Fast explicit nonlinear model predictive
control via multiresolution function
approximation with guaranteed stability

Sean Summers, Davide M. Raimondo, Colin N. Jones,
John Lygeros, Manfred Morari

Automatic Control Laboratory, ETH Ziirich, Switzerland
Email: {summers, davide.raimondo, cjones, lygeros,
morari} @control.ee.ethz.ch

Abstract: In this paper an algorithm for nonlinear explicit model predictive control is
introduced based on multiresolution function approximation that returns a low complexity
approximate receding horizon control law built on a hierarchy of second order interpolets.
Feasibility and stability guarantees for the approximate control law are given using reachability
analysis, where interval methods are used to construct a capture basin (feasible region). A
constructive algorithm is provided that combines adaptive function approximation with interval
methods to build a receding horizon control law that is suboptimal, yet with a region of
guaranteed feasibility and stability. The resulting control law is built on a grid hierarchy that

is fast to evaluate in real-time systems.

1. INTRODUCTION

The implementation of a receding horizon model predictive
control (MPC) (Morari and Lee [1999], Magni et al. [2009],
Rawlings and Mayne [2009]) law requires the solution of
an optimization problem online at each sampling instant.
It has become well-known that this optimization problem
can be posed parametrically, with the measured state x as
the parameter

J*(z) := min {h(x,u)|g(z,u) < 0}.

The offline computation of this parametric problem results
in an explicit optimal control law u*(z) mapping the
current state x to the optimal system input Bemporad
et al. [2002], Johansen and Petersen [2000], M. M. Seron
and Dona [2000].

Methods for the approximation of explicit solutions of
nonlinear model predictive control (NMPC) problems have
been addressed recently by various authors (e.g. see Canale
et al. [2009a], Johansen [2004]). In Canale et al. [2009a],
the authors compute an approximate control law a(x) with
a bound on the controller approximation error (u*(x) —
@(x)), from which performance and stability properties are
derived using Set Membership (SM) function approxima-
tion theory. In Johansen [2004], the authors use multi-
parametric nonlinear programming to compute an explicit
approximate solution of the NMPC problem defined on an
orthogonal structure of the state space partition. An addi-
tional example of the approximation of explicit solutions
of NMPC can be found in Pin et al. [2009].
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In almost all cases, the suboptimality of the resulting
control law (and as a consequence the stability of the
feedback system) is valid under various strong assump-
tions. Examples include the approximation of the Lipschitz
constant (Canale et al. [2009a]) and the availability of
global optimization tools (Johansen [2004]). While these
approaches indeed work well in practice, in many problems
the stability of the closed-loop system (and the resulting
region of attraction) can not be guaranteed. Thus, in
this paper we exploit advances in reachability analysis
and adaptive interpolation to construct an approximate
explicit control law that encompasses the strengths of
the recent works (Canale et al. [2009a], Johansen [2004]),
while guaranteeing stability and feasibility and preserving
a minimal representation of the control law.

Extending the results of Summers et al. [2009], in this pa-
per we introduce a constructive algorithm for the approxi-
mation of an explicit receding horizon NMPC control law.
We approximate the optimal control law by adaptive inter-
polation using second order interpolets, while concurrently
verifying feasibility and stability of the resulting feedback
system via the computation of an inner approximation of
the capture basin (see e.g. Delanoue et al. [2008]). With
the approach we propose, we are able to construct a sparse
approximation of the optimal control law while taking
into consideration performance loss and the feasibility and
stability of the feedback system. Further, since the solution
is defined on a gridded hierarchy, the online evaluation of
the control law is extremely fast Summers et al. [2009].

The rest of the paper is arranged as follows. In section 2 we
introduce the NMPC problem. In section 3 we construct
a d-dimension multiscale basis function and introduce
an adaptive thresholding approach for sparse function
approximation. In section 4 we introduce the notions of
reachability analysis and address how to compute a basin
of attraction using interval methods. In section 5 we



outline the algorithm for the construction of the explicit
NMPC control law. In section 6 we provide a numerical
example of the method.

