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Abstract— The application of nuclear norm regularization to
system identification was recently shown to be a useful method
for identifying low order linear models. In this paper, we con-
sider nuclear norm regularization for identification of simulated
moving bed processes from data sets with missing entries. The
missing data problem is of ongoing interest because the need
to analyze incomplete data sets arises frequently in diverse
fields such as chemistry, psychometrics and satellite imaging. By
casting system identification as a convex optimization problem,
nuclear norm regularization can be applied to identify the
system in one step, i.e., without imputation of the missing
data. Our exploratory work compares the proposed method
named NucID to the standard techniques N4SID, prediction
error minimization, subspace identification and expectation
conditional maximization via linear regression and a linearized
first principles model. NucID is found to consistently identify
systems with missing data within the imposed error tolerance,
a task for which the standard methods sometimes fail, and to
be particularly effective when the data is missing with patterns,
e.g., on multi-rate systems, where it significantly outperforms
existing procedures.

I. INTRODUCTION

The need to identify a dynamic system from an incomplete
data set is a rather common situation in practice. There are
different reasons that lead to missing entries in the data sets
available for identification, such as: sensor failures, outliers
or plant shutdowns, which generate missing entries in the
data set at random and multi-rate sampling, or periodic dis-
turbances that create patterns of missing data. In the process
and chemical industry samples might have to be collected
manually and the off-line analysis can be lengthy, expensive,
and wastes the valuable product as well, which makes the
measurements rather sparse. Over the last three decades a
number of researchers from various fields have recognized
the need for systematic methods to exploit incomplete data
sets for system identification and it is still recognized as a
big and open challenge in process industry [1].

The goal of this paper is to present a recently developed
method for system identification from noise-corrupted data
with missing entries in the outputs applied to a state-of-
the-art separation process used in the pharmaceutical and
fine chemical industries, namely the simulated moving bed
(SMB) process. The proposed method identifies a non-
parametric MIMO linear model and incorporates the min-
imization of the order of the identified system in a natural
and transparent way by approximating it with the nuclear
norm, i.e., by the sum of the singular values of the Hankel
matrix built from finite impulse response (FIR) coefficients.
The resulting nuclear norm regularization for the rank of a
matrix is the analogue to the l1 regularization for vector car-
dinality, which is a well-known heuristic that produces sparse
solutions. These regularization methods have been studied in
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detail by a number of researchers and set the foundation of
the recently developed compressed sensing frameworks for
measurement, coding and signal estimation [6], [7], [8].

The proposed technique minimizes the nuclear norm of
the Hankel matrix of FIR coefficients while constraining
the fitting error between model and data to a desired level
of accuracy. This method allows one to directly choose
a desired accuracy and then poses a convex optimization
problem to find the lowest order model that achieves it,
rather than iteratively tuning the order of the model, as
is common practice. Nuclear norm regularization has been
recently suggested by [6], [10] as a way to promote the
identification of low order models out of complete data sets.
This work shows how the nuclear norm regularization is
especially attractive when the data sets have missing entries,
i.e. for the missing data problem.

A sensitivity analysis of the identification algorithm is
performed on different structures of missing data in the
outputs: structured missing data and randomly distributed
missing data. The proposed method is compared under these
scenarios to commonly used methods for identification with
missing data. The identified models are compared to a linear
model derived from first principles modelling of the SMB
process.

The proposed method, named NucID (because it uses the
nuclear norm in the identification procedure), is found to
consistently identify systems from complete data sets or
data missing at random within the imposed error tolerance,
a task for which the standard methods sometimes fail. In
the case of structured missing data, NucID is shown to
be particularly effective and to clearly outperform existing
procedures. This demonstrates that NucID is an attractive
tool for the identification of multi-rate sampled-data systems.

The paper is organized as follows: in the following section
the SMB process is presented. The general identification
problem and the identification problem with missing data
are defined in Section III and V, respectively. Section IV
describes the nuclear norm regularization. The methods for
comparison and the results of the identification of the SMB
data sets are presented in Sections VI and VII. Finally,
conclusions are drawn.

