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Abstract— Robust state-feedback model predictive control
(MPC) of discrete-time periodic affine systems is considered.
States and inputs are subject to periodically time-dependent,
hard, convex, polyhedral constraints. Disturbances are additive,
bounded and subject to periodically time-dependent bounds.
The control objective is given in terms of periodically time-
dependent costs. First, maximum robust periodic controlled
invariant sets are formally characterized and subsequently
employed in the design of least-restrictive robustly strongly
feasible periodic MPC problems. Finally, the proposed methods
are applied to controlling room temperatures in buildings.

Index Terms— Model predictive control; Constrained con-
trol; Set invariance; Periodic systems; Building climate control

I. INTRODUCTION

MPC of discrete-time periodic affine systems is considered
in this paper. Periodic systems are useful extensions of
time-invariant systems, and provide a natural framework for
modeling various real-world phenomena and control prob-
lems [3,25,26,29]. The presented methods are an extension
of theory developed for periodic linear systems in [14,15].
Periodic affine systems are an important generalization of
periodic linear systems, but many tools for rigorously dealing
with periodic affine systems can be derived from the tools for
periodic linear systems. Thus in this paper the conservative-
ness and complication of periodic MPC methods designed
for general nonlinear periodic systems is avoided [7,28].

A key point of this paper is the characterization of
maximum robust periodic controlled invariant sets (Def. 10)
and their use in robust periodic MPC problem formulations.
Maximum robust periodic controlled invariant sets provide
a necessary and sufficient condition for the existence of
an infinite admissible control input trajectory [5], and are
employed in this paper to least-restrictively enforce robust
strong feasibility (Def. 7) of periodic MPC problems. Thus
constraints can be rigorously enforced, indefinitely, for any
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prediction horizon length, even one shorter than one pe-
riod length. Closely related maximum periodic controlled
invariant sets for periodic /inear systems were considered in
[5,14,15]. MPC was not considered in [5]. Unlike [14,15],
in this paper robustness is considered. Robustness in MPC
is usually enforced either by considering min-max open-
loop predictions [2] or by performing closed-loop predictions
[1,2,11,16,24]. The former generally results in restrictive
and conservative control laws. The latter is generally less
restrictive and conservative than the former, but results in
larger computational complexity. The approach proposed
here performs the open-loop prediction of usual nominal
MPC formulations (not following the min-max paradigm),
but robust strong feasibility is least-restrictively enforced by
a constraint on the first prediction step. Thus the computa-
tional complexity is lower than with closed-loop prediction
MPC, but by exploiting the necessary and sufficient condition
for recursive feasibility provided by the maximum robust
periodic controlled invariant set, a periodic MPC problem
with no conservativeness with respect to the controllable
state-space is derived. Least-restrictively enforcing strong
feasibility of MPC problems by invariant set constraints on
states prior to the terminal prediction state was previously
considered in [12,13]. Note that the proposed methods are
directly applicable to time-invariant MPC formulations also.

Periodic MPC seems appropriate for many real-world
control problems, yet it appears little has been done in this
field. The reader is referred to [6,7,20,21,231/[7,28] on MPC
of periodic linear/nonlinear systems. A main objective of this
paper is to demonstrate the power and flexibility of periodic
MPC problem formulations via the example of building
climate control. Almost 40% of the electric energy generated
globally is consumed in the residential and commercial
sectors [19], thus building climate control is receiving much
attention in the fight to reduce energy costs and consumption.
The goal is to minimize the energy cost of heating and
cooling a building’s rooms, while satisfying temperature
constraints, imposed for occupants’ comfort. The use of MPC
for building climate control [17,18,27] is motivated by the
fact that the plant is heavily influenced by external factors
that can, to some extent, be forecast, e.g. the weather and
occupants’ behavior. The dynamics of the building itself
are time-invariant, but the control problem is fundamentally
periodic, with a short-term period length of one day, and a
seasonal period length of one year (the latter is ignored in
this paper). By employing a periodic MPC framework many
details about the plant and control objective can be naturally
encoded within the model. For example, the fluctuations