2. NONLINEAR MODEL PREDICTIVE CONTROL

The recent interest in parametric programming in the
control community has arisen from the ability to pose
certain optimal control problems as parametric programs,
resulting in numerous methods to pre-compute the opti-
mal control law offline. In this paper we are specifically
interested in the following finite horizon optimal control
problem (NMPC):

J*(z) = min  J(ug,...,UN—-1,%0,-..,Zn) (1)
{uo,...,un—1}
s.t. :Ei+1:f(:ni,ui), VZZO,,Nf].
(xi,ui)eXxZ/l, VZZO,,Nf].
TN € AR,
o =,

where x; € R”™ is the state of the system, u; € R™ is
the control input of the system, and N is the prediction
horizon length. In the current formulation, we assume that
the cost function takes the form

T

J(ug, .. Lz, u;)

(2)
where L is the running (stage) cost and Vi is the terminal
cost. We also assume that f : R x R™ — R" is a
continuous function and that the objective is to regulate
the state of the system to the origin under state, control
input, and terminal state constraints represented by the
(compact) sets X C R, U C R™, and Xr C R™. For the
sake of simplicity (as in Canale et al. [2009a], Johansen
[2004]), we assume that the control input constraint set U
is convex, although the following results can be extended
to the nonconvex control input constraint setting.

.,’U,Nfl,l‘o,...,:L'N) = VN(J)N) —+

~
I
o

Problem (1) can be re-written as a parametric optimiza-
tion problem:

u*(x) = argmin{h(z, u)|g(z,u) < 0}, (3)

where u is a vector containing the sequence of control
inputs wug,...,uny_1 and appropriate auxiliary variables
and the functions h and g are generally nonconvex. We
assume that the terminal set X is positively control
invariant under a known stabilizing feedback law. The
system input is then applied in a receding horizon fashion
(Mayne et al. [2000]) by u(z), which is the first input in
the optimal control sequence of (1). A dual mode approach
is adopted, i.e. once the terminal set is attained, the
stabilizing feedback law defined in X’z is applied. Following
(Canale et al. [2009a], Johansen [2004]), we assume in
this paper that the optimal receding horizon control law
ug(x) asymptotically stabilizes the origin of the closed-
loop system.

3. MULTISCALE FUNCTION APPROXIMATION

Our method of approximating (3) effectively relies on
coarsely gridding the state space, and then systematically
regridding with increasing resolution the regions which

have not been approximated sufficiently (i.e. not all grid
points are evaluated) while only keeping the grid points
which play a significant role in the function approxima-
tion. We start with a brief introduction of the sparse
multiresolution methodology for function approximation
(Summers et al. [2009]). The reader is referred to DeVore
[1998], Mallat [1989], Bungartz and Griebel [2004] for more
information on which this section is based.

Define the standard one-dimensional scaling function (hat
function) with support [—1, 1] by

o(2) :{1|:c| ,if z € [-1,1], (1)

0, otherwise.

In one dimension, we consider a dyadic discretization on
the unit interval Q@ = [0,1]. The resulting grid €; is
characterized by the level of discretization [ and the index
i. At level [ the distance between points is h; = 27% and
the number of points is N = 2 +1. The index ¢ determines
the location of the grid points according to the equation
xp=i-hy, 0<i<2.

Consider ¢; ; a family of basis functions defined on €2 with
support [z;; — hy, 2y, + hy]. The function ¢;; is generated
from function (4) via translation and dilation,

o) =0 (T )

The family of univariate multiscale functions t);; which
make up the hierarchical basis is given as

Vs = ¢r4,% € 11,

where

C[fieNgl1<i<2'—1,io0dd} 1> ,
Tl {ieNglo<i<2ly I=1 .

Let y € N¢ denote a d-dimensional multi-index (i.e.
y is a d-vector of indices taking values in the non-
negative integers), where operations (e.g. addition) and
comparisons (e.g. <) hold component-wise. A multivariate
multiscale basis on the unit cube Q¢ = [0,1]¢, where d
is the dimension, can be constructed by tensor product
expansion of the one-dimensional multivariate functions
1, (see Figure 1), i.e.

d
;= H V1,i) (6)

j=1
with the multi-index i€ I ld and
{ieNfo<i<2'}\

{ieNflo<i<2.ijevenVje[ld}1>1,
{ieNdo<i<2y I=1 .

It =

Note that [, ld is simply the full grid less those points seen at
previous levels, as depicted in Figure 2. We may now define
the d-dimensional hierarchical function spaces of piecewise
d-linear functions as W = span{¢y; : i € I{}. Defining
the family of d-dimensional nodal basis functions



Fig. 1. Two dimensional hierarchical basis function by
tensor product expansion of the one dimensional hat
function.

and the d-dimensional nodal function space Vld =
span{¢y; : 0 < i < 2} it can be shown that Vld =
@D, W where @ denotes the direct sum.

