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Abstract. The semi-synchronous model is an important middle ground
between the synchronous and the asynchronous models of distributed
computing. In this model, processes can detect (timeout) when other
processes fail. However, since detection is done by timing out, it incurs
a cost much higher than the typical delay of messages.

The paper presents a new communication primitive, Timely Announced
Broadcast (TAB), and uses it in algorithms for consensus and set con-
sensus in the semi-synchronous model. Separate implementations of TAB,
withstanding different types of failures, allow to derive algorithms for con-
sensus and set consensus under crash and omission failures.

The time bounds obtained by our algorithms asymptotically match,
or improve, the previously known bounds.

Keywords: semi-synchronous systems, timely announced broadcast,
terminating reliable broadcast, set consensus.

1 Introduction

Most research in distributed computing considers two models, synchronous and
asynchronous. In the synchronous model, processes take steps in rounds, and
messages sent in one round are received by the next round; in the asynchronous
model, processes take steps at arbitrary times, and there is no upper bound
on message delay. Practical systems, however, are neither as predictable as the
synchronous model nor as unpredictable as the asynchronous one. An important
middle ground is the semi-synchronous model [4] in which there are bounds
on the time processes take steps, or message are delivered, but they are only
approximately known.

In the context of fault-tolerant distributed algorithms [3], it is assumed that
consecutive steps by a correct process require time at least c1 and at most c2,
� Part of this work done while visiting EPFL.

�� Part of this work done while at EPFL.

D. Peleg (Ed.): DISC 2011, LNCS 6950, pp. 374–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Structured Derivation of Semi-synchronous Algorithms 375

while messages are delivered within at most time d after they are sent. When
failures are benign, i.e., stopping to take steps or omitting to send/receive mes-
sages, they can be detected by timing out the faulty process, according to these
time bounds, since they stop sending messages. However, to avoid suspecting the
innocents, timing out a process must take a relatively long time, which we denote
TO(d), and assume TO(d) > d, typically by a large margin (this is discussed
further in Section 2).

A classical problem in fault-tolerant distributed computing is the k-set con-
sensus problem [7], in which processes are required to output at most k different
values; if a correct process outputs v then v must be the input of some process.
The consensus problem is a special case where k = 1. In the synchronous model,
exactly �f/k�+1 rounds are required for solving k-set consensus in the presence
of f crash failures, for any f < n [7,8]. This extends the bound for the well-
known consensus problem (where k = 1), which can be solved in exactly f + 1
rounds (e.g., [10]).

These round-based algorithms can easily be simulated in the semi-synchronous
model, by waiting to timeout all processes that did not send a message in a
round, before proceeding to the next round. In this manner, executing an r-
round synchronous algorithm takes roughly rTO(d) time, namely, the timeout
cost is paid for each round.

Perhaps surprisingly, this cost is not inherent, and it has been shown by
Attiya, Dwork, Lynch and Stockmeyer [3] that the consensus problem can be
solved in time 2fd + TO(d), that is, the timeout cost is paid only once (this
algorithm is called ADLS). They also show that the timeout cost must be paid
at least once, by proving a time lower bound of (f − 1)d + TO(d). In follow-up
work, Michailidis [17] presented an algorithm solving set consensus within time
� f

k �d + TO(2d).
Despite being simple, the structure of the ADLS algorithm is quite different

from other consensus algorithms, and the way it works is considered “a mystery”
(cf. [14]). This might be the reason there has been very little work in the semi-
synchronous model.

Our contribution: In this paper, we present a new communication primitive,
called timely announced broadcast (TAB), which simplifies the design of semi-
synchronous algorithms for consensus and set consensus. TAB has simple im-
plementations in different failure models, and we present two efficient ones for
crash and omission failures. Combining these TAB implementations with sim-
ple consensus and set consensus algorithms lead to structured algorithms that
match, or even improve, the best known time bounds for the semi-synchronous
model.

Specifically, TAB provides three primitives to broadcast, announce and deliver
a message. Informally, after a process q broadcasts m, all other processes first
announce m and only then deliver m. In addition to common properties of
broadcast primitives (like integrity and validity), it is guaranteed that if a correct
process delivers m from q, then every correct process announces m from q. In
this respect, TAB is similar to known primitives like adopt-commit (e.g., [13])
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or graded consensus (e.g., [12]). Unlike these other primitives, however, TAB
also provides timing guarantees, as it bounds the time duration between the
broadcast, announcement, and delivery of the same message.