of activities of office workers (assumed mostly active from
8am to 6pm) and the outside air temperature (usually higher
during the day than during the night) is periodically time-
dependent and closely predictable. However, predictions are
not perfect, and the system is subject to stochastic distur-
bances, for example because clouds affect the intensity of
incident solar radiation. However, these stochastic distur-
bances are bounded with periodically time-dependent bounds
depending on the time of day. Also, the control objective
is periodically time-dependent, for example because energy
pricing policy prescribes different tariffs for day versus
night. Finally, it is highly desirable to accommodate peri-
odically time-dependent constraints, because for an office
the temperature constraints need only be enforced during
business hours, and relaxing the constraints outside business
hours facilitates lower energy use. Some periodic details can
straightforwardly be included within an LTI-MPC frame-
work. However, periodically time-dependent hard constraints
cannot be enforced rigorously and recursively in an LTI-MPC
framework without introducing conservativeness, and are not
least-restrictively enforceable without using the maximum
robust periodic controlled invariant sets proposed here.

Notation: The set of reals is denoted by R, the set of non-
negative integers by N (N := N\{0}), the set of consecutive
non-negative integers {j,...,k} by Nf. For sets A, B C R"
let AeB:={z € R"|z+be AVbeB}. Let mod : N x
N, — N, mod(, j) := mingen{é — kj|i — kj > 0}. Denote
by I, the n x n identity matrix, by O, ) the n X m zero
matrix, by 0 the zero matrix with appropriate dimension, and
by diag(ay, ..., a,) the block-diagonal matrix of n elements
a;. A sequence of elements x; € X Vi € N? is denoted by
{z; € X}fzj. Let 9(; ;) denote the future value of 1 at step
i+ k, as predicted from step i. Let ¢; := 9, o). ‘Polytope’
refers to a closed, bounded and convex intersection of a finite
number of half-spaces.

II. PERIODIC MPC CONTROL LAW DESIGN

A. Problem Setting

We consider discrete-time periodic affine system
Tit1 = iji + Bjui + Cjwi + ¢ @))

with step ¢ € N, period length p € N, inter-period step-
index j := mod(i,p) € Ngil, state © € R™, control input
u € R™, disturbance w € RY and n, m, v € Ny. State and
control input are required to satisfy

EjfL'i + Gjul- < Wj VieN. 2)
Entities A;, B;, Cj}, ¢;, Ej, G; and W} have compatible
dimensions for all j € Nb~",

Assumption 1: Disturbances satisfy w; € W; Vi € N,
where W; C RV Vj € Ng_l are polytopes with non-empty
interiors and satisfy 0 € W; Vj € Nb—',

Let r; € R" Vj € Nb~" denote the state reference
trajectory, over one period. For initial state x; the control

objective is to minimize the quadratic cost function
Vo= 308 [Lx(@i i) + Lu(ui, 1)
Lyo(2,7) = (T = Tmod(i,p)) Qmod(i,p) (T — Tmod(i,p))
Ly(u,i) = Rmod(ip)¥
with Q; € R™", Q; = 0, R; € R*™ vj e Nb~1.
B. A Basic Periodic MPC Problem

MPC achieves closed-loop control of system (1) subject
to (2) by applying at each state x; = x(;0y the first control
input u(; gy of predicTted control input trajectory U (x;) :=
[ufio)s - UG n_n) € RN™ given by Problem 3.
Remark 2: Prediction state constraint sets X;, Y; € R”
Vj e Nf)’*l of Egs. (5) and (6) are defined in Section II-D to
yield periodic MPC control laws with desirable properties.

