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Abstract— Research on sub-optimal Model Predictive Control  to the exact solution, but having a lower complexity, are
(MPC) has led to a variety of optimization methods based constructed.
on explicit or online approaches, or combinations thereoflts Most recent explicit MPC approaches partition the state

foremost aim is to guarantee essential controller propergs, int . f defined sh like h be
i.e. recursive feasibility, stability, and robustness, atreduced space into regions of a predefined shape, like hypercubes (se

and predictable computational cost, i.e. computation timeand  [6], [13]) or simplices (see [14]), and interpolate the stbr
storage space. This paper shows how the input sequence ofsolution at its extreme points (see [7]). While they permit

any (not necessarily stabilizing) sub-optimal controllerand  MPC controllers of very low complexity, they only guarantee
the shifted input sequence from the previous time step can feasibility, but not stability, in the general case. Thipea

be used in an optimal convex combination, which is easy to t Il add h o b di uncti
determine online, in order to guarantee input-to-state staility presents a smalfl add-on scheme, 1o be used in conjunction

for the closed-loop system. The presented method is thus &l With many sub-optimal (especially explicit) methods, that
to stabilize a wide range of existing sub-optimal MPC schenge recovers this flaw by providing robust stability. Its onlyyke

that lack a formal stability guarantee, if they can be consigred  requirement is that the controller represents a continoways
as a continuous map from the state space to the space of fedsib oy the state space into the space of feasible full-horizon
Input sequences. .
input sequences.

The method is based on conventional Lyapunov stability
theory for sub-optimal MPC, as described in [12]; however

The growing complexity of modern control systems andhe decrease in the cost function is achieved not by close
the increasing availability of powerful hardware has egsh approximation of the optimal solution, but by a combination
the scope of applications for Model Predictive Controbf (a) the current sub-optimal input sequence and (b) the
(MPC). Unlike traditional control methods, it requires theshifted input sequence of the previous time step. The idea ha
solution of an optimization problem (MPC problem) over eoriginally been proposed by [14], yet only for the nominal
receding finite prediction horizon at every time step. case and without robustness properties. In this paper, it is

For linear systems with fast dynamics and high samplinghodified so as to yield input-to-state stability (ISS) in the
rates, which are the subject of this paper, restricted harelw presence of state disturbances.
capacities—both in terms of computation speed and storageThe method makes minor modifications to the MPC
capacity—remain a critical limiting factor. One approaoh t problem and introduces a simple and fast online procedure
reduce the computation efforts is explicit MPC (see [2])(Section IIl), which usually amounts to a few matrix-vector
where the polyhedral piecewise-affine solution of the MP@nultiplications. It admits a rigorous proof of ISS in the
problem is pre-computed and stored for every relevansiniti presence of state disturbances (Section V). Finally, tiralc
condition. For systems of small dimension, the storageespaapplication of the method is demonstrated for a single mass
for the solution remains small, and the online procedurescillator (Section V).
reduces to a fast look-up operatjon. H_owever, as its wc_)rst— Il. NOTATION & PRELIMINARIES
case complexity grows exponentially with the problem size )
explicit MPC loses much of its effectiveness for largef Notation
systems, where it is outperformed by appropriately tadore N = {0,1,2,...} denotes the set of natural numbers and 0,
online algorithms. R the set of real numbers, aitl, (Ry4) the set of positive

The need for increased efficiency has led research fpon-negative) real numbers. In the product spateB” is
focus on sub-optimal MPC, for which essential propertiethe closed unit ball in the Euclidean norjn ||. The space
such as recursive feasibility, stability, or robustnessyéver, of real sequence§t, },cy is denoted byR".
are often difficult to establish. For online MPC, a common A polyhedroris the finite intersection of closed half-spaces
approach is to stop an iterative algorithm early, e.g. ag%j [ in R", and apolytopeis a bounded polyhedron.
for interior point methods, [3] for active set methods, a][1 ~ For some index: € N, non-bold letters indicate vectors
for fast gradient methods. In explicit MPC, approximations’x € R™, and bold letters<;, := {Zyx, Tr41)k» - Tht N[k}

an ordered collection of vectors, ;;, € R™ that can also
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A function 5 : Roy x Roy — Rpy is a K L-function if
for any fixedt € Roy B(-,t) is a K-function and for
any fixedr € Roy S(r, -) is monotonically decreasing and
B(r,t) = 0 ast — oo.

