1

2

(

min
i∈J

{[li]d} + max
i∈J

{[ui]d}

)
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Fig. 3: Two-dimensional interval tree for the collection of polytopesP in Figure 1. The gray indicated node ind = 1 is explored further ind = 2.

of the considered intervalsJ at a given step, the number of
intervals at each level of the tree drops logarithmically. This
standard interval tree for the example in Figure2 is shown
in the left (d = 1) of Figure3.

The tree can then be used on-line to determine the setIB

of intervals containing a given point[x]1, which is the first
dimension of the query pointx, as follows. Beginning at the
root nodeT , the point [x]1 is compared to the pointM1

associated with the root node. If we assume that the point
[x]1 is larger thanM1, then it is contained in all intervals in
the setM whose right endpoint[ui]1 is larger than[x]1, since
M1 is less than[x]1 and is also contained in the interval. Note
that this search over the setM can be done in logarithmic
time by pre-sorting the endpoints of the intervals inM.
Finally, the tree is followed down the right branch, denoted
T→R in Figure3, and this procedure is repeated recursively.
If the point [x]1 is less thanM1, then a similar procedure
is carried out on the lower bounds and the left branch is
followed, which is labeledT→L in Figure3.

Now this standard method is extended to higher dimensions
by building an interval tree over the setsM at each node
using the next dimension[x]2, i.e.d = 2. In Figure3, the tree
on the left resembles the interval tree for the first measured
dimension[x]1. The root nodeT contains several elements
M = {1, 3}, i.e. |M| > 1, and therefore an interval tree,
labeledT→D in Figure 3, over the second dimension (d =
2) is constructed for this node, in which only the elements
{1, 3} are considered and where the search is performed for
the second dimension of the measured variable[x]2 only.
This tree is shown on the right of the figure. By continuing in
this manner, the approach is extended to arbitrary dimensions
nx.

B. Local Search

As already mentioned, the interval search tree only provides
a list of candidatesIB that are possible solutions to the point-
location problem. In order to identify the particular indexset
I ⊆ IB that actually contains the measured pointx(t), cf.
Step 2 of AlgorithmIII.1, a local search algorithm needs to
be executed on the list of candidate regions by exhaustively

testing a set membershipx ∈ Pi for all i ∈ IB.

If the cost function associated with a solution of a CFTOC
ProblemIV.2 is convex, one can use the approach of [6] in
which the local search can be performed in(2nx + 2)|IB|
arithmetic operations.

VII. C OMPLEXITY

A. Preprocessing

The preprocessing phase for the proposed algorithm occurs
in two steps. First, the bounding boxes for each region
are computed, and then thenx-dimensional interval tree is
built. The calculation of a bounding box requires two linear
programs per dimension per region. Therefore, if there are
NP regions, then the calculation of the bounding boxes
requires exactly2nxNP linear programs of dimensionnx.
The construction of the interval tree can be performed in
O(nxNP log(NP)) [9] and as can be seen from the examples
in Section VIII , the required computation is insignificant
compared to the computation of the bounding boxes.

Note that as the preprocessing for this algorithm requires two
linear programs per region, it is guaranteed to take signifi-
cantly less time than the initial computation of the controller.
It follows that this approach can be applied to any system for
which an explicit controller can be calculated. Note also that
bounding boxes are computed in some parametric solvers as
the solution is computed [22], making the additional off-line
computation negligible.

B. Storage

The algorithm requires the storage of the defining inequalities
for each region as well as the structure of the tree. The tree
has a3-ary structure, two branches for the left and right, and
one for the next dimension. In each non-leaf node of the tree
is stored a median pointMi and pointers for each of the three
branches, totaling four numbers. The leaf nodes then store
the indices of the bounding boxes that will be checked during
the local search. A completely unbalanced tree in which each
leaf node contains exactly one bounding box is the most
space consuming configuration. This ‘worst case’ tree would



have NP − 1 non-leaf nodes andNP leaves for a worst
case total storage requirement of4(NP − 1) + NP numbers
(pointers or reals). Note that this worst case complexity is
linear in the number of regions and independent of the state
dimension.

C. On-line Complexity

The interval tree can be traversed inO(log(NP)+|IB|) time,
where|IB| is the number of intervals returned [9]. However,
all current methods of doing the secondary search over the
list of |IB| potential regions returned must be done in linear
time. The worst-case complexity is therefore determined by
the maximum number of regions that can be returned by
the interval tree search, or equally the maximum number
of bounding boxes that contain a single point. In the worst
case, a point would exist that is contained in every bounding
box and therefore the local search for this case would in
fact be a complete global search and the resulting worst-
case efficiency would be|IB| = NP . It is demonstrated
by example in the following section that there exist control
problems for which the proposed method offers a significant
improvement over current approaches.

