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Abstract

Given a graph G with nonnegative node labels w, a multiset of stable sets S1, . . . , Sk ⊆
V (G) such that each vertex v ∈ V (G) is contained in w(v) many of these stable sets is
called a weighted coloring. The weighted coloring number χw(G) is the smallest k such
that there exist stable sets as above.

We provide a polynomial time combinatorial algorithm that computes the weighted
coloring number and the corresponding colorings for fuzzy circular interval graphs. The
algorithm reduces the problem to the case of circular interval graphs, then making use
of a coloring algorithm by Gijswijt.

We also show that the stable set polytopes of fuzzy circular interval graphs have the
integer decomposition property.

Keywords: fuzzy circular interval graph, circular interval graph, vertex coloring,
weighted coloring, integer decomposition property

1. Introduction

A weighted k coloring of a graph G with weights w : V (G) −→ N0 is a multiset of
stable sets S1, . . . , Sk ⊆ V (G) such that each vertex v ∈ V (G) is contained in w(v) many
of these stable sets. The weighted coloring number χw(G) is the smallest k such that
there exist stable sets as above. The problem of bounding and computing the weighted
coloring number of graphs is a classical topic in combinatorics and graph theory and,
for the class of quasi-line graphs and more specifically fuzzy circular interval graphs, has
received a lot of attention recently.

From a polyhedral perspective, the weighted coloring problem has an interesting
connection to integer decompositions in the stable set polytopes of graphs. A polyhedron
P ⊆ Rn has the integer decomposition property, if each integer vector z ∈ Zn that is
contained in k · P for some k ∈ N can be decomposed into k integer vectors of P , i.e.
there exist integer vectors z1, . . . , zk ∈ P such that

z =
k∑
i=1

zi.
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The vectors z1, . . . , zk are called a k integer decomposition of z in P . There is a one to
one correspondence between weighted colorings of a graph with weights w and integer
decompositions of w in its stable set polytope. Moreover, if a stable set polytope has the
integer decomposition property, and the maximum weighted stable set (MWSS) problem
can be solved in polynomial time, then the weighted coloring number can be computed
in polynomial time, via the equivalence of separation and optimization [1].

A graph is quasi-line if the neighborhood of each of its vertices is the union of two
cliques. Chudnovsky and Seymor [2] provided a structural result that states that a
connected quasi-line graph is a fuzzy circular interval graph or it is the composition of
fuzzy linear interval strips with a collection of disjoint cliques. In particular line-graphs
are quasi-line, and thus the weighted coloring problem for quasi-line graphs subsumes
the NP-complete edge-coloring problem, see, e.g. [3].

In this paper we consider the subclass of fuzzy circular interval graphs and show that
the weighted coloring problem can be solved in polynomial time. We will present two
approaches to the problem: A purely combinatorial approach and a polyhedral approach
based on linear programming. Both approaches work by reduction to circular interval
graphs, exploiting their properties [4, 5].

Our contribution. We present an efficient combinatorial algorithm to not only compute
the coloring number, but also an optimal weighted coloring for fuzzy circular interval
graphs. For a fuzzy circular interval graph G, it computes the weighted coloring number
alone in time

O
(
|V (G)|2 size(w)

)
.

Given the coloring number, it computes an optimal weighted coloring in time

O
(
|V (G)|4 + size(w)

)
.

Here size(w) denotes the binary encoding length of w. The algorithm is based on a
reduction to circular interval graphs using an algorithm for maximum b-matching and
an algorithm of Gijswijt [5] to solve the weighted coloring problem on circular interval
graphs. Our algorithm requires a so called representation of the fuzzy circular interval
graph as input. Such a representation can be computed in time O

(
|V (G)|2 · |E(G)|

)
=

O
(
|V (G)|4

)
, see [6].

We also show that the stable set polytopes of fuzzy circular interval graphs have the
integer decomposition property, which leads to a linear programming based approach to
compute the weighted coloring number.

The organization of this paper is as follows. In Section 1.1, we review important struc-
tural properties of fuzzy circular interval graphs that will be exploited by our algorithm.
In Section 2 we present our combinatorial coloring algorithm. Finally in Section 3 we
elaborate in more detail on the relation between weighted colorings and integer decom-
positions and prove the integer decomposition property for the stable set polytope of
fuzzy circular interval graphs.

1.1. The structure of circular interval graphs
We will review some definitions and structural properties concerning fuzzy circular

interval graphs due to Chudnovsky and Seymour [2] useful throughout the paper. We
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start with some general notion. Given a graph G and a set of nodes S ⊆ V (G), a node
v ∈ V (G) is said to be S-complete, if v is adjacent to every node of S. If v is adjacent
to none of the nodes of S, v is said to be S-anticomplete. Given a node v ∈ V (G), we
define the neighborhood of v as

NG(v) := {u ∈ V (G) : {u, v} ∈ E(G)} .

Circular interval graphs are graphs G that can be obtained with the following construction.
Let V (G) be a subset of a circle C. Further take a set I of intervals of the circle C. The
set of edges E(G) is defined as follows: Two vertices are adjacent if and only if they are
contained in a common interval of I.