Any function u; € V}d can be uniquely represented in the
nodal basis as a weighted sum of basis functions

21
w(z) = sz,i - dri(z)
i—0

where the coefficients v;; are equal to the function value

up(zy ;). Likewise, the function w; € Vld can also be
uniquely represented in the hierarchical basis by

l

w(z) = Z Z Wi - Yic,i(T)

k=0ierd

with coefficients wy; € R, commonly referred to as
the hierarchical details, corresponding to the difference
between the true function value w;(xg ;) and the value of
the approximate function one level below.

A common thresholding argument, and the one we will
employ throughout this paper, |wy ;| > J, simply reduces
to taking the absolute value of the detail coefficient greater
than the tolerance, and discarding the weight wy; if it
is lower than the threshold. In this manner, an adaptive
function approximation can be expressed

i)=Y

(kA)EA? (u)

Wh,i - Yri(T),

where the ‘active’ index set A%(u) is the index set corre-
sponding to all detail coefficients larger than 4.

4. FEASIBILITY AND STABILITY

In Summers et al. [2009], it was shown that the ap-
proximate control law built from the adaptive multiscale
basis functions can be separated into hypercubic regions
spanned by an interpolation by barycentric coordinates.
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Fig. 2. Grid points for subspaces W¢ (circles), W (x’s),
and W3 (dots).

We denote the set of all such hypercubic regions up to
maximum resolution [ as R.

Consider a hierarchical approximate control law defined
on Q¢ C R? (Xr C X C Q9) with maximum level |

az) = Y
(kD) EA® (u™)
where u* is given by (3). By Summers et al. [2009], we see

that the approximate control law defined on R € R can be
expressed as an interpolation by barycentric coordinates

Z a(v)fu(x), if z € R (8)

vEextr(R)

Wi - Vr,i(2) (7)

where extr(R) are the extreme points of R and f,(z)
are compactly supported basis functions of the form (6)
centered at the corners of the hypercube R.

4.1 Capture basin

Consider the discrete time system z;41 = f(;,u;) with
the control law (7). We can rewrite such a closed loop
system as

Tip1 = ‘]?R(xi), Vre R, Re R. (9)

Given the autonomous system (9), define the capture
basin Aubin [1991], Saint-Pierre [1994] as the set of initial
states Ry C X for which the terminal invariant set Xp
is attainable in finite time while satisfying at the same
time the system constraints. Under the assumption that
the terminal set is invariant and has a predefined control
law guaranteeing asymptotic stability, such a set is the
region of attraction of the origin for system (9).

In general, the capture basin cannot be explicitly com-
puted. However, we may use the following procedure to
compute an inner approximation of the capture basin.

Note that state and control constraints are satisfied in
Rs. In fact, the control laws inside each hypercube R
satisfy the control constraints (they are obtained as an
interpolation of feasible control laws at the vertices of the
boxes). Moreover, state constraints are also satisfied by
requiring that R C X.

As described in the procedure, outer approximations of
the reachable sets will need to be computed. In fact, as



Algorithm 1 Computation of the Capture basin

Require: Discrete time system (9) and R, the set of all
the hypercubic regions.
Ensure: Capture basin Rj.

1: Initialize Ry = X ~

2: Select all the boxes R C R that are not fully contained
in Ry, i.e. R g_ R,. If such a set is empty, terminate
the algorithm.

3: For all these boxes R, compute an outer approximation
Rp (1) of the 1-step ahead reachable set.

4: Add to Xiemp all the boxes that satisfy Rr(1) C R..
Xtemp Tepresents an inner approximation of the 1-step
backward reachable set of Rj.

5: Set Ry = Xiemp

6: Go back to line 2

discussed in Kuhn [1998], it is not possible to find exactly
the set @,

® = fr(R), (10)
given an initial set R € R™ and a generic nonlinear
map fr. However, an overestimation of fr(R) can be
obtained. The objective is hence to compute an outer
approximation of the reachable sets of (10) in such a way
that the overestimation is kept small. Several methods
have been proposed in literature. In the following, intervals
are recalled (see Moore [1966] for more details). Alternate
methods, e.g. zonotopes, can reduce the conservativeness
of intervals at the expense of computational burden. The
interested reader can refer to the following papers Kuhn
[1998] and Combastel [2005]. For sake of space we will
explore just the interval analysis approach.

4.2 Interval Arithmetic

Given a,b € R, with a < b, a scalar interval H = [a, b] is
the set {h :a < h < b}, i.e. a closed and connected subset
of R. The unit interval is denoted by B = [—1, 1]. T denotes
the set of all real intervals of R. Denoting with e any one of
(4, —, X, +), basic operations on scalar intervals A, B € T
satisfy the following

AeB={aeb:ac Abec B}.

