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Abstract— This paper looks at the efficiency of the parame-
terisation of the degrees of freedom within an optimal predictive
control algorithm. It is shown that the conventional approach
of directly determining each individual future control move
is not efficient in general, and can give poor feasibility when
the number of degrees of freedom are limited. Two systematic
alternatives are explored and both shown to be far more
efficient in general.
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I. INTRODUCTION

Predictive control (MPC) [7], [10], [2] is popular because

it handles multivariable processes with constraints in a sys-

tematic fashion, but to achieve this the online implementation

may require a substantial optimisation (usually a QP). Here,

there is a well understood set of potentially conflicting

objectives, e.g. between the desire for good performance and

large feasible regions with the equally important desire to

keep the number of degrees of freedom (d.o.f.) small.

Recent works [14], [12] have shown that Laguerre poly-

nomials are an effective alternative to the standard basis set

for parameterising d.o.f. in the prediction set deployed by

MPC. Specifically it was shown that in many cases changing

the parameterisation allowed substantial improvements in

feasibility with little or no detriment to performance. Never-

theless, one key question was still left unanswered: is there a

systematic way of choosing the best ‘Laguerre polynomial’

or indeed is there an alternative to Laguerre which is better

still? It is these questions which are tackled in this paper.

This paper will take the premise that the terminal control

law should be well tuned and therefore this parameter is not

available for influencing the size of feasible regions. Instead,

the question is asked: how else can the designer increase the

feasible region? The feasible region is sometimes called a

reachable set or there is also the terminology of n-step sets.

First define the maximal admissible set (MAS) [3] as the

set of initial states from which the unconstrained optimal

control law satisfies constraints indefinitely. A one step set

is then the set of initial states from which there exists a

feasible (i.e. satisfies constraints) control move which moves

the state inside the MAS within one step. Similarly, a two

step set can reach the MAS in at most two steps, again while

satisfying constraints. The n-step sets assume some form of

non-linear control strategy may be required due to the need
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for constraint satisfaction and these are often called maximal

controlled admissible sets (MCAS).

Historically, most MPC algorithms used the individual

predicted control values at future samples as the d.o.f. within

the output and state predictions. However, while this seems to

make sense, it is in fact very restrictive. For example, to grow

the feasible region to a 10-step set would require 10 d.o.f. for

each input, whereas in fact it may be possible to parameterise

the required input trajectories far more efficiently. However,

very little work has considered this particular issue. Two lines

of enquiry have been interpolation methods and parametric

programming [11], [1], but these both imply a significant

change in either algorithm design or implementation and

are not pursued here. Instead, this paper focuses on using

a conventional MPC set up such as used in [13] and asks

the simple question of can we parameterise the d.o.f. in the

future input differently and if so, how and why?

One significant contribution here has been the concept

of Triple mode control [5]. Here, the region immediately

outside the MAS is controlled with a fixed linear time

varying control law. This law can be determined using robust

techniques first popularised in [6], thus one finds the best

compromise between feasibility and performance. However,

a critical weakness is that the choice of this law is based

on ellipsoidal regions and these could be very suboptimal

or a poor measure of feasibility in the polyhedral space.

Nevertheless, it demonstrates a key concept, that the n-step

set for large n can be reached with a parameterisation of

future inputs that uses less than n d.o.f. per input. Moreover,

it shows that this parameterisation can be linked to some

form of underlying model.

One observation made in this paper is that MPC algorithms

using Laguerre polynomials have greater overlap with Triple

mode approaches than orginally realised - this overlap is

demonstrated later in this paper where the flexibility in the

assumed dynamic is discussed. Laguerre polynomials are a

simple way of assuming dynamics with a given time con-

stant, but also give an othornormal mapping of the available

space and lead to well conditioned numerical problems.

The key question left to be resolved is, what is the best

dynamic to assume for the predicted inputs, that is the d.o.f.,

to allow for large feasible regions? A secondary issue relates

to this, what is the best initial condition for that dynamic and

is this state dependent? This paper is organised as follows:

after presenting the background in Section 2, Section 3 will

show how one can incorporate any fixed dynamic into the

predictions, and moreover this still gives recursive stability

and feasibility, it will also show that the initial condition

used for that dynamic can be arbitrary and thus is not an

effective d.o.f.; Section 4 will then propose an alternative



mechanism for exploiting the desired input prediction space

in an efficient manner but which is not necessarily linked to

a fixed dynamic; Section 5 will present numerical examples.

