SEMESTER PROJECT 8
CHEBYSHEV POLYNOMIAL APPROXIMATION FOR
TRANSDUCTIVE LEARNING ON GRAPHS

Lausanne
Spring 2011

PERRAUDIN Nathanaél

supervised by
VANDERGHEYNST Pierre
and
SHUMAN David

LTS2 - EPFL

Bt

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

LTS2 - EPFL 1 INTRODUCTION

1 Introduction

The goal of transductive learning is to find a way to recover the labels of lots of data with only
a few known samples. In this work, we will work on graphs for two reasons. First, it’s possible
to construct a graph from a given dataset with features. The main assumption we make is that if
two vertices are close (connected with a small weight), they will have similiar labels. Thus, graph
theory allows us to solve lots of problems. Second, graph problems can be solved distributively.

Imagine you have a sensors network with a limited transmission power. Each sensor can only
communicate with its closest neighbours. Implementing a distributive algorithm allows you to
compute the solution directly on the sensors and on special point. In that case you can with
regression, filter the noise, evaluate a data even if a sensor is broken, detect if a sensor is broken
and estimate the data to a point with no sensors. This could also be done centrally by a computer,
but doing so all the data will require to be transfered to the computer which consume a lot of
resources (here energy).

In [I], Zhou et al. present a recursive algorithm to solve the transductive learning problem.
This recursive algorithm can also be implemented distributedly. In this work we compare this
algorithm with a Chebyshev polynomial approximation, which is presented in [2] and [3]. The main
advantage is Chebyshev polynomial are his recursive properties. We will also study the stability of
the different algorithms. The criteria to evaluate if an algorithm will be the communication cost,
which is the number of messages exchanged between all the vertices.

This work is divided into two main parts. In the first one, we consider general, the graph
regression problem. This first part is again divided into 2 subproblems. The first one is a general
regression problem with prior ||[Vz||? (where x is the solution). After showing the solution, we talk
about Chebyshev polynomial approximation and graph Fourier transform. We give some examples
based on the Minnesota road graph. In the second subproblem, we consider ridge regression. We
will study the convergence of our algorithm as a function of the basis. We also compare our
algorithm with some known recursive ones and we calculate the impact of the sparsity (needed in
order to make our algorithm efficient) on the answer. We have worked on different datasets, but
mainly on the DELVE Boston housing.

For the second main part, we consider classification. In this case, the answer (the labels) is
not continuous anymore, but discrete. In this way, the computer has to take a decision. We show
that we can consider this new problem as a one shot filter. Then we talk about the basis used
for the graph Fourier transform. We also study how we can construct a graph and some practical
cases based on several datasets (the most studied will be USPS). In that part, we compare our
Chebyshev approximation to an iterative algorithm.

The link between all the problems is the way we use Chebyshev polynomial approximation.
We choose a basis and we make a graph Fourier transform. Then we approximate the transfer
function in the Fourier domain. We end with an inverse transform. In fact we show that we can
avoid the direct and inverse graph Fourier transform and compute the solution directly or (and)
distributively.

1.1 Some theorical definition about graph

A weighted graph G = E,V,w is a set of N vertices V' connected by a set of edge E with a the
weighted function w. We can define A of size N x N the adjacency matrix like:

(1)

Then we define the diagonal matrix D (size N x N) with d(m) =3, am n. And we define the
Laplacian matrix £ (size N x N) :

P w(e) if e € E connects vertices m and n
o 0 otherwise

L=D-A 2)

Remark: In fact, in order to define a Laplacian, we need first to define a edge derivative:

af (v)
Oey,

= VA, 0)(f(u) = f(v)) (3)

SPRING 2011 1/17

LTS2 - EPFL 2 REGRESSION ON GRAPHS

With this derivative (2) can be shown.

1.1.1 Graph Fourier Transform

Let supposed we have a Laplacian £ with linearly independant eigenvectors ¢; (I = 1,2, ..., N).
We define the graph Fourier transform of f:

fO) =< i, f > (4)

We can also define the inverse Fourier transform:

Fw) = F)n(w) (5)

=1

1.2 Some theorical definition about Chebyshev polynomial approxima-
tion
Chebychev Polynomials T} (y) can be generated by a stable recurence relation: Ty (y) = 2yTk-1(y)—

Tr—2(y) with Ty = 1 and T} = y. We can evalute a function f with a infinite sum of a Chebyshev
serie:

fly) = %Co +> e Ti(y) (6)
k=1

with)
2 [P
T™J_1 V1-— 22
In order to approximate the function f we can only take the M first terms of the sum given by
(6). We get the truncated Chebyshev polynomial approximation:

2 s
dz=2 /0 cos (k0)h(cos (0))d6 (7)

B 1 M
fly) = 5eo+ > e Ti(y) (8)
k=1

2 Regression on graphs

In this part, we are going to consider regression. This mean the solution is going to be continous.
We will see two different problem. The first one is going to be general and can be easily extended
to other kind of problem (denoising, unfiltering, ...). In the second we will present Ridge regression
which is more efficient. But it can only be used on reconstruction.