Following this procedure, the four basic interval operations
are defined in Moore [1966]. An interval vector of R™ can
be viewed as a box. I" denotes the set of all boxes of
R™. A unitary box B"™, is a box composed by n unitary
intervals. The interval extension of standard functions
(sin, cos, tan, arctan, exp, In, abs, sqrt) as well as matrix
operations with intervals are also possible (see Moore
[1966]). In this work, the INTLAB interval toolbox Rump
[1999] has been used.

Definition 1. (Natural interval extension Kearfott [1996])
If f:R™ — R™ is a function computable as an expression,
algorithm or computer program involving the four elemen-
tary arithmetic operations interspersed with evaluations
of standard functions then, a natural interval extension of
f, denoted Of, is obtained replacing each occurrence of
each variable by the corresponding interval variable, by
executing all operations according to interval operators
and by computing ranges of the standard functions.

Theorem 11. Moore [1966] A natural interval extension
Of of a continuous function f : R® — R™ over a box
H C R™ satisfies f(H) C Of(H).

Theorem 12. Kearfott [1996] A natural interval extension
Of of a continuous function f : R” — R” over two boxes
H,Y C R"™ such that H C Y satisfies that Of(H) C
Of ().

Figure 3 illustrates an example of application of the
natural interval extension.
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Fig. 3. Illustration of natural interval extension

5. APPROXIMATE EXPLICIT NMPC

We now introduce a recursive algorithm for the mul-
tiresolution approximation of the explicit nonlinear model
predictive control law. The algorithm initializes at a user
defined coarse uniform grid, and then proceeds with a
dyadic refinement strategy, saving only the points which
violate a user defined thresholding law and/or feasibility
condition. Exploiting the fact that the state space can be
decomposed into a union of hypercubes (with respect to
the approximate receding horizon control law), the algo-
rithm restricts the dyadic refinement to the hypercubes
intersecting the current invariant set, thus constructing a
basin of attraction from the inside out (starting from the
terminal set) by iteration.

Pseudocode for the approximation process is given in Al-
gorithm 2. For state 2 € R? and control v € R™, the model
predictive control problem is defined as in (1) through the
choice of system dynamics f(z,u), state and control con-
straints X and U, terminal set constraint X'z, time horizon
N, and cost function (2). The overall performance index
(which can only be enforced pointwise) defined by the user
is given by the threshold coefficient e € [0, 1] such that only
coefficients which result in a cost function error larger than
eL(z,0) are kept (where L is the stage cost of the NMPC
problem). Note that this argument not only controls the
pointwise performance loss of the approximate control law,
but additionally guarantees stability and feasibility of the
pointwise receding horizon control law (see Summers et al.
[2009]). The index set A is initialized at level ly along with
all indices and details. As the grid is refined, A stores the
levels of resolution k£ and indices corresponding to the set
of hierarchical details that are not discarded due to falling
below the required approximation level. The maximum
level of resolution is given as lyax. The set of stored detail
coefficients is given by the set w. The region of attraction
is given by the set Ry and is initialized to the terminal set
Ry = Xr. Additionally, the set of hypercubes intersecting
the region of attraction (capture basin) is denoted R. and



Algorithm 2 Adaptive Hierarchical Approximate NMPC

Require: NMPC problem (1), NMPC Cost Function (2),
€, lg, and lpax.

Ensure: detail coefficients w and index set A such that
the approximate control law (7) @(z) has guaranteed
feasibility and stability over the capture basin R;.

1: Initialize the ‘active’ set A = {(k,i) : i € I,k = lp}
and the initial set of hypercubes

2: Initialize the region of attraction Ry = Xr and the set
of intersecting hypercubes R. = {R € Ractive : BN
Rs; # 0} where Ractive is the set of hypercubes not
contained within R,

3: Compute the initial details w = {wy,; : (k,i) € A}
by solving the NMPC problem (1) pointwise at the
vertices of all R € Ractive

4: while R, # 0 do

5:  Compute the capture basin Ry with Algorithm 1.

