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Abstract— Many robust model predictive control (MPC)
schemes suffer from high computational complexity. Especially
robust MPC schemes, which explicitly account for the effects
of disturbances, can result in computationally intractable prob-
lems. So-called move-blocking is an effective method of reducing
the computational complexity of MPC problems. Unfortunately
move-blocking precludes the use of terminal constraints as a
means of enforcing strong feasibility of MPC problems. Thus
move-blocking MPC has traditionally been employed without
rigorous guarantees of constraint satisfaction. A method for
enforcing strong feasibility of nominal move-blocking MPC
problems was recently developed. The contribution of this paper
is to generalize this method and employ it for the purpose of
enforcing strong feasibility of move-blocking affine disturbance
feedback robust MPC problems. Furthermore the effectiveness
of different disturbance-feedback blocking strategies is investi-
gated by means of a numerical example.

Keywords: Robust control; Model predictive control; Affine
disturbance feedback; Controlled invariant feasibility

I. INTRODUCTION

This paper deals with solving a robust MPC problem for
the class of constrained discrete-time linear systems subject
to additive, bounded disturbances. The optimal solution is
given by dynamic programming, this is however not tractable
except for very small problems or under special circum-
stances. An effective approach of approximating dynamic
programming for this class of systems is to apply affine
disturbance feedback (ADF), which is often close to optimal
but computationally demanding for long prediction horizons
[10,8]. The motivation for this paper is to reduce the number
of degrees of freedom of the disturbance feedback param-
eterization for the purpose of reducing the computational
complexity of the resulting MPC problem, and furthermore
to investigate how to reduce the degrees of freedom in such
a way as to maintain high control performance.

A. Affine Disturbance Feedback Parameterization

In so-called open-loop prediction (OLP) MPC the control
action that is predicted to be taken in the future is only
a function of the current state, which is computationally
very attractive, but often results in very conservative control
behavior. An alternative approach, proposed in [1] and [9] is
to apply closed-loop prediction MPC by employing an affine
disturbance feedback parameterization of the control inputs,

Frauke Oldewurtel, Colin N. Jones and Manfred Morari are with the
Automatic Control Laboratory, Department of Electrical Engineering, Swiss
Federal Institute of Technology in Zurich (ETHZ), Switzerland.
{oldewurtel,cjones,morari}@control.ee.ethz.ch

Ravi Gondhalekar is with the Frontier Research Base for Global Young
Researchers and Dept. of Mechanical Engineering, Osaka University, Japan.
ravi.gondhalekar@wakate.frc.eng.osaka-u.ac.jp

which was shown to be equivalent to affine state feedback
and is often close to optimal [8]. In contrast to the affine state
feedback, the affine disturbance feedback parameterization
leads to a convex set of feasible decision variables. The
computational complexity is, however, increased compared
to open-loop prediction, because of a significant increase in
the number of decision variables. Our aim is to reduce the
computational complexity of the affine disturbance feedback
while maintaining good control performance.

B. Blocking for Reducing Computational Complexity

In order to reduce the computational complexity, it is
common practice in nominal MPC to reduce the number
of decision variables by fixing the input or its derivatives
to be constant over several prediction steps. Although this
alleviates the computational burden, this renders terminal
constraints incapable of enforcing strong feasibility and
stability and often leads to sub-optimality. In [4] the authors
propose to employ a time-varying blocking matrix such that
stability can be guaranteed. In [7,6] strong feasibility is guar-
anteed with a time-invariant blocking matrix by constraining
the state at the first prediction step to a controlled invariant
feasible set. In contrast to [4] this method is guaranteed to
be least-restrictive. In order to simplify the computation of
the controlled invariant feasible set, the approach from [6] is
used, where a controlled invariant feasible set is computed
by taking a controlled invariant set and relaxing the state
constraints of the prediction problem so as to render the
controlled invariant set a controlled invariant feasible set.

C. Main Idea and Outline

In this paper we impose a structure on the disturbance
feedback matrix in such a way that the resulting loss in
performance is small. Furthermore, we extend the method
in [6] to the robust case to guarantee strong feasibility.
In Section II the problem setting is given, the affine dis-
turbance feedback parameterization is described in detail,
and the MPC problem with an expectation based cost is
formulated. Section III introduces the concept of blocking
for the affine disturbance feedback matrix and explains how
strong feasibility can be guaranteed. The proposed method
is demonstrated in an illustrative example in Section IV and
a conclusion is given in Section V.

