
Efficient point location via subdivision walking

with application to explicit MPC

Yang Wang, Colin Jones and Jan Maciejowski

Abstract— An explicit (or closed-form) solution to Model
Predictive Control (MPC) results in a polyhedral subdivision
of the state-space when the system and constraints are linear,
and the cost is linear or quadratic. Within each region the
optimal control law is an affine function of the current state,
so the online evaluation is reduced to determining the region
containing the current state measurement, known as a point-
location or set membership problem. In this paper we present
the subdivision walking method, which is based on the idea
of travelling from a seed point in a known seeded region,
in the direction of the state measurement, by walking from
one region to the next until the region of interest is found.
The algorithm requires minimal pre-computation, and achieves
significant computational savings for many control problems.

I. INTRODUCTION

Point-Location is a well studied problem in computational

geometry, with applications to many branches of science

and engineering. Given a set of regions and a point in n-

dimensional space, the aim is to determine as efficiently

as possible the region that contains this point. Beside the

many manifestations of point location in a variety of different

fields, we will concentrate in this paper on its application to

explicit (or closed-form) Model Predictive Control (MPC).

This will necessarily lead to a search with n ≫ 3, whereas

the most effective methods currently only work for n = 2
and n = 3.

In MPC an optimal sequence of inputs is chosen to

minimise a given objective over a finite prediction horizon.

Online computation amounts to solving an optimisation at

every sampling instant, depending on the form of the cost.

In recent years it has become well established [1] that the

optimal input is a piecewise affine function defined over a

polyhedral partition of all feasible states. This can be entirely

pre-computed using multi-parametric optimisation [1] [2]

[3], resulting in an explicit or closed-form solution to the

MPC problem. The online calculation is therefore reduced

to determining the region containing the current state - the

so called point location or set membership problem.

Explicit MPC is not intended to replace traditional meth-

ods entirely but instead to expand its sphere of application.

In particular, online evaluation times can be significantly

Y. Wang is supported by a Rambus Corporation Stanford Grad-
uate Fellowship in the Department of Electrical Engineering, Stan-
ford University, 350 Serra Mall, Stanford, CA 94305-9505, USA
yw224@stanford.edu

C.N. Jones is with the Automatic Control Laboratory, Swiss Federal
Institute of Technology, Physikstrasse 3, ETL K11, Zurich, Switzerland
cjones@control.ee.ethz.ch

J.M. Maciejowski is with the Department of Engineering, Cambridge
University, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
jmm@eng.cam.ac.uk

reduced, leading to controller update intervals in the order

of micro-seconds. The complexity of the closed-form so-

lution is highly dependent on the parameters in the MPC

problem formulation. Although the number of regions in a

solution cannot be determined a-priori, in the worst case

it is known to grow exponentially with horizon length,

state/input dimension and the number of constraints [1]. The

potential for highly complex problems with many thousands

of subdivisions implies that an efficient way of solving the

point location problem is required.

The simplest way to do this is by brute force. Each region

is examined until the region containing the current state is

found. The worst-case computational complexity of this ap-

proach is linear in the number of regions. In [4], the authors

improve on both the search time and memory requirements

of this basic method by exploiting various properties of the

MPC value function. A more recent development [5] seeks to

construct a binary search tree by dividing up the polyhedral

partition using auxiliary hyperplanes. These will subdivide

existing regions so that search time is logarithmic in the

number of subdivided regions, which may be significantly

more numerous. The offline pre-processing time required to

implement this method is also prohibitive for large problems.

For MPC controllers involving 1 or ∞-norm costs, the

objective of the optimisation problem is linear. In this case,

[6] demonstrates that the polyhedral partition corresponds

to an additively weighted Voronoi diagram. Using the ap-

proximate nearest neighbours algorithm [7], this geometric

structure can be searched in time logarithmic in the number

of regions, resulting in significant computational gains.

The structure of the closed-form solution arising from

non-linear (and in particular, quadratic) penalty functions

is currently not well understood, and does not contain any

obvious structure we can exploit. Instead we will present

a method that solves the point location problem, without

regard for the underlying MPC formulation. The method

requires almost no pre-computation, but is heuristic in the

sense that the absolute worst case complexity is still linear in

the total number of regions. We shall demonstrate however,

that significant computational gains can often be achieved,

and that the worst case can be determined offline given a

specific problem. In [8] a similar method is used to speed

up online solution of QP problems arising in MPC. The rest

of the paper is structured as follows.

