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Abstract— A linear quadratic model predictive controller
(MPC) can be written as a parametric quadratic optimization
problem whose solution is a piecewise affine (PWA) map from
the state to the optimal input. While this ‘explicit solution’ can
offer several orders of magnitude reduction in online evaluation
time in some cases, the primary limitation is that the complexity
can grow quickly with problem size. In this paper we introduce
a new method based on bilevel optimization that allows the
direct approximation of the non-convex receding horizon con-
trol law. The ability to approximate the control law directly,
rather than first approximating a convex cost function leads
to simple control laws and tighter approximation errors than
previous approaches. Furthermore, stability conditions also
based on bilevel optimization are given that are substantially
less conservative than existing statements.

I. INTRODUCTION

This paper considers the implementation of an MPC
controller for a linearly constrained linear system with a
quadratic performance index. Standard practice is to compute
the optimal control action in this case by solving a quadratic
program at each time instant for the current value of the state.
It was shown in [1]–[3] that this quadratic program can be
posed as a parametric problem (pQP), where the parameter is
the state of the system and that this pQP results in a piecewise
affine function that maps the state to the optimal input; the
so-called ‘explicit solution’.

The motivation for computing the explicit solution is that
the resulting piecewise affine function can be much faster and
simpler to evaluate online than solving a quadratic program,
which can in some cases lead to several orders of magnitude
reduction in computation time making MPC applicable to
very high-speed applications. The primary limitation of this
approach is that the complexity, or number of affine pieces,
of this explicit solution can grow very quickly with problem
size.

In this paper, we propose an approximation approach
that generates a low-complexity piecewise affine function
directly from the optimal MPC formulation (i.e. without
computing the optimal solution first). The approach is simple
in that it proceeds by choosing a small number of states and
then interpolates the optimal control action at these points.
The key questions to be answered are then: Which points
to select, how to certify that the sub-optimal controller is
stabilizing and how to define and compute the resulting level
of sub-optimality.

Several authors have proposed similar interpolated ap-
proximations that operate by exploiting the convexity of
the optimal cost function. Given a finite set of sampled
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points X , these methods differ primarily in the manner in
which they choose which points to interpolate to define the
approximate control law, or equivalently how they partition
the feasible set. In [4], the authors propose a recursive
simplical partition, in [5], [6] the partition is formed as a
result of incremental convex hull algorithms and in [7], [8]
a box decomposition scheme is used. The common feature
amongst these proposals is the method of choosing the set X ,
which is done in an incremental fashion by inserting at each
step the state for which the error between the approximate
cost function and the optimal one is the greatest. The main
motivation for this is that these points can be found by
solving convex problems. However, these approaches require
that the entire optimal input sequence over the prediction
horizon is approximated, rather than just the first step, which
defines the control law in a receding-horizon controller. This
requirement of approximating the entire optimal sequence
leads to a very conservative test for approximation error.

This paper introduces a new method that approximates
only the first step of the optimal control sequence and leaves
the remainder defined implicity as the result of a secondary
parametric optimization problem. The result is a decrease in
the conservatism of the approximation error, which in general
results in a significant decrease in approximation complexity.
The cost of this improvement is that the optimization prob-
lems to be solved are no longer convex, but are indefinite
bilevel quadratic optimization problems. Bilevel problems
are those in which some of the optimization variables are
constrained to be optimizers of a secondary optimization and
are, even in the simplest case, NP-hard to solve. We show
that the indefinite bilevel QPs required for this approach can
be re-written as mixed-integer linear programs (MILPs) and
hence solved using very efficient methods. The paper also
introduces an improved test for stability for the resulting
interpolated control laws over those given previously, which
is also based on bilevel optimization.

Proposals have also been made in the literature to derive
simpler approximate explicit control laws using methods
other than interpolation. The reader is referred to the recent
survey [9] for a complete review.

NOTATION

A polyhedron is the intersection of a finite number of
halfspaces and a polytope is a bounded polyhedron. If V is a
subset of Rd , then the convex hull of V , conv(V ) is the in-
tersection of all convex sets containing V . If V = {v0, . . . ,vn}
is a finite set, then conv(V ) = {∑n

i=0 viλi | λi ≥ 0, ∑λi = 1}.
The bold symbol x is used to describe an ordered sequence
x := (x0, . . . ,xN), where xi is the ith element of x.