We present implementations of TAB in the presence of crash and omission fail-
ures. For crash failures, the time for both announcement and delivery is bounded
by d, while for omission failures, the time for announcement is bounded by d and
the time for delivery is bounded by 2d. (The last algorithm assumes that n > 2t,
where t is the maximum number of failures that can occur in an execution; we
reserve f for the number of failures in a specific execution.)

We then show how TAB can be used in a simple flooding-style algorithm
for terminating reliable broadcast, leading to a simple consensus algorithm with
the same time bounds. A somewhat more elaborate, but still intuitive when
considered in a synchronous setting, algorithm is needed for solving set consensus
using TAB. Employing the TAB implementation for crash failures, we get a time
bound of fd+TO(2d) for consensus and a time bound of �f/k�d+TO(2d) for set
consensus. Employing the TAB implementation for omission failures, we get a
time bound of 2fd+TO(4d) for consensus and a time bound of 2�f/k�d+TO(4d)
for set consensus.

Prior bounds: Table 1 summarizes the time bounds of our algorithms and pre-
vious results.

A couple of papers extended [3] to omission failures. Ponzio [18] showed that
when n > 2t, a simulation of crash failures on top of omission failures can
be applied to the algorithm of [3] to derive an algorithm for omission failures
requiring 4(f + 1)d + TO(d) time. Berman and Bharali [6] present an improved
consensus algorithm for omission failures, requiring 3(f + 1)d + TO(d) time,
when n > 2t. Both papers [18,6] also present more complicated bounds for the
case n ≤ 2t.

As for lower bounds, Herlihy, Rajsbaum and Tuttle [16] prove that in the semi-
synchronous model, any k-set consensus algorithm for n processes and n−1 crash
failures, requires time �n−1

k �d + TO(d). Herlihy and Rajsbaum [15] extend this
result to hold also with adversaries that fail processes in a coordinated man-
ner. For the threshold adversary considered in our paper, where process failures

Table 1. Comparison of our results with prior results (algorithms for omission failures
assume n > 2t)

Problem crash failures omission failures

Consensus Attiya et al. [3] 2fd + TO(d)

Michailidis [17] fd + TO(2d)

Ponzio [18] 4(f + 1)d + TO(d)

Berman and Bharali [6] 3(f + 1)d + TO(d)

this paper fd + TO(2d) 2fd + TO(4d)

k-set consensus Michailidis [17] �f/k�d + TO(2d)

this paper �f/k�d + TO(2d) 2�f/k�d + TO(4d)
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are independent, they show a bound of � f−1
k �d + TO(d), extending the previ-

ous result. These lower bounds show that our upper bounds are asymptotically
optimal.

2 Preliminaries

Model of Computation: We use the model defined in [3], in which there are n
processes p1, . . . , pn, and their respective message buffers, buff1, . . ., buffn. Each
process pi is modeled as a (possibly infinite) state machine with a local state set
Qi, including a distinguished initial state.

A configuration is a vector s = ((q1, b1) . . . , (qn, bn)) where statei(s) = qi is
the local state of pi and buffi(s) = bi is the content of pi’s buffer. In the initial
configuration all processes are in their initial states and all buffers are empty.

Processes communicate by sending messages. We assume that messages sent
from pi to pj contain a sequence number and that the sender’s id is part of every
message. The action send(pj , m) represents the sending of message m to process
pj .

Each process pi follows a deterministic algorithm that governs its state tran-
sitions and the messages it sends. The possible events are either computation
events of the form comp(pi, S), where pi is a process and S is a set of send ac-
tions, or delivery events of the form deliv(pi, m), where pi is a process and m is
a message.

An execution is an infinite sequence of alternating configurations and events
α = C0, π1, C1, . . . , πr, Cr, . . . , satisfying the following conditions:

1. C0 is the initial configuration.
2. If πr is an event of process pi, then statej(Cr−1) = statej(Cr) and

buffj(Cr−1) = buffj(Cr) for every j �= i. That is, states and buffers of pro-
cesses other than pi do not change.

