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Abstract— Recent results have suggested that online Model the applied control action in a real-time implementation.
Predictive Control (MPC) can be computed quickly enough to |n this paper we develop a real-time MPC scheme that
control fast sampled systems. High-speed applications inose 4 ,arantees stability for all time constraints and allows fo
a hard real-time constraint on the solution of the MPC prob- - . L .
lem, which generally prevents the computation of the optima fast online computation. The a-priori stability guaran_tee
controller. In current approaches guarantees on feasibity and  then allows one to trade the performance of the suboptimal
stability are sacrificed in order to achieve a real-time seing. In  controller for lower online computation times. We show that

this paper we develop a real-time MPC scheme based on robust the method can beractically implemented and efficiently
MPC design that recovers these guarantees while allowing fo solved for systems of significant size

extremely fast computation. We show that a simple warm- )

start optimization procedure providing an enhanced feasilte . . . .
solution guarantees feasibility and stability for arbitrary time A standard warm-start procedure is applied in which
constraints. The proposed method can be practically imple- the optimization problem for the current state is initiatiz

mented and efficiently solved for dynamic systems of signifemt  with the shifted suboptimal control sequence computed at

problem size. Implementation details for a real-time robus o hrevious time instance. The optimization is terminated

MPC method are provided that achieves computation times | h ified i traintis hit returni
equal to those reported for methods without guarantees. A2- early when a speciiied ime constramtis hit returning

dimensional problem with 3 control inputs and a predicton ~an enhanced feasible solution. First, asymptotic stgbilit
horizon of 10 time steps is solved irkmsec with a performance of the so-calledr-real-time control law resulting from
deterioration less than 1% and thereby allows for sampling  this procedure is established for the nominal system. The
rates of 500Hz. approach is then extended to the case of uncertain systems
that are subject to bounded additive disturbances. We show
that the use of a robust MPC design guarantees constraint
In online Model Predictive Control (MPC) approaches, &atisfaction as well as input-to-state stability of the enain
constrained optimal control problem is solved at each timgystem under the proposecireal-time control law. The
instant, which has restricted the applicability of MPC topresented results are based on existent stability theory in
slow dynamic processes. In recent years it was shown thie MPC literature, e.g. [15], [16], [20] and the references
the optimal solution to this type of problem can be solvedherein, that is studied and emphasized in the context of
offline and the so-called explicit solution can then be used aeal-time MPC for linear systems. In particular we exploit
a control look-up table online [1], [2]. Whereas this enablethe fact that a suboptimal rather than optimal solution to
MPC to be used for fast sampled systems its application e (robust) MPC problem is sufficient for stability if it
strongly limited by the problem size. This work is motivatedsatisfies the constraints and has a lower cost than the dhifte
by recent results showing that the computation times faequence from the last sample. We point out that this
solving an MPC problem can be pushed into a range whetieeory offers a stability guarantee for the nominal and the
an online solution becomes a reasonable alternative for thcertain case under a standard and simple online procedure
control of high-speed systems. Significant reduction of the
computational complexity can be achieved by exploiting the A real-time MPC procedure for uncertain linear systems
particular structure and sparsity of the optimization peab is developed using the tube based robust MPC approach in
given by the MPC problem using tailored solvers [23], [24][17]. We present the computational details for implementin
the proposed method and emphasize that the required
High speed systems impose a strict real-time constraigets can be computed or approximated for all problem
on the problem which generally prevents the computatiosizes allowing the real-time MPC scheme to be applied to
of the optimal controller. The goal is then to provide adynamic systems 080 dimensions or more. We show that
suboptimal control action within the time constraint thathe structure and sparsity of the optimization problem is
still guarantees stability of the closed-loop system anthaintained in the robust case and can be solved efficiently
achieves acceptable performance. A method providing theasing solvers tailored for the solution of MPC problems. A
guarantees by combining online and explicit MPC wasustom solver was developed for this paper using a primal
introduced in [25], which is however limited to smallerbarrier interior-point method [4] that achieves computati
problem dimensions. Available methods for fast online MPG@mes that are equal or even faster compared to existing
do not give guarantees on either feasibility or stability omethods with no guarantees. Foi zdimensional example

|I. INTRODUCTION



system the MPC problem with a limit of interior-point The smallest RPI set that is contained in every closed RPI
iterations was solved iBmsec with an average performanceset of (3) is called a minimal RPI (mRPI) set, and the biggest
deterioration of less than% allowing for sampling rates PI set that contains every closed Pl setadf = A, (x) is

of 500Hz. The corresponding computation times for eaalled a maximal Pl (MPI) set.