In section 2 the point location problem is formally stated,

and the application to MPC discussed. Section 3 introduces

subdivision walking, and Section 4 demonstrates how the

worst-case online complexity can be calculated. Section 5

Proceedings of the European Control Conference 2007
Kos, Greece, July 2-5, 2007

TuA12.3

ISBN: 978-960-89028-5-5 447

provides some numerical examples and evaluates the perfor-

mance of this algorithm on typical control problems.

PRELIMINARY DEFINITIONS

Definition [6] A polyhedron is the intersection of a finite

number of halfspaces: P � {x ∈ Rn|Ax ≤ b}. A polytope

is a bounded polyhedron.

Definition [6] F is a face of the polyhedron P ⊂ Rn if

there exists a hyperplane {x ∈ Rn|aT x = b}, where a ∈ Rn,

b ∈ R, such that F = P ∩ {x ∈ Rn|aT x = b} and aT x ≤ b
for all x ∈ P .

Definition [6] A finite family C of polytopes in Rn is a

complex if every face of a member of C is itself a member

of C and the intersection of any two members of C is a face

of each of them.

II. PROBLEM DEFINITION

A. Point Location Problem

Definition Point Location Problem [6]: Given a vector x and

a set of non-intersecting polytopes {X1, . . . ,XR}, determine

any integer r (x) ∈ {1, . . . , R} such that polytope Xr(x)

contains x. If x /∈
⋃R

i=1 Xi, then r(x) = 0.

Throughout this work we will assume that the polytopes are

stored in halfspace representation. This is because the typical

geometric structure arising from optimal control has many

more vertices than faces, so vertex representation should be

avoided.

B. MPC Formulation and Solution

Consider the following discrete time linear time invariant

state space representation, with state vector x[k] ∈ Rnx ,

manipulated variables u[k] ∈ Rm, A ∈ Rnx×nx , B ∈
Rnx×m, and where the pair (A, B) is controllable.

x[k + 1] = Ax[k] + Bu[k] (1)

We consider an MPC problem where the goal is to minimise

a quadratic cost over the future states and inputs (2), where

R = RT ≻ 0 (≻ denotes positive-definite), P = P T ≻ 0,

Q = QT 	 0 (denotes positive semi-definite), x[k] is the

current measured state, x0 . . . xN are the predicted states at

time k, u0 . . . uN−1 are the predicted inputs at time k and

Ω is a polyhedral terminal set that contains the origin. For

simplicity we assume that the control horizon Hu is equal

to the prediction horizon Hp, Hp = Hu = N .

minimise J [k] = ‖xN‖2
P +

N−1
∑

i=0

(

‖xi‖
2
Q + ‖ui‖

2
R

)

subject to x0 = x[k] xN ∈ Ω

xi+1 = Axi + Bui i ∈ {0, . . . , N − 1}

Cixi + Diui ≤ b (2)

The optimisation variable is the input sequence U =
[

uT
0 , . . . , uT

N−1

]

. In MPC we solve the optimisation (2) to

obtain U ⋆, and apply the first element u⋆
0 to the plant. The

process is repeated at the next sampling instant.

Definition The set of states Xf , is the set of all feasible

states for the MPC problem if: x ∈ Xf guarantees that a

sequence of inputs can be found such that the constraints are

satisfied at all points in the prediction horizon, and x /∈ Xf

guarantees that such a sequence does not exist.

Definition The set of polytopes {X1, . . . ,XR} is a partition

or subdivision of Xf if the polytopes are non-intersecting,

Xi∩Xj is not full dimensional, i �= j and X1∪X2∪. . .∪XR =
Xf .

The optimisation problem (2) is easily rearranged into a

standard QP in variable U (3), for suitable matrices Y ∈
Rnx×nx , H ∈ RNm×Nm, F ∈ Rnx×Nm, W ∈ Rq×1,

E ∈ Rq×nx , G ∈ Rq×Nm, q constraints, with H = HT ≻ 0.

minimise
1

2
x[k]T Y x[k] +

1

2
UT HU + x[k]T FU

subject to GU ≤ W + Ex[k] (3)

For conventional MPC, the controller estimates the state

x[k], and solves problem (3) for the optimal sequence U ⋆.

In explicit solutions we are interested in computing the

above QP as an explicit function of the current state U ⋆ =
U⋆ (x[k]). This is known as a multi-parametric optimisation,

with current state x[k] as the parameter.