3. If πr = comp(pi, S), then statei(Cr) and S are obtained by applying γi to
statei(Cr−1) and buffi(Cr−1); furthermore, buffi(Cr) = ∅. That is, pi, based
on its local state and the contents of its buffer, performs the send actions
in S, clears its buffer and possibly changes its local state, all in one atomic
transition.

4. If πr = deliv(pi, m), then statei(Cr) = statei(Cr−1) and buffi(Cr) =
buffi(Cr−1) · {m}. That is, the message m is appended to pi’s buffer.

5. For every delivery event πr = deliv(pi, m) there is exactly one computation
event πl = comp(pj , S) where l < r and send(pi, m) ∈ S. That is, each
delivery is matched to a unique earlier send.

Below, ‘time’ is always a nonnegative real number. A timed event is a pair (π, t),
where π is an event and t is a time. A timed execution is an infinite sequence of
alternating configurations and timed events α = C0, (π1, t1), C1, . . . , (πr, tr),
Cr, . . ., where C0, π1, C1, . . . , πr, Cr, . . . is an execution and the times are nonde-
creasing and unbounded.
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Types of Failures: Fix real numbers c1, c2, and d, 0 < c1 ≤ c2 < ∞ and
0 < d < ∞. A process pi is correct in a timed execution α if the following
conditions hold:

1. There is a computation event comp(pi, S) at time 0.
2. If the lth and rth timed events, l < r, are both computation events of pi

with no intervening computation events of pi, then c1 ≤ tr − tl ≤ c2.
3. If a message m is sent by pi to pj at the lth timed event then there exists

r > l such that the rth timed event is the matching delivery deliv(pi, m),
and tr − tl ≤ d.

If a process is not correct, we say it is faulty, and denote by t the largest number
of faulty processes that the protocol has to tolerate.

We model failure types by restricting the behavior of a faulty process. We
only consider benign failures, where faulty processes follow the algorithm. With
crash failures a faulty process may stop taking steps (or not start at all), but its
messages are delivered on time. Specifically, every message that is sent at time
T is received the latest at time T + d, if the receiver process is correct.

Omission failures are slightly more severe than crash failures, and although
they ensure the delivery times of messages, messages sent by a faulty process or
to faulty process may not be delivered at all. Specifically, every message that is
received at time T is sent not before time T − d. Every message that is sent by
a correct process is received if the receiver is correct.

Following the literature on early-stopping consensus and set consensus, we
denote by f the number of processes that fail in a specific execution of the
algorithm, assuming that the execution is clear from the context. We reserve t
to denote the maximum number of failures that is possible in all executions.

A Timeout Task: Let TO(T ) be the worst-case time to detect that time T has
elapsed. In order to ensure that time T has elapsed, a process must count T

c1

of its own steps,1 since it might be running “fast” (i.e., time c1 between steps).
But if the process is actually running “slow” (i.e., time c2 between steps), the
actual waiting time is c2T

c1
. That is, TO(T ) = CT , with C = c2

c1
.

In order to detect the failure of process p, processes must ensure that no
messages from p are in transit. Therefore, the worst-case elapsed time between
the failure of p and the time when all correct processes determine that p has
failed is roughly Cd.

3 Timely Announced Broadcast

We introduce a new communication primitive, Timely Announced Broadcast
(TAB), and show how it can be used to solve the consensus and set consen-
sus problems. TAB is defined in terms of three primitives, ta-broadcast(m),

1 We ignore rounding issues and assume that c1 always divides T and c2.
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Algorithm 1. TAB with crash failures; code for process p

1: upon ta-broadcast (m) do
2: send 〈Announce, m, p〉 to all
3: send 〈Msg, m, p〉 to all

4: upon received 〈Announce, m, q〉 do
5: if not announced m from q yet then
6: announce(m, q)

7: upon received 〈Msg, m, q〉 do
8: if not announced m from q yet then
9: announce(m, q)
10: ta-deliver(m, q)

announce(m, q), and ta-deliver (m, q). Informally, after a correct process q in-
vokes ta-broadcast(m), all other processes first announce(m, q) and only then
ta-deliver (m, q).

The announce message indicates to a process to wait for a forthcoming mes-
sage, causing it to extend its timeout and wait enough time to deliver the ex-
pected message (as demonstrated in Section 4).

