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Abstract— State-feedback model predictive control (MPC)
of discrete-time linear periodic systems with possibly time-
dependent state and control input dimension is considered.
States and inputs are subject to hard, mixed, polytopic con-
straints. It is described how discrete-time linear systems, both
time-invariant and periodic, with multirate or multiplexed
control inputs can be modeled as such periodic systems. This
makes linear periodic systems with possibly time-dependent di-
mensions a unified, coherent and succinct state-space modeling
framework for a large variety of control problem for linear
plants, periodic or non. In this paper it is shown how important
theoretical results for state-feedback MPC of constrained linear
time-invariant (LTI) systems are conceptually equivalent to
what is required for linear periodic systems. Specifically the
determination of (maximum) periodic controlled and positively
invariant sets and the solution of reverse periodic discrete-
time algebraic Riccati equations are considered indispensable.
A general definition, and a method for the determination, of
maximum periodic controlled and positively invariant sets are
proposed here. Thus least-restrictive, strongly feasible MPC
problems resulting in infinite-horizon optimal state-feedback
control laws are designed. The proposed methods are applied
to a multirate twin-actuator nano-positioning system.

Keywords: Model predictive control; Linear periodic systems;
Multirate systems; Multiplexed systems; Hard constraints

I. INTRODUCTION

MPC theory for constrained discrete-time LTI systems is
well established [10,14,15]. In this paper well-known LTI-
MPC theory is generalized to linear periodic systems. Of
particular and novel interest is the need to develop methods
which accommodate periodically time-dependent state and
control input dimension. It is shown that the basic ingredients
necessary to enforce strong feasibility and provide a priori
guarantees of stability and optimality are conceptually identi-
cal to those typically employed in MPC of usual LTI systems.
These are the ability to determine (maximum) controlled
and positively invariant sets [3] and solutions to Riccati
equations [2], and enforce these as terminal constraints and
costs, respectively [15]. The solution of reverse periodic
discrete-time algebraic Riccati equations with possibly time-
dependent dimensions has been studied [5,21]. The deter-
mination of suitably general periodic invariant sets has not.
An appropriate definition for (maximum) periodic controlled
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and positively invariant sets is proposed in this paper, and a
method for their determination is presented.

MPC of linear periodic systems has been considered ([4]
and references therein). However, current methods do not
accommodate time-dependent dimensions, and the use of el-
liptic terminal sets and linear matrix inequality stability con-
ditions generally results in restrictive and suboptimal control
laws. Furthermore the methods are theoretically somewhat
distinct form LTI-MPC methods. LTI systems are linear peri-
odic systems with period length one. Thus LTI-MPC methods
should be a specific instance of periodic MPC methods. The
methods developed in this paper lead to least-restrictive and
infinite-horizon optimal control laws, and are true generaliza-
tions of LTI-MPC methods. A further approach is Repetitive-
MPC (RMPC) [11]. There a linear periodic system is lifted to
an LTI system and LTI-MPC methods applied. Unfortunately
the lifting increases the effective system step-size to an
entire period length.This introduces delays in responding to
disturbances and changes in reference input.

The motivation for considering systems with time-
dependent dimensions is control law synthesis for systems
with asynchronous control inputs. In particular multirate and
multiplexed control inputs are considered. In input-multirate
systems each control input channel may have a unique
update period [18]. In this paper linear periodic systems
with time-dependent dimensions are employed as a modeling
framework for input-multirate linear plants, assuming all
input rates are integer multiples of some base period. Use
of periodic systems to model multirate LTI systems was
reported in [1,16,18]. However, those have time-invariant
dimensions. These have two main drawbacks for control
law synthesis. First, employing time-invariant dimensions
does not encode the input timing behavior within the model.
By utilizing time-dependent dimensions the asynchronous
input timing can be embedded into the plant model and
abstracted away. This alleviates the need to enforce the
timing from within the controller (Sec. IV). Thus controller
design becomes more transparent and can be performed using
(nearly) standard methods (Sec. III). Second, minimal system
realizations generally require time-dependent dimensions
[6,20]. Thus models with time-invariant dimensions are gen-
erally not minimal and result in unnecessary computational
complexity. This is especially so for MPC, where excessive
model dimensions accumulate over multiple prediction steps.

In input-multiplexed systems the control inputs channels
are updated asynchronously in ordered sequence. In this
paper this is again modeled as a linear periodic system. Input-
multiplexed control was considered in [12,17] for increasing



the performance to complexity ratio of MPC. An equivalence
to periodic systems was mentioned but not fully exploited.
The models employed there are non-minimal, which may
lead to a waste of processor clock-cycles. The determination
of invariant sets was ignored in [12]. Thus [12] is not
directly applicable to constrained MPC, because the use,
either explicit or implicit, of invariant sets is critical for
enforcing basic properties like strong feasibility and stability
[3,15]. Set invariance is addressed here. Note that the mul-
tiplexed MPC strategy of [12,17] is different than just MPC
of input-multiplexed systems. The unified MPC framework
proposed in this paper incorporates the first stage of the two-
stage multiplexed controller design procedure of [12,17]. The
second stage synthesizes low-complexity suboptimal MPC
control laws and is unrelated to the methods of this paper.