D. Notation

The real number set is denoted by R, the set of non-
negative integers by N (N+ := N\{0}), the set of consecutive
non-negative integers {j, . . . , k} by Nk

j . Denote by In ∈



{0, 1}n×n the identity matrix, by 0{n,m} ∈ {0}n×m the
zero matrix and by 0 without subscript the zero matrix with
dimension deemed obvious by context. For matrices A and
B of equal dimension inequalities A{<,≤, >,≥}B hold
component-wise. The expectation of a stochastic variable w
is denoted by E[w]. For a set X the set of non-empty subsets,
i.e. the power-set less ∅, is denoted by 2X. The future value
of a variable ψ at step i + k, as predicted from step i is
denoted by ψ(i,k). For compact notation ψ(i,0) = ψi.

II. AFFINE DISTURBANCE FEEDBACK MPC

A. Problem Setting

Consider the discrete-time linear time-invariant system

xi+1 = Axi +Bui + Ewi (1)

with step index i ∈ N, state x ∈ Rn, n ∈ N+, control input
u ∈ Rm, m ∈ N+ and disturbance w ∈ Rp, p ∈ N+.

Assumption 1: The pair (A,B) is stabilizable.
State x and control input u must satisfy constraints

xi ∈ X ∈ 2Rn

∧ ui ∈ U ∈ 2Rm

∀i ∈ N . (2)

Assumption 2: Disturbances satisfy wi ∈ W ∈ 2Rp ∀i ∈ N.

Assumption 3: Constraint sets X , U and W have non-
empty interiors and are polytopic (polyhedral, convex and
bounded), time-invariant, and known.

For some initial state x0 ∈ Rn the control objective is to
minimize the quadratic cost function V : Rn → R,

V (x0) :=
∑î

i=0

[
xT

i Qxi + uT
i Rui

]
with Q ∈ Rn×n, Q = QT � 0, R ∈ Rm×m, R = RT � 0,
where î ∈ N+ is some desired number of steps, i.e. the
window of interest.

B. Affine Disturbance Feedback Input Parameterization

Consider a prediction horizon N ∈ N+ and define

xi :=
[
xT

(i,0), . . . , x
T
(i,N)

]T

∈ R(N+1)n

ui :=
[
uT

(i,0), . . . , u
T
(i,N−1)

]T

∈ RNm

wi :=
[
wT

(i,0), . . . , w
T
(i,N−1)

]T

∈ RNp

and prediction dynamics matrices A, B and E such that

xi = Axi + Bui + Ewi .

Assumption 4: The following statements hold ∀i ∈ N:

wi ∈ W := WN

E [wi] := w̄i ∈ RNp

E
[
(wi − w̄i)(wi − w̄i)T

]
:= Σi = ΣT

i ∈ RNp×Np .

Note that the predicted disturbance trajectories wi as well as
their stochastic properties w̄i and Σi may change from one
step i to the next i+1. The stochastic properties are assumed
known, the disturbances themselves not. The constraint set

W is time-invariant and known by Assumption 3. This is
critical for the proposed approach.

In affine disturbance feedback MPC [8,11] the control
input trajectory ui is parameterized such that statements

u(i,k) = h(i,k) +
∑k−1

j=0 M(i,[k,j])w(i,j)

h(i,k) ∈ Rm

M(i,[k,j]) ∈ Rm×p ∀j ∈ Nk
0

hold ∀(i, k) ∈ N× NN−1
0 . In matrix form this leads to

ui = Miwi + hi (3)

Mi :=


0 · · · · · · 0

M(i,[1,0]) 0 · · · 0
...

. . . . . .
...

M(i,[N−1,0]) · · · M(i,[N−1,N−2]) 0

 (4)

∈ RNm×Np

hi :=
[
hT

(i,0), . . . , h
T
(i,N−1)

]T

∈ RNm .