30-dimensional system werBdmsec allowing for sampling Definition 11.3 (Regional ISS [7], [21]). Given an RPI set

rates of100Hz. I' CR™with 0 € T', system (3) is Input-to-State Stable (ISS)
in I' w.r.t. w if there exists aCL-function [22] 8 and akK-

The outline of the paper is as follows: In Section “If nction [22] v such that for all initial stateg(0) € I and

the nominal real-time control procedure is introduced an r all disturbance sequences — [wy, -- - ,w;] € Wite:
asymptotic stability is shown repeating important result (i, 2(0), W) |2 < BI2(0) |2, 1)+ (g _11]]); Vi >0
from the literature. Section IV extends these results to th hﬁ . 2 > =il -
uncertain case. The concept of robust MPC is described ahd eref|wij—y [ = supo<rsj—1{lwell2}-

input-to-state stability is shown for the proposed methodRemark Il.4. Note that the condition for input-to-state sta-
The computational details necessary to apply the proposbiity reduces to that for asymptotic stability it = 0. A
procedure are provided in Section V. Finally, in Section Veystemz™ = Ax +w is ISS if the nominal system™ = Ax
we illustrate our approach and its advantages using nualeriés asymptotically stable and the effect of the disturbante o
examples and provide a comparison with the literature. the evolution of the system is bounded.

[I. NOTATION & PRELIMINARIES lIl. REAL-TIME MPC

Consider the nominal linear discrete-time system (2). The
goal is to regulate the state of the system to the origin while
respecting constraints on inputs and states, which can be
formulated as the following MPC probleiy (z):

A polyhedronis the intersection of a finite humber of
halfspacesP = {z|Az < b} and apolytopeis a bounded
polyhedron. IfA € R™*"™ thenA; € R" is the vector formed
by thei-th row of A. If b € R™ is a vector them; is thei-th

element ofb. Given two setsS{, S, C R™ the Minkowski . N N-1

sum is defined as; © S, £ {81+52|81 € 51,80 € SQ} and muln VN(Ia U) = Z l(xlvul) + VJ‘(:CN) (4)

the Pontryagin difference @& ©S, £ {s1]s1+s2 € Sy, 59 € i=0 .

Sy} = {s1]s1 ® S C Sy} For a collection of set§.S; C st @it = Aw; + Bu;, 1=0,...,N -1,

R™i€[a,a+1,-- b}, P, G2 S.BSus1® B Sh. (xiu;)) €XxU, i=0,...,N—1, 5
- A r=a . . X ( )

Given a sequence = [ug, -+ ,uy—1], U(j) denotes the-th TN € Xy,

element ofu. If a sequence depends on a parameter denoted 0o =T,

by u(z), u(j,=) denotes itsj-th element. If the elements \yhare y —

Y e U th UN whereUN 2 U U = [ug, -+ ,un—1] € UYN denotes the input
u(j) € enuc U™, whereU™ = U x--- X U. sequence, X and U are polytopic constraints on

Consider the discrete-time linear system the states and inputs, the stage cost is defined as
7 =Az+ Bu+w (1) l(fz',ui_) = 3] Q; + su; Rui, Vi(z) = _%_ITPI_ i_S
. . a terminal penalty functior), R and P are positive definite
and the corresponding nominal system matrices and¥; C X is a compact terminal target set with
o+ = Az + Bu @) properties as defined in Assumption Il1.1.

wherez € R" is the statey € R™ is the control input and  The associated state trajectory to a given control sequence

w is a bounded disturbance that is contained in a convex andz) at statex is x(z) £ [z, z1,--- ,2n], Wherezy =

compact set¥ C R" that contains the origin. The solution and for each, x; = ¢(i, z, u(x)). ProblemPy (x) implicitly

of the nominal system (2) at sampling tinkefor the initial  defines the set of feasible control sequentés(z) =

statex(0) and a sequence of control inputsis denoted as {u(z) |u(z) € UV, x(z) € X¥ x X} and feasible initial

#(k,z(0),u). Consider that system (1) is controlled by thestatesXy £ {z |Ux(z) # 0}. For a given state: € X

control lawu = k(z) denoted by the solution ofPy () yields the optimal control sequence
u*(x). The implicit optimal MPC control law is then given

¥ = Az + Br(z) + w = Ax() +w ©®) i (a )receding I;)mrizorﬁ)fashion by(x) £ u*(0, z). ’
The solution of the controlled uncertain system for a s

e . . o
. . - A tion 11l.1. In the foll t d that; (-
quence of disturbances is denoted a®,,(k, (0), w). ssumpton n N TOToWIng 1L 1S assume ()

is a Lyapunov function inX; and X, is a Pl set for
Definition 11.1 (Positively invariant (PI) set). A set S C  System (2) under the control lawy(x) = K, given by
R™ is a positively invariant (P1) set of system = A, (), the following conditions:

if A,{(I) c¢Sforall z € S. Al: Xf CcX, (A+BK)Xj - Xf, KXf CcUuU

Definition 11.2 (Robust positively invariant (RPI) set). A2 Vi((A+ BK)x) = Vi(w) < —l(@, K)o € Xy .