The paper finishes with the conclusions in Section 6.

II. BACKGROUND

A. Modelling and Optimal MPC

Assume a standard state-space model of the form:

xk+1 = Axk + Buk; yk =Cxk; (1)

with xk ∈ R
nx , yk ∈ R

ny and uk ∈ R
nu which are the state

vector, the measured output and the plant input respectively.

Associated to the model are polytopic constraints, e.g.

u ≤ uk ≤ u; ∆u ≤ ∆uk ≤ ∆u; y ≤ yk ≤ y. (2)

The performance index to be minimised (w.r.t. uk, uk+1, . . .)

is

J =
∑∞

i=0
(xk+i+1)

T Q(xk+i+1) + (uk+i)
T R(uk+i)

s.t.

{
(1), (2) ∀k ≥ 0,

uk = −Kxk ∀k ≥ nc
,

(3)

with Q, R positive definite state and input cost weighting

matrices. K is the optimal feedback gain minimising J in

the absence of constraints (2). Practical limitations imply

that only a finite number, that is nc, of free control moves

can be used [13]. For these cases, (3) is implemented [8] by

imposing that the state xnc
must be contained in a polytopic

control invariant set (that is the MAS): XMAS = {x0 ∈ R
nx |

x ≤ xk ≤ x, u ≤ −Kxk ≤ u, xk+1 = Axk + Buk,∀k ≥ 0}.

For simplicity of notation, the MAS can also be described in

the form XMAS = {xk ∈ R
nx | Mxk ≤ d} for appropriate

M, d.

For convenience, the degrees of freedom can be reformu-

lated in terms of a new variable ck

uk+i =

{
−K(xk+i) + ck+i; i = 0, ..., nc − 1;
−K(xk+nc+i); i ≥ 0;

(4)

and hence the equivalent optimisation to (3) is

min
c
−→k

c−→
T
k S c−→k s.t. Mxk + N c−→k ≤ d; (5)

with c−→k = [cT
k , . . . , cT

k+nc−1
]T . Details of how to compute

positive definite matrix S, matrices N, M and vector d are

omitted as by now well known in the literature [3], [8], [10].

Definition 2.1: Let XMCAS be the set of initial states xk

for which the optimal control problem (5) is feasible (that is

the MCAS)

XMCAS = {xk ∈ R
nx | ∃ c−→k ∈ R

ncnu , Mxk + N c−→k ≤ d}.

For convenience the same matrices M, d as for the MAS

have been used, although in practice the minimal forms of

these sets allow the MAS to use fewer rows.

Remark 2.1: The Optimal MPC (OMPC) algorithm is

given by solving the QP optimisation (5) at every sampling

instant then implementing the first component of c−→k, that is

ck in the control law of (4). When the unconstrained control

law is not predicted to violate constraints (i.e. xk ∈ XMAS ),

the optimising c−→k is zero so the control law is uk = −Kxk.

The optimisation (5) can require a large nc (d.o.f.) to

obtain both good performance and a large feasible region.

B. Laguerre polynomials and the underlying dynamic

This section focuses on efficient mechanisms for generat-

ing the Laguerre polynomials in a format that is useful for

MPC. Laguerre polynomials are defined as follows:

Li(z) =
√

(1 − a2)
(z−1 − a)i−1

(1 − az−1)i
; 0 ≤ a < 1 (6)

These have a time constant of ‘a’ and thus allow for the

perturbation signals ck that enter the MAS over a slower time

scale than single perturbations as in the OMPC algorithm;

consequently the associated MCAS may be bigger [12].

The Laguerre sequences can be computed using the fol-

lowing state-space model.

Lk+1 =










a 0 0 0 · · ·
β a 0 0 · · ·

−aβ β a 0 · · ·
a2β −aβ β a · · ·

...
...

...
...

. . .