Problem 3: Determine

Ul (x;) == arg min J(x;,U;)

UIEU(L)
T2, Up) i= Sony [Lx(@giny i+ k) + Lolugpy, i+ k)]
+Lx(z Ny i+ N) 3)

U(x;) == {U; € RN™|

Erod(i+k,p)T(i,k) T Gmod(i+k,p)U(i,k)

< Winod(itkp) Yk €NG'™H, 4)
Z(i,1) € Xmod(i+1,p) > (5
T(ig) € Ymod(itkp) Vk€NY}, (6)
(k1) = Amod(i+k,p)T(i,k) T Bmod(itk,p)U(ik)
+emod(itkp) Yk EN) L. (7)

The periodic MPC control law resulting from MPC Prob-
lem 3 is given implicitly by «(z;) := FU}(z;), F =
(L, 0{m,(N—1)m}]- The closed-loop state trajectory evolves
according to z;41 = AJQSL + lei(.l‘i) + iji + ¢;.
Remark 4: A more general terminal cost can be employed
in Eq. (3). This detail is ignored here for simplicity.
Remark 5: Prediction dynamics (7) contain no term to take
into account the additive disturbances. This is equivalent to
open-loop MPC formulations with expectation E[w; )] = 0
V(i, k) € Nx Név ~1. This circumnavigates the computational
complexities of more advanced closed-loop prediction MPC
strategies [1,2,11,16,24]. However, by suitable design of the
prediction state constraint sets X; and Y; of Egs. (5) and (6)
(see Remark 2) in this paper we avoid the (often crippling)
conservativeness induced by min-max open-loop prediction
MPC [2], while rigorously enforcing robustness.

Definition 6: Sets F; := {z; € R"|U(x;) # 0} Vj € Nb~!
are termed the sets of feasible states of MPC Problem 3, and
at step 4 any state x; € I; is termed a feasible state.

Definition 7: MPC Problem 3 is robustly strongly feasible
if and only if:
Tit1 = iji + B; FU; + C’JU}Z +cj € Fmod(i+1’p)
Yw; € Wj YU; € [U(a:l) Vi € Nzo
Vi, € F, VkeNS™' .



The above expression states that the closed-loop state tra-
jectory {z;}5°, from any feasible initial state xj, € Fy, due
to any sequence {U; € U(z;)}:2, of feasible solutions to
MPC Problem 3, and due to any sequence {w; € W;}>°, of
admissible disturbance realizations, remains within the sets
IF; of feasible states indefinitely.

The design parameters of MPC Problem 3 are prediction
horizon length N, stage cost matrices @), I2;, and prediction
state constraint sets X;, Y; for all j € Ngil. For compact
notation denote by DD a realization of all design parameters
of MPC Problem 3.

Definition 8: Suppose a specific realization D of design
parameters of MPC Problem 3 results in sets I@‘j CcC R"
Vj € NE™! of feasible states. Then MPC Problem 3 with
the design parameters of D is termed a least-restrictive
robustly strongly feasible MPC problem if and only if it is
robustly strongly feasible according to Definition 7, and in
addition any other realization D of de31gn parameters in MPC
Problem 3 results in F; C F,; Vj € Nb~!

C. Robust Periodic Controlled Set Invariance

Robust periodic controlled invariance of discrete-time pe-
riodic affine system (1) is proposed and characterized in this
section. The derived sets are employed in Section II-D to
enforce desirable properties in MPC Problem 3.

Deﬁmtlon 9: Aset {Co,...,Cp_1} of sets C; CR" Vj €
Np is a robust periodic controlled invariant set of system
(1) if and only if:

Jk; :R" = R™ sit. Ejz+ Gjk(x) <W;
A ij =+ leij(x) + Cjw + Cj € (Cmod(j—i-l,p)
VYweW; VeeC; VjeNy ™.

Definition 10: The maximum robust periodic controlled in-
variant set is the set {Cg,...,C;_;} of sets C; as follows:

C; = {z; eR"[Tk; : R" = R™ Vi€ NETL st
Zip1 = Agx; + Brrk(x;) + Crw; + e A
Epxi + Grrg(x;) < Wi Ak =mod(i,p)
Vw; € Wy Vie NP} VjieNs™.