In addition to common properties of broadcast primitives (like integrity and
validity), it is guaranteed that if a correct process ta-delivers m from p, then every
correct process announces m from p. TAB also provides timing guarantees, as it
bounds the time duration between the broadcast, announcement, and delivery
of the same message. In our implementations of TAB, these bounds are in O(d),
with the constant being small, i.e., 1 or 2.

Definition 1 (TAB). An algorithm solves timely announced broadcast in the
presence of benign failures, with two parameters d1 ≥ d2 > 0, if the following
properties hold:

Integrity. If a process ta-delivers a message m from p, then m was ta-broadcast
by p.

Validity. If a correct process p ta-broadcasts a message m at time T , then all
correct processes eventually announce m from p and ta-deliver m from p the
latest at time T + d1.

Announcement. For any message m, if any process ta-delivers m from p at
time T , then every correct process announces m from p the latest at time
T + d2.

Implementing TAB in the presence of crash failures: Algorithm 1 implements
TAB, with crash failures and assuming n > t.

It is easy to verify that the algorithm satisfies the properties of Definition 1,
with d1 = d2 = d.

Implementing TAB in the presence of omission failures: Algorithm 2 implements
TAB, with omission failures and assuming n > 2t. It is simple to show that the
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Algorithm 2. TAB with omission failures and n > 2t; code for process p

1: upon ta-broadcast(m) do
2: send 〈Msg, m〉 to all

3: upon received 〈Msg, m〉 from q do
4: send 〈Ack, m, q〉 to all

5: upon received 〈Ack, m, q〉 the first time do
6: announce(m, q)

7: upon received t + 1 〈Ack, m, q〉 do
8: ta-deliver(m, q)

algorithm satisfies the properties of Definition 1, with d1 = 2d and d2 = d.
Inspecting the code verifies that the integrity property holds.

Lemma 1 (Integrity). If a process ta-delivers m from p, then m was ta-
broadcast by p.

Lemma 2 (Validity). If a correct process p ta-broadcasts a message m at time
T , then all correct processes eventually announce m from p and ta-deliver m
from p the latest at time T + d1, where d1 = 2d.

Proof. Since p is correct and ta-broadcasts m at time T , it sends 〈Msg, m〉 to
all by time T , and by time T + d, all correct processes send 〈Ack, m, p〉 to all.2

Since n > 2t, this means that by time T + 2d, every process receives at least
n − t ≥ t + 1 〈Ack, m, p〉 messages and therefore announces and ta-delivers m
from p. �

Lemma 3 (Announcement). For any message m, if any process ta-delivers
m from p at time T , then every correct process announces m from p the latest
at time T + d2, where d2 = d.

Proof. If a process delivers m from p at time T , then it received t+1 〈Ack, m, p〉
messages by time T , at least one of them was sent by a correct process q by time
T . Then by time T + d, every correct process receives an 〈Ack, m, p〉 message
from q and announces m from p. �


4 Terminating Reliable Broadcast from TAB

The Terminating Reliable Broadcast (TRB) problem is defined in terms of two
primitives, broadcast and deliver, and has a dedicated sending process s. The
sender process s is the only process that invokes broadcast. When failures are
benign, we have the following requirements.
2 To simplify the statements of the results and the proofs, we assume c2 � d and

approximate d + c2 with d.
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Definition 2 (TRB). An algorithm solves terminating reliable broadcast in
the presence of benign failures if the following properties hold:

Integrity. A process delivers at most one message, and if a process delivers a
message m �= ⊥, then m was broadcast by s.

Validity. If the sender s is correct and broadcasts a message m, then s eventu-
ally delivers m.

Agreement. If a correct process delivers a message m, then every correct pro-
cess delivers m.

Termination. Every correct process eventually delivers some message.

Consensus from TRB: Non-uniform consensus can be easily implemented from
TRB with a simulation, where n instances of the TRB algorithm are executed
in parallel, in each instance i process i is the sender and uses its initial value for
that, and all processes apply a deterministic function on the resulting vector.
The response time of this consensus algorithm equals the response time of the
TRB algorithm.