2.1 One first general problem

We consider a graph with a given adjacency matrix: A of size N x N. Thus, we can easily
get the laplacian matrix £ with (2). Some information about the label of vertices is missing. We
know only a few label. In order to formulate the problem, we create a mask M which is a diagonal
matrix with m,, , = 1 if the label is known and m,, , = 0 otherwise for n = 1,2,..., N. Suppose
the value of the labels is contain in a vector ¢ of size N, then we construct b like b = Mec. We can
choose the norm of the gradient as prior (We will see later that this gradient presents very good
properties). Thus, we will consider that the signal of the graph is "quite smooth". The goal of
this problem is to recover c.

We need to find a solution to this problem:

min ([[b— Maz|* + pl|Val|*) 9)

where x the solution.
In order to find a solution, we are going to divide this problem into two parts.

SPRING 2011 2/17

LTS2 - EPFL 2 REGRESSION ON GRAPHS

2.1.1 Splitting the problem

This is a typical problem of minimising the sum of two functions. We can apply the proximal
splitting method: forward-backward splitting [4].

If we define:
{ filz) = pl[Vel (10)
fa(x) =||b - Ma|? (11)
The solution of the problem:
min (fi(x) + f2(x)) (12)
is given by:
z = provys (x — YV f2(2)) (13)

where the definition of the prox of f; is:

. 1
provs s, (y) = min (vfi(2) + 5|z = yll?) (14)
This suggests an iterative method.
Tp41 = Prox, f, (xn — Vi (xn)) (15)

We can solve such a problem by alternately searching the solution of two new, but easier questions:

{ Yn = Ty + 'anf2(xn) (16)
Tpt1 = ProT~f, Yn (17)

2.1.2 Gradient of ||b — Ax|?
If we calculate the gradient of fo5, we find:
Vfo(x) = V||b — Mz|* = 2M*(Mx — b) (18)

where M* is the adjoint matrix of M.
Remark: Here M* = M because M is a simple mask.

Generalisation of our problem: Here the result is quite broad. We can easily switch M with
another kind of matrix providing its adjoint is defined. In fact (16) is the solution of the more
general problem:

i — Az|? —y|? 1
min ([[b— Az[|* +]z - y]*) (19)

2.1.3 Proximity operator for u|Vz|?

The definition of the prox for the function f; is the answer to this problem:
provsg, (u) = min, (1@ + 5l —yl?) = min QulValP+ e —ol?) (20
T zER™ 2 zER™ 2
Taking the zero of the Gateau derivative of (20) and assuming that ||Vz|? = 27 Lz, leads to this

result:

z(BL+T) =1y & z=(BL+I)""y (21)
with I being the identity matrix and 8 = 2u~y.

Remark: To find 2, we should not inverse the matrix (8L + I) because it would be far too slow
for big graphs. As a result, we need to find another way to calculate x.

SPRING 2011 3/17

LTS2 - EPFL 2 REGRESSION ON GRAPHS

2.1.4 A shortcut through the Fourier graph transform and Chebyshev’s polynomial
approximation

If we take the Fourier graph transform of (21), we get:

9(1) = h()g(0) (22)

where)\; is the I*" eigenvalue of the Laplacian matrix £.

This last operation is not usual in Maschine Learning. In fact, it is used in Digital Signal
Processing. Taking the Fourier transfom of (21), alows us to see the problem differently. Equation
(22) is equivalent to filter § with .

This is the typical equation of a low-pass filter. This means that the prior we chose, assumes
that our graph is made mostly by low frequency. As a result, to calculate x, we can take the Fourier
graph transform of y, multiply it with our filter and take the inverse graph Fourier transform of
this result. This could be a good solution for a complex, but small graph (with a non sparse
laplacian matrix). However, usually the laplacian matrix of a graph is big (lots of vertices) but
sparse (not many edges). As a consequence, it takes plenty of time and a good memory to calculate
the eigenvalues and the eigenvectors of L.