This states that the sets C constituting the maximum ro-
bust periodic controlled invariant set are the sets of all initial
states x; such that there exists a control law k;(-), for each
inter-period step index j € Np , such that applying these
control laws achieves constraint satisfaction indefinitely. To
facilitate the use of the maximum robust periodic controlled
invariant set in MPC problem design make Assumption 11.
Assumption 11: C; # 0 Vj € NA~!, ie. the maximum
robust periodic controlled invariant set exists.

Methods for the determination of maximum robust peri-
odic controlled invariant sets are not provided in this paper.
The determination of maximum robust periodic controlled
invariant sets for a very similar problem setting was con-
sidered in [5]. The determination of maximum periodic
controlled invariant sets for general linear periodic systems

was considered in [14,15]. The maximum robust periodic
controlled invariant sets of this paper can be computed
with straightforward modifications of the methods presented
in [5,14,15]. The interested reader is referred to [4,8] for
literature on the underlying set invariance tools for time-
invariant systems. For the remainder of this paper it is
assumed that a method to determine the maximum robust
periodic controlled invariant sets of Definition 10 is available.

D. Least-Restrictive Robustly Strongly Feasible Periodic
MPC Problems

In this section the maximum robust periodic controlled in-
variant set {Cg,...,C;_;} is employed to least-restrictively
enforce robust strong feasibility of MPC Problem 3.

Let (Cmod (7+1,p) (C:jﬂod j+1,p) © {C]’U)|U} € WJ}
Vj € Nb=' For all j € N5~" it holds that [z + Cijw €
(Cr*nod(jﬂ’p) Yw € W; ] [z € (Cmod (j+1,p)- Note that

Cr ccC Vj € NA~! because 0 € W; VjeNplby
Assumption 1. Further note that C; # 0 Vj € Nf~ !
Definition 10 of C} and due to Assumption 11.

Theorem 12: If X; = C} and Y; D C; Vj € Nj~! in MPC
Problem 3, then the following three statements hold:

[a]l F; = C} Vj € Ng_l for any prediction horizon length
N and stage cost matrices ); and R;.

[b] MPC Problem 3 is robustly strongly feasible according
to Definition 7 for any prediction horizon length N and stage
cost matrices (); and R;.

[c] MPC Problem 3 is a least-restrictive robustly strongly
feasible MPC problem according to Definition 8.

Proof: [a] The following holds for any N, @); and
R;. We first show that F; C C; Vj € NB~!. Consider any
x; € I, i.e. for x; MPC Problem 3 is feasible. By constraints
(4) and (5), HU(Z- 0 € R™ s.t. Ejz; + GjU(i’o) < W; A
T(,1) € (Cmod(Hl )" This implies that x; € C* We next
show that F; D C; Vj € Nf~ '. Consider any z; € C3.
By the deﬁmtlons of (C* and (C* and by constraints (4)
and (5), Ju € R™ st Eac,—|—Gul0 < W; A
T € (Cmod(H_1 o) This 1mpl1es that z(; 1) € Crnod(z+1,p)
Therefore I{u¢ ) € ]Rm} :1 t. [Ermod(i+k,p)T(ik) T
Gmod(iJrk,p)u(i,k) < Wmod(i+k,p) Vk € Nyil] A [x(i,k) €
Cod(itk,p) 7k € NJ]. Thus constraint (6) is satisfied.
[b] The following holds for any N, ); and R;. Consider
any z; € F; = (C;f. By constraints (4) and (5), any solution
U; € U(z;) achieves Ejx; + Giug oy < Wi A x1) €
(C:Knod(H»l )’ Consequently Tit1 = Aj.’IJi —‘rBJFUZ +C]w2 +
cj € mod(z+1,p) = Fmod(iJer) Yw; € Wj. By induction
this holds recursively.
[c] By Definition 10 of (C* there does not exist a collection of
control laws x; : R™ — Rm Vj e Nb” ! such that the domain
of r; is larger then C; for any j € Np , and furthermore
such that constraints can be satisfied 1ndeﬁnitely. Thus by
Theorem 12[a,b] it holds that MPC Problem 3 is a least-
restrictive robustly strongly feasible MPC problem according
to Definition 8. |
In the remainder of this paper we employ MPC Problem 3