Let (X,dx) be a metric space anfl be a subset, written
S C X. The point-to-set distancef somez € X to S is

dx(z,5) = inf dx(z,s) ;

the distance to the empty sét (x, ) := oo by convention.
For anye > 0, thee-neighborhooddf S is denoted by
US:={zeX|dx(z,5) <e} .
B. Control System with State Disturbance
Consider a linear time-invariant system in discrete-time

(1)
whereA € R"*™ and B € R™*™, whose trajectory of states
x, € R™ must be kept in the state constraint ¥etC R for
all k£ € N. Hereu, € U C R™ is the external control input
andw, € W C R™ a random state disturbance at step

Ti41 = Az + Bug + wy, Tog €X ,

Assumption 1.1 (System Dynamics).(a) The pair of ma-

trices A, B is stabilizable. (b) The state is measured at ever

stepk. (c) Thestate constraint sef is convex and contains
the origin in its interior. (d) The set ohdmissible controls

C. Point-to-Set Mappings
Let X andY be metric spaces andl be a point-to-set
mapping fromX into the power se2¥’; in shortA : X = Y.

Definition 1.5 (Continuity). [1, p.25]A: X =Y is
(a) closed atz € X if for any two sequencer; }en and
{yt}1en, Wherey; € A(x,) for all t € N and

Ty — T and yt—)g

ast — oo, it holds thaty € A(T);
(b) Hausdorff upper semicontinuous (H-u.s.c.)iat X if
for everye > 0 there exists) > 0 such that

Alx) C UA(T) V x € Us{T} ;

(c) Hausdorff lower semicontinuous (H-l.s.c.) ate X if
for everye > 0 there exists) > 0 such that

A(@) C U:A(x) vV x e Us{z} .

If A is both H-u.s.c. and H-l.s.c. a € X, then it isH-
continuous att € X. The qualifier ‘atz’ is omitted if a
property holds for allz € X.

?Sroposition 11.6. [1, p.26]If the mappingA : X = Y is
H-u.s.c. atz € X and the setA(Z) is closed, then\ is
closed atz.

U is compact, convex, and contains the origin in its interior.

Assumption 11.2 (Disturbances). Thedisturbance seW is
compact and contains the origin; neith& nor the proba-
bility distribution of wy, are known for controller design.

For closed-loop controllers;ontrol sequenceguy }ren
are provided by estate feedback law: : X, — R™ on
some domainY,, C X, assigninguy, := k(z).

Definition 1.3 ((Robustly) Feasible Controls). A control
sequence (or state feedback law) is said to(teeursively)
feasible forz if (a) it is admissible and (b) the resulting

D. Lyapunov Stability Theory

This section briefly introduces input-to-state stabiligyg(
[10], [5]), in particular for constrained systems (e.g.)[9]

Definition 1.7 (Input-to-State Stability). Consider the dy-
namic systen{(l) under a feedback law that is robustly
recursively feasible on some RPI §&t C X;. The origin is
input-to-state stable (ISS) dr, if there exist aK L-function
8 and a K-function such that

ekl < B(llwoll, k) +T(_3€1§>1 lwill) YV keN,

state trajectory satisfies the state constraints at all §me

k € N. It is called robustly (recursively) feasible far, if

the above conditions are met for all possible outcomes of

the disturbance sequendevy } ren € WY,

Definition 1.4 ((Robustly) Positively Invariant Set). A set
X, C X is called positively invariant (PI) for (1) under
k if for all £ € X, it holds that: (a)x(¢) € U and (b)
[A¢ + Bk(€)] € X,. Itis calledrobustly positively invariant
(RPI) for (1) unders if, moreover[A¢ + Br(§)|eW C X,.