TRB from TAB: It is easy to solve TRB in a synchronous system, using a
familiar, simple flooding mechanism. In the simplest form of this protocol (cf. [5,
Algorithm 15]), for a synchronous system with crash failures, the sender sends
a message to all processes; each process that gets this message, echoes it by re-
sending it to all processes, and returns the value. If no value was returned after
f + 1 rounds, the process returns ⊥.

This algorithm can be deployed in a semi-synchronous system by timing out
the processes that failed at the beginning of the round before correct processes
advance to the next round. This algorithm however, is susceptible to timing
delays, since timing out a process takes TO(d) and hence timing out r rounds
may take rTO(d) time, yielding a (f + 1)Cd-time algorithm for consensus.

To overcome this problem, instead of sending and receiving messages directly,
processes use TAB to send and announce-deliver messages. The TAB protocol
allows processes to warn other processes that they are about to deliver a message,
thus alerting them to wait for their copy of this message.

The pseudocode is given as Algorithm 3. For a process p, Zp holds the set of
processes who have sent an announcement and p must wait for their message.
For any process q ∈ Zp, if process p does not receive a message from q within
a specific time, namely 2d1, it suspects q to be faulty and stops waiting for a
message from q by removing q from Zp (line 11). When Zp = ⊥, all processes
who have only sent an announcement are crashed, so it is safe to deliver ⊥
(lines 12-13). We show the algorithm solves TRB.

Lemma 4 (Integrity). A process delivers at most one message, and if a process
delivers a message m �= ⊥, then m was broadcast by s.

Proof. The first part of the lemma follows from the code (a process stops after
delivering a message). Assume that a process p delivers m �= ⊥. Since a non-
⊥ message is delivered only after a ta-deliver event at line 9, this means that
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Algorithm 3. TRB from TAB; code for process p (s is the sender process)
1: initially
2: Zp ← {s}
3: upon broadcast v do /* called only by s */
4: ta-broadcast (v)

5: upon announce(m, q) do /* a message from q is forthcoming, wait for it */
6: Zp ← Zp ∪ {q}
7: upon ta-deliver(v, q) the first time

do /* a message from q ta-delivered, echo it and deliver */
8: ta-broadcast (v)
9: deliver v

10: upon no ta-deliver(v, q) for 2d1 time since the last announce(v, q) or time 0
do /* suspect q */

11: Zp ← Zp \ {q} /* stop waiting for all messages from q */
12: if Zp = ∅ then
13: deliver ⊥

p ta-deliver (m, q). By the Integrity property of TAB, m was ta-broadcast by
process q. If q = s, this finishes the proof. Otherwise, q ta-broadcast value it ta-
deliver from some process. Either q ta-deliver message from s or after a chain of
processes, where by the Integrity property of TAB and the fact that no process
executes line 8, at least one of processes in the chain will ta-deliver message from
process s. Therefore, if p deliver a non-⊥ message, then it must be m. �

Lemma 5 (Validity). If the sender s is correct and broadcasts a message m,
then s eventually delivers m.

Proof. From the Validity property of TAB, s ta-delivers m the latest at time d1.
Since at this time s cannot execute the upon rule of Line 10, s delivers m by
Line 9. �

Lemma 6 (Agreement). If a correct process delivers a message m, then every
correct process delivers m.

Proof. By contradiction. Because of Lemma 4, w.l.o.g. assume that at time Tp,
a correct process p delivers v, the value broadcast by s, and at time Tq, a correct
process q �= p delivers ⊥.

If process q delivers ⊥ at time Tq, it did not ta-deliver nor receive an announce-
ment for 2d1 time (a ta-delivery would have led to deliver v and an announcement
would have delayed the delivery of ⊥). Thus, process p cannot deliver before time
Tq−d1: before delivering it would have ta-broadcast its message to all, and thus,
since p is correct, q would have received this message. Therefore, Tp > Tq − d1.
Because p delivered v, it ta-delivered a message; in more detail, there is a chain
of deliveries from the source to p. Each of these ta-broadcast events is at most
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d1 apart from each other. Since Tq ≥ d1, and the source ta-broadcasts at time
0, there is one process in this chain that ta-broadcasts after Tq − 2d1 but before
Tq − d1. Because of the Announcement property, an announcement is received
by q between Tq − 2d1 and Tq − d1 + d2 ≤ Tq. This contradicts the fact, that q
neither ta-delivers nor receives an announcement between Tq − 2d1 and Tq. �

The upon rule of Line 10 ensures the next lemma.