with prediction state constraints X; = @;f andY; = C} Vj €
N]g*l. The choice of X; in constraint (5) enforces robust
strong feasibility. According to Theorem 12 any choice of
Y; 2 C: Vj € Nj ', for example Y; = R" Vj € Nj ™',
results in MPC Problem 3 being a least-restrictive robustly
strongly feasible MPC problem. The choice of Y, above
constrains the predicted nominal state trajectory to follow a
path that is admissible in closed-loop. By constraining the
predicted state trajectory to lie within the sets comprising
the maximum robust periodic controlled invariant set, at each
prediction step the predicted state satisfies a necessary and
sufficient condition for the existence of an infinite control in-
put trajectory such that applying this control input trajectory
satisfies the constraints indefinitely. The finite-horizon MPC
problem is thus expected to better approximate the infinite-
horizon MPC problem than if Y; O C} Vj € 1\ VA

Computing maximum controlled invariant sets is generally
challenging, and the ability to determine the maximum robust
periodic controlled invariant set limits the applicability of
the proposed approach. Any non-maximum robust periodic
controlled invariant set may be employed to enforce robust
strong feasibility of MPC Problem 3, but may result in an
MPC problem that is not least-restrictive.

III. BUILDING CLIMATE CONTROL

A simplified building climate control problem plant is
depicted in Fig. 1 [17].

t1:  room air temperature [°C]
to:  interior-wall surface temperature  [°C]
t3:  exterior-wall core temperature [°C]
up:  heating power (> 0) kW]
uc:  cooling power (< 0) kW]
d1:  outside air temperature [°C]
d2:  solar radiation kW]
d3:  internal heat sources kW]

Cy =9.356 - 10° kJ/°C
Cs = 6.695 - 10° kJ/°C
K,=1085 kW/C
K, =305 kW /°C

Cy =2.970 - 106 kJ/°C

K1 =1648 kW/C
Ks=5 kW /°C
K5 =2304  kW/C

The system states are temperatures ti, to and t3. The
control inputs are uy, and u.. Environmental inputs 61, §2 and
03 are assumed unaffected by the system. The two instances
of &5 in Fig. 1 signify that half the incident solar radiation
heats the room directly via the windows, whereas the other
half is absorbed by the exterior walls. The heat capacities
of nodes with temperature ¢1, to and t3 are Cy, Cy and Cj,
respectively. Heat capacities C and gains K, for a specific

52 up + uc + 62 + 03 o1
‘l K3 K4

Windows External walls
2}

t3

External walls

Floor

Fig. 1.

Building climate control problem plant schematic.

building and a room with 3600m? floor area were employed
[17]. The continuous-time dynamics are as follows:

i = c% (K1 + Ko)(ta — t1) + Ks(ts — t1)
+K35(61 — t1) + un + uc + 02 + 03]

ty = & (K1 + K2)(t1 — t2) + 8]

is c% [Ks5(ty — t3) + Ka(61 — t3)] -

This is expressed as continuous-time LTI system
= A.x+ Bou+ Cew ®)

with state = = [t1,t2,t3] € R®, control input u = [up, uc]"
€ R?, and environmental inputs w = [y, da,d3] € R3.
Input constraints (9) are imposed at all times. Time-
dependent state constraints (10) and (11) are imposed so that
during business hours the controller provides a comfortable
work environment. Outside of business hours rooms are
allowed to cool or warm to reduce energy consumption.