A set.S C R™ is a robust positively invariant (RPI) set of Theorem 11.2 (Stability under «(x), [16]). Consider
() if Ag(z) +we Sforallz e S,weW. ProblemPy (x) fulfilling Assumption 11l.1. The closed-loop



systemz®™ = Az + Bk(z) is asymptotically stable with [, - ,uy_1] is a feasible control sequence forx(x) is
region of attractionXy . the associated state sequence and= Az + Bu(0,z) is

. . ._the current state. The shifted sequence is given by
For a given value: € X, we can write (4) as a Quadratic

Program (QP) of the following form : Ushift(2) = [t1, -+, un—1, KX(N, z)] (7)
min z'Hz st Pz<g, Ez=c, (6) We defineurr(z™,7) to be the control variables @ y ()

z after time v, with 7 > 0. A 7-RT optimizer computes a

wherez £ [ug,z1,--- ,uy_1,zn] € RN™+™) js a vector control sequence in seconds with the following properties:

containing the sequence of states and control inputs. See, ugr(zt, ) is feasible forz*
e.g. [2] for details on the conversion and [24] for details on URT(:CJr’ 0) = Ushit(z)

the structure ofH, P, g, E andc. o Vn(zt urr(z™,7)) < Vi (T, Uugr(z™,0))

Most real applications impose a real-ime constrainp€finition Ill.4 (Nominal 7-RT control law). Let
on the solution of the MPC problem, i.e. a limit on theUrT(;7) be as defined in 1Il.3. Ther-RT control law
computation time that is available to compute the contrdf
input, at each time instance. This often prevents the tir(z) = Urr(0,2,7), for z € Ay . (8)

computation of the optimal solution to (6). The introduatio 1t is \yel|-known that in the nominal case the shifted seqeenc
of a 7-real-time constraint can lead to the loss of feasibility, (7) is feasible and stabilizes the system in (2) [20].
and more importantly stability when using a generafg tact that any improved feasible solution of the shifted
optimization solver. A suboptimal control input thereforeseqyence also offers guaranteed stability has been pointed
has to be p_r_owded Wlthl_n_ the real-time constraint tha&ut previously in several places (see e.g. [16], [20]) but
ensures stability and a minimal performance deterioratiog importance for real-time MPC has not been previously
In the following a control law is called-real time ¢-RT) gy died. We therefore state this result for completeness.

if it is computed inT seconds.
Theorem II1.5 (Stability under ., (x), [20]). The

Various approaches trying to reduce the computation timfdosed-loop system™ = Az + Br.(z) is asymptotically
in online MPC have been recently proposed. Many methodable for all~ > 0 with region of attractionty .

are based on the development of custom solvers that gmark 111.6. The critical requirement in order to guaran-
advantage of the particular sparse structure in an MPfae stapility of ther-RT control law is feasibility of the
problem (e.g. [23], [24]). In [23], for example, an infedsib gpitteqd sequence in (7) or so-called recursive feasibility
start newton method is applied that is terminated after f,g guarantees stability of th&RT control law. In order
fixed number of steps. A tailored solver was developed thgt guarantee stability for all subsequent times> 0 the
exploits the sparse structure of the MPC problem resulting ionimization has to maintain feasibility and ensure that th
computation times in the range of milliseconds. The authogg,s function is not increased with respect to the cost a tim
in [5] develop a warm-start based homotopy approach_  These requirements are not automatically fulfilled by
that is terminated early in case of a time constraint. MOS{)| standard optimization routines in which case they have t

available approaches however sacrifice feasibility and/gyg explicitly enforced, see Section V-B for details.
stability in order to achieve a real-time guarantee. In [42]

relation between the level of suboptimality and the stabili IV. REAL-TIME ROBUST MPC

guarantee is derived. These results can however not be . ) ) )

applied to the considered case of real-time MPC since it is In Practice, model inaccuracies or disturbances usually
currently not possible to determine the level of suboptitpal CaUse violation of the nominal system dynamics in (2) which

that a given solver will achieve in a fixed amount of time. ¢@n lead to the loss of (recursive) feasibility. Stabilifytioe
nominal optimal MPC controller as well as the proposed

7-RT control law can then not be guaranteed. This issue

We show that in the nominal casereRT input sequence dd qi b C sch h )
that is guaranteed to be feasible and stabilizing can bQ/eas" a _b_T_essg |r;] ro FJSt NPLP scblemefs t atl re_covit recursive
constructed for any time constraint A standard warm-start easl lity yc angl_ng_t € probiem formu ation. As men-

ed previously, this is the crucial item in order to prove

procedure is employed where the input sequence computté?)n

at stater is used to initialize the QP (6) for the next Sta,[estability of the proposed real-time MPC method. Note that in

2+ in (2) (note that the vectaz can be directly constructed the considered case stability can therefore not be achieved

from the current state and a given input sequence). Ttpé( the approach descriped in [13]’ Whgre_ a constraint_ on
QP is then solved using an optimization routine that ighe Lyapunov decrease in the first step is introduced, since

iteratively improving the solution by taking feasible stepd the solutions are nqt recursively feasible. In this sectin _

is terminated after time. The described procedure returnsresuns for the nominal case are extended to the uncertain

a+-RT control law. case using a robust MPC method. We first describe the idea
' of robust MPC and then develop a robusRT control law

Definition 111.3 ( 7-RT optimizer). Assume u(z) = that guarantees ISS of the closed-loop uncertain system.