In this paper, a more genenparameterized feedback law
Kk : P x X, — R™ will be considered. Namely, it allows
for ux := x(pk,xy) to depend also on a specific sequenc
of parametersp, in some compact seP. The sequence
is recursively defined for alk € N by some non-linear
transition mapf : P x X — P

Prt1 = f(Prs Tr), po P .

Note that these ‘dynamics’ use the state trajectory as taipu
Definitions 11.3 and 11.4 hold analogously.

for zo € I',, and any disturbance sequengey, } ey € WY,

Definition 11.7 reduces tasymptotic stability (AS) of the
origin on T, if {wi}ren = 0. The stability analysis of a
system under a parameterized feedbackdgwy;, 1) entails

the dependence of the Lyapunov function on the parameters
pr € P; it shall therefore be referred to asparameterized

Lyapunov functior{a similar concept is used in [12]).

Definition 1.8 (Parameterized ISS Lyapunov Function).
V :Px X, — Roy is called aparameterized ISS Lyapunov
function for system (1) undet onT', if I',, C X, is a RPI

get for(1) underx, andV satisfies the following conditions:

(a) There exist twd¥ . -functionsa; and as such that

a1 (l€l) <V (e, &) < aa([l€l) V pr € P,V £ €T%. (2)
(b) There exists d,-functionas and K-functionos with

V (Prt15 Trr1) <V 0k, 2r) — as((|ar]) + o(Jlwel]) (3)

for all kK € N, anyzo € T, and any{wy } ke € W,



Definition 11.8 reduces to aiSS Lyapunov functioif the Remark 111.3 . From Assumptions 1ll.2(c) and I1ll.1, and
dependence on the parametgts= P is removed; it reduces the continuity of the predictive dynamicd), it follows
to aparameterized Lyapunov functidfithe termo(|jwy||) is  immediately that the MPC cost functiofy is continuous.
removed in equation (3); and it reduces to a clakgapunov
functionif both of these simplifications are made.

The following theorem is a straightforward extension of min Jy (zx, ux) (5a)
ISS Lyapunov theory for parameterized systems (see [8]). “*

All of this is assembled into th&®1PC Problem

St Zppitie = ATk + Buigije, i = Tk, (5D)

Theorem I1.9 (ISS Lyapunov Stability). [4, p.2131]Let k u, € UV | (5¢)
be a parameteriz_ed feedback Iayv angdbe a RPI set fo(1) _ x, € XN x X, (5d)
under x. If there is a parameterized ISS Lyapunov function .
for (1) underx on T, then the origin is ISS of,. wherei € {0,..., N — 1}. Problem (5) represents an opti-

mization problem parameterized by the initial statg it
Corollary 11.10. [12, p.649] Let x be a parameterized is solved for a(full-horizon) input vectoru;, of the lowest
feedback law and’, be a Pl set for(1) underx. If there is  possible cost. Lefty denote the set of all initial states for
a parameterized Lyapunov function f¢t) underx onT';,  which there exists a solutiofi] : Xx = U be thefeasible
and if {wy }reny = 0, then the origin is AS oifr.. set mapand® : Xy = U" be thesolution mapi.e. I1(zy)
1. PROPOSED SUB-OPTIMAL MODEL and ®(xy) are the sets of feasible gnq cost-minimal input
vectors, respectively. Moreover, defige: Xy — Ry as
PREDICTIVE CONTROLLER the extreme value map.e. ¢(x) is the minimal cost at;.
A. MPC State Feedback The MPC state feedback law$ (xx) returns the first
This section briefly introduces the MPC state feedbacklement (a vector of dimensiom) of some input vector
#%, Which, with some abuse of the term, is referred to as thigom ®(z) (a vector of dimensionNm).
optimal state feedback lavit is based on a finitprediction g Suboptimal State Feedback
horizon N > 0 and astage cost functiod : X x U — Ro,
penalizing the state and the control input at every predicteivI
step over the horizon (for more details see e.g. [10]).