Notation: The real number set is denoted by R (R0:
non-negative. R+: strictly positive), the set of non-negative
integers N (N+ := N\{0}), the set of consecutive non-
negative integers {j, . . . , k} by Nk

j . Denote by mod : N ×
N+ → N, mod(i, j) := mink∈N{i − kj|i − kj ≥ 0} the
remainder. Denote by In ∈ {0, 1}n×n the identity matrix, by
0{n,m} ∈ {0}n×m the zero matrix and by 0 without subscript
the zero matrix with dimension deemed obvious by context.
Element j of a vector a is denoted by a[j]. For matrices A and
B of equal dimension, matrix inequalities A{<,≤,≥, >}B
hold component-wise. The set of non-empty subsets of a set
X, i.e. the power set less ∅, is denoted by 2X. A sequence of
elements xi ∈ X ∀i ∈ Nk

j is denoted by {xi ∈ X}k
i=j . Let

ψ(i,k) denote the future value of variable ψ at step i + k, as
predicted from step i. For compact notation ψ(i,0) ≡ ψi.

II. MOTIVATION FOR LINEAR PERIODIC SYSTEMS

Definition 1: A constrained discrete-time LTI system is
defined by dynamics (1) and constraints (2) with step index
i ∈ N, state x ∈ Rn, n ∈ N+, control input u ∈ Rm,
m ∈ N+, A ∈ Rn×n, B ∈ Rn×m, E ∈ Rr×n, G ∈ Rr×m,
W ∈ Rr, and r ∈ N+:

xi+1 = Axi + Bui , (1)
Exi + Gui ≤ W . (2)

Definition 2: A constrained discrete-time linear periodic
system is defined by dynamics (3) and constraints (4) with
step index i ∈ N, period length p ∈ N+, inter-period step
index j ∈ Np−1

0 , state x̄i ∈ Rnj , control input ūi ∈ Rmj ,
and [nj ∈ N+] ∧ [mj ∈ N+] ∧ [Aj ∈ Rnmod(j+1,p)×nj ] ∧
[Bj ∈ Rnmod(j+1,p)×mj ] ∧ [Ej ∈ Rrj×nj ] ∧ [Gj ∈ Rrj×mj ]
∧ [Wj ∈ Rrj ] ∧ [rj ∈ N+] ∀j ∈ Np−1

0 :

x̄i+1 = Aj x̄i + Bj ūi , j = mod(i, p) , (3)
Ej x̄i + Gj ūi ≤ Wj . (4)

The unusual and critical aspect of linear periodic systems
according to Definition 2 is that the periodic state and input
dimensions are time-dependent, not only the system matrices.
The methods of this paper are in concept applicable when
mj = 0 or nj = 0 for some values of j. To avoid notational
abuses or obfuscated notation Definition 2 describes only
periodic systems with strictly positive dimensions.

Throughout this paper, periodic states and inputs (x̄,ū)
are differentiated from their time-invariant cousins (x,u) by
an over-bar. Other variables, e.g. transition matrices Aj , are
discernible by the inter-period step subscript j.

An LTI system is a trivial instance of a linear periodic
system, with period length p = 1. Non-trivial periodic
systems with p ≥ 2 arise naturally in a number of situations
[13,22]. In this paper they are employed as models of
linear systems with asynchronous control inputs. Specifically
multirate and multiplexed control inputs are considered.

A. Input-Multirate Systems

Consider an LTI system of Definition 1. Each dimension
u[c] ∀c ∈ Nm

1 of control input u is called an input channel. In
usual discrete-time control formulations each input channel is
updated simultaneously. In the input-multirate control frame-
work each input channel u[c] may have a unique sample-
period pc ∈ N+ associated with it. Consider the timing
diagram of Fig. 1. From top to bottom, three input channels
and system step index i are depicted. Input channel u[1] has
a sample-period of three; p1 = 3. Input channel u[2] has a
sample-period of two; p2 = 2. Input channel u[1] is updated
at every step i; p3 = 1. Input u[c]i can be updated only if
mod(i, pc) = 0. If mod(i, pc) += 0 then u[c]i = u[c]i−1.

Employing this framework the entire control input vector
u, i.e. each input channel, is initialized at system step i = 0.
Let p := min{l ∈ N+|mod(l, pc) = 0 ∀c ∈ Nm

1 } ≤
∏m

c=1 pc

and note that the entire control input vector is updated at in-
teger multiples of p (i = 0, p, 2p, . . . ). Consider again Fig. 1.
In this case p = 6. Steps when the entire control input vector
u is updated are marked with a dashed vertical line. System
(1) subject to constraints (2) and with multiple input-rates
can be expressed as linear periodic system (3) subject to con-
straints (4) as explained next. Throughout the following ex-
planation it holds that inter-period step index j = mod(i, p).

For every j ∈ Np−1
0 first determine the number of channels

mj ≤ m which can be updated at step j, i.e. all decision
variables at step j. Let nj := n + m − mj ∀j ∈ Np−1

0 .
Then define [Cj ∈ {0, 1}m×mj ] ∧ [Dj ∈ {0, 1}m×(m−mj)]
∀j ∈ Np−1

0 such that control input ui is split according to

ui = Cj ūi +Dj ûi , (5)

where periodic control input ūi ∈ Rmj contains all input
channels which are updated at step i, and ûi ∈ Rm−mj

contains all input channels which remain unchanged from
the previous step i − 1. Next define periodic state x̄i :=
[xT

i , ûT
i ]T ∈ Rnj and matrices Ej := [In, 0{n,m−mj}] ∧

u[1]

u[2]

u[3]

i
0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1. Input-multirate control timing: (p1, p2, p3) = (3, 2, 1), p = 6.