II. BACKGROUND

The goal is to control the linear system

x+ = Ax+Bu , (1)

where the state x and input u are constrained to lie
in the polytopic sets X = {x | Fx≤ f} ⊂ Rn and U =
{u | Gu≤ g} ⊂ Rm respectively.

Consider the following semi-infinite horizon optimal con-
trol problem:

J?(x) := min J(x,u) (2)
s.t. xi+1 = Axi +Bui , ∀i = 0, . . . ,N−1

xi ∈ X , ui ∈ U , ∀i = 0, . . . ,N−1
xN ∈ XN , x0 = x ,

where XN = {x | Hx≤ h}⊂X is a polytopic invariant set for
the system x+ = Ax+Bν(x) for some given linear control law
ν : Rn 7→Rm. We define X ⊂Rn to be the set of states x for
which there exists a feasible solution to (2). The quadratic
cost function J is defined as

J(x,u) :=
1
2

xT
NQNxN +

1
2

N−1

∑
i=0

uT
i Rui + xT

i Qxi (3)

where the matrices QN ∈ Rn×n ≥ 0 and Q ⊂ Rn×n ≥ 0 and
R ∈ Rm×m > 0 define the cost function.

If u?(x) is the optimal input sequence of (2) for the state x,
and u?

0(x) is the resulting receding horizon control law, then
J? is a Lyapunov function for the system x+ = Ax +Bu?

0(x)
under the assumption that VN(x) = xT QNx is a Lyapunov
function for the system x+ = Ax+Bν(x) and that the decay
rate of VN is greater than the stage cost l(x,u) = uT Ru+xT Qx
within the set XN [10].

The goal in this paper is to compute a PWA function of
low complexity that approximates the control law u?

0(x) as
closely as possible while still guaranteeing stability.

III. INTERPOLATED CONTROL

We define an interpolated control law by choosing a finite
set of distinct feasible states and then interpolating amongst
the optimal control action at each of these states. In order
to formalize this idea, we must first define the regions over
which this interpolation will occur.

Definition 1 (Triangulation): A triangulation of a finite
set of points V ⊂Rn is a finite collection TV := {S0, . . . ,SL}
such that
• Si = conv(Vi) is an n−dimensional simplex for some

Vi ⊂V
• conv(V ) = ∪Si and intSi∩ intS j = /0 for all i 6= j
• If i 6= j then there is a common (possibly empty) face

F of the boundaries of Si and S j such that Si∩S j = F .
There are various triangulations possible, most of which

are compatible with the proposed approach. For example,
the recursive triangulation developed in [4], [11] has the
strong property of generating a simple hierarchy that can
significantly speed online evaluation of the resulting control
law. The Delaunay triangulation [12], which has the nice

property of minimizing the number of skinny triangles, or
those with small angles is a common choice for which
incremental update algorithms are well-studied and readily
available (i.e. computation of TV∪{v} given TV ). A particularly
suitable Delaunay triangulation can be defined by using the
optimal cost function as a weighting term, which causes
the resulting triangulation to closely match the optimal
partition [5].

Given a discrete set of states V , we can now define an
interpolated control law µTV : Rn 7→ Rm.

Definition 2: If V ⊂ X ⊂ Rn is a finite set and T =
{conv(V1) , . . . ,conv(VL)} is a triangulation of V , then the
interpolated control law µT : conv(V ) 7→ Rm is

µT (x) := ∑
v∈V j

u?
0(v)λv , if x ∈ conv(Vj) (4)

where λv ≥ 0, ∑λv = 1 and x = ∑v∈V j vλv.
The following lemma describes the relevant properties of

interpolated control laws.
Lemma 1: If V ⊂ X ⊂ Rn is a finite set and TV is a

triangulation of V , then the interpolated control law µTV is:

1) Feasible for all x ∈ conv(V ):
∃ x, u feasible for (2) such that x0 = x and u0 = µTV (x)

2) An affine function in each simplex conv(Vi)
3) Continuous
Our goal is to compute an interpolated control law µTV for

the system (1) that is as close to the optimal u?
0 as possible

by sampling a set of points V such that TV is of a pre-
specified complexity. As proposed in various papers [4]–[8],
we do this in an incremental fashion beginning from any
inner approximation conv(V ) of the feasible set X of (2)
and the resulting initial triangulation TV = {V0, . . . ,Vl}.