The nature of the explicit solution is characterised by The-

orem II.1. For a rigorous proof, and treatment of degenerate

cases, refer to [1].

Theorem II.1 Consider the multi-parametric quadratic pro-

gram (mpQP) (3) and let H ≻ 0. Then the set of all feasible

parameters Xf is convex, the optimiser U ⋆ (x) : Xf → RNm

is continuous and piecewise affine over a polyhedral partition

of Xf , and the optimal solution J ⋆ (x) : Xf → R is

continuous, convex and piecewise quadratic.

Corollary II.2 The MPC control law u[k] = f (x), f :
Rnx → Rm, defined by the optimisation problem (3) is

continuous and piecewise affine.

The closed-form solution results in the subdivision of the

set of feasible states Xf into a partition {X1, . . . ,XR}, and

within each region we apply the associated affine control law.

Several algorithms exist for subdividing the state space and

computing the explicit solution [1], [9], [3].

III. SUBDIVISION WALKING

Notice that what results from a multi-parametric quadratic

program is a partition. This is very different from a so-

lution complex, which can only arise from non-degenerate

multi-parametric linear programs (mpLPs), or lex-perturbed

degenerate mpLPs [10]. In a solution complex each face

corresponds to only one neighbouring region, but for par-

titions multiple neighbours may exist [11]. The method we

will present is capable of dealing with partitions, but there

are extra complications. We therefore explain the operation

of the method first for a solution complex, so that details

of our algorithms are clear. The complications for handling

partitions are briefly discussed later.

TuA12.3

448

x1

x2

x−
1 x+

1

x−
2

x+
2

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

xs

xm

(a) Crossing from X2 to X1

x1

x2

x−
1 x+

1

x−
2

x+
2

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

xs

xm

(b) Crossing from X1 to X4

Fig. 1: Example of Subdivision Walking

The subdivision walking method is based on the concept

of travelling through the state space in the direction of

some point xm contained in region Xr, where r (x) is the

solution to the point location problem. The technique is

easily demonstrated with an example solution complex, Fig.

1a. We start from a pre-defined seeded point xs, which is

associated with a known region Xs = X2. To begin with a

line is constructed between the seeded point and the point

xm, as shown in Fig. 1a. We start in region X2 containing

the seed, and determine the facet that intersects with this

line. In this way, it can be deduced that our line crosses into

region X1. Once inside X1, the procedure is repeated and

so we move into X4 (Fig. 1b). We continue in this fashion

for successive regions until the region containing the point

of interest is found. It is evident that adjacency information,

which defines the neighbours of each region, is required to

implement the algorithm.

To formalise this, we define the following

Definition Two polyhedra Xi, and Xj are neighbours if they

share a common facet.

Let Ni be the set of indices of the neighbours of X i, and

let one element of Ni, N
j
i , be the index of the neighbouring

region corresponding to the jth bounding hyperplane. Since

we store all the polytopes in halfspace representation, X i �

{x|Hix ≤ Ki}, so that the jth bounding hyperplane has the

representation H j
i x ≤ Kj

i , where H j
i , Kj

i denote the jth

rows of Hi and Ki.

Given a measured state xm and a seeded point xs in region

Xs, define the ray ρ = {λν + xs|λ > 0, ν = xm − xs}.

Evaluating the crossing point of this ray with bounding

hyperplane H j
sx = Kj

s , we have

Hj
s (λjν + xs) = Kj

s (4)

⇒ λj =
Kj

s − Hj
sxs

Hj
sν

, Hj
sν > 0 (5)

We proceed to calculate the crossing λj for each j ∈
{1, . . . , Ns

c }, where N s
c is the total number of bounding hy-

perplanes of region Xs. Clearly, since the controller partition

is convex, the facet corresponding to the smallest positive λ j ,

Fm is the one that intersects with the ray ρ. The region with

the index Nm
i is therefore the region entered. Algorithm 1

summarises the procedure for point location search. If the

minimum λj is not unique, it implies that the ray is crossing

the intersection of two or more facets. In this situation,

we arbitrarily select a region corresponding to either of the

facets, we then generate a point in the interior of that region

and continue as before.

Theorem III.1 Algorithm 1 returns the index r of the region

Xr containing the point xm after at most R iterations, where

R is the total number of regions.