Fj := [0{m−mj ,n}, Im−mj ] ∀j ∈ Np−1
0 such that

xi = Ej x̄i ∧ ûi = Fj x̄i . (6)

Then define matrices [Aj ∈ Rnmod(j+1,p)×n] ∧ [Bj ∈
Rnmod(j+1,p)×m] ∀j ∈ Np−1

0 such that

x̄i+1 = Ajxi + Bjui . (7)

Combining Eqs. (2), (5), (6) and (7) achieves dynamics

x̄i+1 = AjEj x̄i + Bj (Cj ūi +DjFj x̄i)
= (AjEj + BjDjFj) x̄i + BjCj ūi

subject to constraints

EEj x̄i + G (Cj ūi +DjFj x̄i) =
(EEj + GDjFj) x̄i + GCj ūi ≤ W .

For all j ∈ Np−1
0 , defining Aj := AjEj + BjDjFj , Bj :=

BjCj , Ej := EEj + GDjFj , Gj := GCj and Wj = W
results in system (3) subject to constraints (4).

It holds that [nj ≥ n] ∧ [mj ≤ m] ∧ [nj + mj = n + m]
∀j ∈ Np−1

0 . This means that the total amount of information
required to describe the system (nj) changes depending on
the number of ‘saved’ control inputs (m − mj). However,
the number of saved control inputs and the number of inputs
which are decision variables (mj) together must remain
constant and equal to m. Furthermore [n0 = n] ∧ [m0 = m].
This is because at time i = 0 and multiples of period-length
p every input channel of control vector u can be updated.

To illustrate, the example of Fig. 1 results in the following,
where m = 3 as drawn, and all 0’s and 1’s are scalar:

A0 =
[

A
0{2,n}

]
, B0 =




B

1 0 0
0 1 0



,
C0 = I3

D0 = ∅
,

E0 = In

F0 = ∅
,

A1 =
[

A
0{1,n}

]
, B1 =

[
B

1 0 0

]
, D1 =

[
1 0 0
0 1 0

]T

,

C1 =
[
0 0 1

]T, E1 =
[
In, 0{n,2}

]
, F1 =

[
0{2,n}, I2

]
.

Note that D0 = ∅ and F0 = ∅ because û has dimension 0,
i.e. at step j = 0 every input channel is a decision variable.

B. Input-Multiplexed Systems
Consider continuous-time linear time-invariant system

ẋ(t) = Acx(t) + Bcu(t) (8)

on time t ∈ R with state x ∈ Rn, n ∈ N+, control input
u ∈ Rm, m ∈ N+, Ac ∈ Rn×n and Bc ∈ Rn×m.

In the multiplexed control framework the continuous-time
control input is piecewise constant on each input channel, but

u[1]

u[2]

u[3]

t
0 h1 h1+h2 h 2h 3h 4h

Fig. 2. Multiplexed control timing: m = p = 3, h = h1 + h2 + h3.

all input channels are not updated simultaneously. However,
each input channel is updated at the same, fixed time-interval
h ∈ R+. Fig. 2 shows a timing schematic of such a system.
Without loss of generality suppose the input channels are
numbered such that channel u[mod(c,m)+1] is updated next
after channel u[c]. Associated with each input channel u[c]

is a fixed time interval hc satisfying: hc ∈ R0 ∀c ∈ Nm−1
1 ,

hm ∈ R+. Each hc denotes the time interval between input
channels u[c] and u[mod(c,m)+1] being updated. Note that h =∑m

c=1 hc, and that if hc = 0 for some c ∈ Nm−1
1 then input

channels u[c] and u[c+1] are updated simultaneously.
For control law synthesis it may be desirable to update

each input channel individually [12,17]. Thus suppose hc >
0 ∀c ∈ Nm

1 . Continuous-time system (8) with piecewise con-
stant control inputs can be rewritten as linear periodic system
(3) with period length p = m and [Aj := exp(Achj) ∈
Rn×n] ∧ [Bj :=

∫ hj

0 exp(Acτ) dτBc ∈ Rn×m] ∀j ∈ Np−1
0 .

The multiplexed inputs, and pointwise-in-time constraints
of the form of Eq. (2), are incorporated by following an
analogous sequence of steps as described in Sec. II-A for
input-multirate LTI systems. The system with multiplexed
input channels is then expressed as linear periodic system
(3) with [nj = n + m − 1] ∧ [mj = 1] ∀j ∈ Np−1

0 . This
means there is only one decision variable at each step i. All
other input channel values are ‘saved’ in periodic state x̄.

Note that if some hc’s are allowed to be zero then the
state and input dimension may be time-dependent.

III. MPC OF LINEAR PERIODIC SYSTEMS

Control law synthesis and the design of MPC problems is
tackled in this section. The framework of state-feedback is
employed assuming perfect state information. Regulation to
the origin is considered. The methods are applicable to offset-
free or trajectory tracking (see Sec. V). The methods could
straightforwardly be bestowed with robustness properties.
For simplicity of exposition robustness is ignored here.