At each iteration of the algorithm, we maintain a point
set V and the resulting triangulation TV . This is then used to
compute a state xTV that is a maximizer for some function
γ : Rm×Rm 7→R that measures the error between the optimal
control law u?

0 and the interpolated one µTV .

xTV := argmax
x∈conv(V )

γ(µTV (x),u?
0(x)) . (5)

The point set V ′ := V ∪ {xTV } and triangulation TV ′ are
then updated to include this worst-fit point. This simple
procedure repeats until some specified approximation error
ε is achieved, or the complexity of the triangulation has
exceeded some bound. The general method is given as
Algorithm 1 below.

Remark 1: An initial inner approximation of the feasible
set X can be computed by, for example, using the projection
approximation approach proposed in [6].

Remark 2: Several methods are available to compute
TV∪{xTV }

given the previous triangulation TV in an incremen-
tal fashion [12].

The key questions we seek to answer here are how best
to define the function γ and how to compute the maximiza-
tion (5).



Algorithm 1 Construction of an interpolated control law
Require: A finite subset V of the feasible set of (2), an error

function γ : Rm×Rm 7→ R and an approximation
error ε or a complexity specification COMP.

Ensure: A point set V such that |TV | ≤ COMP or
maxx γ(µTV (x),u?

0(x))≤ ε .
1: Compute TV
2: repeat
3: Compute a point xTV ∈ argmaxx γ(µTV (x),u?

0(x))
4: Set err← γ(µTV (xTV ),u?

0(xTV ))
5: Update V ←V ∪{xTV }
6: Compute TV
7: until |TV | ≥COMP or err ≤ ε

8: Return V and TV

IV. ERROR COMPUTATION

In this section we propose to define the error function as

γ(x) := ‖u?
0(x)−µTV (x)‖∞ , (6)

which is natural for measuring the worst-case fit between
two functions. The key requirement of using such a function
is that we be able to solve the optimization problem (5).
One immediate method of doing this is to first compute the
optimal solution u?

0(x) to the pQP (2) using one of a number
of standard methods available [9]. This would provide an
explicit PWA representation of u?

0(x) and would then make
the computation of (5) straightforward. However, it is likely
that this optimal control law is too complex to be computed
directly, and so here we aim to find an implicit representation
of u?

0(x). This section will outline how this can be done by
writing (5) as a bilevel optimization problem, which can in
turn be solved using a mixed-integer linear solver.

Bilevel Optimization

Bilevel optimization problems have been extensively stud-
ied in the literature, and the reader is referred to the recent
survey [13] for background details. Bilevel problems are
hierachical in that the optimization variables are split into
upper y and lower z parts, with the lower level variables
constrained to be an optimal solution to a secondary opti-
mization problem.

min
y

VU (y,z) (7)

s.t. GU (y,z)≤ 0
z = argmin

z
{VL(y, ẑ) | GL(y, ẑ)≤ 0}

Remark 3: The bilevel formulation given here makes the
implicit assumption that the optimizer of the lower-level
problem is unique. This assumption clearly does not hold
in general and there is a large literature available on how to
deal with non-unique optimizers. However, for the purpose
of computing (5), this assumption is valid in the following
since the optimizer will be unique as long as the matrix R
in (3) is positive definite.

Solution methods: Bilevel optimization problems are in
general very difficult to solve. Even the simplest case where
all functions are linear is NP-hard [14]. Several compu-
tational methods have been proposed for various types of
bilevel optimization problems (see [13] for a survey), but
for the purposes of this paper, the most relevant is that
originally given in [15] for quadratic bilevel problems. The
key observation is that if the lower level problem is convex
and regular, then it can be replaced by its necessary and
sufficient Karush-Kuhn-Tucker (KKT) conditions, yielding a
standard single-level optimization problem.

min
y,z,λ

VU (y,z) (8a)

s.t. GU (y,z)≤ 0
GL(y,z)≤ 0

λ ≥ 0

λ
T GL(y,z) = 0 (8b)

∇zL (y,z,λ ) = 0

where L (y,z,λ ) := VL(y,z)+ λ T GL(y,z) is the Lagrangian
function associated with the lower-level problem. For the
special case of linear constraints and a quadratic cost, all
constraints of (8) are linear and the complementarity con-
dition (8b) is a set of disjunctive linear constraints, which
can be described using binary variables, and thus leads to
mixed-integer linear constraints.