Proof Since the direction of search ν = xm − xs is prede-

fined, and at every iteration λj > 0, every region is visited

only once. There are only R regions in the subdivision, so

m will be returned after at most R iterations. �

It is immediately obvious, that in order to employ sub-

division walking, the adjacency information N i must be

calculated for each polytope in the partition. Adjacency com-

putation is incorporated directly into most parametric solvers,

and represents an insignificant computational overhead. Sub-

division walking thus requires very little pre-computed data,

and this is one of its major advantages.

TuA12.3

449

Algorithm 1 Region Traversal

1: procedure REGIONTRAVERSAL(x)

2: r ← s ⊲ Current region index

3: xr ← xs ⊲ Point in current region

4: ν ← x − xs ⊲ Direction of line

5: while 1 do

6: if Hrx ≤ Kr then return r ⊲ Region found

7: else

8: for j = 1 to N r
c do ⊲ For each facet

9: λj = Kj
r − Hj

rxr/Hj
rν, Hj

rν > 0
10: end for

11: m ← argminj {λj > 0, j = 1, . . . , N r
c }

12: r ← Nm
r ⊲ New region

13: xr = (λm + ǫ) ν + xr ⊲ New point, just

inside the region. ǫ small, ǫ ≥ 0
14: end if

15: end while

16: end procedure

The choice of the seed point xs clearly has an important

effect on performance, and many different variations are

possible. We could for example, have a seed point in each

region. The online algorithm would first search for the

closest seed as a nearest neighbours problem, which can

be done in logarithmic time [7]. Alternatively, we can use

the previous state measurement as the seed when solving

the point location problem for the next state measurement.

The rationale is that successive states tend to stay within

regions that are close to each other, which would certainly be

true after the state has been regulated within some terminal

constraint set.

For the case of a partition, each facet can correspond

to multiple neighbours. As a result, once the facet Fm is

determined, we must further compute the neighbour that we

are crossing into. Since experience shows that complexes

occur in the majority of cases for quadratic programs, this

would not represent an extra computational cost most of the

time.

IV. WORST CASE COMPLEXITY

The difficulty with subdivision walking is putting an upper

bound on the computation time. The worst case scenario

is still linear in the total number of regions, but we shall

present an algorithm that allows a bound to be calculated

for a specific problem. In the following derivation, we will

assume that only one seed point xs is used.

Definition A set of polytopes (Xi1 , . . . ,Xim
) is a path if

Xij
and Xij−1

are adjacent for each 1 < j ≤ m. The

length of such a path is m, the distance between polytope

Xi and Xj is the length of the shortest path connecting them.

The diameter of a subdivision is the maximum path length

occurring between any pair of polytopes in the subdivision.

Definition A path (Xi1 , ...,Xim
) is called a linear path

between xs and Xim
, Ixs→Xim

, if there exists a ray ρ =

{λν + xs|λ > 0, xs ∈ Xi1}, such that ρ ∩ Xij
∩ Xij+1

�=
∅, ∀j = 1, . . . , m − 1.

Definition Given a linear path Ixs→Xim
, define the associ-

ated target set T
(

Ixs→Xim

)

⊆ Xim
as the set of all points

xm ∈ Xim
, for which there exists a ray ρ = {λν + xs|λ >

0, ν = xm − xs, xs ∈ Xi1}, such that ρ ∩ Xij
∩ Xij+1

�=
∅, ∀j = 1, . . . , m − 1.

That is, a linear path is a sequence of regions that a ray

traverses to get from xs ∈ Xi1 to some point in region

Xim
. Notice that linear paths are not unique, there may be

many different combinations of regions a ray can cross to

get to Xim
. This concept is demonstrated for an arbitrary

controller partition in Figs. 2a, 2b, 2c and 2d. To walk

from xs to X10 there are four different sequences of regions

(X2,X1,X4,X10), (X2,X1,X5,X4,X10), (X2,X1,X5,X10),
(X2,X6,X1,X5,X10). The associated target sets for each

linear path are also highlighted.

In order to calculate the worst case computation time to

search for a vector xm, we must enumerate all possible

linear paths Ixs→Xi
, ∀i ∈ {1, . . . , NR}. The linear path

with the largest number of elements therefore corresponds

to the upper bound we wish to compute. This may seem

like a tremendous task, but in fact it can be simplified

greatly through the generation of a crossing tree. Algorithm

2 summarises this procedure, and we can prove the following

results.