II. SIMULATED MOVING BED

Simulated Moving Bed (SMB) is a continuous chromato-
graphic process used to separate into two fractions a mixture
of molecules dissolved in a fluid phase. The separation prin-
ciple is based on the different affinities of the molecules in
the mixture to the solid-phase which moves countercurrently
to the direction of the fluid. The SMB consists of a loop
of ncol columns where the fluid circulates in one direction
(Fig. 1). The desired countercurrent flow between the two
phases is achieved by switching the inlet and outlet ports
in the direction of the fluid flow every t∗ seconds, which
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Fig. 1. Scheme of an SMB unit. The dashed lines indicate the inlet/outlet
positions after the first switch. The measurements are taken by the HPLC
in the extract and raffinate ports.

results in a simulated countercurrent movement of the solid
with respect to the fluid. This periodic switching gives rise
to a cyclic behavior of the process, which does not achieve
a steady state with constant process variable profiles, but
rather a cyclic steady state, where these profiles are repeated
periodically. A detailed description of the process can be
found in [2].

Economic advantages, like higher productivity and lower
solvent consumption, have firmly established SMB in recent
years as the state-of-the-art technology for complex separa-
tion tasks in the areas of pharmaceuticals, fine chemicals and
biotechnology, especially for the purification of species char-
acterized by low selectivities, i.e. difficult to separate, such
as chiral molecules for single enantiomer drug development.
[2].
The modelling, identification, optimal operation and con-
trol of SMB processes has drawn the attention of many
researchers for the last decade. Several approaches have been
proposed and a detailed review of these different control
schemes may be found in the literature [2].

Identification of SMB models has been presented in the
literature using ARX, state space models and neural networks
[2]. Nevertheless it has never been considered when the data
sets contain missing entries and what the least amount of
measurements can be, in order to still identify a reasonable
model. This is relevant for SMB separations where the
measurements to be performed can be rather expensive and
time consuming and one wishes to take as few measurements
as possible, while on the other hand, inputs can be changed
more often than the measurements can be taken.

A. SMB Virtual Plant

The data sets used in this work are produced by simulation
of the SMB process with a nonlinear model. A racemic
mixture of the Tröger’s base enantiomers (A and B) is to
be separated in a four-section SMB unit with ncol = 8
columns arranged in a 2-2-2-2 configuration as shown in
Fig. 1. The dynamical model for simulation of the SMB
unit is obtained by interconnecting the dynamical models of
each chromatographic column. The single-column dynamics
are modelled with the equilibrium dispersive model (EDM)
and the adsorption behavior of both components inside the
columns is described by a linear adsorption isotherm, with
Henry’s constants HA and HB . The mathematical model is

completed by considering the corresponding node balances
between the columns and the proper boundary and initial
conditions as reported in [2], [5]. The parameters of the
system under consideration are reported in Table I.

TABLE I

PHYSICAL PARAMETERS AND SMB UNIT USED FOR SIMULATION.

Parameter V alue

Henry’s constants HA = 5.0

HB = 1.9

Column diameter, 1 cm

Column length, 10 cm

Total packing porosity ε = 0.68

Theoretical plates per column 40

The internal flow rates in the four sections of the unit,
QI , QII , QIII , QIV , are used as input variables. The output
measurements are the concentration levels in the extract (E)
and raffinate (R) streams averaged over one cycle, cave

A,E ,
cave
B,E , cave

A,R, cave
B,R as described below.