A. Robust MPC Remark IV.1. Note that the re-optimization of the tube
Consider the discrete-time uncertain system in (1). Theenter at every time step introduces feedback to the distur-

goal of robust MPC is to provide a controller that satisfiedance. A feasible and stable controller could however also
the state and input constraints and achieves some form & oPtained by computing the center trajectory and control
stability despite disturbances that are acting on the systeS€duence once for the intial state0) and then running the

Asymptotic stability of the origin can not be achieved in the?YStem with the obtained control sequence and after that wit
presence of persistent disturbances. It can, however tyenshot€ @uxiliary control law.

that under certain conditions the trajectories converganto Assumption IV.2. It is assumed tha®), R, P, Vi(-), X ful-

RPI setZ, which can be seen as the ‘origin’ for the uncertairfill Assumption 111.1 with X and U replacingX andU and
system. This is captured in the concept of ISS in Definitior,kf(a;) = Kx.

1.3, requiring the nominal system to be asymptoticalljofta )
and the influence of the disturbance on the evolution of th'gfmark IV.3. The setX; @ Z is an RPI set for system
states to be bounded [21]. ot = (A+ BEK)z + w.

There is a vast literature on the synthesis of robust MP€he resulting robust MPC control law is given by:
controllers, see e.g. [15], [16] and the references thetain -
an overview. The crucial property of recursive feasibility R(z) =U0%(0,z) + K(z — 25(x)) , (11)
is guaranteed by all available robust MPC methods a’\ﬂhereu*(x) and 7 (z) is the optimal solution td®y (z).
could be used to derive a real-time MPC controller for thgte that the optimal initial centet;(z) is not necessarily
uncertain system (1). In order to allow for fast computatioréqua| to the current state
we use the tube based robust MPC approach for linear
systems described in [17] in this work. The main steps of thEheorem V.4 (Stability under & (z)). Consider Problem

procedure are outlined in the following (see [17] for degpil P (x) fulfilling Assumption IV.2. The closed-loop system
xt = Az + BR(z) + w is ISS inXy W.rt. w.

The method is based on the use of a feedback poligyyoof, Robust stability of the seE with region of attraction

of the formu = @ + K(z — ) that bounds the effect of ¥ was proven in [17] which corresponds to 1SS Ay
the disturbances and keeps the statesf the uncertain [21], -

system in (1) close to the statesof the nominal system

't = Az + Bu. Loosely speaking, the controlled uncertainB. Real-time robust MPC

system will stay within a so-called tube with constant secti  The previously described robust MPC scheme separates
Z and centersz(i), where Z is an RPI set for system the effect of the uncertainty from the nominal system
zt = (A + BK)z + w. The robust MPC problem can behavior and thereby allows us to directly extend the result
therefore be reduced to the control of the tube centerfyr the nominal case in Section IlI to the case of uncertain
which are steered to the origin by choosing a sequence ¢fstems. We show in the following thatraRT control law
control inputsz and the initial tube centet(0). It can be for the uncertain system (1) can be obtained by applying
shown that if the initial center is chosen according to théhe proposed real-time MPC scheme to the robust MPC
constraintz = 2(0) € £(0) © Z for a given initial stater, problem Py (z) and prove that the resulting robustRT
then the trajectory of the uncertain system remains withigontrol law is ISS. Our results are based on the fact that
the described tube (in fact for afl,z(i) € z(i) ® Z if recursive feasibility of the MPC control law is recovered by
z(0) € z(0) @ 2). This can be formulated as a standardneans of a robust MPC design. This is a well-known fact
MPC problem with the only difference that the first state in the robust MPC literature and has been stated in various
is also an optimization variable representing the tubeerentplaces (e.g. [15], [17]). Although it was previously remeak

for the current state. In order to guarantee that the uncertaire.g. in [15] that this result can be used to show that an
system does not violate the constraints in (5) the constrairenhanced solution aPy(z) rather than the optimal one is
for the tube centers must be tightened in the following waysufficient for stability, this result has not been exploitad
X=Xo62Z2,U="Uo KZ. This results in the following the context of real-time MPC to our knowledge.

robust MPC problenPy (z):