A. A Basic MPC Problem Formulation
For prediction horizon length N ∈ N+, MPC achieves

closed-loop control action of system (3) subject to constraints
(4) by applying at each step i the first control input ū(i,0) of
a predicted open-loop control input trajectory Ūi := [ūT

(i,0),

. . . , ūT
(i,N−1)]

T ∈ Rνj , where ū(i,k) denotes the future value
of ū at step i + k, as predicted from step i. The dimension
νj of Ūi is not defined explicitly here, but depends on i,
N and mj’s, and is periodic. The optimal predicted open-
loop control input trajectory is determined by the solution of
periodic linear-quadratic MPC Problem 1 with quadratic cost
matrices [Tj ∈ Rnj×nj ] ∧ [Γj ∈ R(nj+mj)×(nj+mj)] ∀j ∈
Np−1

0 and terminal constraint sets Tj ∈ 2Rnj ∀j ∈ Np−1
0 . The

parameters N , Tj , Γj and Tj are design parameters. Specific
values are assigned to terminal cost matrices Tj and terminal
constraint sets Tj in later sections to yield control laws
with desirable properties. For compact notation define the
extended periodic state χ̄i := [x̄T

i , ūT
i ]T and Āj := [Aj , Bj ]

∧ Ēj := [Ej , Gj ] ∀j ∈ Np−1
0 .



Problem 1: Determine

Ū∗i (x̄i) := arg min
Ūi∈U(x̄i)

J
(
x̄i, Ūi

)

with prediction cost function J : Rnj × Rνj → R

J
(
x̄i, Ūi

)
:=

∑N−1
k=0 χ̄T

(i,k)Γmod(i+k,p)χ̄(i,k)

+x̄T
(i,N)Tmod(i+N,p)x̄(i,N) ,

constraint set U : Rnj →
{
2Rνj

, ∅
}

,

U(x̄i) :=




Ūi ∈ Rνj

∣∣∣∣∣

x̄(i,N) ∈ Tmod(i+N,p)

Ēmod(i+k,p)χ̄(i,k) ≤ Wmod(i+k,p)

∀k ∈ NN−1
0




 ,

and x̄(i,k+1) = Āmod(i+k,p)χ̄(i,k) ∀k ∈ NN−1
0 .

Periodic MPC Problem 1 is essentially identical to a usual
time-invariant MPC problem. There are stage costs, terminal
costs, stage constraints and a terminal constraint. The crucial
difference is their periodic nature, and that depending on i
and N the terminal cost and constraint are different.

Define the sets Xj ∈ 2Rnj ∀j ∈ Np−1
0 of feasible states as

follows: Xj := {x̄ ∈ Rnj |U(x̄) += ∅}.

Definition 3: An MPC problem is strongly feasible if and
only if from every feasible state the closed-loop state trajec-
tory due to any sequence of feasible solutions remains within
the sets of feasible states.

Definition 4: Suppose a specific set of parameters {N, Tj ,
Γj , Tj} in MPC Problem 1 results in the sets of feasible
states X̂j ∈ 2Rnj ∀j ∈ Np−1

0 . Then MPC Problem 1 with
{N, Tj , Γj , Tj} is termed least-restrictive if and only if any
other choice of parameters results in Xj ⊆ X̂j ∀j ∈ Np−1

0 .

In MPC of LTI systems, strong feasibility of MPC prob-
lems can be enforced by constraining terminal state x(i,N)

to be element of a controlled invariant set. Constraining the
terminal state to the maximum controlled invariant set results
in a least-restrictive strongly feasible MPC problem. Stability
can be enforced by selecting an appropriate terminal cost
in combination with a more restrictive terminal constraint.
For example, the terminal cost matrix may be the stabiliz-
ing, positive-definite solution P to a discrete-time algebraic
Riccati equation, and the terminal constraint set a positively
invariant set for the optimal state-feedback associated with
P . If the terminal constraint is then not active for some
particular state, i.e. the terminal state is an element of the
positively invariant set without this being explicitly enforced,
then the solution of the MPC problem is infinite-horizon
optimal. These issues are thoroughly discussed in [15].

The point of this paper it to propose that these basic
ingredients for enforcing strong feasibility and stability, and
for verifying optimality, are no different in a periodic MPC
problem formulation. The concept of (maximum) controlled
and positively invariant sets, and Riccati equations, are
identical in the linear periodic case. The differences asso-
ciated with the system’s periodicity are numerical, rather
than conceptual. In Sections III-B and III-C a definition of

periodic (maximum) controlled and positively invariant sets
is proposed, and a solution method presented. Sec. III-D
presents a short discussion on the solution of reverse periodic
discrete-time algebraic Riccati equations. The objective is to
derive an analogous set of results for guaranteeing strong fea-
sibility, stability and optimality as for MPC of LTI systems,
but generalized to the linear periodic systems framework.

B. Controlled Invariance of Linear Periodic Systems and
Enforcing Strong Feasibility of Periodic MPC Problems

The purpose of this section is to formally characterize
controlled invariance [3] of linear periodic systems, and
employ maximum periodic controlled invariant sets in the
design of least-restrictive strongly feasible periodic MPC
problems. Furthermore, an approach for the computation of
maximum periodic controlled invariant sets is presented.