Consider a feasible solution map: Sy — UV for the
PC Problem, defined o8y C Xy, i.e. for§ € Sy s(§)
returns a feasible (yet not necessarily optimal) point 9f (5

Assumption 1Il.1 (Cost Function). The stage cost function It i @ssumed that the evaluation ofs much cheaper than
¢ is continuous{(0,0) = 0, and it has some lower-bounding solving the MPC Problem, in terms of computation time
K.-function o and/or storage space.

&, v) > ar (JI€ID VéEeX, Voel. Assumption 1ll.4 (Sub-Optimal Solution Map). (a) The
maps : Sy — UY is defined on a compact séty C X
Assumption 111.2 (Terminal Set). (a) There exists a termi- with the origin in its interior, (b)s(¢) is feasible for all
nal setX; C X which is compact, convex, and contains thg < Sy, and (c)s is a continuous function.
origin in its interior. ) ) B
(b) On X;, there is aterminal state feedback law; such Assumption 111.4 does nc_)t gufﬁce to guarant_ee stability
that X; is a Pl set for(1) under;. of the closed-loop system if (in analogy to optimal MPC)

(c) There exists @erminal cost function/; : X; — Rgy the sub-optimal controller were to use the first element of
which is continuousf;(0) = 0, and it has some upper- s(zk), as it does not ensure a cost decrease. Feasibility

bounding K - -functiona,, implies stability, in the sense of [1_2], or_lly if a cost deea
can be ensured—e.g. by further iterations of some descent
Cr(§) <au () V £€ Xy . algorithm. As discussed in [14], in the nominal case a

Moreover,; is acontrol Lyapunov function for system (1) convex com_bination of the sub-optimal inpgt trajectoryhwit
the shifted input sequence from the previous step always

gleig{éf(Af + Bu) —Lp(&) + (& 0)} <0V £ € Xy achieves a cost decrease. However, this only works if the
shifted input sequence remains feasible, which does ndt hol
The MPC cost function/y : X x UY — Ro is in general, in the presence of state disturbances. Therefor
N-1 some alterations to this approach are introduced in the next
IN (@, ur) = Z C (@i Uhrii) + L (Trg i) section that allow to establish input-to-state stability.
=0 C. Affine Combination Feedback

where thepredictive model dynamics Definition 1115 (Shift Operator). For a givenzy, € Xy,

Thrivik = ATiqipp + Buggiy ¥V i=0,..,N—1 (4) the shift operatoto,, , : H(wy) — UYN removes the first

are understood to be substituted recursively in order t|{51put element from an input vector and adds a terminal

remove the dependence on all states other thap. This eedback input at its tail
‘sequential approach’ is chosen to facilitate the notation Oy Uk = {uk+1|k, ooy UN 1> nj»(a:k+N|k)}



Note o, , ug is feasible forz, 1, asuy is feasible for AS for the proposed controller whemy } ey = 0 follows
oy, andr g (x4 Npk) € Xy For clarity of notation, the index from the existing theory (e.g. in [14]); moreover, it is a
of o, will be omitted, as it is understood from the contextspecial case of Theorem IV.7. The next section is concerned
The modifications proposed to the approach of [14] ar@ith proving ISS for the proposed controller.
twofold. Fl_rst,_ the MPC Pr_oblem for Whlch the suk_J-optlmaI IV. INPUT-TO-STATE STABILITY
maps (satisfying Assumption 111.4) provides a feasible solu-
tion is modified. Namely, the state and terminal constrain#d- Continuity of the Cost Function
are tightened by somé> 0, i.e. X and Xy are replaced by  The key to obtaining ISS is to prove continuity of the
X©oB" and Xy © 6B", respectively. extreme value function, to which this section is dedicated.
A formulation of the resulting problem, referred to as theNote that for the existing approach of [14], the optimal cost
Tightened MPC Problemis omitted. Note that the terms may be discontinuous as a result of the shifted input sequenc
‘state constraint set’, ‘terminal constraint set’, or $##e’ becoming infeasible.

shall remain with respect to the original MPC Problem.
Theorem IV.1. Choose anyu, € UY. The extreme value

Remark 111.6 . § can be regarded as a design parameterfunction of the Affine Combination Problem
Together with properties of the system and the sub-optimal

solution, it determines the ‘ISS gain’ in a trade-off agains Yu, 2 Sy = Roy
the (maximum) size of the controller domain. is continuous at any € Sy.