6: Recompute the set of candidate refinement hyper-

cubes R, = {R € Ractive : RN R, # @, Ir < lmax}’
where [y is the level of the hypercube

7. Refine all hypercubes R € R,

8  Update Ractive and define the set of new vertices as

Ay

9:  Solve the NMPC problem (1) at the new vertices and

compute the new detail coefficients, thresholding

according to
WE,i -
W, = 4(y) infeasible, or
J(a(y)) — J*(y) > €L(y,0)

10:  Let AX = {(k,1): (k,i) € A, wii € Wi}
11:  Update the ‘active’ index A = AUA},
12:  Update the detail set w = w U w,,
13: end while

(k,i) € A, ,and for y = xp 5 }

represents the set of refinement candidate sets. Lastly,
R. C Ractive Where Ractive 18 the set of hypercubes not
contained within R,. Note that the complexity of the real-
time implementation of the approximate control law can
be found in Summers et al. [2009].

We now introduce the main theorem which proves that
Algorithm 2 will always provide a stabilizing receding
horizon control law and verifiable region of attraction for
the NMPC problem (1), and further that the function
approximation can approximate the true control law to
arbitrary precision.

Theorem 13. Let 4y be the resulting receding horizon
approximate control law computed from Algorithm 2 for
the NMPC problem (1) with cost (2), € € [0,1], lp € N,
and lpax € N. The following properties hold for g:

) Asymptotic stability to the origin for all ¢ € R,

) 4o €U for all x € R,

) For all xg € R, x; € X for alli =1,2,3,...

) Rs :_) XF

) As € — 0 and ljax — 00, then 49 — uf and Ry — R
where R is the maximum invariant set for (1)

Proof. The first item holds since the computation of
Rs by Algorithm 1, coupled with the assumption that
the terminal set X’p is positively invariant with respect
to a known feedback law, implicitly defines a stabilizing
Lyapunov function with respect to the dual mode receding

horizon approximate control law . Feasibility of the con-
trol law holds as a result of the interpolation by barycen-
tric coordinates and the assumption that U is convex (as
stated in Section 2). State constraint satisfaction of all
trajectories whose initial state lies in the capture basin
R, is guaranteed by the definition of the capture basin.
The fourth item is trivial according to the initialization of
Algorithm 2. The final item holds since the second order
interpolets form a basis for the space of continuous and
compactly supported functions. This implies that, given
enough detail coefficients (i.e. if lyax is large enough), g
can approximate u$ to any precision (i.e. any € € [0, 1]).

6. NUMERICAL EXAMPLE

Consider the following two-dimensional continuous-time
nonlinear system (e.g. see Chen and Allgower [1998],
Johansen [2004], Canale et al. [2009b])

a1 (t) = w2(t) + [+ (1 = e (D] u(?) (14)
a(t) = 21 () + [ = 401 = Wz (Ou(t)  (15)
with g = 0.5. It is well known (Chen and Allgower [1998])
that the origin of the system governed by (14) and (15)

is unstable, and that the linearized system is stabilizeable
(but not controllable) for any p € (0,1).

In consideration of the NMPC problem (1), the system
(14) and (15) is discretized using a forward difference Euler
approximation with sampling time 7" = 0.1. The input
and state constraint sets are Y = {u € R : Ju| < 2} and
X = {z € R? : ||z||oc < 1}. The cost function is defined
over a prediction horizon of length N = 15 as

J(ug, ..., uN_1,%0,...,TN) =T NPTy
N—1
+ Z rl Qi +ul Ru; |
i=0
where
0050 B ~ [16.5926 11.5926
Q= {0 0.05] , R=01, P= {11.5926 16.5926} :

The terminal penalty matrix P is given by the solution
to the Lyapunov-equation providing a positively invariant
terminal set Xr = {x € R? : 27 Pz < 0.7} (see Chen and
Allgower [1998]).

With ¢ = 0.5, [y = 1, and lnhax = 7, we compute a
stabilizing control law using Algorithm 2 that consists of
581 hierarchical details spanning 7 levels. All computa-
tions were performed in MatLab. The function fmincon
was used to solve the pointwise NMPC problem (1) and
the INTLAB interval toolbox Rump [1999] was used to
recursively compute the capture basin. In Figure 4, the
resulting approximate receding horizon control law and
approximate (inner) control invariant set are shown. Ad-
ditionally, 1000 Monte Carlo simulations were completed
for a horizon length N,,, = 20 with the initial states drawn
randomly from the feasible region according to a uniform
distribution. The results included an average closed loop
cost increase of less than 0.2 percent.

Assuming a processor speed of 1 Gflops/s, the explicit
multiscale control law for this two-dimensional example
can be evaluated in 31 ns or 0.5 us according to the
structures introduced in Summers et al. [2009].



(a) Approximate control law

(b) Feasible Region

Fig. 4. The approximate receding horizon control law 4g is shown in (a) and the feasible and stable region is depicted

in (b).
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