B. Output measurements

It is possible to collect samples of the outlet streams over a
period of time τ and analyze them with an high performance
liquid chromatography (HPLC) system. These measurements
will deliver the average concentrations of both species, cave

A,j

and cave
B,j , in the stream j over the period of time τ

cave
i,j =

∫ τ

0
ci,j(t)Qj(t)dt
∫ τ

0
Qj(t)dt

(1)

for i = A,B. The factor Qj(t) is the flow rate of stream j,
from which the sample was collected. We choose to collect
samples of the extract and raffinate streams j = E,R, over
a period of time τ = ncol t

∗, the cycle time. Next we
present the general formulation of the identification problem
considered in this work.

III. PROBLEM FORMULATION

The identification problem is first formulated for the
case where no data is missing in the outputs, before being
extended in Section V to the general case of missing data.
A more detailed presentation has been reported in [14], but
for the sake of completeness a summary is given here.

The goal is to identify a discrete-time linear time-invariant
model of the lowest possible order that can explain a
sequence of input u(t) ∈ R

m and output measurements
ymeas(t) ∈ R

p over an observation window t = 0, . . . , N−1.
We use the shorthand matrix notation for inputs U ∈ R

N×m

and outputs Y meas ∈ R
N×p by stacking the vectors ymeas(t)

and u(t) rowwise. No assumptions on the specific structure
or order of the model are made and the output i at time
instance t, i.e., yi(t), is represented as a linear combination
of the impulse responses of the inputs j = 1, . . . ,m, i.e.,
through a finite impulse response (FIR) model

yi(t) =

m
∑

j=1

t
∑

τ=t−r

hij(t − τ)uj(τ) + vi(t) i = 1, . . . , p

(2)

The values hij are the FIR coefficients from input j to
output i and the zero-mean white-noise vi(t) captures the
unmeasurable disturbance affecting output i at time t. The
sequence of FIR coefficients for channel i, j has length r,
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which is a parameter that must be chosen large enough to
describe the dynamics of the system to be identified.

The total squared error in the identification procedure eN

can be quantified by the sum of the squared differences be-
tween the measurements Y meas and the outputs Y predicted
by model (2) over the N samples:

eN :=
N

∑

t=0

(ymeas(t) − y(t))2 = ‖Y meas − Y ‖2
F , (3)

where ‖ · ‖F is the Frobenius norm.
The FIR coefficients hij(t) for t = 0, . . . , r of each of the

i·j channels of model (2) are the variables to be estimated in
order to describe the set of data Y meas within a given error
bound eN ≤ γ. The order of the resulting model is given by
the rank of the Hankel matrix Hh formed from the impulse
response coefficients hij

Hh :=













h(0) h(1) · · · h(r − nH)
h(1) h(2) · · · h(r − nH + 1)
h(2) h(3) · · · h(r − nH + 2)

...
...

...
h(nH) h(nH + 1) · · · h(r)













(4)

where each entry h(t) is a matrix in R
p×m containing the

coefficients hij(t) of all channels for the corresponding time
step t, nH := r/2 and r is assumed to be even. Note that as
long as r is long enough compared to the system dynamics,
the order of the identified model is independent of r. The
order of model (2) can be understood as the number of states
of the corresponding state-space model.

The search for a model of the lowest order that satisfies
the error bound eN ≤ γ can be posed as the following
optimization problem:

min
h

rank (Hh) (5)

s.t. ‖Y meas − Y ‖2
F ≤ γ

Alternatively, problem (5) can be written as

min
h

‖Y meas − Y ‖2
F + α rank (Hh) (6)

in which the trade-off between the quality of fit and the
order of the model is made explicit i.e., a Pareto curve can
be obtained by varying α.

IV. MINIMUM-RANK MODELS VIA NUCLEAR
NORM MINIMIZATION

Minimizing the rank of a matrix A ∈ R
n×n is a nonconvex

problem and is in general NP-hard. The nuclear norm is a
convex heuristic for rank minimization that was proposed
in [9] and shown in [6] to be the convex envelope, or the
closest convex function to the rank operation:

‖A‖∗ :=
n

∑

i=1

σi(A) (7)

where σi(A) is the ith singular value of A.
In the last few years, minimization of the l1 norm has

been used as a convex approximation of cardinality mini-
mization, or to maximize sparsity in the decision vector of
optimization problems, in fields ranging from statistics [11]
to communications [8]. Since the singular values of a matrix

are all positive, the nuclear norm of A is equal to the l1
norm of the vector formed from the singular values of A.
As a result, minimizing the nuclear norm (7) will lead to
sparsity in the vector of singular values, or equivalently to a
low-rank matrix A.