The second modification is to solve the followiddfine The proof is based on Theorem 4.2.1 (1,2) and Lemma
Combination Problem(similar, but not identical to [14]) 2.2.1 in [1]. Indeed, for any given, € UY it is sufficient
online at every step to obtain the sub-optimal control inputihat the cost functio’y (-, u,) be continuous, and that the

min  Jy (25, ug) (6a) feasible set mafE,, : Sy = R and the optimal solution
@ map¥,,  : Sy = R be closed (and their images non-empty).
st ou, =a0g, ), uk-1+ (1 —a)s(zr) | (6b) These results shall be proven in a sequence of lem-
o] <1, (6c) mas, whose proofs are based on a certain geometric per-

Tryivale = ATpyik + Bug g, Tk = ox, (60) spective on the problem which is now describgd. Let
N Ze,0(%0), ..., Zo, N (x0) denote the predicted state trajectory
u €U, (6e) starting atry and driven by the input vectar, , ..., 4y, N —1.
xp € XN x Xf | (6f) Note that while the inputs are fixed (and admissible),
wherei € {0,..,N — 1}. Its decision variable is a scalar each state of the trajectory is a continuous function of

a € [~1,1] that determines an optimal combination of the?o € Sy, and not necessarily insid&. Similarly, let
sub-optimal input vectog(z;,) with the shifted input vector “r.0(Zo); - Ur,N—1(70) De the feasible input vector pro-
ouy,_ 1. Problem (6) can be initialized by settisga_, := 0.  Vided by s(zo), andwxo(wo), ..., 2z n—1(20) be the corre-
Problem (6) includes the parameteny,_; € UV in spond|ng state trajectory. Note that gach mput anq stede is
addition to x;. Indexed by this parameter, l&f,,, , : continuous function ofy, and the trajectory is feasible (by
Sy = B! and Uy, , : Sy = B! denote itsfeasible set Assumption I11.4).
mapand itssolution map andyy, , : Sy — Ry, be its _ Consider the state spade" at any stepk € {0,.., N}.
extreme value mag¥he sub-optimal parameterized feedback he state (or terminal) constraint set is convex and costain

law k% (oux_1,7x) returns the first element of the input . k(2o) (With a distance to the boundary of at leastue
vector obtained from some element ®f,., to the constraint tightening), while not necessarily conta
k—1"

ing z, 1(x0). By virtue of the linear dynamics, the affine
Remark 111.7 . (a) Unlike the state feedback lax;, x%, iS combination parameter defines a closed line segment
a parameterized feedback law with the shifted input vectors _ "
being the parameters with their own dynamics and contained ~* = {0@r k(@) + (1= a)zop| o] <1} CR™ . (7)
in a compact set, namely” (compare Section 1I-B). A similar view holds for the input spad@™ at any step
(b) Depending on the disturbancev,_i, oui,—1 € k€ {0,..., N—1}.Uis convex, containing both, ;(z() and
I(zy,—1) may or may not be feasible far, i.e. itis not u, i (xo) in its interior or on its boundary. Again, the affine
necessarily an element of(zy). combination parameter defines a closed line segment
(c) By virtue of the constraint system (8), any feasible “ m
solution to(6) corresponds to a feasible input vector f). k= {otr k(@) + (1 = aJuo | o] <1} CR™ . (8)
Moreover, a feasible solution t(6) always exists, because For the purpose of clarity, but without loss of generality,
s(xy) (corresponding tax = 0) is feasible for(5), and even assume thatl and Xy are polytopes and thaf is a polyhe-
for the Tightened MPC Problem, by Assumption I11.4. dron, i.e. described by a finite number of linear inequalitie

Remark 111.8 . In many practical case¢6) can be solved Lemma IV.2. The feasible seE&,_ (xzy) iS a non-empty
analytically. More details on this are found in Section V forclosed intervalla(zo), @(zo)] C [-1, 1] containing{0} for
the numerical example. anyzy € Sy.