Consider the quadratic cost function

J(xi,Mi,hi,wi) := xT
i Qxi + uT

i Rui

where Q ∈ R(N+1)n×(N+1)n, Q = QT � 0 and R ∈
RNm×Nm, R = RT � 0 contain all stage and terminal
costs, and further consider prediction constraints

xi ∈ XN+1 ∧ ui ∈ UN ∀i ∈ N . (5)

For state xi the set of admissible affine disturbance feed-
back policies (Mi,hi) is then given by the set [8]

Π(xi) :=

(M,h)

∣∣∣∣∣M satisfies Eq. (4),
Axi + Bh + (BM + E)w ∈ XN+1

∧ Mw + h ∈ UN ∀w ∈ W

 .

Define the set X0 of states x for which an admissible affine
disturbance feedback policy (M,h) exists by

X0 := {x ∈ Rn|Π(x) 6= ∅} .

The objective in this paper is to apply a blocking parame-
terization of the decision variables and on guaranteeing
strong feasibility of the MPC problem.

C. Expectation Based Disturbance Feedback MPC Problem

The optimal control input ui is determined by solving
MPC Problem 1.

Problem 1: Determine:(
M∗(xi),h∗(xi)

)
:= arg min

(M,h)∈Π(xi)
E [J(xi,M,h,w)] .

Remark 1: The expectation E [J ] of the quadratic cost is
employed as the optimization objective. Thus the stochastic
properties (w̄i,Σi) of disturbance trajectory wi are taken into
account, even though they do not appear explicitly in MPC
Problem 1. More usually the nominal cost is used, which is
equivalent to the expectation with w̄i = 0 ∧ Σi = 0 ∀i ∈ N.

The optimal control input u∗i (xi) is given by

u∗i (xi) = h∗(i,0)(xi)



and the closed-loop state trajectory evolves according to

xi+1 = Axi +Bu∗i (xi) + Ewi ∀i ∈ N .

Definition 1: An MPC problem is strongly feasible if and
only if from every feasible state the closed-loop state trajec-
tory due to any sequence of feasible solutions, and due to
any admissible disturbances, remains within the feasible set.

For example, MPC Problem 1 is strongly feasible if and
only if the following condition holds:

xi+1 = Axi +Bh(i,0)(xi) + Ewi ∈ X0

∀wi ∈ W ∀(Mi,hi) ∈ Π(xi) ∀i ∈ N ∀x0 ∈ X0 .

Definition 2: A least-restrictive strongly feasible MPC
problem is one such that there exists no strongly feasible
MPC problem with a larger feasible set, for the same system
and constraints.

MPC Problem 1 can be reformulated into a standard QP
problem, where the optimization variables are the vector hi

of offsets and a vector M̄i ∈ R
N(N−1)mp

2 , which contains all
decision variables of disturbance feedback matrix Mi.

Remark 2: In affine disturbance feedback MPC at each step
i the feedback policies (M,h) are optimized, rather than
predicted control actions u as in open-loop prediction MPC.
Affine disturbance feedback MPC is generally capable of
high performance. However, the number of decision variables
of the MPC problem is of order N2, due to disturbance
feedback matrix M. The number of decision variables for
open-loop prediction MPC is only of order N .

Remark 3: An open-loop prediction MPC problem can
easily be derived from MPC Problem 1 by forcing M =
0 in both the cost function J and the constraints Π. A
consequence of this is that the set of feasible solutions of
the open-loop prediction MPC problem is a subset (usu-
ally a strict subset) of the set of feasible solutions of the
affine disturbance feedback MPC problem. Thus closed-
loop prediction MPC is expected to outperform open-loop
prediction MPC. However, no statements about closed-loop
performance can be made until after controller verification.

III. COMPLEXITY REDUCTION VIA BLOCKING

A. Blocking Parameterization

To reduce the computational complexity of MPC Problem
1 the number of decision variables is reduced by employing a
method called blocking. Traditionally a method called move-
blocking is used in controller design, whereby the number
of control moves is reduced by forcing the predicted control
input trajectory to be constant over sets of multiple prediction
steps [4]. In this paper the term blocking is used to mean that
a vector of decision variables is parameterized by a lower-
dimensional vector of decision variables in combination with
a so-called blocking matrix, which forces some structure
upon the original vector of decision variables.