︸ ︷︷ ︸

AL

Lk;

L0 =
√

1 − a2
[
1, − a, a2, − a3, . . .

]T
; β = 1 − a2;

(7)

where Li(z) = eT
i [L0, L1, L2, ...][1, z−1, z−2, ...]T and

ei is the i-th standard basis vector. The dimension of the

state-space predictor (7) can be taken as large (or small) as

needed to capture the desired polynomial sequences.

C. LOMPC: Laguerre polynomials and MPC

Laguerre OMPC (LOMPC) is a dual mode MPC algorithm

[12] where the input predictions are parameterised in terms of

Laguerre polynomials (8). First define the input perturbations

as follows:








ck

...

ck+n−1

...









= c−→k =









LT
0

...

LT
n−1

...









︸ ︷︷ ︸

HL

η−→k; (8)

where η−→k is the nη dimensional decision variable when one

uses the first nη columns of HL.

The predicted cost is represented in terms of perturbations

ck as J =
∑∞

i=0
cT
k+iSck+i; however, from (8) note that

ck+i = LT
i η−→k and from (7) Li = ALLi−1, hence

JL =
∞∑

i=0

η−→
T
k LiSLT

i η−→k = η−→
T
k

[
∞∑

i=0

Ai
LL0SLT

0 (Ai
L)T

]

η−→k

(9)

Constraints are rewritten as Mxk + NHL η−→k ≤ d.



Algorithm 2.1: LOMPC

η−→
∗
k = arg min

η
−→

k

JL s.t. Mxk + NHL η−→k ≤ d; (10)

Define c−→
∗
k = HL η−→

∗
k and implement uk = −Kxk + eT

1 c−→
∗
k.

Remark 2.2: It is straightforward to show, with conven-

tional arguments, that the LOMPC algorithm is guaranteed

to give recursive feasibility and stability in the nominal case

and offset free tracking whenever the set point is feasible.

Remark 2.3: If LOMPC uses a = 0, then L0 = [1, 0, . . .]
and AL becomes a shift matrix, that is ones on the lower

diagonal. In this case, LOMPC is equivalent to OMPC.

Remark 2.4: Although not discussed here to avoid tedious

but straightforward algebra, this section can equally be

reworked for a multivariable case allowing for a different

time constant ‘a’ in each loop.

III. THE BEST CHOICE FOR INITIAL CONDITION IN THE

PREDICTION DYNAMICS

The background section has shown two clear choices in

the parameterisation of the flexibility within the future input

predictions. First one can choose the implied dynamic AL

which is usually taken to be a shift matrix (ones in the lower

diagonal and zero elsewhere) and second, one can choose the

initial condition L0. This section explores the second of these

choices by asking what impact this choice has on feasibility

and performance?

A. Structure of predictions

Assume for now that the perturbation signal c−→k can be

defined from the dynamic model:

Lk+1 = ΦLk; L0 = to be determined. (11)

The term L0 appears to play a key role in the shape of the

predictions that are allowed.

B. The interaction between η predictions and L0

It is clear that L0 appears to influence the shape of

the allowable predictions for c−→k, so this section aims to

investigate that flexibility more carefully and ask whether

the initialization of L0 can be exploited to improve either

feasibility or performance.

Lemma 3.1: The predictions ck+i|k
1 can be considered as

the output of a simple state-space model with initial condition

linked to L0.

Proof. Define a state-space model as follows

wk+1 = ΦT wk + Buk;
ck = η−→

T wk;

} {
w0 = L0;
ui = 0,∀i ≥ 0

. (12)

Forming predictions for this gives ck = η−→
T L0, ck+1 =

η−→
T ΦT L0, ck+2 = η−→

T (ΦT )2L0, . . . ⊔⊓
Lemma 3.2: If Φ has distinct eigenvalues, then there exists

an alternative state-space model with the same dynamics but

different initial condition and different output matrix that

gives the same output predictions as (12).

1k + i|k means the prediction for sample k + i made at sample k.