The pair (V, I) completely describes a circular interval graph and is called a repre-
sentation of G. These representations can be computed in linear time [7, 8, 9]. Figure 1
shows an example for a circular interval graph.
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Figure 1: A circular interval graph with its representation.

Circular interval graphs can be colored efficiently. There is a combinatorial algorithm
by Gijswijt [5] via integer decompositions for the stable set polytope of circular interval
graphs.His result is the following.

Theorem 1 ([5]). Given a circular interval graph G with weights w, for every k ∈ N
we can decide if a weighted k coloring of (G,w) exists in time O

(
|V (G)|2

)
.

A weighted k coloring can be computed in time O
(
|V (G)|2 + size(w)

)
. The number

of different stable sets in the coloring is bounded by O (|V (G)|).

Fuzzy circular interval graphs [2] provide a generalization of the former class. They can
be characterized as follows. A graph G is a fuzzy circular interval graph if there is a map
Φ from V (G) to a circle C and a set I of intervals of C, none including another, such that
no point of C is an endpoint of more than one interval so that:

• If two vertices u and v are adjacent, then Φ(u) and Φ(v) belong to a common
interval.
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• If two vertices u and v belong to the same interval, which is not an interval with
endpoints Φ(u) and Φ(v), then they are adjacent.

Every fuzzy circular interval graph is quasi-line, and every circular interval graph is
a fuzzy circular interval graph. The generalization provided by fuzzy circular interval
graphs is regarding the adjacencies between nodes mapped to the different endpoints of
an interval. While the definition of circular interval graphs requires these vertices to be
adjacent, the definition of fuzzy circular interval graphs does not. For an interval [p, q] ∈
I, if both sets of preimages A := Φ−1(p) and B := Φ−1(q) are nonempty, the pair (A,B)
is called a fuzzy pair. Note that by definition, both A and B are cliques, but adjacencies
between nodes of A and B can be arbitrary. Fuzzy pairs have another structural property
that will be crucial later for our construction: Every node v ∈ V (G)\(A ∪ B) is either
A-complete or A-anticomplete. Similarly, v is either B-complete or B-anticomplete.

Analogous to circular interval graphs, the pair (Φ, I) is called a representation of
G. It completely defines all adjacencies, except for those of fuzzy pairs. Figure 2 shows
an example for a fuzzy circular interval graph and its representation. We remark that
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Figure 2: A fuzzy circular interval graph with its representation. Here Φ(a1) = Φ(a2) = Φ(a3) = A,
Φ(b1) = Φ(b2) = B, Φ(c) = C, Φ(d) = D and Φ(e) = E

the definition of fuzzy pairs relies on the interval set I, and hence are dependent on a
representation. Given two different representations of the same graph, the fuzzy pairs
might differ. In the sequel when we speak of fuzzy pairs, we implicitly assume that a
representation is given. Every fuzzy circular interval graph has a representation whose
number of intervals is bounded by O (|V (G)|): The fact that no interval is allowed to
include another limits the number of irredundant intervals. From now on we assume
that the number of intervals is limited by O (|V (G)|). Representations for fuzzy circular
interval graphs can be computed efficiently:

Theorem 2 ([6]). Given a graph G, one can decide whether G is a fuzzy circular in-
terval graph and compute a suitable representation in time O

(
|V (G)|2 · |E(G)|

)
.
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The coloring algorithm presented later will reduce to the case of circular interval
graphs to make use of Gijswijt’s coloring algorithm. As fuzzy pairs are what distinguishes
circular interval graphs from fuzzy circular interval graphs, they play an essential role in
the transformation. A fuzzy pair (A,B) is called nontrivial if A∪B contains an induced
C4 subgraph, i.e. there are four nodes such that their induced subgraph is a cycle. It
is called trivial otherwise. A crucial observation is that fuzzy circular interval graphs
whose fuzzy pairs are all trivial are actually circular interval graphs, see, e.g. [10].

Lemma 1. Given a fuzzy circular interval graph G and a representation, if every fuzzy
pair of G w.r.t. that representation is trivial, then G is a circular interval graph.

2. The coloring algorithm

Our coloring algorithm for fuzzy circular interval graphs reduces to the case of circular
interval graphs by transforming the input graph G and its weights w to a circular interval
graph G∗ with weights w∗ such that the coloring number is preserved, i.e. χw(G) =
χw∗(G∗). Then it applies Gijswijt’s algorithm, see Theorem 1, to obtain a coloring of
G∗, which finally is transformed to a coloring of G.

The results of Chudnovsky and Ovetsky [11] and of King and Reed [12] also give
algorithms to reduce fuzzy circular interval graphs to circular interval graphs preserving
the coloring number. However their constructions do not consider weighted colorings.
One can reduce weighted colorings to colorings by replacing each node v ∈ V (G) of
G with a clique of size w(v), thereby generalizing their results. However, the size of
the resulting graph is exponential in the encoding length of the weights. Our reduction
instead works directly for weighted colorings and achieves polynomial running time.