Lemma 7 (Termination). Every correct process eventually delivers some mes-
sage.

The next lemma shows the timing property of the TRB algorithm.

Lemma 8. In a run with an actual TAB transmission time d1 and f faulty
processes that obey the timing requirements, a correct process delivers a value by
time fd1 + TO(2d1).

Proof. By Lemma 7, a correct process p eventually delivers a value for the sender
s. If p delivers m �= ⊥ in Line 9, then it can be easily shown (cf. [5, Algorithm
15]) that it has received m along a chain of r re-broadcasts by different processes.
It follows that r ≤ f + 1, since once m reaches a correct process it is sent to all
processes. Thus, it is delivered by time (f + 1)d1 = fd1 + d1 ≤ fd1 + TO(d1)
(since TO(d) ≥ d).

Consider now the case p delivers ⊥ in Line 13; we argue that each process q
added to Zp is removed by time fd1 + TO(2d1), and the upon rule of Line 10
ensures ⊥ is delivered.

A process q is added to Zp in the upon rule of Line 5. Since no process
announces the same process twice (by Line 7), an announcement is forwarded
through a chain of r different processes pi1 , . . ., pir .

If none of these processes is correct, then r ≤ f , and hence q is added in the
upon rule of Line 5 before time fd1, and it is timed out (in the upon rule of
Line 10) before time fd1 + TO(2d1), implying the claim.

So, let pr′ be the first correct process among pi1 , . . ., pir ; clearly, r′ ≤ f + 1,
and hence p receives the ta-broadcasts from pr′ before time r′d1 ≤ (f + 1)d1 ≤
fd1 + TO(2d1) (since TO(d) ≥ d). �

By substituting the appropriate TAB implementations, we get:

Corollary 1. There is a TRB algorithm, and hence consensus algorithm, which
withstands crash failures and terminates within time fd + TO(2d).

Corollary 2. There is a TRB algorithm, and hence consensus algorithm, which
withstands omission failures and terminates within 2fd+TO(4d), assuming that
n > 2t.

5 Set Consensus from TAB

Definition 3 (Set consensus). An algorithm solves k-set consensus in the
presence of benign failures if each process starts with an input value, and decides
on a value, such that the following properties hold:
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Integrity. If a process decides v, then v is the input of some process.
Agreement. The correct processes decide on at most k different values.
Termination. Every correct process eventually decides.

The pseudocode for set consensus appears in Algorithm 4. Recall that all pro-
cesses start at time 0. Each process p keeps an array of known initial values;
knowp[q] is the initial value of process q learned by p, and is initially ⊥. During
the algorithm, process p learns the initial values of other processes. Unlike TRB
that has a unique source, in set consensus all processes are sources. Therefore,
process p keeps a set Zp for each process q: Zp[q] denotes the set of processes
who sent an announcement for q, that is, Zp[q] is the set of processes who have

Algorithm 4. Set Consensus from TAB; code for process p

1: initially
2: ∀q ∈ Π : knowp[q]← ⊥

/* knowp[q] contains the initial value of process q learned by p */
3: ∀q ∈ Π : Zp[q]← {q}

/* set of processes that announced the knowledge of the initial value of q */

4: upon starting with input v do
5: knowp[p]← v
6: ta-broadcast (knowp)

7: upon announce(kn, q) do
8: for all r : kn[r] 
= ⊥ do
9: Zp[r]← Zp[r] ∪ {q}

/* q learned r’s initial value but p didn’t, wait for this value */

10: upon ta-deliver(kn, q) do
11: for all r ∈ Π do
12: if knowp[r] = ⊥ and kn[r] 
= ⊥ then
13: knowp[r]← kn[r] /* learn initial values q knows */
14: if updated knowp then
15: ta-broadcast (knowp) /* inform others about new learned initial values */
16: if can-decide? then
17: decide min(knowp)

18: upon no ta-deliver(v, q) for 2d1 time since the last announce(v, q) or time 0
do /* suspect q */