N—1 The same standard optimization routine as described in
min Vy(z, %o, U) £ Z UZ4, 1) + Vi(Zn) (9) Section Il is applied to solvéy (x). The optimization is
To,U =0 initialized with the input sequence and tube centers coetput
st Ty = Az; + Bu;, i=0,...,.N—1, at _the pre_vious tir_ne step. The procedure ir_nprov_es the

(z;,u;) €XxU, i=0,....,N—1, 0 initial s_oluﬂon and is te_rmlnated ea_\rly after a f|x_ed time
TN € Xy, (10)  determined by the real-time constraint. The resultingibdas
T ETo®Z suboptimal controller together with the static feedback in

B (11) is applied to the system.
ProblemPy () implicitly defines the set of feasible initial o o ]
states¥y C Xy and feasible control sequendés (z). Definition IV.5 (Robust 7-RT optimizer). We define
Urr(zt,7) to be the control variables anth gr(z™,7) to



be the corresponding state variabig after solvingPy(z) we assume thatl = {w|||w|s < 6} in the polytopic
for time 7. A robust 7-RT optimizer computes a control case andV = {w]| ||w||2 < §} in the ellipsoidal case. The
sequence and an initial center inseconds with properties results can however be extended to the case whiérés
as defined in Assumption 111.3 and the additional property:a general bounded polytope or a general ellipse, respbctive
o zt € Zogrr(zt,7)® Z for 27T in (1). _ o
o 1) Polytopic approximation ofX;: The MPI set cor-
Definition V.6 (Robust 7-RT control law). Let Urr(-,7)  responds to the output admissible set [6]. Using the LQ
andzrr (-, 7) be as defined in IV.5. The robustRT control  controller the output admissible set can be finitely detasi
law is by O = {z € R"|GA'z < f,Vt € [1,---,t*]} which
fr(2) = Urr(z, 7)+ K (z—Fo rr(z, 7)), for o € Xy. (12) can be compute_d_L_Jsing [10]. Th(_a e>_<act ca_lculati_on might
however be prohibitively complex in higher dimensions. An
Theorem IV.7 (Stability under % (z)). The closed-loop approximation of the MPI set is described in [11] where
systemet = Az + BR,(z)+w is ISS inXy w.rt.w for all  a positively invariant polytope is derived as the separafor
T2>0. two ellipsoidal sets resulting in a number of QPs, which will

Proof. Recursive feasibilty was proven in  [17]. still be limited to relatively small dimensions<(10).

Since Vi (z, Zorr(z,7),u) = Vn(Zorr(z,7),u) and 2) Ellipsoidal approximation of ;: Most approaches use
Fr(Togrr(2,7)) = #r(Zorr(z, 7)), asymptotic stability of o jevel set of a quadratic Lyapunov function to derive an
the center trajectoryzorr(¢s, (j, 2(0),W),7) is ShOWN i ariant ellipsoidal inner approximation of the MPI set,[3
by Theorem 1IL.5. ISS then follows from the fact thatig) |y the considered case a Lyapunov function is readily
s, (7:2(0), W) € Zogrr(ds, (j,(0), W), 7) & Z [17]. B quajlaple withV} (z) = 27 Pz. An ellipsoidal approximation
Theorem IV.7 guarantees stability of the uncertain system (of the MPI set can be computed as the biggest level set
in a real-time MPC implementation by using the robustifiedulfilling the state and control constraint€x, = {z €
problem formulationPy (). The solution of (9) can be R"[2" Pz < Ymax}, Whereymex = argmin{—|z" Pz <
stopped after an arbitrary available timeand even a)- 7.z € X, Kz € U}. This results in a simple LP that can be
time feasible and stabilizing solution is available witre th solved for all dimensions.

hifted .
shitied sequence 3) Polytopic approximation of: The method described

V. COMPUTATIONAL METHODS in [18] can be used to compute arouter approximation of

In order to apply the proposed suboptimal control schemtge mRPI set. An inner approximation is obtained using a

. = series of projections and is then scaled by a suitable amount
to high-speed systems, problétw (x) has to be solved very o) :p(l J_ Tl AW For a givgn sallis of the
quickly. The following sections describe the computatlon% ’ =0 '

details necessary for the problem setup and show that it cafst scaling parameteris such that?(, 5) is the smallest

be efficiently solved even for higher dimensional systems.OUter approxn_”natlo_n. The parameteranda_are chosen by
means of an iterative procedure that requires the solution o

A. Tube based robust MPC simple algebraic equations for the case whiéfds defined
by box constraints. The computation of the Minkowski sum

Method [17] described in Section IV requires thehowever limits this method to small dimensions 10).

following elements to be computed: the RPI &t the Pl . . .
set X ; satisfying Assumption Al in IV.2 and the tightened Another variant for the cqmputatlon of an ap.me'mate
constJ;aintsX andU. Ideally, Z is taken as the minimal RPI polyhedral mRPI set that simultaneously optimizes for a