0 < up <200 -50<u. <0 )]
21  from 8am to 6pm
>
b= {19 otherwise (10)
26 from 8am to 6pm
<
b= {30 otherwise an

Environmental input w consists of two parts such that
w = d + w, where d is deterministic and periodically
time-dependent with period length 24h, and w is stochastic,
bounded and subject to periodically time-dependent bounds
with period length 24h. The deterministic input d is em-
ployed to model known fluctuations in environmental condi-
tions, for example that the sun rises in the morning and sets in
the evening, and that most internal heat sources (office work-
ers, equipment, etc.) ds are active from 8am to 6pm. The
stochastic input w is employed to yield robustness against
unknown environmental conditions, for example because

L L L
10 11 12 13 14 15 16 17 18 19 20 21 22 23 0O

0 L T S TR B L T S S|

Time of day [h]

Fig. 2. Deterministic environmental inputs d (dashed, blue), bounds on
stochastic environmental inputs w (dash-dotted, red), and realization of
environmental inputs ¢ (solid, black) over one day.
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Fig. 3. Room temperature t; and heating/cooling input u = up + uc
trajectories over one day; nominal (blue, solid), with stochastic disturbances
(green, dashed), constraints (red, dash-dotted): x1.

cloud cover affects the amount of solar radiation o reaching
the building, and because an office worker may either heat
her lunch in the office microwave and continue working
(increasing d3) or switch off her PC and go to a restaurant
(reducing d3). The bounds on stochastic input w are assumed
known, but the stochastic properties of w are unknown.

The LTI dynamics of Eq. (8), constraints (9), (10) and
(11), deterministic environmental inputs d and the bounds
on stochastic environmental inputs w are sampled with a
zero-order hold and a sample-period of 10min, resulting in
periodic affine system (1) with period length p = 144.

The time-discretized deterministic environmental inputs
d, bounds on stochastic environmental inputs w and a
realization of environmental inputs w are plotted in Fig. 2.
Values for d and bounds on w are based on real data [17],
but simplified. Stochastic inputs w were randomly generated
using a probability density function that is constant between
the bounds, and zero otherwise. This stochastic input model
does not reflect reality and is employed for simplicity.

The maximum robust periodic controlled invariant set was
determined using the iterative algorithm of [5]. Computations
were completed in 228 iterations and 79 seconds (average of
10 runs), and were performed on a 3.33Ghz x86-64 processor
running Matlab and the Multi-Parametric Toolbox [22]. Poly-
tope projection was performed using Fourier elimination.

The state reference trajectory is r; = [22,0,0]" Vj €
\ ' A room temperature of t; = 22°C is considered
optlmal (in this paper), whereas any value 21°C < ¢; < 26°C
is considered acceptable, for an office work environment.

Cost matrices (); and R; are chosen as follows, where
q > 0 is a scalar variable chosen later:

diag(q,0,0) from 8am to 6pm
Q=1

otherwise
L= [2a _8]
Rj B { [13 _4]

from 6am to 10pm
otherwise.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 O

Time of day [h]

Fig. 4. Room temperature t; and heating/cooling input u = up + uc
trajectories over one day; nominal (blue, solid), with stochastic disturbances
(green, dashed), constraints (red, dash-dotted): 2.

The choice of @); signifies that depending on the value of
q the deviation from the state-reference r of ¢; is penalized
during business hours, whereas deviations from the state-
reference r of ¢ and t3 are never penalized. The choice
of R; models that energy prices during the day are twice
those during the night. Simple high/low tariffs, also termed
peak/off-peak and day/night tariffs, have existed for years
in many European countries, e.g. France, Germany and
Switzerland [9,10,30]. Furthermore the choice of I; reflects
the fact that cooling is significantly (assumed four times)
more expensive than heating, for the same power into/out of
the room [17]. This is also reflected in constraints (9). Recall
that u is negative, hence the minus sign in R;.

The four control laws with details tabulated in Table I
are considered. The trajectories of room temperature ¢; and
heating/cooling input uy, +u. due to each control law for one
day are plotted in the listed figures. The one-day disturbance
pattern of Fig. 2 was applied over the one-day trajectories
plotted in Figs. 3-6. Denote by

b= 230 0(1,0,0;
= 2301, — 4k ()
V= IS (o) Lule(en). )

the average room temperature t;, power consumption (in

TABLE 1. Controller settings and results: Prediction horizon length
N, room temperature error cost g, Figure number, and average room
temperature ¢1 [°C], average heating/cooling power consumption @ [kW]
and average objective cost V', over one day for the nominal case.