The vector M̄i of decision variables of Mi is parameter-
ized by blocking matrix Λ and a vector M̃i according to:

M̄i = ΛM̃i (6)

M̃i ∈ Rν Λ ∈ {0, 1}
N(N−1)mp

2 ×ν

ν ∈ N ν ≤ N(N−1)mp
2 .

Blocking matrix Λ and dimension ν are design parameters
and can be manipulated to affect the complexity of the
blocked MPC problem. In this work only disturbance feed-
back matrix M is parameterized, as opposed to offset vector
h also. One reason for this is that M has the most decision
variables, in general. Furthermore, by parameterizing M only
the set of feasible solutions of the MPC problem is still
guaranteed to be a superset (usually strict superset) of the
set of feasible solutions of the open-loop prediction MPC
problem, (see Remark 3).

Remark 4: A diagonal structure, i.e. letting Mi have the
same sub-matrix blocks M(i,[k,j]) along the diagonals, such
that M(i,[k+1,j+1]) = M(i,[k,j]) implies that the disturbance
feedback policy is time-invariant w.r.t. prediction time k and
appears to be effective in numerical trials.

B. Prediction Constraint Relaxation

The purpose of this section is to apply the method pro-
posed in [6] for designing nominal, least-restrictive, strongly
feasible blocking MPC problems to the robust, affine dis-
turbance feedback setting. In non-blocking MPC problems,
affine disturbance feedback or non, strong feasibility is
usually enforced by constraining the state x(i,N) of the
final prediction step to a robust invariant set [3,8,10]. This
assumes that the shifted solution from the previous step
is an admissible solution for the current step, up to but
not including the final control move, and that subsequently
the existence of the final control move is guaranteed by
the robust invariant terminal constraints. When employing
blocking this assumption no longer holds, firstly because due
to the structure imposed on disturbance feedback matrix M
the shifted solution from the previous step may not be an
admissible solution at the current step. Secondly, even if it
were, the final control move may not be free to be choosen,
as it may be dependent on the previous control moves,
depending on the particular blocking matrix Λ selected.

The outline of the proposed procedure is as follows. To
enforce strong feasibility of the MPC problem its constraints
must directly enforce that the state at the next step remains
within the feasible set, recursively. Thus the state x(i,1)

of the first prediction step is explicitly constrained to a
robust controlled invariant set. However, feasibility of the
blocked MPC problem is not guaranteed for each element of
a robust controlled invariant set, because due to the blocking
scheme the predicted state constraints may no longer be
satisfiable. Therefore the prediction state constraints of steps
beyond the first prediction step are relaxed, i.e. expanded,
in a minimal way so as to admit a feasible solution to
the MPC problem for each element of the robust controlled
invariant set. Despite the relaxed prediction state constraints



the constraints on the first prediction step enforce constraint
satisfaction of the closed-loop state trajectory.

Definition 3: A non-empty set C ∈ 2X is a robust controlled
invariant set for system (1) subject to constraints (2) if it
satisfies the following condition [3]:

∀x ∈ C ∃u ∈ U s.t. Ax+Bu+ Ew ∈ C ∀w ∈ W .

The maximum robust controlled invariant (MRCI) set C∗ ∈
2X is the largest element in 2X with this property [2,5].

It is implied throughout this paper that disturbance con-
straint set W is small enough such that C∗ 6= ∅. If this does
not hold then any attempt at controller design is futile. Thus
assume C∗ 6= ∅. Then, C∗ is convex and bounded under
Assumption 3. Thus if C∗ is not a polytope then it can be
under-approximated arbitrarily closely by a polytope. To fa-
cilitate a computationally viable controller design procedure
make Assumption 5.

Assumption 5: MRCI set C∗ has been determined and is
given by the polytope

C∗ := {x ∈ Rn|Y x ≤ y} ,
the number of vertices of C∗ is κ ∈ N+, and vertices Vj ∈
Rn ∀j ∈ Nκ

1 have been computed.

Remark 5: The set C∗ is employed to design strongly
feasible MPC problems which contain blocking parameteri-
zations. In fact the employed set need not be MRCI set C∗,
any robust controlled invariant set does suffice. However, use
of C∗ results in a least-restrictive, strongly feasible MPC
problem. If the particular control problem at hand permits a
restrictive controller then a non-maximum robust controlled
invariant set can replace C∗. In such cases subsequent results
on least-restrictiveness do not apply. Subsequent results on
strong feasibility do apply.