(MRPI) set andy; as the maximal P (MPI) set. An explicit piece-wise affine auxiliary control law is presented in [19]

. hich may potentially cause a large increase in the number
representation of these sets can however generally not | y P Y 9

computed except in special cases [6], [8]. It is howeve?feomlrnlzatlon variables.

always possible to compute an inyariant outer _appr_oximatio 4) Ellipsoidal approximation of2: An RPI ellipsoidal
of the mRPI set and an invariant inner approximation of thgter approximation of the mRPI set can be determined using
MPI set of predefined shape. a level set ofV/;(-) similar to V-A.2. An extra constraint is

added enforcing that the ellipsoid is in fact an RPI set. The

The details for computing ellipsoidal and polytopicminimal ellipsoidal RPI set is then given b§z = {z €
approximations forZ and X; as well as the tightened R" |27 Pz < Amin}, Where ymn = argmin{y |27 Pz <

constraintX and U are outlined in the following. For . ., ¢ X Kze U, 2+t Pzt < ~, Va st.2TPz < ~ with

simplicity, the unconstrained infinite horizon optimal,+ in (3)}. This problem can be tranformed into an LMI

cost is taken as the terminal codf(x) = zz'Px ysing the S-procedure [3] and can be efficiently solved for
and the corresponding optimal LQ controller is useqy dimensions.

for K in (11), there are however different ways of

choosing a stabilizing affine controller [9], [19]. We demot 5) Constraint tightening: In the case that polyhedral

A £ A+ BK. The polyhedral state and control constraintapproximations are used, the Minkowski differences

areX = {2 |Gz < f} andU = {u|Cu < d}. For simplicity X =X& 2z, U=Ue K Z were computed using [10] which



requires the computation of a series of LPs. In the casghe authors developed a simple custom solver written in

of ellipsoidal approximations the Minkowski differencesC+, based closely on that given in [23], for the real-time

can be computed similarly by solving a series of LMIsmethod proposed in this paper that results in computation

The robustified constraints can hence be computed rapidiynes in the range of milliseconds (see results in Section

for all dimensions. The tightened constraitfsand U are  VI). This offers the possibility to apply real-time robusP@

polytopic in both cases and of the same complexity as thie high-speed systems with the big advantage that stability

origional constraintX andU. is always guaranteed and the available computation time is
used to improve the solution and increase the performance.

The question is then of course, which approximation td’he simulations were executed on a 2.8GHz AMD Opteron

use, a polyhedral or an ellipsoidal one. Since the abowvenning Linux using a single core.

described computations are performed offline the computa-

tion times are not crucial. In general however polyhedral

approximations can only be computed for smaller system4; lllustrative Example

approximately 6-7 dimensions. Whereas ellipsoidal approx We first illustrate the method and its components using

imations might be slightly more conservative in this rangethe following 2D system:

they represent the better if not the only choice for higher

X : . . + 11 1

dimensions. If the considered system is in the range where a x" = {0 1} x+ {0.5} utw , (13)

polyhedral approximation can be computed, an explicit so-

lution [1] of the MPC problem should as well be consideredvith a prediction horizonV = 5 and the constraintr|| . <

since it allows for extremely fast computation times in lowe5 and||u[/« < 1 on the states and control input3,= I and

dimensions. Another advantage of ellipsoidal invariatg & [ = 1. The disturbance is assumed to be boundet/in=

the fact that the number of constraints introduced by the cofw||[w|[2/0c < 0.025}. The terminal cost functiorVy ()

dition = € Zo® Z in (10) is fixed, whereas polytopic invariant is taken as the unconstrained infinite horizon optimal value

sets may add a large number of constraints leading to slowinction for the nominal system with = [§:5335 9:8349 ] and

computation times and excessive memory requirements. Ag(z) = Kz is the corresponding optimal LQ controller.

is hencealwayspossible to compute the invariant sets an °

tightened constraints using ellipsoidal approximationsne 15

for significant problem sizes. The offline set computatior 1

were carried out using the YALMIP toolbox [14]. 05

VI. RESULTS& EXAMPLES

< 0

B. Optimization os

In the case thag and X are polyhedral sets, the robus -
MPC problemP y (z) can be written as a QP of the form (6). -5
where the vector also includes the initial statgy. If Z and R 0 2 7 R 0 2 7