Proof. In place of initial condition L0, instead use Z0 so

now define the model.

vk+1 = ΦT vk + B̃uk;

ck = η̃−→
T vk;

} {
v0 = Z0;
ui = 0,∀i ≥ 0

. (13)

The requirement is that the output predictions of models

(12) and (13) given next can be made the same but with

Z0 6= L0 and η−→ 6= η̃−→. Hence, prove

ck+n = η−→
T (ΦT )nL0 = η̃−→

T (ΦT )nZ0, ∀n. (14)

First, decompose Φ using its eigenvalue/vector decomposi-

tion into the form ΦT = WΛV and substitute in (14):

ck+n = η−→
T WΛnVL0 = η̃−→

T WΛnVZ0. (15)

From this it is clear that

ck+i =
∑

j

λi
jαj ;







αj = [ η−→
T W]j [VL0]j

or
αj = [η̃T W]j [VZ0]j

(16)

Consequently, there always exists a choice of η̃−→ so that the

output of model (13) replicates (12), as long as the initial

condition Z0 is not orthogonal to any eigenvector of Φ. ⊔⊓
However, the reader will notice that the implied state-

space matrix with the Laguerre polynomials has repeated

eigenvalues and thus does not have a simple decomposition.

Remark 3.1: For dynamic matrices of the form given

in (7), numerical examples demonstrate that the initial condi-

tion still has no bearing on the reachable space of future ck+i,

but a formal proof remains future work. The key difference is

that a non-simple Jordan form is required. It is still possible

to decompose the matrix as Φ = VJV−1, but as J is no

longer strictly diagonal, so a more elaborate proof is needed.

C. Recursive feasibility

This section demonstrates that the structure of predictions

deployed in (11) ensures a recursive feasibility result.

Theorem 3.1: If the values of ck are restricted by (11),

then nevertheless, it is always possible to choose ck+i|k+1 =
ck+i|k.

Proof. In order to make ck+i|k = ck+i|k+1, ∀i > 0 it is

sufficient to make LT
0 Φiηk = LT

0 Φi−1ηk+1. This is easy to

do by choosing ηk+1 = Φηk. ⊔⊓
Remark 3.2: The reader is reminded that using conven-

tional arguments in the literature, recursive feasibility is

sufficient to guarantee convergence and stability.

D. Summary

In summary, subject to some very mild conditions on

including components of all the eigenvectors, the choice of

L0 has no impact on the reachable space of ck+i and thus is

not a parameter that needs to be considered further except for

the relatively minor issue of the possible impact on numerical

conditioning. Another key observation is that the structure

of the predictions deployed in LOMPC is actually quite

generic and there is no need to restrict oneself to Laguerre

polynomials. In fact, one could use any Φ for (11) (instead

of AL), although this of course opens up the challenging

question of which Φ in general one might wish to choose?



IV. ALTERNATIVE PARAMETERISATIONS

This section looks at how one might define the matrix

HL in (8). Although LOMPC assumes this has a specific

structure linked to the choice of AL, in general one could

conjecture that such a choice is unnecessarily restrictive, and

indeed the insights of parametric solutions [1] make this very

clear. Hence, here the philosophy is to allow a total open

choice for HL and propose one new method for how that

choice might be made and what benefits that might bring?

For simplicity of presentation, the algebra here is given

for the SISO case, but all the arguments equally apply to the

MIMO case.

A. The reachable space for the input predictions

Currently the flexibility within the input predictions is

given from c−→k = HL η−→k; for OMPC HL is an identity

matrix, for LOMPC it comprises terms based on AL but

in general this matrix could be something else. The row

dimension dictates how far into the future one wishes to use

non-zero ck and the column dimension dictates how many

d.o.f. there are in the optimisation problem. In general the

reachable space is a small subset of the c−→k space because

normally HL is tall and thin, i.e. the output predictions are

considered over horizons far greater than the number of d.o.f.

in the optimisation.

Assume that the horizon for ck+i 6= 0 (the horizon

dimension of HL) is nc2 and the number of free moves2

is nc (or nη). How might one determine the best nc search

directions for c−→k? With LOMPC the search directions are

simply defined by the columns of HL but it may be the case

that these do not include a better search direction.