Lemma 1 suggests the following approach for the reduction of a fuzzy circular interval
graph G: Replace every nontrivial fuzzy pair in G with a trivial one in such a way that
the weighted coloring number is preserved. This is done in several iterations, replacing
the nontrivial fuzzy pairs one by one.

2.1. Fuzzy pair reduction
We now describe a single iteration, i.e. show how to replace a single fuzzy pair. Recall

that fuzzy pairs (A,B) have the structural property that every node v /∈ A ∪B is either
adjacent to all the nodes of A (of B) or to none of them. Thus as far as the stable sets of
a coloring are concerned it is important to know whether a node of A (of B) is contained
in a stable set whereas knowing the exact node itself is less important. Nodes in A and
B can be re-distributed among the stable sets as long as they do not become adjacent
in the sub-graph induced by A ∪ B. This is reflected in the following construction to
compact a fuzzy pair.

Consider a fuzzy circular interval graph G with weights w and a fuzzy pair (A,B) in
G. Let V ◦ := V (G)\(A ∪ B). For a subset S ⊆ V we define w(S) :=

∑
v∈S w(v). The

reduced graph (G′, w′) is defined as follows:

V (G′) := V ◦ ∪ {a0, a1, b0, b1},

E(G′) := E(G)|V ◦ ∪ {{v, a0}, {v, a1} : v ∈ V ◦A-complete}
∪ {{v, b0}, {v, b1} : v ∈ V ◦B-complete}
∪ {{a0, a1}, {b0, b1}, {a0, b1}, {a1, b1}, {a1, b0}}
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w′(v) :=


α if v = a0 or v = b0

w(A)− α if v = a1

w(B)− α if v = b1

w(v) else.

Notice that a similar construction is used in the independent work of Oriolo, Pietropaoli
and Stauffer [6] who designed an efficient recognition algorithm for fuzzy circular interval
graphs.

We next specify α. The sets A and B together with the complement of the edges
of G[A ∪ B] define a bipartite graph H. If a stable set S of G has two vertices in
A ∪ B, then those two vertices are connected by an edge in H. Furthermore the set
(S \ (A ∪ B)) ∪ {a0, b0} is a stable set of G′. Writing a weighted k-coloring of G as the
sum of characteristic vectors of stable sets w = χS1 + · · ·+ χSk , how many of the Si can
contain two vertices of A ∪ B? This number can be expresses as the size of a largest
b-matching in H. Given node labels b : V (H) → N0, a b-matching is a multiset of
edges of E(H) such that each node v ∈ V (H) is covered by at most b(v) of those edges.
Alternatively one can define a maximum b-matching as optimal solution to the linear
program

max

 ∑
e∈E(H)

xe :
∑
e∈δ(v)

xe ≤ b(v) ∀v ∈ V (H); xe ≥ 0 ∀e ∈ E(H)

 . (1)

Since H is bipartite, the vertices of the linear program (1) are integral, see, e.g. [3].
Now setting b := w, the number of stable sets Si that can contain two vertices of

A ∪ B is clearly bounded by the size of a largest b-matching, as a coloring with ` many
of those stable sets directly gives rise to a b-matching of size `. The number α from the
reduction above is the size of a largest b-matching or equivalently the optimum value of
the linear program (1). We remark that this number can be computed efficiently using
a combinatorial max s − t–flow algorithm, e.g. Karzanovs preflow push algorithm [3].
Figure 3 illustrates an example for the reduction.

In order for the reduced graph to be useful for our reduction, we need to prove that
it satisfies the following three properties.

• The reduction preserves the structure of the graph, i.e. G′ is still a fuzzy circular
interval graph.

• If (A,B) was nontrivial, the number of nontrivial fuzzy pairs has been reduced by
one.

• We have χw(G) = χw′(G′).

We start with showing that the construction preserves the weighted coloring number.

Lemma 2. With the construction above one has χw(G) = χw′(G′).

Proof. We show that every weighted k coloring of (G′, w′) gives rise to a weighted k
coloring of (G,w) and vice versa.
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Figure 3: A fuzzy pair (A, B) and its replacement (A′, B′) in the reduction. The numbers next to the
nodes denote their weights.

Let
w = χS1 + · · ·+ χSk (2)

be a weighted coloring of G with k not necessarily different stable sets Si, i = 1, . . . , k.
We transform this coloring into a weighted coloring of G′ with weights w′ using k stable
sets. Each stable set Si is replaced with a stable set S′i of G′ by the following procedure.

First we consider those stable sets Si that contain two nodes a and b of A∪B. Each
such Si is replaced by (Si\(A∪B))∪{a0, b0}. Observe that by construction, the number µ
of such stable sets Si is bounded by α. We further replace α−µ stable sets Si containing
a node of A but not a node of B by (Si \ A) ∪ {a0} and α− µ stable sets Si containing
a node of B but not a node of A by (Si \ B) ∪ {b0}. Now, there are w(A) − α stable
sets left containing a node of A but not of B. Since w′(a1) = w(A)− α, we can replace
these stable sets by (Si \ A) ∪ {a1}. Similarly, we can replace the remaining w(B) − α
stable sets containing a node of B but not a node of A by (Si \ B) ∪ {b1}. The stable
sets Si which do not contain a vertex of A∪B remain the same. All-together, this yields
a collection S′1, . . . , S