We now turn to the optimization problem (5) and relax
the non-convex rank to a nuclear norm minimization:

min
h

‖Hh‖∗ (8)

s.t. ‖Y meas − Y ‖2
F ≤ γ

The above optimization problem can be re-cast as a semi-
definite program (SDP) [9]

min tr (V1) + tr (V2) (9)

s.t.

[

V1 HT
h

Hh V2

]

� 0

‖Y meas − Y ‖2
F ≤ γ

where we introduce the symmetric matrices V1, V2 ∈
R

nH ·p×nH ·p as decision variables. Optimization problem (9)
can therefore be posed and solved using standard SDP
software (e.g., [12]).

Computational complexity: The SDP (9) has a large
number of variables due to the introduction of the matrices
V1 and V2, which limits the scale of problems that can be
solved. In [10] a custom interior point solver for a related
class of SDPs was proposed that offers speed improvements
of orders of magnitude over previous algorithms and should
be applicable to the SDP (9) with minor modification. The
method [10] was used for system identification without
missing data, but the technique is based on minimizing the
nuclear norm of Y measU⊥, which requires a significantly
larger number of optimization variables than the proposed
cost ‖Hh‖∗.

V. SYSTEM IDENTIFICATION WITH MISSING
DATA

A. Problem formulation with missing data

We assume that all inputs have been sampled at a constant
rate and that they are all available, i.e., we have N inputs
u(t) for t = 0, . . . , N −1 that, as before, can be collected in
a matrix U ∈ R

N×m. Given the FIR model h, we can then
write a linear function of h and U (2) to compute the matrix
Y ∈ R

N×p, which is the predicted output of the model at
all sample points t = 0, . . . , N − 1.

In the case of missing data not all samples ymeas
i (t) will

be measured. The available outputs are recorded rowwise

in a measurement output matrix Y meas ∈ R
Ñ×p. Note

that Y meas contains fewer entries than Y , i.e., Ñ < N ,
because only the points in time with available measurements
of the predictions Y are stored in Y meas. In order to make
these two matrices comparable, we define a measurement

matrix M ∈ R
Ñ×N that maps the predictions onto the space

of available measurements, M : R
N×p 7→ R

Ñ×p. In the
case where all measurements are available, M is simply the
identity matrix I .

As before, the error eMD under missing data is defined as
the sum of the squared differences between the predictions
MY at the points in time where data is available, and the
measurements Y meas

eMD := ‖Y meas − MY ‖2
F . (10)

ThB14.5

4694



Standard approaches for fitting models with missing data
first generate the missing measurements by interpolating the
available data Y meas and then use regular model identi-
fication techniques. The limitation of these approaches is
that they must make an assumption on how this data is to
be interpolated. Here, we make no such assumptions and
consider fitting the data only at the measured points. The
minimization of the nuclear norm can then be thought of
as an interpolation method for the missing data where the
interpolation is done by fitting a function in the class of
low-rank dynamic systems. Identifying a low-order model
of the form (2) within a given error bound γMD from the
incomplete data set U and Y meas can now be cast as the
convex optimization problem

min
h

‖Hh‖∗ (11)

s.t. ‖Y meas − MY ‖2
F ≤ γMD

A sensitivity analysis was carried out on problem (11)
to investigate the effect on the identified dynamical model
of different measurement matrices M , i.e., different patterns
and amounts of output missing data. Two cases were investi-
gated: (a) The missing output entries repeat themselves with
the same pattern along the output matrix Y meas and, (b)
The missing output entries are randomly distributed along
the output matrix Y meas. In both cases we assume that all
inputs are available.