B. Monte Carlo approaches to find the search directions

In practice it is known from parametric insights that the

optimal c−→k is highly nonlinear in terms of its dependence

upon the current state xk; moreover the complexity of the

parametric solution is to some extent unpredictable. Here, a

simple Monte Carlo approach is taken.

Algorithm 4.1: Optimal search directions

1) Choose a large value of nc2 for OMPC consistent with

finding a large enough feasible region.

2) Define equi-spaced points on a retangular grid in

the state-space on the outside of an nx dimensional

cube (USER to define desired spacing). Stretch these

directions to the boundary of the MCAS (for given

large nc = nc2) and denote them as vi.

3) For each point vi, determine the optimal c−→k with nc =
nc2 and denote as c−→i

.

4) Form a matrix P = [ c−→1
, c−→2

, · · · , c−→n
].

5) Find the singular value decomposition of P as P =
XΣY∗.

6) Define HL = X(:, 1 : nc) where nc = nη is now taken

to be the desired number of d.o.f. It is assumed that the

first nc columns of X correspond to the largest singular

values.

2Remember that the number of d.o.f. of OMPC is actually ncnu

It is clear that in some objective sense, this choice of

HL captures the best finite number of search directions, on

average, to capture the optimal c−→k required on the boundary

of the MCAS. Moreover, one can inspect the singular values

in Σ to determine what might be the best number of columns

to take.

C. Feasible OMPC

This section shows briefly how the HL matrix of the

previous subsection is used to define a Feasible OMPC

algorithm or FOMPC.

Algorithm 4.2: FOMPC

1) Select the maximum number nc2 of non-zero ck+i

terms in the predictions and the number of d.o.f. nη to

be used online; use Algorithm 4.1 to determine HL.

2) Define JF = η−→
T
k SL η−→k, where

SL = HT
Ldiag{S, . . . , S}HL

3) Find the optimum η−→
∗
k from:

η−→
∗
k = arg min

η
−→

JF s.t. Mxk + NHL η−→k ≤ d

4) Define c−→
∗
k = HL η−→

∗
k and implement the control law

uk = −Kxk + eT
1 c−→

∗
k.

D. Recursive feasibility and convergence

Here, by allowing HL to have a totally open structure,

the specific structure of (8) is lost and with it the recursive

feasibilty result given in Section III-C. A simple procedure

does exist in the literature to recover this guarantee, but at

the cost of introducing an extra degree of freedom [9]. In

simple terms, one appends the d.o.f. in HL η−→k with one

additional direction, that is the tail of the optimised c−→k from

the previous sample. This is not discussed further as by now

well known.

V. NUMERICAL EXAMPLES

This section gives some numerical illustrations to compare

the efficacy of OMPC, LOMPC and FOMPC. Specifically

the focus is on the comparison of the volume of the XMCAS

against the number of optimisation variables. That is, it

considers to what extent LOMPC and FOMPC use a more

systematic parameterisation of the d.o.f. within the predic-

tions to allow for maximal gains in feasibility with small

numbers of d.o.f.

Two examples with different state dimensions are pre-

sented, details in the appendix. A large number of equi-

spaced (by solid angle) directions are chosen in the state-

space. For each direction, the distance from the origin to

the boundary of the MCAS is determined and clearly the

larger the distance, hereafter denoted as radius, the better

the feasibility. Finally radii are normalised against the radii

obtained with OMPC with nc = 20, we realise this is

somewhat arbitrary but it seems a pragamatic limit for the

global feasible region with sensible sampling and dynamics.

In fact it is well known that often there is no benefit taking
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nc beyond a certain value [4] that is typically less than 20.

For all examples, the main Laguerre parameter is taken as

a = 0.8.

The results for the Example 1 are shown in Figures 1-3.

From Figure 1, it is clear that FOMPC has a larger MCAS

than both LOMPC and OMPC for the same number of d.o.f.

Moreover, Figure 2 shows that, for this example, FOMPC

gets to within 90% of the global MCAS with just 3 d.o.f.

whereas, LOMPC requires about 8 d.o.f. and OMPC requires

12 d.o.f. This message can be reinforced by consideration of

the singular values for the respective HL matrices shown

in Figure 3; clearly the FOMPC algorithm has some large

singular values and then many less important directions, the

LOMPC algorithm has many equal singular values and then

directions become less significant beyond the 9th (probably

due to row truncation) and OMPC has equal singular values.