Controller N q Fig. 2 a 1%

K1 1 0 3 21.0 17.7 335
Ko 72 0 4 21.1 19.3 27.5
K3 1 106 5 21.3 51.0 24241
Kq 72 106 6 21.6 96.9 572
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Fig. 5. Room temperature t; and heating/cooling input u = up + uc
trajectories over one day; nominal (blue, solid), with stochastic disturbances
(green, dashed), constraints (red, dash-dotted): 3.

kW) and objective cost over the one-day period plotted in
Figs. 3-6, respectively, for the nominal case.

Control laws x; and ko have a state-error cost of zero.
Thus these control laws aim to minimize the energy cost.
Room temperature has no effect on the control objective,
except that all constraints must be satisfied. Control laws
and k9 differ only in the prediction horizon length, 10min
vs. 12h. The explicit use of the maximum robust periodic
controlled invariant set of Definition 10 in MPC Problem 3
to least-restrictively enforce robust strong feasibility allows
the use of any prediction horizon length, while guaranteeing
constraint satisfaction. Thus despite the short prediction
horizon, prediction constraint (5) in MPC Problem 3 provides
control law x; with all the required information to be able
to impose the minimum admissible room temperature at all
times. Thus, effectively, «; is the minimum energy control
law, where energy refers to heating/cooling energy in kJ,
not the signal energy of control input signal u. Due to the
long prediction horizon control law k5 can exploit cheaper
energy prices before 6am. Thus control law ko achieves a
lower objective cost V' than control law 1, but at a higher
average power consumption.

Control laws k3 and k4 attempt to regulate the room
temperature ¢; to 22°C from 8am to 6pm, with little regard
for power consumption. They differ from each other in
the prediction horizon length, 10min vs. 12h. Similarly to
control law k1, control law x3 begins heating the room as
late as possible, due only to constraint (5) and the use of the
maximum robust periodic controlled invariant set in MPC
Problem 3, for the purpose of achieving ¢; > 21 at 8am. At
8am control law k3 continues heating to achieve t; = 22°C.
In contrast, the long prediction horizon of control law k4
allows heating to come on much earlier than with control law
k3, and the desired room temperature of 22°C is achieved
successfully during business hours.

L L1 L
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 O

Time of day [h]

Fig. 6. Room temperature t; and heating/cooling input u = up + uc
trajectories over one day; nominal (blue, solid), with stochastic disturbances
(green, dashed), constraints (red, dash-dotted): 4.

IV. CONCLUSION

Maximum robust periodic controlled invariant sets for
periodic affine systems with bounded, additive disturbances
were characterized and employed in the design of least-
restrictive robustly strongly feasible periodic MPC problems.
In many applications, for example the problem of room
temperature control using a minimum amount of energy
considered in this paper, the control performance is directly
related to the ability to operate close to the constraints, while
rigorously enforcing constraint satisfaction indefinitely. The
use of maximum controlled invariant sets is indispensable
in these situations, as they yield necessary and sufficient
conditions for the existence of a control input such that
all constraints can be satisfied in the future. The use of
maximum periodic controlled invariant sets is indispensable
in the design of least-restrictive periodic MPC controllers.

The MPC problem formulation follows the common nom-
inal open-loop prediction paradigm. By suitably tailoring
the prediction state constraints for each prediction step,
instead of usual terminal constraints, both the computational
complexity of closed-loop prediction MPC formulations, as
well as the conservativeness of min-max open-loop prediction
MPC formulations, were straightforwardly circumnavigated.

Periodic affine systems provide a powerful modeling
framework for a large variety of control problems, yet can
be dealt with using nearly standard methods. The ability
to model not only periodic dynamics, but also periodic
constraints, disturbances, disturbance bounds, external input
variations, etc., is extremely powerful. The example of
building climate control was used to convey the flexibility
and convenience of the proposed approach. Although the
dynamics of the plant are time-invariant, incorporating the
known, periodically time-dependent constraints and distur-
bance bounds into a time-invariant MPC framework would
be at best conservative.
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