Definition 5: A set {C0, . . . , Cp−1} of sets Cj ∈ 2Rnj ∀j ∈
Np−1

0 is termed a periodic controlled invariant set for system
(3) subject to (4) iff it satisfies the following condition:

∀j ∈ Np−1
0 ∀x̄ ∈ Cj ∃ū ∈ Rmj s.t.

Aj x̄ + Bj ū ∈ Cmod(j+1,p) ∧ Ej x̄ + Gj ū ≤ Wj . (9)

The maximum periodic controlled invariant set is the set
{C∗0, . . . , C∗p−1} of sets C∗j ∈ 2Rnj ∀j ∈ Np−1

0 as follows:

C∗j :=
{
x̄ ∈ Rnj |∃{ūi ∈ Rmmod(i,p)}∞i=j s.t.

x̄i+1 = Akx̄i + Bkūi ∧ Ekx̄i + Gkūi ≤ Wk

∧ k = mod(i, p) ∀i ∈ N∞j , x̄j = x̄
}

.

Theorem 1: Setting terminal constraint sets Tj = C∗j ∀j ∈
Np−1

0 in MPC Problem 1 results in a least-restrictive strongly
feasible MPC problem, for any N ∈ N+.

Proof: A formal proof is omitted for brevity. This outline
follows closely the discussion of [15] for time-invariant
systems. Strong feasibility is enforced because if at feasible
state x̄i MPC Problem 1 determines any solution Ūi such that
x̄(i,N) ∈ C∗mod(i+N,p) then at the next state x̄i+1 = x̄(i,1) an
admissible control input trajectory up to but not including the
final control move ū(i+1,N−1) is given by the shifted solution
of the step before: ū(i+1,k) = ū(i,k+1) ∀k ∈ NN−2

0 . Applying
this achieves x̄(i+1,N−1) ∈ C∗mod(i+N,p). The existence
of an admissible final control move ū(i+1,N−1) such that
x̄(i+1,N) ∈ C∗mod(i+N+1,p) is guaranteed by the periodic
controlled invariance property of Eq. (9). By induction this
argument holds recursively. Least-restrictiveness of the MPC
problem results from the terminal constraint set being the
maximum periodic controlled invariant set. !

Any periodic controlled invariant set can be employed for
enforcing strong feasibility of MPC Problem 1. Use of a
non-maximum periodic controlled invariant set may result in
a restrictive control law. Note that a strongly feasible MPC
problem does not necessarily yield a stabilizing control law.

Define the lifted system matrices

A :=
[

0 Ap−1

diag(A0, . . . , Ap−2) 0

]
∈ Rn̄×n̄ ,

B :=
[

0 Bp−1

diag(B0, . . . , Bp−2) 0

]
∈ Rn̄×m̄ ,



E := diag(E0, . . . , Ep−1) ∈ Rr̄×n̄ ,

G := diag(G0, . . . , Gp−1) ∈ Rr̄×m̄ ,

W := [WT
0 , . . . ,WT

p−1]
T ∈ Rr̄ ,

n̄ :=
∑p−1

j=0 nj , m̄ :=
∑p−1

j=0 mj , r̄ :=
∑p−1

j=0 rj ,

and consider the lifted LTI system

xi+1 = A xi + Bui subject to E xi + G ui ≤ W . (10)

An equivalent condition to Eq. (9) is the following:

∀x ∈ C := (C0 × · · · × Cp−1) ∈ 2Rn̄

∃u ∈ Rm̄

s.t. A x + Bu ∈ C ∧ E x + G u ≤ W . (11)

Given the maximum controlled invariant set C∗ ∈ 2Rn̄

of
lifted LTI system (10) according to (see [3])

C∗ :=
{
x0 ∈ Rn̄|∃{ui ∈ Rm̄}∞i=0 s.t.

xi+1 = A xi + Bui ∧ E xi + G ui ≤ W ∀i ∈ N
}

(12)

it is straightforward to unlift the set C∗ and determine the
maximum periodic controlled invariant set {C∗0, . . . , C∗p−1}
such that C∗ =

(
C∗0 × · · · × C∗p−1

)
. Thus the determination

of maximum periodic controlled invariant sets is amenable
to well-known methods from LTI system theory [3,7,23].

C. Positive Invariance of Linear Periodic Systems
The purpose of this section is to formally characterize

positive invariance [3] of linear periodic systems. Further-
more, an approach for the computation of maximum periodic
positively invariant sets is presented.

Definition 6: A set {P0, . . . , Pp−1} of sets Pj ∈ 2Rnj ∀j ∈
Np−1

0 is termed a periodic positively invariant set for system
(3) subject to (4) with state-feedback gains {K0, . . . ,Kp−1},
Kj ∈ Rmj×nj iff it satisfies the following condition:

(Aj + BjKj)x̄ ∈ Pmod(j+1,p) ∧
(Ej + GjKj)x̄ ≤ Wj ∀x̄ ∈ Pj ∀j ∈ Np−1

0 . (13)

The maximum periodic positively invariant set is the set
{P∗0, . . . , P∗p−1} of sets P∗j ∈ 2Rnj ∀j ∈ Np−1

0 as follows:

P∗j :=
{
x̄ ∈ Rnj |x̄i+1 = (Ak + BkKk)x̄i ∧

(Ek + GkKk)x̄i ≤ Wk ∧
k = mod(i, p) ∀i ∈ N∞j , x̄j = x̄

}
.