Proof: For each stef € {0, ..., N}, the intersection of Lemma IV.6. The solution map?,,, : Sy = B! is closed
the closed line segmedi; (or L) with the closed state or at anyzo € Sy.
terminal constraint set (or input constraint set) is a adse

segment of smaller or equal size. Hence the set of feasible PT0Of: In this case, the requirements for closedness of
a, with respect to ste, is some closed interval ip-1, 1]. a set-valued map by Definition 11.5(a) are verified directly.

The result is immediate, since the set af that are  consider 1any two sequencefrijien C Sy and
feasible with respect to all constraints is given as theif®t}ten C B such thatr, — zo anday — ag ast — oo
(finite) intersection; moreover, — 0 is always feasible, as @nd a: € Wy, (z,) for all ¢ € N. It must be proven that
mentioned in Remark I11.7(c). m €Yy, (_550)- _ _ _

Next, it is shown that the interval’s upper and lower bound Notice first thata, is feasible, because; < =y, () for
vary continuously withz, (Lemma IV.3), which is used to @l ¢ € N and thereforey, € =y, (20) becaus&,, is closed

establish H-continuity of the feasible set map (Lemma Iv.4)(Corollary IV.5). It remains to be shown that, minimizes
the cost (6a). Suppose there exists# «g inducing a lower

Lemma IV.3. The limits a(z¢) and @(xo) of the feasible value in the cost functiooy, i.e.
interval in Lemma V.2 are continuous functionsagt
I (w0, aps(zo) + (1 — ag)uy,)

Note that the conditions that be contained in a compact — T (20, 0% s(z0) + (1 — a*)uy) = £ > 0 .

interval and is upper bounded hyare crucial for this proof.
Despite all continuity assumptions stated above, therst exiAs will be proven, this contradicts the optimality of some
simple examples in which the limitsa(zo) and@(xzo) are combination(x;, «;) that is sufficiently close tdzo, ag).
discontinuous if this assumption were not satisfied. SinceJy ands are continuous, angy € Sy anda € B!

) ) o are contained in compact sets, there exdgts> 0 such that
Proof: Again, for clarity the limitations ona(z)

and @(zo) imposed at each step € {0,..., N} by the o —a| <6y = ’JN (z,as(z) + (1 — a)u,)
state|af (zo), @} (x0)] and by the inpufaj (zo), @} (xo)] are
considered separately. If each of them can be shown to be
a continuous function ofo, then so are the maximum andq, anyz € Sy; and someJ, > 0 such that
minimum of a finite number of them:

— Jn (z,as(x) + (1 — d)ug)‘ <

™

|z — 2zl < 6. = ‘JN (z,as(z) + (1 — a)u,)

e

— JIn (2o, as(zo) + (1 — a)ug)‘ < 8

The input line segmenk? is such thatu, ; (wherea = for any o € B'. Note that there is no mention of feasibility
1) is feasible and fixed with respect m),’ and . (20) he.re. The H-l.s.c. ofI (Corollary 1V.4), however, guarantees
is feasible and varies continuously with. This allows to €xistence of somé, > 0 such that
d_educe the following: (i) Clearlyy) =1 for_ any:co._(ii) By Zu, (20) C Us, Zu, (2) V z€eUs {xo} . (10)
virtue of the lower bound at1, aj(x() varies continuously .
with z, possibly as the intersection 6f* with the boundary Pick ¢ large enough such th§tr; — z|| < min{d., 0~} and
of the convex setl, even if the pointsi, , andu.  coincide. IS0 [z — ao|| < da. Then clearly