Theorem IV.1 Every route from the root node Πs of a

crossing tree down to any node Πi traces out a linear path

between xs and Xi.

Proof Each node Πi is added based on whether the route

from the root node Πs down to Πi traces out a sequence

of regions that corresponds to a linear path between xs

and Xi. If this is not the case: equivalently if the target

set corresponding to this sequence of regions is not full

dimensional, then the node is not considered. Every such

route must therefore represent a linear path. �

Theorem IV.2 The crossing tree contains every possible

linear path from xs to any region in our complex.

Proof Suppose that this is not the case. This implies that we

can find a linear path (Xi1 , . . . ,Xim
) which cannot be traced

out with a route from the root node. Assume, without loss of

generality that it is the last node, Πim
that is missing. This

implies Πim−1
must be missing, since if Πim−1

exists and

by definition Πim
is a neighbour, then Πim

would have been

added to the tree. By induction then, Πim−2
is missing, and

so on until we deduce that even the starting node Π i1 = Πs

was not added. This is clearly a contradiction. �

To better appreciate the workings of Algorithm 2, we develop

a simple example. Before we begin we will require that each

node Πi in our crossing tree consists of the index i of the

region Xi that the node corresponds to , as well as pointers

to each of its descendants. Referring once more to Fig. 2a,

TuA12.3

450

we shall start tree generation in region X2 (root node), since

it contains our seed xs. First we list all the neighbours of

Xs = X2, {X6,X1,X3,X8,X7}. For each of the neighbours

N j
2 we ask whether the linear path (X2,XN j

2

) exists.

Clearly, since X2 contains the seed, we can always

cross to every neighbour with a ray, so we add each of

{Π6, Π1, Π3, Π8, Π7} as a descendant node of the crossing

tree, passing to them the associated linear path (X2,XN j
2

).
Now we repeat the procedure for each of the descendant

nodes. Consider the node Π6 corresponding to X6. For each

of the elements of N6 we ask whether (X2,X6,XN j
6

) is

a linear path. In this case it turns out by inspection, that

all four sequences (X2,X6,X7), (X2,X6, X12), (X2,X6,X5)
and (X2,X6,X1) can be intersected by a single ray from

xs. As a result, all of the neighbours of X6 are added

as children of Π6. We pass down the appropriate lin-

ear paths to each of these children, and continue gener-

ating our tree recursively. Suppose instead we take Π1

at the second level. For each element of N1, we there-

fore ask whether (X2,X1,XN j
1

) is a crossing set. Clearly

(X2,X1,X4), (X2,X1,X3), (X2,X1,X5), satisfy the criteria,

but (X2,X1,X6) does not since it is impossible to draw a ray

starting from xs, going to a point in X6, that passes through

all three regions in order. Region X6 will therefore not be

added as a descendant of the second level node Π1. The full

crossing tree for the complex in Figs. 2a, 2b, 2c and 2d is

shown in Fig. 3.

The final question we must therefore address, is how to

determine whether a particular sequence of neighbouring

regions forms a linear path from xs. In Algorithm 2 we

solve the equivalent problem of constructing the target set

corresponding to the linear path, and then testing whether it is

full dimensional. Suppose we are given a possible Ixs→Xim

to check. The task is to compute the subset of Xim
that can be

reached by a straight line from xs crossing all the facets that

separate successive regions in Ixs→Xim
. For the example of

Fig. 2a, we need to find the set of points that can be reached

by a straight line that intersects the facet separating regions

X2 and X1, the facet separating regions X1 and X4 as well

as the facet separating regions X4 and X10.

If X1 is the jth neighbour of X2 so that N j
2 = 1, then the

facet that forms the intersection of X1 and X2 is given by

F21 �

{

x|Hj
2x = Kj

2 , H2\{j}x ≤ K2\{j}

}

(6)

Notice however, that if X2 is the ith neighbour of X1 we

could equivalently have

F12 �
{

x|Hi
1x = Ki

1, H1\{i}x ≤ K1\{i}

}

(7)

These are both valid representations, but we will always

choose Fab if we aim to traverse from region Xa into region

Xb. Sticking to this convention will ensure that the dot

product between the normal of the hyperplane describing the

facet, Hj
a (if Xb is the jth neighbour of Xa) and the vector

direction of traversal ν is always positive if the target set

exists. This property will be important later.