Let X := {x ∈ Rn|Cx ≤ c}, C ∈ Rt×n, c ∈ Rt.
Prediction state constraints (5) are stated explicitly as

Cx(i,k) ≤ c ∀k ∈ NN
0 ∀i ∈ N .

The aim is to compute the minimal prediction constraint
relaxations ζk ∈ Rt ∧ ζk ≥ 0 ∀k ∈ NN

2 such that when the
prediction state constraints enforced in the MPC problem are

Y x(i,1) ≤ y (7)

Cx(i,k) ≤ c+ ζk ∀k ∈ NN
2 ,

then the resulting MPC problem is feasible for every element
x of MRCI set C∗. Robust controlled invariant constraint
(7) directly enforces recursive constraints satisfaction of the
actual closed-loop state trajectory. State constraints for pre-
diction steps k ∈ NN

2 can be relaxed arbitrarily. To maintain
good cost performance it is desirable to relax the prediction
state constraints in a minimal way. Here, minimality is with
respect to the 2-norm. Let

ζ :=
[
ζT
2 , . . . , ζ

T
N

]T ∈ R(N−1)t

Xk := {x ∈ Rn|Cx ≤ c+ ζk} ∀k ∈ NN
2

X := X × C∗ ×X2 × · · · × XN ∈ 2R(N+1)n

(8)

where Xk denotes the relaxed prediction state constraint set
for prediction step k, and X is the resulting constraint set for
the entire predicted state trajectory x. The minimal relaxation
ζ∗ is given by the solution of QP Problem 2.

Problem 2: Determine:

ζ∗ := arg min
ζ∈R(N−1)t

ζTζ

subject to

∀j ∈ Nκ
1 ∃(M̃j ,hj) s.t.

Y
(
AVj +Bh(j,0) + Ew(j,0)

)
≤ y ∧ (9)

AVj + Bhj + (BMj + E)w ∈ X ∧
Mjw + hj ∈ UN ∀wj ∈ W

where Mj results from M̃j and blocking strategy (6).
The constraints of Problem 2 enforce that for each vertex

Vj of MRCI set C∗ there exists an admissible blocked
feedback policy (M̃j ,hj).

Problem 2 can be reformulated as a QP problem (details
omitted). Note that finding ζ∗ requires simultaneous opti-
mization over each vertex Vj of C∗. Thus Problem 2 is very
large for a large number of vertices. An over-approximation
can be determined at much lower computational cost by
finding a minimal relaxation ζ for each vertex Vj in turn, then
maximizing over those solutions (details omitted). Note that
under-approximations of ζ∗ are not suitable. Also note that
all further results hold when employing over-approximations.

Theorem 1: Problem 2 admits a feasible solution.
Proof: Constraint (9) implies robust controlled in-

variance. As the pair (Y, y) describes MRCI set C∗ the
existence of a suitable h(i,0) is guaranteed trivially. Next,
because disturbance trajectory constraint set W is bounded
the predicted state trajectory xj from any vertex Vj , for
any disturbance sequence wj ∈ W and for any feedback
policy (M,h), is bounded. Thus there exists a ζ satisfying
ζTζ <∞ such that xj ∈ X ∀j ∈ Nκ

1 .
Let X ∗ be the minimally relaxed constraint set for

predicted state trajectory x, analogously as in Eq. (8).
Incorporating prediction constraint relaxations the set Π̃ of
admissible blocked disturbance feedback policies is given by

Π̃(xi) :=

(M̃,h)
∣∣∣∣Axi + Bh + (BM + E)w ∈ X ∗

∧ Y (Axi +Bh(i,0) + Ew(i,0)) ≤ y
∧ Mw + h ∈ UN ∀w ∈ W


where M results from M̃ and blocking strategy (6).

The set X̃0 for which an admissible blocked affine distur-
bance feedback policy (M̃,h) exists is given by

X̃0 :=
{
x ∈ Rn|Π̃(x) 6= ∅

}
.

The MPC problem with constraint relaxations is given by
MPC Problem 3, where the only difference is the optimiza-
tion space. The prediction cost function remains unchanged.