1 i B X, ot
égtfgﬁs;gfr:]e:g?r:tes abéuea{gﬁggéiiglsce;i'sgg?r?ﬁmé? ((ggQP) (a) Polyhedral invariant sets (b) Ellipsoidal invariant sets
that is the QP (6) with two extra quadratic constraints on theg. 1. Stage)trajictﬁries flpc; tﬁxample (13). Thﬁ dash-ddite iSfthebactual
Ho H o T P ) trajectory z(z) and the solid line represents the trajectory of tube centers
!]r:t(lja;lz‘:?nchjfjtvhe;ef;mInalB;[ﬁtes;vgbler?s I;gio QPx)aSS Vzg]lT as Zo(z(1)). The terminal sefX ; is shown as well as the setg (z(i)) ® Z.
N = max- ’

the QCQP, can be efficiently solved using interior-poinpolytopic and ellipsoidal approximations &f and X ; were
methods. A feasible start primal barrier interior-pointthw®  calculated as described in Section V. In Figure 1 a state tra-
[4] was chosen to realize the-RT control law in (12). jectory z(j) starting fromaz(0) = [-2.5,1.2]" is illustrated
Standard interior-point methods maintain feasibility butor a sequence of extreme disturbances for the ellipsoitthl a
since they use a modified cost for the optimization the actugde polytopic case together with the corresponding trajgct
MPC cost in (4) could increase during the iteration stepf tube centersio(z(j)) and setszo(z(i)) @ Z and X;.

An extra constraint enforcing a non-increasing MPC costhe ellipsoidal terminal set is significantly smaller ane th
Vn(@F, urr(z*, 7)) < Vi(aF, urr(z™,0)) and thereby ellipsoidal setZ slightly bigger than in the polytopic case
ensuring the controller properties defined in Definition31l \which is due to the fact that the shape of the ellipsoid was
has to be explicitly added to the optimization problem. Théixed. Despite the different set sizes, the two approaches

time constraint is realized by performing a fixed number ohowever result in a very similar region of attraction.
optimization steps.

B. Oscillating masses

The QP as well as the QCQP result in very sparse problemThe oscillating masses example described in [23] is
structures similar to those described e.g. in [23], [24hvdt chosen to examine our real-time method and evaluate it
dense band from the decrease constraint, forming a sadcallagainst that proposed in [23]. The considered model has
arrow structure. A solver exploiting this particular stwe n = 12 states andn = 3 inputs. Ellipsoidal invariant sets
can solve the QP as well as the QCQP extremely quicklyere computed forX; and Z, polytopic approximations



Tab. |
CLOSED-LOOP PERFORMANCE DETERIORATION IN%
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kmax | 1 | 2 | 3 | 4 | 5 | 6| 7|8
AJe | 139 | 1.32 | 1.10 | 0.88 | 0.70 | 0.55 | 0.44 | 0.33

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, ‘G Explicit

cannot be computed for this problem size. For a horizon
of N = 30 this results in a QCQP with62 optimization
variables and 1238 constraints. A random disturbance
sequence witHw||2 < 0.25 is acting on the system, which [3]
corresponds t20% of the actuators control range. The
method was run with the same optimization parameters givepl]
in [23] and a fixed number of optimization stefygax = 5 in

order to have a direct comparison with the reported resultds]
Our solver was able to compute Newton steps irsmsec
(averaged ovet00 runs) and hereby achieves timings that [g]
are essentially equal to those reported in [23]. We can hence
achieve the same fast sampling rates using the robust MPF;]
design and achieve guaranteed feasibility and stabilibghB
methods provide a closed-loop performance deterioratiof!
AJa < 1% taken over a large number of sample points,
whereAJy = Z320US;“%Q};&;;“(“))), %(z) denotes the
suboptimal controller obtained aftépay iterations ands(x)

the optimal controller of the considered methatlJy is  [1q]
estimated by simulating the trajectory for a long time perio "

After establishing that the proposed approach performs
equally well for the particular example it is important to[12]
note that one would choose the optimization parameters
differently for our method. A long horizon was taken in[i3)
[23] since no stability guarantee is provided. This is hosvev
not necessary using the presented approach due to its a-
priori stability guarantee. We therefore reduce the harizojyy
to N = 10 resulting in a QCQP with 62 decision variables
and 398 constraints and investigate the effect of the numbét®!
of allowed iterations on the closed-loop performance dete-
rioration, reported in Table I. It is important to note that
the performance as well as the region of attraction are nbf
affected by the reduction of the horizon f6 = 10. One
Newton step can now be computediBmsec. Consequently [17]
the real-time MPC method witknax = 5 iterations can be
implemented with a sampling time @msec resulting in a [1g]
controller rate of500Hz. It is remarkable that the one step
solution still shows considerably low performance losacsi
stability is guaranteed at all times one could thereforeosko
kmax = 1 in order to achieve extremely low computation
times of0.3msec in trade for lower performance. 20

El

C. Large Example [21]

A random example withn = 30, = 8 and N = 10 o9
was generated resulting in an optimization problem with
410 optimization variables anti002 constraints. Ellipsoidal [23]
invariant sets were computed fof; and Z. We recorded |4
the computation time for the invariant sets and tightened
constraints which were computed offline in orily seconds. [25]
The robust MPC problem witlin,x = 5 Newton iterations
was solved inl0msec allowing for an implementation of the
MPC controller at a sampling rate @b0Hz.