Π1

Π1

Π2

Π3

Π3

Π4

Π4

Π4

Π4 Π5

Π5

Π5

Π6

Π7

Π7

Π8

Π8

Π9

Π9

Π10

Π10

Π10

Π10

Π11

Π11

Π11

Π12

Π12

Π13

Π13

Π13

Π13

Π13

Fig. 3: Crossing Tree for the subdivision walking example

For ease of notation, denote these facets by F i, i ∈
{1, . . . , Nf}, where Fi are chosen according to the above

convention.

Fi =
{

x|aT
i x = bi, ̥ix ≤ yi

}

(8)

Theorem IV.3 Define

Yi =

[

(̥ixs) aT
i + ̥i

(

bi − aT
i xs

)

− yia
T
i

−aT
i

]

(9)

Then the target set is equivalent to the following polyhedron,

T
(

Ixs→Xim

)

�



















x

∣

∣

∣

∣

∣

∣

∣

∣

∣











Him

Y1

...

YNf











x ≤











Kim

Y1xs

...

YNf
xs





























(10)

If this polyhedron is full dimensional, then the linear path

Ixs→Xim
is valid.

Proof The target set can be written as follows,

T
(

Ixs→Xim

)

� {x|∃
{

ν, λ1, . . . , λNf

}

,

(xs + λiν) ∈ Fi ∀i ∈ {1, . . . , Nf},

ν = x − xs, x ∈ Xim
} (11)

TuA12.3

451

x1

x2

x−
1 x+

1

x−
2

x+
2

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

xs

T ({2, 1, 4, 10})

(a) Ixs→X10
= {2, 1, 4, 10}

x1

x2

x−
1 x+

1

x−
2

x+
2

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

xs

T ({2, 1, 5, 4, 10})

(b) Ixs→X10
= {2, 1, 5, 4, 10}

x1

x2

x−
1 x+

1

x−
2

x+
2

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

xs

T ({2, 1, 5, 10})

(c) Ixs→X10
= {2, 1, 5, 10}

x1

x2

x−
1 x+

1

x−
2

x+
2

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

xs

T ({2, 6, 1, 5, 10})

(d) Ixs→X10
= {2, 6, 1, 5, 10}

Fig. 2: Linear path and Target set

Algorithm 2 Crossing Tree Generation

1: procedure CROSSTREE(Ixs→Xm
,p) ⊲ p is the index of the parent node

2: Nm\p ← Nm\ Ixs→Xp
⊲ Remove the current linear path from neighbours

3: currentregion= m
4: k ← 1
5: for j = 1 to |Nm\p| do

6: Tj = T ({Ixs→Xm
,N j

m\p
}) ← gettargetset(Ixs→Xm

,N j

m\p
) ⊲ Construct target set: method explained later

7: if (Tj) is full dimensional then

8: childnode{k} ← CrossTree({Ixs→Xm
,N j

m\p
}, m) ⊲ Recursion

9: k ← k + 1
10: end if

11: end for

12: return node ⊲ node consists of ‘currentregion’ and ‘childnode’

13: end procedure

TuA12.3

452

Take the ith facet we need to cross, Fi. Then (xs + λiν) ∈
Fi implies,

aT
i (xs + λiν) = bi, ̥i (xs + λiν) ≤ yi (12)

aT
i xs + λia

T
i ν = bi ⇒ λi =

(

bi − aT
i xs

)

/aT
i ν (13)

Now we can eliminate λi, under the assumption that aT
i ν is

positive if the target set exists,

̥i

(

xs +
((

bi − aT
i xs

)

/aT
i ν

)

ν
)

≤ yi ⇒ (14)

(̥ixs) aT
i ν + ̥i

(

bi − aT
i xs

)

ν ≤ yia
T
i ν, aT

i ν ≥ 0 (15)
(

(̥ixs) aT
i + ̥i

(

bi − aT
i xs

)

− yia
T
i

)

ν ≤ 0, aT
i ν ≥ 0

(16)

Using the definition (9),

T
(

Ixs→Xim

)

� {x|∃ν, Y1ν ≤ 0, Y2ν ≤ 0, . . . ,

YNf
ν ≤ 0, ν = x − xs, x ∈ Xim

}(17)

With ν = x − xs,

T
(

Ixs→Xim

)

� {x|∃ν, Y1x ≤ Y1xs, Y2x ≤ Y2xs, . . . ,

YNf
x ≤ YNf

xs, Him
x ≤ Kim

} (18)

Hence we have shown that the target set can be written in the

form (10). From the definition of a linear path, there must

exist a ray ρ, such that ρ ∩ Xim
�= ∅. Hence a linear path is

valid if and only if the interior of the target set relative to its

affine hull is nonempty. A sufficient condition is therefore

that the polyhedron defined above is full dimensional. �

We can test whether a polyhedron is full dimensional by

computing its Chebyshev ball, which requires the solution

to one linear program.