In order to solve this problem, we will approximate the transfer function fL()\l) = ﬁ with a
sum of Chebyshev polynomials:

) I X
(1) = (5e0 + > e Te(N)) 3() (23)
We will now take the inverse graph Fourier transform of this equation. This is trivial as we
know Lf = N\ f

T = (%co + i cka(L))y (24)
k=1

The equation (24) is far more practical than (21) because we can calculate x, only by summing
up power of L. Of course we need to approximate this last equation in order to calculate it with
a computer. If we approximate the integral of (7) with n rectangles and we only use the N first
Chebyshev polynomials we get an approximation of x:

1 N
T = (ECO + g Ck,nTk(£)>y (25)
k=1

We can use this approximation because the forward-backward algorithm converges even with
small numeric errors.

Remark about the prior: We can easily use this method for other priors. But not all priors
give us a defined function in the graph Fourier domain. This is the reason why ||Vz||? is a good
prior for solving this problem.

2.1.5 Final algorithm

Knowing all this, we get to a simple algorithm to recover the missing labels. We will use the
parameters of the Beck-Teboulle [4] proximal gradient algorithm (y = 871).

A) Initialisation: xg = ug =b and tg =1
B) Loop for n=0,1,2,3, ...
1) Calculate y, = u, + %M*(Mx —b)(un)
2) Calculate z,,+1 = prowap 1 Vyn|?
3) Update t,+1 = R Vi V;Ltiﬂ
Ap =14 =1
n+1
Up4+1 = Tn +)\n(-rn-i-l - xn)
C) The solution is given by x,,.

using the equation 25

SPRING 2011 4/17

LTS2 - EPFL 2 REGRESSION ON GRAPHS

Remark: In order to get better results, we can add a constraint on the known labels to prevent
them modifying. This will help the algorithm to be more stable.

2.1.6 Implementation

In order to verify the previous result, we will apply it to a virtual problem. We will take a
graph representing the road of Minnesota and asign a label to all vertices.

Calculating the prox To start, we are going to verify that (25) is a good approximation of
(24). The evolution of the error is given on the figure 1. The definition of the relative error
is ere; = |c — z|/|c|]. We see that it decreases exponentially with m. The computation with
the Chebyshev approximation is as expected rapid compared to the direct solution (more than
100 times faster in this case). Knowing this, we will always use the approximation for the next
applications.

Relative error

10" \
10" \
N

0 10 20 30 40 50 60 70
m

Figure 1: Relative error between the exact solution given by (22) and Chebyshev’s polynomial
approximation of order m given by (25) for N = m + 1. We see that when m reaches 40, we get
the computer’s precision.

A small denoising problem We have seen that taking the prox of a graph is equivalent to
applying a low-pass filter. It can be used to remove a white noise. As shown on figure 2, it works
well. It acts exactly the same as a normal signal. The filter removes the noise but also smoothes
the edge a little bit.

Recovering missing labels At this point, it is possible to implement the algorithm given at
point 2.1.5. Indeed, we have an efficient and precise way to calculate the prox(filtering with
Chebyshev polynomial approximation). In the algorithm, we have two parameters (u and f3).

By just watching the algorithm, we can understand that (§ is inversely proportional to the
speed of convergence. This is shown in figure 4. We see that we gain a little by preventing the
modification of the known labels. In fact, the biggest advantage of this method is that it’s far
easier to find good parameters because it’s more stable.

The parameter i should be proportional to the weight we accord to the prior and to the smooth-
ness of the reconstructed signal. In fact, because of the splitting, the smoothness is proportional
to &.

B

2.1.7 Conclusion of the first regression problem

The main conclusion of this part is that Chebyshev allows us to implement the algorithm given
at point 2.1.5. Without this approximation, the algorithm would be far too slow. In fact, we
observe that evaluating Chebyshev polynomials (on matrices) is really efficient for sparse matrices.

SPRING 2011 5/17

LTS2 - EPFL 2 REGRESSION ON GRAPHS

Perfect graph Noisy graph

Filtered graph
-5 0 5

Figure 2: First, we see the perfect label with the edges. Secondly, we see the labels contaminated
by a white Gaussian noise (o = 1). Thirdly, we see the prox of the noisy graph (8 = o). The mean
square error decreases by a factor of 5 (from 1.009 to 0.1951).