VIII. N UMERICAL EXAMPLES

A. Constrained LTI System

The proposed algorithm of SectionVI was applied to the
following linear system with three states and two inputs

x(t + 1) =





7/10 −1/10 0
1/5 −1/2 1/10

0 1/10 1/10



 x(t) +





1/10 0
1/10 1
1/10 0



u(t).

The system is subject to input constraints,−5112 ≤ u(t) ≤
5112, and state constraints,−20113 ≤ x(t) ≤ 20113, where
11m := [1 1 . . . 1]′ ∈ R

m. The CFTOC ProblemIV.2 is
solved withp = 1, T = 8, Q = I3, R = 1

10 I2, andP =
03×3. The receding horizon state feedback control law (6)
consists of2 568 polyhedral regions inR3.

As can be seen from TableI, the algorithm presented in
SectionVI is required to solve2 · 3 · 2 568 = 15 408 linear
programs in the preprocessing phase and needs to store
15 408 real numbers to represent the bounding boxes, as well
as4 424 pointers in order to represent the tree. Since the cost
function for this example is piecewise affine and convex, it
is possible to use the method in [6] for the local search, cf.
SectionVI-B, which requires an additional storage of10 272
real numbers.

In comparison, the binary search tree of [30] for this case
consists of815 unique hyperplanes. For each such hyper-
plane2NP LPs must be solved in the preprocessing phase to
compute the index set which corresponds to4 185 840 linear
programs. An actual additional1 184 782 linear programs are
needed to construct the tree, which does not correspond to
the worst case scenario.
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Fig. 4: Histogram of the relative occurrence of the number of ‘local’ regions
for the example of SectionVIII-A .

In order for the proposed method to identify the control law
on-line, one has to perform707 floating point operations to
traverse the interval tree in the worst case. Since the tree
only provides a necessary condition for the point-location
problem, one has to perform a local search on the regions
identified by the tree as possible candidates (SectionVI-B).
To provide a worst case bound, an exhaustive check for all
possible intersections of the intervals stored in the presented
tree was performed. In the worst case36 regions need to
be checked using the method of [6], which corresponds to
216 flops. However, as can be seen from Figure4, a unique
control law is automatically reported by the here proposed
search tree in31 % of all cases without the requirement of
doing a secondary local search. In addition, approximately
90 % of all search queries do not require an exhaustive check
of more than15 regions.

sequential Alg. VI.3
search

Alg. in [30]
([6] locally)

number of LPs (off-line) — 5 370 622 15 408
runtime (off-line) — 10 384 secs 10 secs
on-line arithm. operations

(worst case)
106 295 110 923

Tab. I: Computational complexity for the example of SectionVIII-A .

B. Constrained PWA System

Consider the following piecewise affine system from [25]

x(t + 1) =

{

A1x(t) + Bu(t), if [0, 1, 0]x(t) ≤ 1,

A2x(t) + Bu(t) + a, otherwise,

where

A1 =
[

1 1/2 3/10

0 1 1
0 0 1

]

, A2 =

[

1 1/5 3/10

0 1/2 1
0 0 1

]

, B =
[

0
0
1

]

, a =

[

3/10

1/2

0

]

.

The system is subject to input constraints,−1 ≤ u(t) ≤
1, and state constraints,[−10, −5, −10]′ ≤ x(t) ≤
[10, 5, 10]′. With p = 1, T = 7, Q = I3×3, R = 1/10,
and P = 03×3. The solution to the CFTOC ProblemIV.2
resulted in a receding horizon state feedback control law (6)
defined over2 222 polyhedral regions inR3.

The off-line construction of the interval search tree for this
example required13 332 LPs to be solved, compared to
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Fig. 5: Histogram of the relative occurrence of the number of ‘local’
regions for the example of SectionVIII-B .

Fig. 6: Ball & Plate laboratory setup. The ball follows a pre-specified
trajectory.

7.9 · 106 linear programs which are needed to construct
the binary search tree of [30] (this does not correspond
to the worst case scenario). Since the cost function of a
given CFTOC solution is not necessarily convex, one cannot
use the method of [6] to perform the local search, and
therefore one must perform a sequential search as outlined
in Section VI-B on possible candidates. Using the same
methodology as in the previous example, it was found that
at most39 regions have to be searched exhaustively. This,
however, takes at most1 720 flops. The worst case number
of floating point operations needed to traverse the interval
tree is 882. Moreover, almost60 % of all search queries
result in a unique control law during the first phase of
the algorithm (SectionVI-A ), cf. Figure 5. Therefore no
additional sequential searches are necessary in these cases.
Results on the computational complexity are summarized in
Table II .

sequential
search

Alg. in [30] Alg. VI.3

number of LPs (off-line) — 7 913 462 13 332
runtime (off-line) — 12 810 secs 4.8 secs
on-line arithm. operations

(worst case)
97 984 352 2 602

Tab. II: Computational complexity for the example of SectionVIII-B .