B. Structured missing data

Sensors and actuators can have different rates at which
they acquire data or take setpoints, respectively. In this work
we consider the case where sensors and actuators work
synchronously but at different rates. This can be interpreted
as a multi-rate process between inputs and outputs, or
amongst different outputs. This case corresponds to building
the measurement matrix M by retaining only every nth row
of an identity matrix. Note that multi-rate scenarios lead
very quickly to high percentages of missing data MD%,
e.g., the simplest case where every second measurement of
the outputs is not recorded corresponds to a percentage of
missing data of MD% = 50%.

C. Randomly missing data

Problems in sensors during acquisition can lead to loss
in the measured data at random points in time. Different
percentages of missing data MD% have been considered,
ranging from no missing data, MD% = 0% to MD% =
70%. The measurement matrix M in this case is built by
randomly dropping rows from an identity matrix with a
uniform distribution.

VI. IDENTIFICATION OF SMB PROCESSES

The proposed identification method, from now on referred
to as nuclear norm identification (NucID), was compared
with standard toolboxes available in MATLAB. Different
simulation studies were performed to check the performance
of the identification method:

1) No missing data. The complete data sets were used to
identify a linear dynamic model.

2) Structured missing data. The outputs are sampled at a
lower rate than the inputs.

3) Random missing data. Some percentage MD% from the
output measurements is lost at random.

A. Generation of identification data

The system has four inputs that are internal flow rates
of the SMB unit and four outputs that are the average
concentrations of the two components A and B in the
two different outlet streams. The data sets used in the
identification procedure and for validation were generated
by computing 250 data points with the nonlinear model
described in section II-A. The unit was perturbed around the
point used for the linearization of the first principle model
with inputs drawn from a zero-mean 1% standard deviation
gaussian distribution. The different scenarios described above
were simulated by dropping the outputs of the identification
data set according to the corresponding approach.

B. Benchmark methods

Four different identification techniques were chosen for
comparison with NucID. The corresponding MATLAB tool-
box is given in brackets.

1) N4SID: Estimate a state-space model using subspace
identification techniques. (n4sid)

2) PEM: Estimate a state-space model using an iterative
prediction-error minimization method. (pem)

3) Subid: Estimate a state-space model [3]. (subid)
4) Expectation Conditional Maximization using Linear Re-

gression (LR): Estimate a FIR model using multivariate
linear regression with missing data. (ecmmvnrmle)

At this point it is important to note the way N4SID,
PEM and Subid are used when data is missing. In principle,
there are two options: The missing entries can be simply
disregarded in the identification procedure or one can try
to guess the values of the missing entries, which is known
as imputation. There are different techniques to impute
the values of the missing data, e.g., linear interpolation,
regression imputation, expectation maximization.

MATLAB offers the toolbox ‘misdata’ to impute the value
of missing entries of data sets. The algorithm alternates be-
tween estimating models with N4SID from the available data
and estimating missing data points. This iterative procedure
is repeated until a given relative tolerance is achieved (1%)
or for a maximum number of times (10 by default). The
“reconstructed” data set can then be used with the three
identification methods N4SID, PEM, and Subid.

The LR method uses a so-called expectation conditional
maximization (ECM) algorithm which is a two step proce-
dure as well [4].

These two step procedures of imputing values of missing
entries and then identifying a model does not apply for the
NucID method, which is a one step procedure that does not
need any imputation of the missing values. This is one of
the key benefits of the proposed method, since the procedure
of imputing the data will often either cause a significant
artificial increase in model order, or will generate nonsensical
results when large percentages of data are missing.

VII. RESULTS

This section presents the identification of a dynamical
model for SMB processes comparing the proposed method
NucID with four standard identification tools, N4SID, PEM,
Subid and LR and a linearized first principles model (FP)
[5].