′
k of stable sets of G′ with

w′ = χS
′
1 + · · ·+ χS

′
k ,

a k coloring of (G′, w′).
To show that a weighted k coloring of G′ can be transformed to a weighted k coloring

of G, let
w′ = χS

′
1 + · · ·+ χS

′
k . (3)

be a weighted coloring of G′ with k not necessarily different stable sets S′i, i = 1, . . . , k.
Let µ be the number of stable sets S′i of (3) containing a0 and b0 and suppose that

these stable sets are S′1, . . . , S
′
µ. By construction we have µ ≤ α and we can compute a

b-matching M of H of size µ. This b-matching is a multiset consisting of µ edges {ui, vi}
with ui ∈ A and vi ∈ B, i = 1, . . . , µ. Now we can replace each of these µ stable sets
with

(S′i \ {a0, b0}) ∪ {ui, vi}.
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For v ∈ A ∪B, let d(v) be the number of edges of the b-matching M which are incident
to v, i.e., d(v) = |{i : v ∩ {ui, vi} 6= ∅, {ui, vi} ∈M}|. Note that d(v) ≤ w(v).

Suppose that the stable sets S′i containing a0 or a1 but not b0 or b1 are then

S′µ+1, . . . , S
′
w(A) (4)

and those containing b0 or b1 but not a0 or a1 are

S′w(A)+1, . . . , S
′
w(A)+w(B)−µ. (5)

The multiset of stable sets (4) can be partitioned into multisets S ′a, a ∈ A with |S ′a| =
w(a) − d(a). Likewise the multiset of stable sets (5) can be partitioned into multisets
S ′b, b ∈ B with |S ′b| = w(b)−d(b). Each S′ ∈ S ′a is replaced by (S′ \{a0, a1})∪{a} and
each S′ ∈ S ′b is replaced by (S′ \ {b0, b1}) ∪ {b}. The stable sets S′i of (3) containing no
vertex of {a0, a1, b0, b1} remain unchanged. In this way, we obtain a weighted coloring of
G with weights w. �

We end the section with the proof of the other two properties we require from the
reduction:

Lemma 3. If G is a fuzzy circular interval graph, then the output G′ of the reduction
above is a fuzzy circular interval graph as well. Moreover, if the fuzzy pair (A,B) is
nontrivial, then the number of nontrivial fuzzy pairs in G′ is reduced by one.

Proof. Consider a representation (Φ, I) of the graph G. As (A,B) is a fuzzy pair, we
have Φ(a) = Φ(a′) for all a, a′ ∈ A and Φ(b) = Φ(b′) for all b, b′ ∈ B.

We define the map Φ′ : V (G′)→ C as

Φ′(v) :=


Φ(v), if v ∈ V ◦

Φ(A), if v = a0 or v = a1

Φ(B), if v = b0 or v = b1.

It is straightforward to verify that (Φ′, I) is a representation of the graph G′.
Note that ({a0, a1}, {b0, b1}) is a fuzzy pair w.r.t. this representation, in replacement

for the fuzzy pair (A,B). All other fuzzy pairs remain unchanged in the new represen-
tation. Clearly ({a0, a1}, {b0, b1}) is trivial as it does not contain an induced C4. Thus
if (A,B) is nontrivial, the number of nontrivial fuzzy pairs is reduced by one. �

2.2. The algorithm
Using the reduction from above, we can now describe the full algorithm: Given a

fuzzy circular interval graph G with weights w and a representation (Φ, I). Assume that
there are ` many fuzzy pairs in that representation denoted by (A1, B1), . . . , (A`, B`).

The coloring algorithm replaces the fuzzy pairs one by one with trivial fuzzy pairs,
preserving the structure of the graph and the weighted coloring number by computing a
sequence

(G,w) = (G0, w0), (G1, w1), . . . , (G`, w`) = (G∗, w∗),

where (Gi, wi) is the reduced graph of (Gi−1, wi−1), the fuzzy pair (Ai, Bi) being reduced.
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A simple proof by induction using Lemma 3 in the induction step show that G∗ is
fuzzy circular interval graph without nontrivial fuzzy pair, hence by Lemma 1 a circular
interval graph. Similarly, with Lemma 2 we get that

χw(G) = χw∗(G∗).

Now Gijswitj’s algorithm can be used to compute the weighted coloring number for
G∗ and hence G. Note that the proof of Lemma 2 is constructive, i.e. it shows how to
transform a weighted coloring of a reduced graph to a weighted coloring of its preimage.
Hence we can transform a coloring of (G∗, w∗) to a coloring of (G,w) by successively
transforming a coloring from (Gi, wi) to (Gi−1, wi−1) for each i = `, . . . , 1.

However, the construction in the proof of Lemma 2 does not have polynomial running
time as the number k of stable sets might be exponential in the input size. For that reason,
we will give a revised algorithm in Section 2.3 which uses a compressed representation
of the stable sets, only taking into account the different stable sets. This algorithm will
be efficient, i.e. its running time is polynomial in the input size.