Let K := diag(K0, . . . ,Kp−1) ∈ Rm̄×n̄. An equivalent
condition to Eq. (13) is the following:

(A + BK )x ∈ P := (P0 × · · · × Pp−1) ∈ 2Rn̄

∧ (E + G K )x ≤ W ∀x ∈ P . (14)

Given the maximum positively invariant set P∗ ∈ 2Rn̄

of
lifted LTI system (10) according to (see [3])

P∗ :=
{
x0 ∈ Rn̄|xi+1 = (A + BK ) xi ∧

(E + G K ) xi ≤ W ∀i ∈ N
}

(15)

it is straightforward to unlift the set P∗ and determine the
maximum periodic positively invariant set {P∗0, . . . , P∗p−1}
such that P∗ =

(
P∗0 × · · · × P∗p−1

)
. Thus the determination

of maximum periodic positively invariant sets is amenable
to well-known methods from LTI system theory [3,8].

D. Reverse Periodic Discrete-Time Algebraic Riccati Equa-
tions and Guaranteeing Stability and Optimality of Periodic
MPC Control Laws

The purpose of this section is to briefly summarize known
results on the solution of reverse periodic discrete-time alge-
braic Riccati equations. Together with the periodic positively
invariant sets of Sec. III-C these are employed in the design
of periodic MPC problems which result in stabilizing and
infinite-horizon optimal control laws.

Consider a linear periodic system of Definition 2, and
the unconstrained periodic linear-quadratic optimal control
problem of minimizing the cost

J(x̄i) :=
∞∑

k=0

χ̄T
(i,k)Γjχ̄(i,k) , Γj =

[
Qj Sj

ST
j Rj

]
≥ 0

with j = mod(i + k, p) and χ̄ defined as in MPC Problem
1. The optimal cost J∗ is given by

J∗(x̄i) = x̄T
i Pj x̄i

and is achieved by periodic state-feedback

ū(i,k) = Kj x̄(i,k) ,

Kj := −
[
BT

j Pj+1Bj + Rj

]−1 (
BT

j Pj+1Aj + ST
j

)

∈ Rmj×nj ∀j ∈ Np−1
0

where {P0, . . . , Pp−1}, Pj ∈ Rnj×nj ∀j ∈ Np−1
0 is a unique,

positive semi-definite periodically stabilizing solution of the
reverse periodic discrete-time algebraic Riccati equation

Pj = Qj + AT
j Pj+1Aj −

(
BT

j Pj+1Aj + ST
j

)T

×
[
BT

j Pj+1Bj + Rj

]−1 (
BT

j Pj+1Aj + ST
j

)
.

The important point about these periodic Riccati equations
is that each P matrix may have a different dimension.
Conditions for the existence of solutions are discussed in
[5]. Solution methods for such equations are discussed in
[5,19,21]. For usefulness in MPC we make Assumption 1.
A less strict condition than Assumption 1 is possible, but for
simplicity of exposition this is ignored here.

Assumption 1: Stage cost matrices are positive definite:
Γj . 0 ∀j ∈ Np−1

0 .

Suppose the solution {P0, . . . , Pp−1}, the set of feedback
gains {K0, . . . ,Kp−1}, and any appropriate positively in-
variant set {P0, . . . , Pp−1} have been determined.

Theorem 2: Setting terminal costs Tj = Pj and terminal
constraint Tj = Pj ∀j ∈ Np−1

0 in MPC Problem 1 results in
a stabilizing control law.

Proof: The proof follows closely along the lines of the
discussion of [15] for LTI systems. Basically, the minimal
prediction cost J

(
x̄i, Ū∗i

)
is a strict upper bound for the

minimal prediction cost J
(
x̄i+1, Ū∗i+1

)
at the next step. Thus

the minimal prediction cost is guaranteed to be monoton-
ically decreasing and is thus a Lyapunov function for the
closed-loop system. To see this consider a feasible state x̄i.



The optimal solution Ū∗i achieves x̄(i,N) ∈ Pmod(i+N,p).
Analogously to the proof of Theorem 1, at the next state
x̄i+1 = x̄(i,1) a feasible solution Ūi+1 is such that

ū(i+1,k) = ū(i,k+1) ∀k ∈ NN−2
0

ū(i+1,N−1) = Kmod(i+N,p)x̄(i+1,N−1) .

Therefore

J
(
x̄i+1, Ū

∗
i+1

)
− J

(
x̄i, Ū

∗
i

)
≤ −χ̄T

i Γmod(i,p)χ̄i < 0

by Assumption 1. !

Theorem 3: Suppose Tj = Pj and Tj = Pj ∀j ∈ Np−1
0

in MPC Problem 1. If at state x̄i the optimal solution Ū∗i
is such that the terminal constraint is not active, then the
solution is the infinite-horizon optimal solution.