The models are compared throughout this paper in terms
of two different criteria: the first one being the order of
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the identified model and the second one the normalized
prediction error on the validation set. To evaluate the first
criteria, a singular value decomposition (SVD) of the Hankel
matrix built from the FIR coefficients of the model at stake
was computed, the order of the corresponding model was
then defined as the number of singular values above 0.01%
(10−4) of the first value. The error on the validation set is
defined as:

eV :=
‖Y pred

v − Yv‖F

‖Yv − Ȳv‖F

(12)

where Y pred
v are the outputs predicted by the model under

consideration for the validation inputs and Yv are the outputs
of the validation set. The sum of the squared errors has been
normalized with the factor ‖Yv−Ȳv‖F , where Ȳv is the mean
of the samples.

In the case of the NucID method the only tuning parameter
to be chosen is the error bound γ. decreasing γ will increase
the number of non-negligible singular values i.e., the order
of the identified model is higher the tighter the error bound
is chosen.

The complete data set contains 250 sample points out of
which 125 were used for the identification procedure and the
rest to validate the identified models. In the first experiment
all output data was considered while for the second and the
third experiments output data was dropped according to the
strategy described.

1) Complete data set: In a first step, the complete data
set was used to identify a dynamical model using N4SID,
PEM, SubID, LR and NucID, and compare them to the FP
model.

The different approaches are compared by plotting for
each method the order of the identified model against the
corresponding normalized validation error in Figure 2.

The FP model is mapped onto one point according to its
validation error of 0.17 and order of the model of 11 since
it is only one model and has no tuning parameters.

For the methods N4SID and PEM, models with fixed
orders from 1 to 10 were identified on the complete data
set and their normalized validation errors computed. Only
the stable identified models are plotted in Figure 2. The
PEM method is able to identify only models of rank 1 and
5 with very high validation errors. N4SID on the other hand
is able to identify models of lower order and slightly lower
validation errors.

The Subid method manages to identify models with vali-
dation errors below 0.1 for model orders between 9 and 12.

The LR method yields only one point, since there is no
way to choose the order of the identified model as in the
other methods. The validation error corresponding to this
method is 0.28 but the order is of 68, hence cannot be seen
in Figure 2. It is well known that LR gives a rather good fit,
but with very high order models.

For the NucID method the tuning of the order is done
by varying γ and the order and validation errors of seven
different values of γ are plotted in Figure 2.

It is evident for the Subid and NucID methods, that there
is a trade-off between the order of the identified model and
the validation error. The Subid, FP and NucID models give
lower validation errors than models identified with N4SID
and PEM with the same order.

We can conclude that when using the complete set of data
the Subid and NucID methods are able to identify dynamical
models that are comparable to the FP model in terms
of model order and prediction error, and that outperform
N4SID, PEM and LR. Inspection of the impulse response
of the Subid, NucID and FP models confirm this conclusion.
The next step is to assess the impact of missing output data
on the identified models with the different methods.

Fig. 2. Order of the identified model as a function of the normalized
validation error for NucID, N4SID, PEM and FP.

2) Structured missing data: This section presents the
identification of the SMB process assuming that the output
data was collected at a slower sampling rate than the inputs.
This is a situation that arises commonly in SMB practice
when samples of the extract and raffinate stream have to be
manually collected during operation for off-line analysis. It
is of great interest to minimize the number of samples to
be taken since the off-line analysis is lengthy and expensive
and it represents a loss of the valuable product.

A scenario is presented here where samples of the extract
and raffinate stream are taken and analyzed alternatingly
every three cycles. Out of the four outputs measured in
this approach, two of them come from the off-line analysis
of the extract stream and the other two from the raffinate
stream. Note that compared to the previous example, where
the complete data set was used, in this case 87.5 % of the
output data is missing.