A formal description of the algorithm looks as follows:

Algorithm 1 The coloring algorithm for fuzzy circular interval graphs
1: function ColorFCIG(G = (V,E), w, {(A1, B1), . . . , (A`, B`)})
2: G0 ← G, w0 ← w.
3: for i = 1, . . . , ` do
4: (Gi, wi)← Reduce(Gi−1, wi−1, (Ai, Bi))
5: end for
6: G∗ ← Gl, w∗ ← w`
7: 〈χS1 , . . . , χSk〉 ← ColorCIG(G∗, w∗)
8: for i = `, . . . , 1 do

9:
〈χS1 , . . . , χSk〉 ← ColorTransform((Gi, wi), (Gi−1, wi−1),

(Ai, Bi), 〈χS1 , . . . , χSk〉)
10: end for
11: return 〈χS1 , . . . , χSk〉
12: end function

2.3. Running time analysis
This section is devoted to the analysis of the running time of Algorithm 1. We will

show that the algorithm has a running time that is polynomial in the input. We start
with the running time analysis for the reduction.

Lemma 4. Given a circular interval graph G with weights w, and a representation (Φ, I)
of the graph, in time O

(
|V (G)|3

)
we can compute the circular interval graph G∗ with

weights w∗ as in Algorithm 1.

Proof. Before reducing the fuzzy pairs, we need to identify them. This can be done in
time O

(
|V (G)|2

)
: For each interval I ∈ I, compute the set of nodes that are mapped to

the two endpoints of the interval (Recall that we assume that |I| = O (|V (G)|)). If both
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endpoints have at least one node, we have a fuzzy pair. Let ` be the number of fuzzy
pairs. Note that ` ≤ |V (G)| as fuzzy pairs are disjoint.

The running time for computing a single reduced graph graph Gi and wi from its pre-
decessor (Gi−1, wi−1) is determined by the time needed to generate the helper graph H,
to compute the size of a maximum b-matching in H and to output (Gi, wi). The running
time to generate H and output (G′, w′) is O

(
|V (G)|2

)
. Since the number of nodes in H

is |Ai ∪ Bi|, a maximum size b-matching can be computed in time O
(
|Ai ∪Bi|3

)
using

a max s − t-flow algorithm, e.g. Karzanovs preflow push algorithm [3]. This gives an
overall running time of O

(
|V (G)|2 + |Ai ∪Bi|3

)
to compute one reduced graph. Thus,

all ` iterations together amount a running time of

O

(
` · |V (G)|2 +

∑̀
i=1

|Ai ∪Bi|3
)
.

Since ` ≤ |V (G)| and the fuzzy pairs are disjoint, this simplifies to O
(
|V (G)|3

)
. �

To compute the coloring number alone, as χw(G) = χw∗(G∗), it is sufficient to determine
the weighted coloring number of G∗. Note that |V (G∗)| = O (|V (G)|). Hence, deciding
if the weighted coloring number of G∗ exceeds some given k using Gijswit’s algorithm
takes time O

(
|V (G)|2

)
as stated in Theorem 1. The weighted coloring number of G

can be determined by binary search on the interval [1, w(G)]. Hence with Lemma 4 and
using the fact that size(w), the binary encoding length of w, is at least |V (G)|, we get
the following result:

Theorem 3. Given a fuzzy circular interval graph G with weights w and a representa-
tion, the weighted coloring number can be computed in time O

(
|V (G)|2 · size(w)

)
.

To get a coloring of (G,w), a weighted coloring of G∗ has to be transformed. In
the proof of Lemma 2 we have seen an exponential time algorithm. The drawback of
that algorithm is that every stable set of the coloring is treated individually, i.e. we
consider χw(G) many stable sets. The weighted coloring number might not be bounded
polynomially in the input size, resulting in an exponential time algorithm. However, only
a polynomial number of different stable sets is needed to describe an optimal weighted
coloring. This fact can be exploited by using a more compact formulation of the colorings:
Only the different stable sets are written down explicitly, together with integers that
specify how often the sets should be used. In fact the output of Gijswijts algorithm is of
that form as well.

The following lemma proves that a revised version of the transformation algorithm
that uses the compressed representation has polynomial running time.

Lemma 5. Let (G,w) be a weighted fuzzy circular interval graph with a fuzzy pair (A,B),
and let (G′, w′) be its reduced graph. Given a k coloring of (G′, w′) using β different stable
sets, a k coloring of (G,w) using O

(
β + |A ∪B|2

)
different stable sets can be computed

in time
O
(
(β + |A ∪B|2) · |V (G)|+ |V (G)|2 + |A ∪B|3

)
.

Proof. Suppose that the k coloring of (G′, w′) is given in a compact formulation

w′ = λ1χ
S′1 + · · ·+ λβχ

S′β . (6)
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with λi ∈ N and
∑β
i=1 λi = k. Our goal is to transform it into a weighted k coloring of

G.
Let J ⊆ {1, . . . , β} be the index set of stable sets S′i of (6) containing a0 and b0,

and let µ :=
∑
i∈J λi. Clearly we have µ ≤ w′(a0) = w′(b0). Without loss of generality

assume that J = {1, . . . , |J |}. Let H be the complement graph of G[A∪B] as defined as in
Section 2.1. Recall that by construction of reduced graphs, we have α = w′(a0) = w′(b0),
where α is the value of a maximum b-matching in H with b(v) := w(v) for all v ∈ A∪B.
Hence there is a b-matching of H of size µ. Let γ be the number of different edges in
the b-matching. Note that this number is bounded by |A ∪ B|2, the maximum number
of edges in H.