Proof: The proof again follows along the lines of the discus-
sion of [15], and the proof of Theorem 2. Basically, the opti-
mal solution U∗i (x̄i) is the first portion of the actual control
input trajectory that is determined in the closed-loop. As the
terminal constraint is not active the terminal cost incorporates
the exact cost associated with the infinite-horizon prediction
beyond prediction horizon N . Consider a feasible state x̄i

and optimal solution Ū∗i such that x̄(i,N) ∈ Pmod(i+N,p) with
no active constraint on terminal state x̄(i,N). Then at the next
state x̄i+1 = x̄(i,1) the optimal solution Ū∗i+1 is given by

ū∗(i+1,k) = ū∗(i,k+1) ∀k ∈ NN−2
0

ū∗(i+1,N−1) = Kmod(i+N,p)x̄(i+1,N−1) .

Consequently

J
(
x̄i+1, Ū

∗
i+1

)
− J

(
x̄i, Ū

∗
i

)
= −χ̄T

i Γmod(i,p)χ̄i < 0 .

Thus the solution U∗i (x̄i) is both stabilizing and infinite-
horizon optimal. !

IV. DIFFERENCES WITH EXISTING METHODS

In [18] an LTI system according to Definition 1 is first
lifted to the LTI system

ξi+1 =
[

A B
0 Im

]
ξi +

[
B
Im

]
δi (16)

with ξi :=
[
xT

i , uT
i

]T ∈ Rn+m and δi := ui − ui−1 ∈ Rm.
Asynchronous control inputs are introduced by enforcing via
the controller that δ[c]i = 0 whenever input channel u[c]

cannot be updated. This is akin to move-blocking. When
using periodic models with time-dependent dimensions the
input timing constraints are intrinsic to the plant, instead
of being externally forced upon the system. This is instru-
mental in generalizing standard procedures for systems with
synchronous inputs to the asynchronous setting. Control law
design is significantly simplified and made more transparent.
The complexities of handling time-dependent move-blocking
data-structures to control input timing have been eradicated.
Employing periodic models may also offer computational
benefits. The lifted model of Eq. (16) has a combined state-
input dimension of n + 2m. The periodic model has only
n+m. Thus fewer linear inequalities are required to describe

the constraints on (x, u) via (x̄, ū), as opposed to via (ξ, δ).
Note that the number of decision variables at each step i is
the same in both system representations. Note further that
either system representation allows formulating MPC prob-
lems which result in infinite-horizon optimal control laws.

In [12,17] the lifting strategy of Eq. (16) is employed, but
a periodic input distribution matrix Bj defined. The state
transition matrix remains time-invariant. Again, using fully
periodic models may reduce the complexity of the MPC
problem, and of determining the required invariant sets.

In RMPC [11] the periodic system is lifted to an LTI
system. The lifting is over an entire period. MPC is then
performed as for LTI systems, but including inter-period
constraints. Thus RMPC is agnostic to time-dependent di-
mensions and applicable to the linear periodic systems
investigated here (see Sec. V). The drawback of RMPC
is that the lifting to an LTI system reduces the effective
sampling-rate of the controller to 1/p that of the system.
Thus the controller is not able to respond to disturbances and
references changes on inter-period steps, but can only reject
the effects of these on steps which are integer multiples of
the period length. The periodic MPC approach of this paper
rejects disturbances, and responds to reference changes, at
each step. Furthermore, in periodic MPC the performance
degradation due to disturbances is unrelated to the system’s
period length p, whereas a larger period length p exacerbates
the effects of the same levels of disturbances in RMPC.
Furthermore, RMPC requires the prediction horizon to be
an integer multiple of the period length. The periodic MPC
approach proposed here has no such restriction. Thus the
shortest admissible horizon length can be selected freely.

V. ILLUSTRATIVE EXAMPLE

Consider the two-mass system shown in Fig. 3, which is
a very simplified model of a common setup used in nano-
positioning systems. In a standard configuration the larger
mass mb would be, for example, a linear motor with a large
travel, and the smaller mass mp a piezo element for high pre-
cision positioning and disturbance rejection, but small travel.
The continuous-time dynamics are given by (n = 4, m = 2)

ẍb = 1
mb

[
− kxb − (δb + δp)ẋb + kxp + δpẋp + fb

]

ẍp = 1
mp

[
kxb + δpẋb − kxp − δpẋp + fp

]
.

δb δp

xb xp

mb mp

k
fb fp

Fig. 3. Nano-positioning system schematic: Two-mass system.



The two control inputs are the base- and piezo-stage forces
fb and fp. The mass, damping and spring coefficients are

mb = 10 g δb = 10−3 N s / m
mp = 1 g δp = 5 · 10−6 N s / m

k = 0.25 N / m .

These parameters result in a very approximate model of
the atomic force microscope (AFM) studied in [9], with a
slow and heavy base-stage and a very lightly damped and fast
piezo-stage. The system is sampled at 1 kHz. Due to the slow
dynamics of the base, the input fb is updated only once every
p = 10 samples, resulting in a periodically time-dependent
system with state and control input dimension alternating
between 4 and 5, and 1 and 2, respectively, as discussed in
Sec. II-A. The following constraints are imposed:

|xb| ≤ 0.4 mm
|xp| ≤ 0.4 mm |xb − xp| ≤ 0.1 mm
|ẋb| ≤ 0.03 m / s |ẋb − ẋp| ≤ 0.1 m / s
|fb| ≤ 5 mN |fp| ≤ 0.2 mN .