For Example 2, Figure 4 shows that the radii increase as

the number of d.o.f. increase. For nη ≥ 3, both FOMPC

and LOMPC reach, to within less than 1%, the MCAS for

OMPC with nc = 20.

Remark 5.1: These examples have assumed that nc, nη
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are integers denoting the number of free variables in the

future sequences of either c or the number of Laguerre

polynomials. However, in example 2 the number of d.o.f. is

larger as it is scaled by the input dimension nu. Therefore,

usually the number of d.o.f. increases in multiples of nu;

although one can have different horizons for different loops

it is not immediately obvious how to use this flexibility.

An interesting observation is that the FOMPC approach

identifies the best sequence directions and therefore it is no

longer necessary or even logical to go up in steps of nu.

Figure 5 shows how the FOMPC algorithm can increase the

number of variables, systematically, one at a time and gain

feasibility improvements as it goes. In this case the singular

values of HL reduce as [1300, 444, 153, 54, 48, 37, ...].

VI. CONCLUSIONS AND FUTURE WORK

This paper has investigated different ways of parameter-

ising the d.o.f. within the predictions for an OMPC type

of algorithm. The examples make it clear that using just

the individual values for future inputs in the near horizon

is not efficient in general, even when the terminal control
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law is embedded within the predictions. Two alternatives are

proposed. It is shown that basing future input flexibility in

terms of an underlying dynamic model whose order is in

effect the number of d.o.f., allows straightforward recursive

feasibility statements. A systematic choice for this dynamic

remains an open question although numerical evidence has

shown that Laguerre polynomials seem to perform very well.

A second proposal considers how one might define a more

objective definition of best parameterisation and proposes a

mechanism based on a Monte Carlo approach, that is find the

best sequences for all possible directions and then determine

which subset best approximates these. Examples show that

the latter approach does indeed give better feasibility for low

numbers of d.o.f.

A. Future work

The proposed FOMPC does present a drawback: while it

generates a large feasible set for a low number of d.o.f.,

it produces sub-optimal performance. Future work will try

to investigate a way to extend FOMPC in order to provide

a good trade-off between the resulting feasible region and

performance. The main idea will be to specify a desired

radius α and a level of performance loss β. It then can be

chosen a set of points v on the boundary of the XMCAS

and required that αv is contained in projxXMCAS and

that there exists a point ui for each xi in αv such that

the cost Jxi,ui
(1 + β) ≤ J∗

xi
. The key point is that the

optimisation problem then will minimise the dimension of

the subspace that the points ui lie within (i.e. the d.o.f.).

This rank minimization is non-convex, but it can instead be

minimised the nuclear norm, or sum of singular values, of

[u0, . . . , un], which is the convex envelope of the rank (i.e.

the closest convex function to the rank function). The result

of this approximation is a convex semi-definite program

(SDP) that will compute the smallest d.o.f. parameterisation

for a desired performance and radius.

Finally, there is interest in asking whether FOMPC can be

combined with parametric type thinking, that is to use more

directional information into the algorithm and thus improve

either or both efficiency and performance.
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APPENDIX

Example 1

A =

»

0.6 −0.4
1 1.4

–

; B =

»

0.2
0.05

–

; C =
ˆ

1 −2.2
˜

;

− 1.5 ≤ uk ≤ 0.8; |∆uk| ≤ 0.4; |xi,k| ≤ 5; Q = I; R = 2.

Example 2

A =

2

6

4

0.9146 0 0.0405 0.1
0.1665 0.1353 0.0058 −0.2

0 0 0.1353 0.5
−0.2 0 0 0.8

3

7

5
;

B =

2

6

4

0.054 −0.075
0.005 0.0147
0.864 0
0.5 0.2

3

7

5
; C =

»

1.799 13.21 0 0.1
0.823 0 0 −0.3

–

;

|∆ui,k| ≤ 2; |uk| ≤

»

1
2

–

; |xi,k| ≤ 10; Q = C
T

C; R = I.