Error Computation via Bilevel Optimization

To compute the maximum of the function γ given in (6)
while maintaining an implicit representation of the optimal
control law u?

0, we set the upper level cost VU to γ and the
lower level VL to J. If the triangulation defining the interpo-
lated control law is TV := {S0, . . . ,SL} and the interpolated
control law in simplex Si is µSi = T ix + t i, then for each
simplical region Si, we can compute the maximum of the
error function γ with the following bilevel optimization:

γi := max ‖µ−u0‖∞

s.t. x ∈ Si

µ = T ix+ t i

u0 = argmin
1
2

xT
NQNxN +

1
2

N−1

∑
i=0

uT
i Rui + xT

i Qxi

s.t. xi+1 = Axi +Bui

Fxi ≤ f , Gui ≤ g , HxN ≤ h

x0 = x

The lower-level optimization problem is clearly strictly con-
vex, and can therefore be solved by replacing it with its
KKT conditions, which results in the disjunctive optimization



problem (9).

γi := max ‖µ−u0‖∞

s.t. Upper-level constraints (9a)⌊
x ∈ Si

µ = T ix+ t i

Primal constraints (9b)xi+1 = Axi +Bui

x0 = x

Fxi ≤ f , Gui ≤ g , HxN ≤ h

Dual constraints (9c)⌊
λ

x
i ≥ 0 , λ

u
i ≥ 0 , λ

x
N ≥ 0

νi free

First order optimality ∇L = 0 (9d)0 = Qxi +AT
νi−νi−1 +FT

λ
x
i

0 = Rui +BT
νi +GT

λ
u
i

0 = QNxN +HT
λ

x
N−νN−1

Complementarity conditions (9e) λ
xi
j = 0 or Fjxi = f j

λ
ui
j = 0 or G jui = g j

λ
xN
j = 0 or H jxN = h j

Remark 4: The maximization of a convex infinity norm
‖t‖∞ (as in (9)) can be accomplished by using a standard
technique (e.g. [16]), in which we introduce binary variables
ni, pi for each element of t and add the condition that
the binary variable pi is one if ‖t‖∞ = ti and ni is one if
it is ‖t‖∞ = −ti. The method adds only linear and binary
conditions to (9) and therefore it remains a MILP.

Remark 5: As written, (9) is a mixed integer linear pro-
gramming problem (MILP) with logic constraints. Standard
techniques exist to convert such logical constraints to linear
ones with binary variables, and the reader is referred to
e.g. [16] for details. While the resulting MILP is NP-hard to
solve, there are both free and commercial solvers available
that can tackle very large problems.

Remark 6: It is also possible to write (9) with a quadratic
cost in place of the infinity norm. This would result is a
bilevel indefinite QP, which can also be solved as a mixed-
integer LP as discussed in Section V-A, although this would
result in a larger number of binary variables.

V. STABILITY

If the matrices of the cost function (3) and the set XN
are defined appropriately, then the optimal control law u?

0
is stabilizing for (1) and the optimal cost function J? is a
Lyapunov function for the resulting closed-loop system [10].
In this section, we seek verifiable conditions under which
J? is also a Lyapunov function for the approximate closed-
loop system x+ = Ax+BµV (x). We begin by giving a minor
modification of the standard condition for an approximate
control law to be stabilizing [17], which requires only that the
approximate control law be specified, rather than an entire
approximate input sequence.

Theorem 1: Let J? be the optimal solution of (2) and a
Lyapunov function for x+ = Ax+Bu?

0(x). If µ(x) : Rn 7→Rm

is a control law defined over the set S, then J? is also a
Lyapunov function for x+ = Ax + Bµ(x) if for all x0 ∈ S,
there exists a feasible state/input sequence (x,u) to (2) such
that u0 = µ(x0) and

J(x,u)− J?(x0)≤
1
2

xT
0 Qx0 +

1
2

uT
0 Ru0 (10)

Proof: If the input/state sequence (µ(x0),u1, . . . ,uN−1,
x0, . . . ,xN) is feasible for (2) and satisfies condition (10), then
the shifted sequence (u1, . . . ,uN−1,ν(xN), x1, . . . ,xN ,xN+1)
is also feasible, where xN+1 := AxN + Bν(xN). Define the
stage and terminal costs as l(x,u) := 1