We can assume that the b-matching is given in the following compact formulation:
(ρj , {uj , vj}) with ρj ∈ N, uj ∈ A and vj ∈ B for j = 1, . . . , γ, where ρj denotes the mul-
tiplicity of the edge {uj , vj} in the matching. Hence

∑γ
j=1 ρj = µ. We assume that the

b-matching has the following property: There are indexes 0 =: k(0), k(1), . . . , k(|J |) := γ

such that
∑k(i)
j=k(i−1)+1 ρj = λi for each i ∈ J . Note that this property can be established

by splitting some (ρj , {uj , vj}). Also note that at most one split is needed for each i ∈ J .
Thus even if we require that property, we have γ ≤ |J |+ |A ∪B|2.

We use the b-matching to transform our coloring as follows. We partition the matching
into |J | multisets P1, . . . , P|J| in a natural way: For each i ∈ J we set

Pi = {(ρj , {uj , vj}) : j = k(i− 1) + 1, . . . , k(i)} =: {(ρ′j , {u′j , v′j}) : j = 1, . . . , γi}.

Note that by construction we have
∑γi
j=1 ρ

′
j = λi. Now we can transform the λi many

sets S′i as follows: For each j = 1, . . . , γi output

(S′i\{a0, b0}) ∪ {u′j , v′j}

with multiplicity ρ′j . Let β0 be the number of different stable sets created in this trans-
formation. Clearly the number is given by the number of different sets in the Pi, i.e.∑
i∈J γi = γ ≤ |J |+ |A ∪B|2.
For v ∈ A∪B, let d(v) be the number of edges of the b-matching M which are incident

to v, i.e.
d(v) =

∑
i=1,...,γ, v∈{ui,vi}

ρi.

Each node v ∈ A ∪ B is now already contained in d(v) many stable sets that we trans-
formed already. Hence we have to put it into w(v) − d(v) more stable sets to obtain
a weighted coloring of G. This is done similarly to what we did before. Let J ′ denote
the index set of the S′i containing a node of {a0, a1} but not of {b0, b1}. These sets are
transformed in a similar manner. Consider the multiset {(w(a)− d(a), a) : a ∈ A}, and
partition it into |J ′| many multisets, such that for each i ∈ J ′ we have a set P ′i of the
form

P ′i = {(ρ′j , a′j) : j = 1, . . . , γi}.
For each j = 1, . . . , γi output

(S′i\{a0, a1}) ∪ {u′j , v′j}

with multiplicity of ρ′j . This yields at most |J ′| + |A| different sets. The stable sets S′i
containing a node of {b0, b1} but not of {a0, a1} are transformed in a similar manner,
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covering each node b ∈ B exactly w(b)−d(b) times and increasing the number of different
stable sets by at most |B|. The remaining sets are left unchanged.

This gives a weighted k coloring of G. The number of different sets has increased by

O
(
γ + |A ∪B|2

)
= O

(
|A ∪B|2

)
,

and thus the number of different sets in the coloring is bounded by β + O
(
|A ∪B|2

)
.

The running time needed for the classification of the sets of the coloring is O (β · |V (G)|).
Computing the graph H takes time O

(
|V (G)|2

)
, and the computation time for the b-

matching is O
(
|A ∪B|3

)
. Performing the transformations takes time (β+O

(
|A ∪B|2

)
)·

|V (G)|. We conclude that the total time of the transformation is bounded by

O
(
(β + |A ∪B|2) · |V (G)|+ |V (G)|2 + |A ∪B|3

)
.

�

To transform a coloring of G∗ with weights w∗ to a coloring of G with weights w,
we apply the transformation repeatedly for each fuzzy pair that has been reduced be-
fore. Observe that the number β of different stable sets of the coloring never exceeds
O
(
|V (G)|2

)
: The weighted coloring of the graph G∗ has only O (|V (G)|) different sets,

as stated in Theorem 1. In each iteration, this number grows only by |Ai ∪ Bi|2 during
the transformation for fuzzy pair Ai, Bi, as seen in Lemma 5.

There are ` ≤ |V (G)| iterations of the transformation needed, and thus the total
running time can be bounded with O

(
|V (G)|4

)
. With Theorem 1 we get the following.

Theorem 4. Given a fuzzy circular interval graph G with weights w and a represen-
tation. For every k ∈ N, in time O

(
|V (G)|4 + size(w)

)
one can compute a weighted k

coloring of (G,w), if such a coloring exists.
A weighted coloring using a minimum number of colors can be computed in time

O
(
|V (G)|4 + |V (G)|2 · size(w)

)
.