19: for all r ∈ Π do
20: Zp[r]← Zp[r] \ {q} /* stop waiting for all messages from q */
21: if can-decide? then
22: decide min(knowp)

23: function can-decide?
24: Kp ← {q : knowp[q] = ⊥} /* set of processes that p doesn’t know their value */
25: Up ← {q : ∃r s.t. knowp[r] = ⊥ ∧ q ∈ Zp[r]}

/* set of processes that know values of those processes that p doesn’t know */
26: return (|Kp| < k) or (|Up| < k)
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learned the initial value of process q. As for Algorithm 3, if process p does not
receive a message from q within the specified time, namely 2d1, it suspects q to
be faulty and stops waiting for a message from q (lines 18-20).

The decision condition is also more complicated that in TRB. As in syn-
chronous set consensus algorithms [7], process p can decide if it knows more
than n − k values, i.e., |Kp| < k, where Kp denotes the set of processes that p
does not know their initial value. Additionally, process p can decide if fewer than
k processes know the initial value of those processes that p does not know, i.e.,
the size of Up � {q : ∃r s.t. knowp[r] = ⊥ ∧ q ∈ Zp[r]} is strictly less than k.
That is, if only k− 1 processes know some values that p does not know, at most
k− 1 different values might be decided; therefore, p can decide on the minimum
value that it knows.

The correctness proof follows arguments similar to those used to prove the
correctness of Algorithm 3. A process decides only on a value from the know
array; the values in this array are either the process’s initial value or those
received in a ta-deliver event. Hence, the Integrity property of TAB implies the
next lemma.

Lemma 9 (Integrity). If a process decides v, then v was proposed by some
process.

Lemma 10 (Agreement). The correct processes decide on at most k different
values.

Proof. Assume, towards a contradiction, that at least k + 1 different values,
v1 < . . . < vk+1 < . . ., are decided. Let p be a correct process that decides vk+1.
By Line 26, p decides either because |Kp| < k or because |Up| < k.

If |Kp| < k, then since p decides on the minimum value it has seen it follows
that it has not seen v1, . . . , vk, that is, k values, which is a contradiction.

Otherwise, p decides because |Up| < k. Note that this happens only when
the condition of Line 18 is satisfied, i.e., 2d1 timeout expires. |Up| < k implies
that (i) at most k − 1 processes know values that p doesn’t know. This means
that at most k different values are decided (including p’s decision value). By the
assumption, (ii) there are at least k + 1 decisions.

From (i) and (ii), it follows that there is a decision value x < vk+1, such that
every process in Up that knows x also knows a value smaller than x. Let q be a
correct process that decides x. We consider two cases for how q has received x:

Case 1, q receives x after p decides: Since p decided vk+1 and x < vk+1, p
does not know x, this implies that q did not receive x from p. Therefore, q must
have received x from some process in Up, possibly through other intermediate
processes. But every process in Up that knows x also knows a value smaller than
x, a contradiction.

Case 2, q receives x before p decides: q must appear in Zp[r], for some r ∈ Π ,
since q ta-broadcasts x before deciding. Since p does not know x and p has
timed out all faulty processes by Line 18, p must have detected q’s failure, a
contradiction. �
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The upon rule of Line 18 together with the properties of TAB ensure the next
lemma.

Lemma 11 (Termination). Every correct process eventually decides.

Proof. We show that every correct process continues to take steps until it decides
or crashes, i.e., the condition of Line 26 eventually becomes true.

Assume, by way of contradiction, that some correct process p continues to
take steps without deciding. This means that the sizes of the sets Kp and Up

it has are greater than or equal to k (according to Line 26). Thus, there are at
least k unknown values and at least k processes in Z �

⋃
r∈Π Zp[r]. Consider

one of these processes, say q. Since q ∈ Z, it has ta-broadcast knowq. If q is a
correct process, by the Validity property of TAB, p ta-delivers a message from
q within d1. Otherwise, p suspects q after 2d1 according to Line 18. In either
case, the condition of Line 26 becomes satisfied, which contradicts the fact that
p never decides. �


The final lemma shows the timing property of the set consensus algorithm.

Lemma 12. In a run with an actual TAB transmission time d1 and f faulty
processes that obey the timing requirements, a correct process decides by time
�f/k�d1 + TO(2d1).