2 xT Qx + 1
2 uT Ru and

VN(x) := 1
2 xT QNx respectively. Evaluating the cost function

at this shifted sequence gives

J?(x1)≤VN(xN+1)+
N

∑
i=1

l(xi,ui)

= VN(xN+1)−VN(xN)+ l(xN ,uN) (11a)

+VN(xN)+
N−1

∑
i=0

l(xi,ui) (11b)

− l(x0,µ(x0)

Equation 11a is negative by the assumption that VN decreases
faster than the stage cost l in the set XN and (11b) is less
than or equal to J?(x0)+ l(x0,µ(x0)) by the assumption (10).
It follows that J?(x1)− J?(x0) ≤ 0 and therefore J? is a
Lyapunov function for the approximate system x+ = Ax +
Bµ(x).

Remark 7: The condition given in Theorem 1 is essen-
tially the same as that used in several other papers on
approximate MPC [17]. The standard approach is to define
a function Ĵ, which is the interpolation of the optimal
cost at the vertices of the triangulation and then test this
cost under condition (10). This test is efficient because the
function Ĵ is piecewise affine and hence (10) can be evaluated
as a series of convex optimizations. Rather than taking
a linear interpolation, we here assume that the candidate
Lyapunov function J̃ is given implicity by the optimization
J̃(x) := min{J(x,u) | (2), x0 = x, u0 = µ(x)}, which makes
J̃ a convex piecewise quadratic function. Clearly, the con-
dition J̃ ≤ Ĵ holds, which makes the condition given in
Theorem 1 less conservative than previous proposals and
often significantly so. The cost is that condition (10) can
no longer be verified by solving convex problems.

Theorem 1 gives a condition under which the optimal
cost function J? is a Lyapunov function for the closed-
loop system under the interpolated control law µTV (x). This
condition is not trivial to test, but can be confirmed by
solving a series of bilevel programs, which we demonstrate
below.

Let V ⊂X be a finite set that defines the interpolated
control law µTV over the triangulation TV := {S1, . . . ,SL}.
Define ξi to be the optimal cost of the bilevel optimization
problem (12) for each i = 1, . . . ,L, where µ := T ix+ tt is the



affine control law in the simplical region Si.

ξi := min
1
2

x̃T
0 Qx̃0 +

1
2

ũT
0 Rũ0 + J(x,u)− J(x̃, ũ) (12a)

s.t. x0 ∈ Si

Constraints (2) on x,u
(x̃, ũ) = argmin J(x̃, ũ)

s.t. Constraints (2) on x̃, ũ
x̃0 = x0

ũ0 = T ix0 + tt

(12b)

One can see from (12) that the conditions of Theorem 1 are
met if and only if max{ξi} is negative.

Corollary 1: J? is a Lyapunov function for the system
x+ = Ax+BµTV (x) if max{ξi} ≤ 0.

A Lyapunov function is insufficient to prove stability for
a constrained system; the system must also be invariant. As
discussed in [6], since level sets of Lyapunov functions are
invariant, it is possible to determine an invariant subset of
conv(V ) given the vertices of each region Si without further
processing.

A. Computation of Stability Criterion

The bilevel optimization problem (12) differs from that
tackled in the previous section in that the upper level is an
indefinite quadratic program, while the lower is a convex QP.
In the following, we demonstrate that this class of problems
can also be re-formulated as a disjunctive LP and hence
solved using standard MILP software.

We begin with the following lemma, which demonstrates
that an indefinite QP can be written as a mixed-integer LP.

Lemma 2: Consider the following indefinite QP

J? := min
z

1
2

zT Dz (13)

s.t. Bz≤ b ,

Cz = c ,

where B∈Rm×n, C∈Rl×n and assume that Slater’s condition
holds. If (z?,λ ,γ) is an optimal solution of the MILP (14),
then z? is an optimizer of (13) and J̌ = J?.