We remark that our algorithm requires a suitable representation of the fuzzy circular
interval graph as part of the input. As stated in Theorem 2, such a representation can
be computed in time O

(
|V (G)|2 · |E(G)|

)
= O

(
|V (G)|4

)
.

3. Integer decomposition property

We will now consider the weighted coloring problem for fuzzy circular interval graphs
from a polyhedral perspective. There is a strong relation between (weighted) vertex
coloring of graphs and integer decompositions in their stable set polytopes. It turns out
that the following two properties of a graph class imply that the weighed coloring number
can be computed in polynomial time:

• The maximum weighted stable set problem (MWSS) can be solved in polynomial
time.

• The stable set polytope has the integer decomposition property.
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We will elaborate on this in more detail in Section 3.1. This is of particular interest
for the class of fuzzy circular interval graphs, because the two properties are satisfied.
An algorithm by Minty [13], revised by Nakamura and Tamura [14] solves the MWSS
problem for the superclass of claw-free graphs. We will show in Section 3.2 that the stable
set polytopes of fuzzy circular interval graphs have the integer decomposition property.

3.1. Vertex coloring and integer decomposition
Let G be a graph. With I(G) we denote the family of stable sets of G. For a subset

S ⊆ V (G) of vertices, the incidence vector χS ∈ ZV (G) is the {0, 1}-vector defined by
χS(v) = 1 ⇔ v ∈ S. The stable set polytope STAB(G) is defined as the convex hull of
the incidence vectors of the stable sets of G:

STAB(G) := conv.hull
(
{χS : S ∈ I(G)}

)
.

Note that a k integer decomposition of a vector w in STAB(G) directly corresponds to
a weighted k coloring G with weights w and vice versa.

This makes the integer decomposition property a useful tool to compute the weighted
coloring number: The latter can be expressed with the following integer program

χw(G) = min

 ∑
S∈I(G)

λS :
∑

S∈I(G)

λSχ
S = w, λ ∈ N0

 . (7)

The fractional weighted coloring number is defined as the optimum of the linear relax-
ation:

χ∗w(G) = min

 ∑
S∈I(G)

λS :
∑

S∈I(G)

λSχ
S = w, λ ≥ 0

 . (8)

This number is interesting for the following reason: If the stable set polytope has the inte-
ger decomposition property, then one obtains the weighted coloring number by rounding
up the fractional coloring number. This can be seen as follows. Let λ an optimal fractional
solution of (8). Hence

∑
S∈I(G) λS =

∑
χ∗w(G), which implies that 1

χ∗w(G)λ defines a con-
vex combination of the vector 1

χ∗w(G)w. Thus 1
χ∗w(G)w ∈ STAB(G). Since 0 ∈ STAB(G),

this implies 1
dχ∗w(G)ew ∈ STAB(G). In other words we have w ∈ dχ∗w(G)e STAB(G).

Now, if STAB(G) has the integer decomposition property, this implies that there is a
dχ∗w(G)e integer decomposition of w in STAB(G). In other words, there is a weighted
coloring of G using dχ∗w(G)e many colors. We conclude:

Lemma 6. If the stable set polytope STAB(G) has the integer decomposition property,
then χw(G) = dχ∗w(G)e.

Hence, in order to compute the weighted coloring number, it is sufficient to compute the
fractional coloring number, i.e. to solve the linear program (8). Although its dimension is
of exponential size, under some circumstances one can still solve it efficiently considering
the dual LP:

χ∗w(G) = max

{∑
v∈V

wvyv :
∑
v∈S

yv ≤ 1∀S ∈ I(G)

}
. (9)
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The number of constraints of this linear program is exponential. However, to solve it in
polynomial time, it is sufficient to solve the separation problem efficiently [1]: Given a
vector y, decide whether y is a feasible solution. If it is infeasible, provide a hyperplane
that separates y from the set of feasible solutions. Note that in this case, the separation
problem can be solved by using the maximum weighted stable set (MWSS) problem on
G, using the solution y as weights: If the maximum weight of a stable set exceeds 1, it
yields a separating hyperplane. Otherwise, if the maximum weight is bounded by 1, this
asserts that y is feasible.

In general, the MWSS problem is NP-hard. However, for claw-free graphs, a super-
class of quasi-line and fuzzy circular interval graphs, there is a polynomial time algo-
rithm [14, 13]. Note that this allows only to compute the weighted coloring number, but
not an optimal weighted coloring. There is a result by Orlin [15] to compute optimal
solutions for covering integer programs that have the round up property as (7) and (8)
in polynomial time. However, its running time is polynomial in the size of the integer
program, and thus not applicable here.

3.2. Integer decomposition property of Fuzzy circular interval graphs
We will now show that the stable set polytopes of fuzzy circular interval graphs have

the integer decomposition property. The result will be established by reduction to the
case of circular interval graphs, using the fact that stable set polytopes of circular interval
graphs have the integer decomposition property [4, 5].