Linear Quadratic Regulator for Constrained Systenfgjtomatica
vol. 38, pp. 3—20, 2002.

] F. Borrelli, Constrained Optimal Control of Linear & Hybrid Systems

ser. LNCIS. Springer Verlag, 2003, vol. 290.

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, ‘&an Matrix
Inequalities in System and Control Theory,” Wolume 15 of Studies
in Applied Mathematics SIAM, 1994.

S. Boyd and L. Vandenberghé&onvex Optimization Cambridge
University Press, 2004.

H. J. Ferreau, H. G. Bock, and M. Diehl, “An online activet strategy
to overcome the limitations of explicit MP Clhternational Journal
of Robust and Nonlinear Controlol. 18, pp. 816—-830, 2008.

E. Gilbert and K. T. Tan, “Linear systems with State anch@ol Con-
straints: The Theory and Application of Maximal Output Adsible
Sets,”|IEEE Trans. Automatic Contrplol. 36, pp. 1008-1020, 1991.
Z.-P. Jiang and Y. Wang, “Input-to-state stability forscrete-time
systems,”Automatica vol. 37, pp. 857-869, 2001.

I. Kolmanovsky and E. C. Gilbert, “Theory and computatiof dis-
turbance invariant sets for discrete-time linear systeisthematical
Problems in Engineeringvol. 4, pp. 317-367, 1998.

M. Kothare, V. Balakrishnan, and M. Morari, “Robust ctrained
model predictive control using linear matrix inequalifieAutomatica
vol. 32, no. 10, pp. 1361-1379, Oct. 1996.

M. Kvasnica, P. Grieder, M. Baotic, and M. Morakilulti-Parametric
Toolbox (MPT) Mar. 2004, pp. 448-462.

M. Lazar, A. Alessio, A. Bemporad, and W. Heemels, “Stinum
the circle: an algorithm for generating polyhedral invatiaets from
ellipsoidal ones,” inAmerican Control Conferengel4-16 June 2006.
M. Lazar and W. Heemels, “Predictive control of hybrigsems:
Input-to-state stability results for sub-optimal solasg’ Automatica
vol. 45, pp. 180-185, 2009.

M. Lazar, B. Roset, W. Heemels, H. Nijmeijer, and P. vam @osch,
“Input-to-state stabilizing sub-optimal nonlinear MP@ailithms with
an application to DC-DC converterdjiternational Journal of Robust
and Nonlinear Contrglvol. 18, pp. 890-904, 2008.

J. Lofberg, “YALMIP : A Toolbox for Modeling and Optimation in
MATLAB,” in Proc. of the CACSD Conferenc€aipei, Taiwan, 2004.
D. Limon, T. Alamo, D. Raimondo, D. M. de la Pefa, J. Bravo
A. Ferramosca, and E. Camachioput-to-State Stability: A Unify-
ing Framework for Robust Model Predictive Coniraler. LNCIS.
Springer Verlag, 2009, pp. 1-26.

] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Coimsthmodel

predictive control: Stability and optimality,Automatica vol. 36(6),
pp. 789-814, 2000.

D. Mayne, M. Seron, and S. Rakovic, “Robust model priacgccontrol
of constrained linear systems with bounded disturbandag@matica
vol. 41, pp. 219-234, 2005.

S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Wa,
“Invariant Approximations of the Minimal Robust Positiyelnvariant
Set,” IEEE Trans. on Automatic Controlol. 50, pp. 406—410, 2005.
S. V. Rakovic, D. Q. Mayne, E. C. Kerrigan, and K. |. Komras,
“Optimized robust control invariant sets for constrainieear discrete-
time systems,” inProc. of the 16th IFAC world congres&005.

] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Stimogl

model predictive control (feasibility implies stability)IEEE Trans.
on Automatic Contrglvol. 44, no. 3, pp. 648—-654, 1999.

E. Sontag and Y. Wang, “New characterizations of infpustate
stability,” IEEE Trans. Automatic Contrplol. 44, pp. 648-654, 1999.
M. Vidyasagar,Nonlinear Systems Analysignd ed. Prentice Hall,
1993.

Y. Wang and S. Boyd, “Fast Model Predictive Control Usi@nline
Optimization,” in IFAC World Congress2008.

S. J. Wright, “Applying New Optimization Algorithms Td/odel
Predictive Control,” inChemical Process Control-V, CACHEol. 93,
1997, pp. 147-155.

M. N. Zeilinger, C. N. Jones, and M. Morari, “Real-timet®ptimal
model predictive control using a combination of explicit enpnd
online optimization,” inProc. of the 47th IEEE Conf. on Decision
& Control, 2008, pp. 4718-4723.