Problem 3: Determine:(
M̃∗(xi),h∗(xi)

)
:= arg min

(M̃,h)∈Π̃(xi)
E [J(xi,M,h,w)]



where once again M results from M̃.

Theorem 2: The following statements hold:
(1) X̃0 = C∗

(2) MPC Problem 3 is strongly feasible.
(3) MPC Problem 3 is a least-restrictive MPC problem for
system (1) subject to constraints (2).

Proof: (1) A formal proof is omitted, but this follows
from the convexity of C∗, U , X , W , and from linearity of
system (1). We first show that X̃0 ⊇ C∗. Any x ∈ C∗

can be written as a convex sum of the vertices Vj of C∗.
Problem 2 determines the relaxation ζ∗ such that a feedback
policy (M̃j ,hj) which satisfies the prediction constraints
exists ∀j ∈ Nκ

1 . For all states x ∈ C∗ there then exists a
convex sum of these feedback policies which is admissible.
We next show that X̃0 ⊆ C∗. Constraint (9) explicitly forces
X̃0 to be a robust controlled invariant set. Thus clearly it
must be a subset of maximum controlled invariant (MCI) set
C∗.
(2) For any initial state x0 ∈ C∗ the constraint set X ∗

directly enforces that x1 = x(0,1) ∈ C∗ for any admissible
feedback policy (M̃,h) ∈ Π̃(x0) and despite any admissible
disturbance w0 ∈ W . By induction this holds recursively.
(3) By the definition of MRCI set C∗ a strongly feasible
MPC problem with a feasible set larger than C∗ cannot exist.
Thus, due to Theorem 2 (1) above, MPC Problem 3 is least-
restrictive.

Remark 6: The proposed method is especially beneficial
for long prediction horizons N , since the computational
complexity of affine disturbance feedback grows with the
order of N2 whereas the computation of the robust controlled
invariant set does not depend on N and moreover has to be
done just once.

IV. NUMERICAL EXAMPLE – THE INTEGRATED CANINE

A man of mass m1 = 70 Kg is walking his dog of mass
m2 = 10 Kg along a 3 m wide sidewalk. To the right of the
sidewalk is a road, to the left a muddy field. In the field, 6 m
from the edge of the sidewalk, is a cat. The dog notices the
cat and attempts to attack it. Luckily for the cat the dog’s
leash is shorter than the distance from the edge of the field
to the cat. The dog is pulling on the leash in order to get
to the cat. However, the man does not want to get muddy
shoes, therefore pulls the dog back in order to avoid being
pulled into the field. He cannot pull back too far as he must
avoid entering the road to the rear.

A model of this problem is depicted in Figure 1. The man’s
position is denoted by x. A position x > xmax = 9 m implies
the man is on the road, whereas x < xmin = 6 m implies he

m1

κ

0 xmin x xmax

u, w

Fig. 1. Dog walking schematic.

is in the field. Any position xmin ≤ x ≤ xmax is acceptable.
Furthermore any speed |ẋ| ≤ 1 m s−1 is allowed. The force
the man exerts on himself is denoted by u, and must satisfy
|u| ≤ 0.5m1g, with g = 9.82 m s−2, i.e. the man can exert a
force of half his body weight in either direction. The desire
of the dog to attack the cat is denoted by the linear spring
with κ = 2m2g/xmin = 32.73 N m−1, i.e. when the man
is at the edge of the sidewalk the dog is able to exert a
steady state force of twice her body weight on the man. In
addition to this steady state force the dog is able to exert
an unpredictable disturbance force w, which is bounded by
0 ≤ w ≤ m2g, i.e. positive and less than the body weight of
the dog. The continuous-time dynamics are given by[
ẋ
ẍ

]
=

[
0 1
−κ
m1

0

] [
x
ẋ

]
+

[
0
−1
m1

]
u+

[
0
−1
m1

]
w

and are discretized with a step-size of 0.1 s.
The objective is to design a robust MPC controller for

the force input u the man applies to himself using R = 1
and Q = 0.1I2. This implies the man is mostly interested in
using a low amount of energy, but does make some effort to
move towards the cat. The cat remains seated at the origin
throughout the entire course of events.