We use our construction from Section 2.1 for the reduction. We remark that the
construction of Chudnovsky and Ovetsky [11] or King and Reed [12] could be used
as well, using a boosting argument. We have seen in Section 2.1 that our construction
preserves the weighted coloring number. A key observation is that the fractional weighted
coloring number is preserved as well:

Lemma 7. Given a fuzzy circular interval graph G with weights w ∈ NV (G), there is a
circular interval graph G∗ with weights w∗ ∈ NV (G) such that

1. χw(G) = χw∗(G∗),
2. χ∗w(G) = χ∗w∗(G

∗).

Proof. Let (G∗, w∗) be the circular interval graph computed by our coloring algorithm.
We have seen previously that χw(G) = χw∗(G∗) holds. We now show that the fractional
coloring numbers are preserved as well. A straightforward observation is as follows: If we
scale the weight vector w by some integer M ∈ N, then the fractional coloring number is
scaled by the same factor:

M · χ∗w(G) = χ∗M ·w(G).

The same holds for the fractional weighted coloring number of G∗. Moreover we claim
that

χM ·w(G) = χM ·w∗(G∗)

holds. This can be shown completely analogous to the proof of Lemma 2. The key
argument here is that if the weight vector w is scaled by M , then the optimum value of
the linear program (1) is scaled by M as well. Now to prove (2.), consider an optimal
fractional coloring of G, i.e.

w =
∑

S∈STAB(G)

λSχ
S
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and
∑
S∈STAB(G) λS = χ∗w(G). We can assume that λ is rational, hence there is a number

M ∈ N such that M · λ is integer. We conclude that

M · χ∗w(G) = χ∗M ·w(G) = χM ·w(G) = χM ·w∗(G∗) ≥M · χ∗w∗(G∗)

using the fact that M · λ is an optimal integer coloring for the second equality. This
shows χ∗w(G) ≥ χ∗w∗(G

∗). The converse direction is shown analogous starting with an
optimal fractional coloring of G∗. �

Using this lemma, we can show the integer decomposition property:

Theorem 5. Let G be a fuzzy circular interval graph. Then STAB(G) has the integer
decomposition property.

Proof. Let w ∈ ZV (G) be a vector and k ∈ N such that w ∈ k · STAB(G). We
need to show that there is a k integer decomposition of w in STAB(G). As w ∈ k ·
STAB(G), there is a convex combination of 1

kw using the characteristic vectors of stable
sets. This implies that for the fractional weighted chromatic number we have χ∗w(G) ≤
dχ∗w(G)e ≤ k. Applying Lemma 7, we get a fuzzy circular interval graph G∗ with weights
w∗ such that χw(G) = χw∗(G∗) and χ∗w(G) = χ∗w∗(G

∗). Since the stable set polytope
of G∗ has the integer decomposition property, with Lemma 6 we have dχ∗w∗(G∗)e =
χw∗(G∗). We conclude that dχ∗w(G)e = χw(G) ≤ k, which asserts that there is a k
integer decomposition as desired. �

References

[1] M. Grötschel, L. Lovász, A. Schrijver, Geometric algorithms and combinatorial optimization, vol-
ume 2 of Algorithms and Combinatorics, Springer-Verlag, Berlin, second edition, 1993.

[2] M. Chudnovsky, P. D. Seymour, The structure of claw-free graphs, in: Surveys in Combinatorics,
pp. 153–171.

[3] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, Springer, 2003.
[4] T. Niessen, J. Kind, The round-up property of the fractional chromatic number for proper circular

arc graphs, J. Graph Theory 33 (2000) 256–267.
[5] D. Gijswijt, Integer decomposition for polyhedra defined by nearly totally unimodular matrices,

SIAM J. Discret. Math. 19 (2005) 798–806.
[6] G. Oriolo, U. Pietropaoli, G. Stauffer, On the recognition of fuzzy circular interval graphs,

manuscript, to appear (2010).
[7] X. Deng, P. Hell, J. Huang, Linear-time representation algorithms for proper circular-arc graphs

and proper interval graphs, SIAM J. Comput. 25 (1996) 390–403.
[8] R. M. McConnell, Linear-time recognition of circular-arc graphs, Algorithmica 37 (2003) 93–147.
[9] H. Kaplan, Y. Nussbaum, A simpler linear-time recognition of circular-arc graphs, in: Algorithm

theory—SWAT 2006, volume 4059 of Lecture Notes in Comput. Sci., Springer, Berlin, 2006, pp.
41–52.

[10] F. Eisenbrand, G. Oriolo, G. Stauffer, P. Ventura, The stable set polytope of quasi-line graphs,
Combinatorica 28 (2008) 45–67.

[11] M. Chudnovsky, A. Ovetsky, Coloring quasi-line graphs, J. Graph Theory 54 (2007) 41–50.
[12] A. D. King, B. Reed, Asymptotics of the chromatic number for quasi-line graphs, Electronic Notes in

Discrete Mathematics 29 (2007) 327 – 331. European Conference on Combinatorics, Graph Theory
and Applications.

[13] G. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory (B) 28
(1980) 284–304.

[14] D. Nakamura, A. Tamura, A revision of Minty’s algorithm for finding a maximum weight stable set
of a claw-free graph, 1999.

[15] J. B. Orlin, A polynomial algorithm for integer programming covering problems satisfying the
integer round-up property, Math. Programming 22 (1982) 231–235.

15