The state line segmerdi} is such thatr, x(zo) (wWhere
a = 0) varies continuously withzy and always remains | I (@2, qus(@n) + (1= ar)uo)
feasible with a distance of at leastto the boundary of — Jn (zo, aps(zo) + (1 — ao)u(,)‘ <
the (state or terminal) constraint set. On the other hand, ) o ) )
zr1(z0) (Wherea = 1) varies continuously witheo, yet Moreover, equation (10) implies the existence of some feasi
may become infeasible. By virtue of these continuitieshbotPle &* for z; which is j,-close toa* € Zy, (zo). Therefore
of (o) and @i (zo) vary continuously withr,, possibly as
the intersection ofL7 with the boundary of the convex set

a(wo) = maxmax{ag (o), aj(zo)}

a(xo) = mkin min{aj(zo), @p(zo)} -

Wl ™

‘JN (g, 6" s(xe) + (1 — & )uy)

X (or &}), even if the pointsc, ;, andx, ; coincide. ® — Jn (z0, " s(z0) + (1 — a)u,)| < % ,
Corollary IV.4 . The feasible set mag,, : Sy = B! is establishing the contradiction. [ |
H-continuous at anyry € Sy. This completes the proof of Theorem IV.1.

Proof: Straightforward extension of Lemma IV.3.m  B. Input-to-State Stability

Let I'y ¢ Sy be the set of all initial conditions for
which the proposed parameterized control&r is robustly
recursively feasible, i.e. for which the closed-loop tcajey

Proof: Immediate consequence of Proposition Il.6does not leaveSy for any disturbance sequenéey, }ren €
given that=,_(zo) is closed (Lemma IV.2) and H-u.s.c. WY. The next theorem (in conjunction with Theorem 11.9)
(Corollary IV.4). B proves ISS of the origin o, for system (1) undek?,.

Corollary IV.5 . The feasible set mag,, : Sy = B! is
closed at anyrg € Sy.



Theorem IV.7. Let {ux}ren be any sequence of feasiblefor appropriateH > 0, F', G, ¢, and E (e.g. [2]).

input vectors for{xy}reny resulting from (6). The opti-

In this particular case the Affine Combination Problem has

mal cost function.y, ,, parameterized by the sequencean analytic solution, obtained by substituting,, +(1—a)u,
{ouk_1}ren, is a parameterized ISS Lyapunov function fofinto (13). This yields a scalar quadratic equatiorninvith

system(1) under %, on I';.

Proof: The parameter sequeneai;_; is contained in
the compact set/V. With a;(-) from Assumption 1Il.1 and

ay(r) = supye <, J (€, 5(§)), You,_, is lower and upper
bounded by twaK . -functions:

ar([[€l]) < Yo, (&) < (€D

forall ¢ € T'y andouy_; € UV,
Becausexy € I'y, z, € Sy for all k € N. For anyzy, €

—[ur H + 2] F| [uy — uy]

Uy — uy]' H [uy — uy]

ap =

as its unconstrained minimizer. Substitutioncaf, + (1 —
a)u, into the constraints (14) gives a vector of scalar
inequalities fora (in addition to|«| < 1)

[G(uy —uy)]a < e+ Exp — Gu, ,

defining a (non-empty) closed interval far, € [a,@].

S, let ou,_; € UV be the shifted input vector resulting Depending orv%, the optimal solution to (6) ig, af, or @.
from (6). It must be shown that the nominal cost decrease is In this example, a terminal set with the state feedback

upper bounded by a negativé,.-function oy,

VYou, (A + Bug)i) — You,_, (k) < —au(llze]l)
and an additional cost caused by, is upper bounded by
some K -function o,

wauk (A«Tk + Buk\k + wk) - Q/Jauk,l(xk) <
— ar(llzxll) + o(lwel) -

The former statement is equivalent to AS in [14]: a8y
is feasible for{Azy + Buy,] (Remark I11.7(b)), the optimal

of a linear quadratic regulator is employed (e.g. [2]). The
constraints are tightened by = 0.1. The sub-optimal
controller s(z) is provided by interpolation of the optimal
solution stored at triangulated sampling points, which are
selected as the union of the extreme pointsSgf together
with 5 randomly placed points ¥y \ X.