C. Ball & Plate System

The mechanical ‘Ball & Plate’ system was introduced in
[5], [17]. The experiment consists of a ball rolling over a
gimbal-suspended plate actuated by two independent motors,
cf. Figure6. The control objective is to make the ball follow
a prescribed trajectory, while minimizing the control effort.
The dynamical model for they-axis of such a device is given
by

ẋ(t) =

[ 0 1 0 0
0 0 700 0
0 0 0 1
0 0 0 −34.69

]

x(t) +

[

0
0
0

3.1119

]

u(t), (7)

where x := [y, ẏ, α, α̇]′ is the state.−30 ≤ y ≤ 30
and −15 ≤ ẏ ≤ 15 are the position and velocity of the
ball with respect to they-coordinate,−0.26 ≤ α ≤ 0.26 and
−1 ≤ α̇ ≤ 1 denote the angular position and angular velocity
of the plate, respectively. The input voltage to the motor is

assumed to be constrained by−10 ≤ u ≤ 10. In order to
take the tracking requirements into account, the state vector
is extended with an additional element, which contains the
reference signal, hence the augmented state vector is inR

5.
The model (7) was then discretized with sampling timeTs =
0.03 and a closed-form PWA feedback control law (6) was
derived for the CFTOC ProblemIV.3, where the following
parametersT = 10, Q = diag([6, 0.1, 500, 100, 6]), R =
1, andP = Q were considered. The controller obtained using
the Multi-Parametric Toolbox [22] for M ATLAB R© is defined
over 22 286 regions inR

5.

The computational results for the respective search trees are
summarized in TableIII . Due to the high number of regions,
the binary search tree of [30] was not applicable to this
example (denoted by? in Table III ), since it would require
the solution of3.5·109 LPs already in the preprocessing stage
to determine the index set before building the binary search
tree. In contrast, in the preprocessing stage, the here proposed
algorithm has to solve228 860 LPs to obtain the bounding
boxes for all regions. The overall time needed to construct
the complete search tree, including the computation of the
bounding boxes, was just80 seconds.9 324 pointers are
needed to represent the tree structure, and222 860 floating
point numbers are needed to describe the bounding boxes.

To estimate the average and the worst case number of
arithmetic operations needed to identify the control law on-
line, we have investigated10 000 random initial conditions
over the whole feasible state space. It can be seen from the
histogram distribution depicted in Figure7 that the search
tree algorithm identifies at most500 regions as possible
candidates in86 % of all tested initial conditions. The
subsequent sequential search over500 regions corresponds

sequential
search

Alg. in [30] Alg. VI.3

number of LPs (off-line) — 3.5 · 109 222 860
runtime (off-line) — ? 80 secs
on-line arithm. operations

(worst case)
1 400 178 ? 208 849

Tab. III: Computational complexity for the example in SectionVIII-C . ?

denotes that the algorithm in [30] is not computable for this example.
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Fig. 7: Histogram of the relative occurrence of the number of ‘local’ regions
for the example of SectionVIII-C .

to 30 000 floating point operations. In99% of all tested cases
the algorithm identifies at most1000 regions for subsequent
local search, which corresponds to at most60 000 flops. In
the worst case, the search tree will identify as many as2 544
regions as possible candidates for a sequential search. Notice
that this number represents, in the worst case, only11 % of
the total number of regions. This amounts to a maximum
of 152 640 flops, whereas traversal of the tree contributes
another 56 209 flops. The sequential search through all
regions, on the other hand, would require1.4 ·106 operations
and is currently the only other method that can be applied
to such a large system. The total number of flops which are
needed to be performed on-line is thus (in the worst case)
reduced by at least one order of magnitude. To give a sensible
feeling for this number of floating point operations, note
that a 3 GHz Pentium 4 computer can execute approximately
800·106 flops/sec. Given this performance the controlled system
can be run at a sampling rate of 4 kHz in the case of the
presented search tree, whereas the sequential search has a
limit of 500 Hz.

IX. SOFTWARE IMPLEMENTATION

The presented algorithm is implemented in the Multi-
Parametric Toolbox (MPT) [22] for M ATLAB R©. The toolbox
can be downloaded free of charge at:http://control.ee.

ethz.ch/~mpt/
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