The MCI and MRCI sets for this problem are shown in
Figure 2 and 3 by the lighter and darker sets, respectively.

Six control laws were considered. Cost matrices R = 1,
Q = 0.1I2 and horizon N = 15 were employed for each:
ADF: Affine disturbance feedback. This is the standard
affine disturbance feedback closed-loop MPC strategy. The
feedback policy (M,h) is optimized. There are Nm +
N(N−1)mp

2 optimization variables.

OLP: Open-loop prediction. This is the standard robust
open-loop MPC strategy. The predicted control input trajec-
tory ui is directly optimized. There are Nm optimization
variables.

ADF-R: Relaxed affine disturbance feedback. This is the
non-standard affine disturbance feedback closed-loop MPC
strategy proposed in this paper. It is equivalent to setting
blocking matrix Λ = I . The feedback policy (M,h) is opti-
mized. There are Nm+ N(N−1)mp

2 optimization variables.

ADF-D: Diagonally blocked affine disturbance feedback.
This is the non-standard affine disturbance feedback closed-
loop MPC strategy proposed in this paper. It employes the
diagonal blocking strategy mentioned in Remark 4. The feed-
back policy (M̃,h) is optimized. There are Nm+(N−1)mp
optimization variables.

ADF-1: One degree of freedom blocked affine disturbance
feedback. This is the non-standard affine disturbance feed-
back closed-loop MPC strategy proposed in this paper. It
employes a blocking matrix Λ = [1, . . . , 1]T, i.e. ν = 1.
This implies that each decision variable of M is forced to
be the same. The feedback policy (M̃,h) is optimized. There
are Nm+ 1 optimization variables.

ADF-0: Zero degree of freedom blocked affine disturbance



x

ẋ

Fig. 2. Nominal trajectories with proposed controllers.

feedback. This is the non-standard affine disturbance feed-
back closed-loop MPC strategy proposed in this paper. It
employes a blocking matrix Λ = 0. This implies M = 0,
i.e. open-loop prediction. Only offset vector h is optimized.
There are Nm optimization variables.

Note that each of these strategies has the same number
of prediction state and input constraints. Further note that
the structure of {OLP, ADF} and {ADF-R, ADF-D, ADF-1,
ADF-0} are different. In the former the terminal state, in the
latter the state of the first prediction step, is constrained to
the MRCI set. State constraint relaxations are applied for all
strategies in the latter.

Plotted in Figure 2 are six state trajectories, one for each
of the six control strategies, from initial state x0 = (7, 1).
These simulations were performed without noise. This is to
check the nominal performance of the controllers. Denote by
x̄ and ū the steady-state state and control input, respectively,
reached after 500 steps. Denote by T the average compu-
tation time per iteration, averaged over the 500 simulation
steps. Further denote by V/VADF the ratio of steady-state
cost of the particular controller w.r.t. the steady-state cost of
the ADF controller. The following results are obtained:

x̄ ū T V/VADF

ADF: 6.40 -209.6 0.710 1.000
OLP: 7.76 -254.1 0.571 1.470
ADF-R: 6.36 -208.2 0.611 0.986
ADF-D: 6.41 -209.7 0.585 1.001
ADF-1: 6.38 -209.0 0.578 0.994
ADF-0: 6.75 -221.1 0.572 1.113

In Figure 3 all settings are kept the same except for the fact
that a predefined disturbance sequence is applied. Here no
steady state is reached since there is a persistent disturbance.
All trajectories stay within the MRCI set.

V. CONCLUSION

In this paper it was shown that by employing blocking the
computational complexity of affine disturbance feedback can
be reduced, especially for long prediction horizons, while
retaining good performance and guaranteeing strong feasi-
bility. Strong feasibility is guaranteed by enforcing the first

x

ẋ

Fig. 3. Disturbed trajectories with proposed controllers.

predicted state to lie within the robust controlled invariant
feasible set. For this an existing method was extended to the
robust case and adapted for using with affine disturbance
feedback. Furthermore, it was shown that by imposing a
structure on the feedback matrix the number of decision
variables is reduced and so is subsequently the computational
effort. Even with the limited degree of freedom, the perfor-
mance achieved by blocked affine disturbance feedback is
still remarkably good and close to the unblocked case.
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