The control objective is to track a reference signal in the
piezo-stage position xp as the AFM executes, for example, a
raster scan. The reference trajectory switches between values
of ±0.4 mm. As is the case in practice, the entire reference
signal is known prior to the scan. This causes the system to
respond, in a non-causal manner, to reference changes before
they occur. Cost matrices Q and R equal to the identity, and
a prediction horizon of 50 ms (N = 50) were chosen. The
choice of N is sufficiently large such that the solution of the
finite-horizon MPC problem is infinite-horizon optimal.

Plotted in Figs. 4 and 5 are the piezo-stage position xp

and the base-stage velocity ẋb, respectively. Two control
laws are contrasted; the optimal constrained periodic MPC
control law proposed in this paper (blue, solid), and optimal
unconstrained control based on periodic models and the
solution of the periodic Riccati equation (red, dashed). The

Time [ms]

xp

Fig. 4. Piezo-stage position xp [mm], undisturbed. Constrained optimal
periodic MPC (blue, solid). Unconstrained optimal periodic control (red,
dashed). Repetitive-MPC (green, dash-dotted). Note constraint |xp| ≤ 0.4.

Time [ms]

ẋb

Fig. 5. Base-stage velocity ẋb [m/s], undisturbed. Constrained optimal
periodic MPC (blue, solid). Unconstrained optimal periodic control (red,
dashed). Repetitive-MPC (green, dash-dotted). Note constraint |ẋb| ≤ 0.03.

solid black line in Fig. 4 denotes the reference trajectory. The
optimal unconstrained control law has constraints on neither
states nor inputs and achieves a very fast response, but at
the expense of serious constraint violation in ẋb, and a little
constraint violation in xp. The optimal constrained periodic
MPC control law achieves rigorous constraint satisfaction at
the expense of a slightly sluggish response in xp.

Next, a plant-model mismatch was included when per-
forming simulations. Instead of the discrete-time dynamics of
Eq. (1), for simulations the system xi+1 = 0.99 (Axi + Bui)
is employed, i.e. the state is forced to contract a little.
Plotted in Fig. 6 is the piezo-stage position xp. Three control
laws are contrasted; the optimal constrained periodic MPC
control law proposed in this paper (blue, solid), optimal

Time [ms]

xp

Fig. 6. Piezo-stage position xp [mm], disturbed. Constrained optimal
periodic MPC (blue, solid). Unconstrained optimal periodic control (red,
dashed). Repetitive-MPC (green, dash-dotted). Note constraint |xp| ≤ 0.4.



unconstrained control based on periodic models and the
solution of the periodic Riccati equation (red, dashed), and
the RMPC strategy of [11] (green, dash-dotted). The solid
black line denotes the reference trajectory. The optimal con-
strained periodic MPC and optimal unconstrained solutions
do not track the reference as closely as in the nominal
case plotted in Fig. 4, but have not changed significantly
in any other way. The RMPC solution rigorously satisfies
the constraints, but clearly performs very poorly compared
to optimal constrained periodic MPC. The RMPC response
has a larger error and is highly oscillatory. The oscillations
are because the lifting to an LTI system reduces the effective
sample-period to 0.1 kHz, and so the accumulated effects of
the plant-model mismatch are only rejected at every 10th
step. Note that in the case without plant-model mismatch
plotted in Fig. 4, the RMPC response is identical to the op-
timal constrained periodic MPC response. This demonstrates
how even small disturbances can cause severe performance
degradation in RMPC, whereas the periodic MPC approach
degrades more gradually with increasing disturbance levels.

VI. CONCLUSION

Systems with periodically time-dependent state and con-
trol input dimension seem bizarre but elegantly model situ-
ations which are not. In this paper it was shown how linear
time-invariant or linear periodic systems with multirate or
multiplexed control inputs may be modeled as such systems.
Periodic system models with time-dependent dimensions are
lower dimensional, more general and more powerful than
models with time-invariant dimensions, yet straightforward
to deal with. The succinct and rigorous state-space modeling
framework of linear periodic systems with possibly time-
dependent dimensions allowed state-feedback MPC theory
for LTI systems with synchronous inputs to be straight-
forwardly extended to systems with unusual input timing
constraints. Differences between state-feedback MPC theory
for LTI systems and linear periodic systems are superficial,
not conceptual. The solution of reverse periodic discrete-time
algebraic Riccati equations with time-dependent dimensions
is well studied. Definitions for (maximum) periodic con-
trolled and positively invariant sets, and methods for their
determination, were proposed here. Thus MPC problems for
constrained linear periodic systems which result in infinite-
horizon optimal state-feedback control laws were designed.

The periodic modeling framework with time-dependent di-
mensions is trivially extensible to modeling output-multirate
(usually simply termed multirate) systems, which occur when
multiple measurement rates induce cyclic time-dependence
in outputs, or output-multiplexed systems, which occur when
outputs are sampled at fixed time-intervals in ordered se-
quence (e.g. with polling sensors). Asynchronous outputs
were ignore here because the discussion of MPC controller
synthesis focused on state-feedback. The extension of output-
feedback MPC theory from the LTI case to the linear periodic
case is of future research interest. Furthermore, the use of
periodic systems to model asynchronous input or output
behavior is readily applicable to control of nonlinear systems.
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