V. SIMULATION RESULTS

We apply the crossing tree method to evaluate the com-

putational savings that subdivision walking achieves on two

control problems. All of our simulations are done with the

aid of the Multi-Parametric Toolbox for MATLAB [12]. The

first is the standard two-dimensional double integrator model,

with 513 regions in the explicit solution, as shown in Fig.

4. Defining the origin as the seed point, xs = [0, 0]T , the

maximum crossing tree depth is 33, which means that only

33 regions will have to be searched in the worst case.

The second model is control of a linearized Cessna

Citation Aircraft. This is a control problem with a five-

dimensional state space, where the objective is to regulate

the aircraft altitude. Details of the model and problem can

be found in [13]. The closed form solution consists of 403
regions in five dimensions, and the crossing tree generated

has a maximum depth of only 24.

VI. CONCLUSIONS

It is evident from our simulations that subdivision walking

is an applicable, and highly advantageous method. Although

it is still a heuristic, it is intuitive that the technique will

offer computational savings for a variety of problems. Fur-

thermore, unlike many point location solvers, subdivision

−3 −2 −1 0 1 2 3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x
1

x
2

Controller partition with 513 regions.

Fig. 4: Double integrator with 513 regions

walking requires almost no pre-computation. The only infor-

mation required is the adjacencies of each region, and this

can be easily incorporated into the multi-parametric solver

itself. The major drawback is the necessity of generating

a crossing tree in order to calculate the worst case online

computation time, although this step is only performed if

an exact bound is required. Tree generation is of course

computationally expensive, but the problem is NP-hard and

is therefore not likely to have better solutions.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The Explicit
Linear Quadratic Regulator for Constrained Systems,” Automatica,
vol. 38, no. 1, pp. 3–20, Jan. 2002.

[2] F. Borrelli, Constrained Optimal Control of Linear & Hybrid Systems.
Springer Verlag, 2003, vol. 290.

[3] P. Tondel, T. Johansen, and A. Bemporad, “An algorithm for multi-
parametric quadratic programming and explicit MPC solutions,” in
IEEE Conference on Decision and Control, 2001, pp. 1199 – 1204.

[4] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari, “Efficient
On-Line Computation of Constrained Optimal Control,” in IEEE

Conference on Decision and Control, Orlando, Florida, Dec. 2001,
pp. 1187–1192.

[5] P. Tondel, T. Johansen, and A. Bemporad, “Evaluation of piecewise
affine control via binary search tree,” Automatica, vol. 39, no. 5, pp.
945–950, 2003.

[6] C. Jones, P. Grieder, and S. Rakovic, “A Logarithmic-Time Solution
to the Point Location Problem for Closed-Form Linear MPC,” in IFAC

World Congress, Prague, Czech Republic, Jul. 2005.
[7] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu, “An

optimal algorithm for approximate nearest neighbor searching in fixed
dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891–923, 1998.

[8] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
for fast parametric quadratc programming in MPC applications,” in
IFAC Workshop on Nonlinear Model Predictive Control for Fast

Systems, October 2006.
[9] M. Baotic, “An Efficient Algorithm for Multiparametric Quadratic

Programming,” Tech. Rep., Apr. 2002.
[10] C. Jones, “Polyhedral tools for control,” Ph.D. dissertation, Cambridge

University, 2006.
[11] J. Spjotvold, E. Kerrigan, C. Jones, P. Tondel, and T. Johansen, “On

the facet-to-facet property of solutions to convex parametric quadratic
programs,” Automatica, vol. 42, no. 12, pp. 2209–2214, Dec. 2006.

[12] M. Kvasnica, P. Grieder, and M. Baotić, “Multi-Parametric Toolbox
(MPT),” 2004. [Online]. Available: http://control.ee.ethz.ch/ mpt/

[13] J. Maciejowski, Predictive Control with Constraints. Prentice-Hall,
2002.

TuA12.3

453