Proof. (Sketch) By Lemma 11, a correct process p eventually decides. Let p
decide v, where v is the initial value of some process q, i.e., knowp[q] = v. From
Line 26, p decides because either (i) |Kp| < k or (ii) |Up| < k.

In case (i), it can be easily shown (cf. [7]) that p has received v along a chain
of r ≤ �f/k�+ 1 re-broadcasts by different processes. Thus v is decided by time
(�f/k� + 1)d1 ≤ �f/k�d1 + TO(d1) (since TO(d) ≥ d).

In case (ii) we show that each process q′ ∈ Zp[q] is removed by time �f/k�d1+
TO(2d1). Process q′ receives v through a chain of r different processes.

If none of these processes is correct, then r ≤ �f/k�. Therefore, q′ is added
to Zp[q] by time rd1 ≤ �f/k�d1 in the upon rule of Line 7 and is removed from
Zp[q], after a timeout TO(2d1), by time rd1 + TO(2d1) ≤ �f/k�d1 + TO(2d1) in
the upon rule of Line 18, which implies the lemma.

Otherwise, p receives v from a correct process by time r′d1, where r′ ≤ �f/k�+
1. Therefore, p decides v by time (�f/k� + 1)d1 ≤ �f/k�d1 + TO(2d1) (since
TO(d) ≥ d). �


By substituting the appropriate TAB implementations, we get:

Corollary 3. There is a k-set consensus algorithm, which withstands crash fail-
ures and terminates within time �f/k�d + TO(2d).

Corollary 4. There is a k-set consensus algorithm, which withstands omission
failures and terminates within 2�f/k�d + TO(4d), assuming that n > 2t.
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6 Summary

This paper presents a new communication primitive and uses it to derive con-
sensus and set consensus algorithms for semi-synchronous systems, under several
types of failures. The time bounds achieved by our algorithms asymptotically
match or improve previously known bounds, but we consider the main contribu-
tion of our paper to be the modular structure of our algorithms, which provides
insight into the behavior of efficient semi-synchronous algorithms.

The time bounds of our algorithms are the sum of two terms: one depend-
ing only on d and another depending on a timeout (which itself depends on d).
Interestingly, it can be shown that the first term is even smaller in some exe-
cutions. Let δ be the maximum transmission delay of a certain execution. Then
the execution time of, e.g., our consensus algorithm for crash failures is in fact
fδ + TO(2d), which is important for the case δ � d. (The other bounds can be
adjusted similarly.)

We remark that our algorithms are early stopping, since their time bounds
depend on f , the actual number of failures in an execution, rather than on
t, the maximal number of failures. Thus, overall, the execution time of these
algorithms is a constant (in terms of f) plus a term that depends only on the
actual properties of an execution, f and δ (and not t and d).

The most obvious open question is to tighten the time bounds, especially for
omission failures.

It is also interesting to study how TAB (or some extension thereof in the
style of [9]) can yield algorithms that withstand timing or Byzantine failures.
Ponzio [18] showed that in the presence of Byzantine failures, consensus can be
solved in (f +1)(d+TO(d)). Attiya and Djerassi-Shintel [2] prove lower bounds
in the presence of t timing failures. Specifically, they showed any consensus al-
gorithm requires Ω( n

n−tTO(d)) time, while a k-set consensus algorithm requires
Ω( n

k(n−t)TO(d)) time. This leaves a gap for small values of t.
Taking a broader perspective, can TAB be used to derive efficient algorithms

for other problems, or even as a general technique for simulating synchronous
algorithms?

The partially synchronous model [11] considers an asynchronous system and
requires algorithms to terminate only after the system experiences a long enough
synchronous period. (This is also known as the eventually synchronous model.)
It would be intriguing to investigate implementing TAB in this model, and using
it to efficiently solve problems such as consensus and set consensus. A key step
would be to make our algorithms work even when not all process start at the
same time (non-synchronized start).

Aguilera, Le Lann and Toueg [1] show how fast failure detection can speed up
consensus in a synchronous system; their results are similar to [3]. However, as
explained in their paper, “specialized hardware” or “different messaging service”
are required to achieve fast failure detection. This is in contrast to the ADLS
model, studied in our paper, which assumes that all messages sent in this model
take at most time d.
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