2.2 Ridge Regression

We have used Chebyshev polynomials for a general regression problem and for a classification
problem. We can also use them for the Ridge Regression. This last problem is a very efficient way
to compute a general solution with a training set of data. It’s is well presented in [5] and in [6].

2.2.1 Presentation of ridge regression

Suppose we have a training set (of size [) with feature vectors x1,xs,...,x; and labels Y =

(y1, Y2 .-, y1). We would like to be able to look for the solution in m different points z%, x3, ..., z2,.

Lets define the unknown labels as: Y° = (37,43, ..., 45,). The problem consists in finding a function:

Y = fa(z1,y1, 22,92, s 21, Y1, 2°) (26)
which minimizes the functional:

m

R(A) = E(Z(yf - fA(xlvythayQ, ...,ZL’l,yl,.’Ef))Q) (27)
i=1

To find the result we are going to transform the last problem into a linear formulation. For this

we use a set of n basis functions ¢;(z), ¢2(z), ..., dn(z) and we suppose that f(x) can be written
like f(z) = > i, a;¢i(x). The new problem can be written like:

min (I = Kall? +al?) (28)

SPRING 2011 6/17

LTS2 - EPFL

2 REGRESSION ON GRAPHS

Original graph

Deteriored graph
e o re
TR Tt ..
ol .
oy .] .
LR T L SPY APR -
Joss Ral - e g0
1340, 2o s ke W
Bewa Wooe'r . 1.0
N A L B
4y Setdes I e e
ST gy
P k. Y i 0%% o
o . ese LiCee
o g 8% o290t s
852 le f:‘%ﬁ;&
T T s ety %
H LS B ey
::‘o 0L L4 “.‘““?}?ﬂ“‘
EL AL
o o v UK "o
R R A At L ot 30
1 -0.5 0 0.5 1
Reconstructed graph
o o ee o
AR R .8
=% ot . i .
23 Y EE] .
‘.J’t- A L b ot w oot Evolution of the mean sguare etrar
Tos e osthg’ - Y e .
o seL B o0 AT (8] 04 : - : . .
L %} [T
LA T DL
E _IRd oo g H t'-
o apehy, G0N0 g gl *
ooy elBees B ontee 0.35]
.9 .
:’sk.ﬂ-‘"h 18e,d .
R tH e 03 g
., J »
53\‘“ i .
:
o o ¥ o 025k 1
LasTiM iy
EOCRA] X e L3 -
o2 27 TP PRV L Vbl [
01§ g
M
01 M
H x
0.05 <
1 -0.5 0 05 1 R XK KKK KKK KK XK X XK XXX X RN X KKK XX XXX KK
5
] 5 10 15 20

23 30 35 40 45

a0
iterations

Figure 3: To begin, we see the original graph. Then, we see the known labels (the unknown ones

are set to zero (green)). At the end, we see the reconstruction of the graph with 5 =4 and p = 0.5.
The fourth graph show the evolution of the mean square error through iterations.

Remark: We observe that the prior is different than in the first problem. Here the prior is ||a/||?

Y° = K° (29)
with
K; ;= ¢;(x;), 1=1,..,1, i=1,.,n (30)
K7 = ¢i(x7), i=1,...,m, j=1,.,n

Taking the zero of the Gateau derivative of (28), we obtain:

a=(K'K +~+I)"'K'Y

This « should not be mixed up with the second part o parameters
Y =K =K*(K'K +~I)'K'Y

SPRING 2011

LTS2 - EPFL 2 REGRESSION ON GRAPHS

Evolution of the error for u=1 Evolution of the error for u=1
0.7 T T T T T T T T T 0.8

———p=32 o7r ———p=32 ||

06f, \

Relativ error
Relativ error

15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Iterations Iterations

Figure 4: First, the error evolution of the original algorithm given at point 2.1.5. Secondly, we
observe the same graph, but for the optimized algorithm (we do not modify the know labels).

2.2.2 Using Ridge Regression

We are going to use Ridge Regression in a particular case which is the most common. Lets
define:
== wi||2)

202

With this basis function the K matrix becomes square (n = [). It is the same as the matrix A
defined by (48). It’s as if we create a graph with K Adjacency matrix of the labelled vertices and
K* Adjacency matrix between labelled and non labelled vertices. This means, we can solve graph
problems with Ridge regression using the equality:

K K°
A= (Kot Koo) (35)
with K°°(i, j) = ¢%(x7), i1=1,...,m, ji=1,..,m
Because of the presence of K°, it does not seem possible to implement (33) as a one shot filter.