By the results of this paper, system (11) is input-to-state
stable underx3, on somel's C Sy. Whereas for most
practical systems it is prohibitively expensive to compute
RPI sets, the sdf, can be approximated by simple forward
simulation, as illustrated in Figure 1.

input provided by (6) decreases by at least one stage cost.

The latter statement follows ag,,, is continuous (b
Theorem 1V.1) on the compact s8t; for any ou, € UY,
hence it is bounded. Thus the definition

sup ( sup {1/Ju(§+w)—¢v(§)‘f7 (§+w) ESN})
veUN \||lw||<w

o(w) :

yields a desired upper-boundirg-function. ]

V. NUMERICAL EXAMPLE

Consider a single mass oscillator with mass = 1,
stiffnessk = 5, dampingd = 0.01, and controlled by a forc
u(t); the sampling time isAt = 0.2. Let z = [vk, pi] "
denote its velocity and position at stépthen the dynamic
are described by

~ [0.900 —0.966 0.193
TR+ = 10,193 0.902 | % T {0.020

The disturbance support set is chosen as

[~0.400, —0.004] " < wy, < [0.400,0.004] " |

} ug +w, . (11)

and the input and the state constraint sets as

—5.000 < ug < 5.000 ,
[—10,-5] " < [vg,pi] " < [10,5]7 .

(12a)
(12b)

For a quadratic cost function withV = 20, @ = diag1, 10],

and R = 2, cost function and constraints can be written as

1
In(zp,ug) = iukTHUk +ay Fluy (13)

Gu <e+ Fxy, , (24)
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Fig. 1. Initial Conditions Remaining iy

Figure 1 displays initial conditions on a grid 820,
marked by a grey cross if all trajectories remained insigie
within 5 simulated steps, as tested &rpossible disturbance
combinations from the extreme points ¥f; and by a black
circle otherwise. This approximation proved to be highly
reliable in all further simulations.

Figure 2 compares the closed-loop trajectories of the
optimal MPC controller (grey lines) with those of the sub-
optimal controller (black lines) for some initial conditis in
So0. Both trajectories are subjected to the same disturbance
sequence, selected according to a uniform distributiofiVon
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The results of a cost analysis are illustrated in Figure 3. #009-4 248940.

compares the closed-loop costy, incurred byx3, as excess
percentage over the closed-loop codgy of x4,. The first
case (light grey bars, referred to as the ‘nominal case’) i
for {w }ren = 0, while in the second case (dark grey bars, [2]
referred to as the ‘robust case’) the trajectories are stdgje
to a uniformly distributed disturbance sequenceVih In
total, 100 random initial conditions are selected for eath o
50 different placements of the 5 sampling points, and the
simulation was performed for 50 steps. [4]

&

(5]
(6]

59
40%-
35%
30%
25%
20%
15%
10%

5%

0%

579!

E nominal case
robust case

(7]

frequency

(8]

(..-5)[-5,-3) ... [F11) .. [3,5) 7.9 ..[11,13) .. [15,.) [0

relative cost @o/‘]go_l) bins [in %]
Fig. 3. Sub-optimal vs. Optimal Closed-Loop Cost [10]
(11]
In some instancesthe sub-optimal controller produced

lower costs than the optimal controller, whiten average
the former was outperformed by the latter. The deviations in
the robust case were generally larger, reaching up to 25%,
than in the nominal case, for which 10% was never exceeddd’

Figure 4 depicts the corresponding frequency distribution
of the optimal parameter value. In the nominal case
the shifted input vector (corresponding to = 1) was
used extensively, and only little of the stored input vectoil5]
(corresponding tex = 0) got mixed into the actually applied
input. The opposite holds for the robust case, where the
controller had to rely more on the stored input vector as a
result of the shifted input vector becoming less advantageo
or infeasible.
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