The results of this scenario are presented in Figure 3.
It is evident that N4SID, PEM and Subid methods suffer
a severe deterioration in the quality of the model in terms
of both, the order and the normalized validation error. The
models identified by these methods cannot be used for
predictive purposes. On the other hand, the NucID method
manages to identify models with low validation errors that
are comparable to the case with complete data. This example
illustrates that the NucID method is able to identify low order
models from data sets with structured missing data.

3) Randomly missing data: In this example, an increas-
ing percentage of the output entries is missing at random
throughout the measurements and the results are reported
in Table II, where each row represents a different amount
of missing data MD%. The measurements of the extract
samples (output 1 and 2) and raffinate samples (output 3 and
4) were independently and randomly dropped out according
to the percentage of missing data MD%.
The normalized validation errors eV for each of the methods
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Fig. 3. Order of the identified model as a function of the normalized
validation error for NucID, N4SID, PEM and Subid identified models from
structured missing data.

is reported together with the order n of the identified model.
For NucID, N4SID and PEM the validation error of the same
order models are reported, whereas for Subid and LR the
errors correspond to different order models.

N4SID’s and PEM’s models give validation errors above
0.7 already with MD% = 10% and remains at high val-
idation errors throughout the increase of missing data. The
Subid method shows a high sensitivity of the validation error
to the percentage of missing data, which increases from
0.23 to 0.51, a considerable deterioration in the model’s
performance. The LR method gives low validation errors up
to MD% = 40%, nevertheless the orders are unreasonably
high. For the last identification instance with MD% = 60%
the LR method has not enough data to identify a model,
indicated with a star *. NucID shows little sensitivity to
the increase in the percentage of missing data and has the
smallest validation errors, i.e. between 0.17 and 0.20 which
in the same range as in the case of the complete data set.

TABLE II

RESULTS FOR MISSING DATA AT RANDOM

NucID N4SID PEM Subid LR
MD n eV n eV n eV

10 7 0.17 0.71 1.00 9 0.23 47 0.09
20 7 0.18 0.72 0.73 9 0.26 48 0.10
30 7 0.18 0.71 0.80 9 0.28 48 0.12
40 7 0.18 0.73 0.74 9 0.37 48 0.18
50 7 0.20 0.76 0.81 9 0.50 48 0.69
60 8 0.20 0.81 0.80 9 0.51 * *

VIII. CONCLUSIONS

A system identification method, called NucID, based on
nuclear norm regularization has been presented and applied
to SMB processes, modelled as a four-input four-output
system. The NucID method identifies a low order linear
model from input/output data, given an upper bound on the
prediction error. NucID is compared to standard identifica-
tion techniques, like N4SID, prediction error minimization
(PEM) and expectation conditional maximization via linear
regression (LR), subspace identification toolbox (Subid) and
a first principles model (FP). Simulated data sets were taken
of the system identification to compare the methods among

themselves. Two different scenarios of missing data in the
outputs were studied. The multi-rate scenario, where the
missing entries have a pattern along the outputs due to
differences in the sampling times of the outputs with respect
to the inputs. In the second scenario data is missing at
random, e.g., when sensors fail. From the results shown in
this work, we can conclude that:

• The nuclear norm regularization is a heuristic that allows
one to minimize the order of the identified model. The
identification problem can be posed as a convex optimiza-
tion problem that yields a low order model that explains
the experimental data within a given error bound.

• Normally, identifying a model from an incomplete data
set involves two steps: imputing the values of missing
entries in the data set according to some criteria, and then
identifying a model from the “reconstructed” data set with
standard system identification techniques. In contrast to
this two-step approach, the NucID method involves only
one step. It deals with missing data without having to make
any assumptions or having to impute in some way the
values of missing entries a priori.

• NucID can be used for system identification from com-
plete and incomplete data sets. When data is missing
at random, the advantages become clear only at high
percentages of missing data. In the case of structured
missing data, i.e., for multi-rate sampled-data systems, the
NucID method clearly outperforms the conventional two-
step procedures and is able to correctly identify a model
with considerably lower sampling rates in the outputs.
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