J̌ =min
x,λ ,γ

−1
2
(
bT

λ + cT
γ
)

(14)

s.t. Bz≤ b , Cz = c , Primal feasibility

∇zL = Dz+BT
λ +CT

γ = 0 , Stationarity

λ ≥ 0 , γ free , Dual feasibility

λi = 0 or Biz = bi , Complementarity

Proof: The constraints of (14) are precisely the KKT
conditions of (13), which are necessary but not sufficient
because the problem is indefinite. We gain sufficiency by
minimizing the cost function of (13) while enforcing the
necessary optimality conditions, which leads to an optimal
solution. We have now to show that the linear cost function
of (14) is in fact equivalent to the indefinite cost of (13).

We begin by taking the inner product of the stationarity
condition and the primal optimization variable z

zT
∇zL = 0 = zT Dz+ zT BT

λ + zTCT
γ

The complementarity conditions λ T (Bz−b) = 0 and γT (Cz−
c) = 0 then give the result

zT Dz =−bT
λ − cT

γ

We can now show that an optimizer of (12) can be
computed by solving a mixed-integer linear program.

Theorem 2: Consider the following quadratic bilevel op-
timization problem:

J? = min
1
2

yT Sy+
1
2

z?T T z? (15)

s.t. Ay≤ b

z? = argmin
{

1
2

zT Dz | Ez+Fy≤ g
}

where D is positive definite and S and T are indefinite ma-
trices. If (y,z,β L,βU ,λ L,λU ,λUL, l) is an optimal solution
of (16), then (y,z) is an optimal solution to (15).

min − 1
2
(
bT

λ
U +gT

λ
UL) (16a)

s.t. β
L
i ∈ {0,1} , β

U
i ∈ {0,1}

Upper level

Primal and dual feasibility⌊
Ay≤ b , λ

U ≥ 0
Stationarity ∇yL

U = 0 = Sy+AT
λ

U +FT
λ

UL

∇zL
U = 0 = T z+DT

γ
U +ET

λ
UL

∇λ LL U = 0 = Eγ
U − l

Complementarity⌊
β

L
i = 1⇒ λ

UL
i = 0 , β

L
i = 0⇒ li = 0

β
U
i = 1⇒ λ

U
i = 0 , β

U
i = 0⇒ Aiy = bi

Lower level (16b)

Primal and dual feasibility⌊
Ez+Fy≤ g , λ

L ≥ 0
Stationarity⌊

∇zL
L = 0 = Dz+ET

λ
L = 0

Complementarity⌊
β

L
i = 1⇒ λ

L
i = 0 , β

L
i = 0⇒ Eiz+Fiy = gi

Proof: The matrix D is positive definite and so its KKT
conditions are both necessary and sufficient for optimality
of the lower level problem. As a result, we can replace
the lower level problem with these conditions in order to
get an equivalent single level problem with mixed-integer
constraints. We introduce the binary variable β L, which
encodes the complementarity conditions of the lower level



problem and define the following optimization problem as a
function of this variable:

J(β L) := min
y,z,λ L

1
2

yT Sy+
1
2

zT T z (17)

s.t. Ay≤ b

Lower level optimality conditions (16b)

For each β L, (17) is a single-level indefinite quadratic pro-
gram, which can be written as a MILP using Lemma 2. This
gives the optimization problem (16), where we introduce
appropriate dual variables λU , λUL, l and binaries βU to
represent the upper-level complementarity conditions.

Finally, we have J? = minβ L
{

J(β L) | (17) feasible
}

,
which gives the desired result.

Remark 8: Note that the structure of the problem (15)
differs slightly from that required to solve the stability crite-
ria (12) in that it does not include any equality constraints.
These constraints were left out of Theorem 2 for reasons of
clarity and space restrictions, but the proof can be readily
extended to this case.

VI. ILLUSTRATIVE EXAMPLE

Consider the following simple two-state, two-input exam-
ple:

x+ =
[

1 1
0 1

]
x+
[

0.42 0.90
0.38 0.67

]
u ,

with the input and state constraints ‖u‖∞ ≤ 0.1, |x1| ≤ 40,
|x2| ≤ 10 and a horizon N of length 10 with the stage
cost taken to be l(x,u) := x′x + 30u′u. The optimal control
law in this case requires 1,155 regions and can be seen in
Figure 1(a).

We here approximate this optimal control law with one
interpolated from 36 points, which results in 52 simplical
regions (Figure 1(b)). The error γ between the optimal and
approximate control laws is only 0.06 and the maximum
error between the optimal and suboptimal cost functions is
0.75. The approximate system is stable, as verified by solving
MILP (16).
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