Although it’s possible to find a with one shot filtering the label Y. In this case, we have to use the
filter:

¢; = exp(i=1,..1 (34)

x
x? 4+

In that case and like before, the Chebyshev polynomial will be really useful. We just need to
chose K as basis and with the same method as before, we can evaluate (33) without inverting in
matrix KK + 1.

In that case, there is no obvious recursive algorithm. But, if we chose K'K as basis, we can
invert the matrix K*K +~I with the same recursive algorithm as we will use for classification (see
section 3) . In that case we have to filter K'Y (not Y') with:

ha(z) = (36)

M) = - i - (37)

This basis can be really useful because it’s not possible to use K if this matrix is not symetric
positive definite. This last filtering job can also be done with Chebyshev polynomials. Thus, we
are going to compare the two filters, the recursive algorithm we used for classification and the well
known recursive algorithms of the minimal residue and of Jacobi.

2.2.3 Datasets

We have made the test on 3 different regression datasets.

SPRING 2011 8/17

LTS2 - EPFL 2 REGRESSION ON GRAPHS

’ Name Description \ Feature \ Instances ‘
Boston housing Estimate the price of the house 13 506
Kin-32th Predict the movement of robot arm 32 8192
Wine quality Evaluating the quality of a wine 11 4898

As the results are similar, we are not going to present all 3 datasets. We will concentrate on
Boston housing.

2.2.4 Constructing the K matrix

In order to construct the K matrix, we use the function given by equation 34. In this last one,
the parameters o play a really important role. If it is small, the value of K will be nearly 0 except
for the diagonal. On the other hand, if it is big, the value of K, will be near to 1.

This is in fact really important because it will directly affect the biggest eigenvalue of K. It
has been demonstrated that for a symetric positive definite matrix A of size (r x r), its biggest
eigenvalue satisfies [7]:

Zi,j Qi j

r

>\7na;c Z (38)

This means, that with a big sigma, the biggest eigenvalue of K will also be big. This has two
main consequences.

First, recursive algorithm of Jacobi will diverge if the highest eigenvalue of the matrix to invert
is bigger than one. Using the relation (38), it is trivial that the largest eigenvalue of K'K + I
is always superior to 1 if v > 0. Thus this algorithm will diverge as shown on figure 5. With the
same thinking, it’s easy to understand that the recursive algorithm we used for classification will
probably not work. Indeed, the basis K!K will probably have a bigger eigenvalue than v. Then
’\"jfi > 1 and the algorithm will diverge (see (47) with % =a).

Secondly, the higher eigenvalue also has an influence on the order of the Chebyshev polynomial
approximation needed to converge to a certain tolerance. In order to be able to approximate the
filter with a low order Chebyshev polynomial, we need a small maximum eigenvalue. I will not
prove it, but I will just show that the bound of the truncation error is growing if A4, is increasing.

The truncation error of the Chebyshev polynomial approximation of the function f(z) when
r=[-1,22,23,....,0_1,1] is’:

(n+1)(, (n+1) (¢
Rl = 1Pale) — o)) < gy < 2« L (0@ (39

where Q(z) = (z+ 1) - (z —x2) - (x —z3) .. - (T —2p—1) - (x — 1)
If we transform the interval of interpolation from [—1, 1] to [0, Aaz], we find 2 = %A—i— ’\mT“
we can reformulate the last equation like so:

If(n+1)(c)| 2/\maﬂcn+1

ST OO0 € oy s () @0)

[Rn(N)| = [Pa(X) — F(N)] < = A (£ 1) A€[0,Amas]

We observe that function Q is not bounded to 1 anymore this means the error can grow a lot. This
is not a demonstration, but an explanation of the result obtained.

2.2.5 Comparison of methods

We are going to compare the recursive method and the Chebyshev approximation. Thus, we
have to define a criterion. We chose the communication cost [2]. Let’s imagine you do not have
a central computer, but a multiple of sensors with small computation units. In this case, you can
compute the solution locally. At each vertex, we can find the solution by asking the neighbourhood’s
values. We define the communication cost as the number of messages exchanged in the graph.

1. This formula and the next one is taken from the website:
http://math.fullerton.edu/mathews/n2003/chebyshevpolymod.html

SPRING 2011 9/17

LTS2 - EPFL 2 REGRESSION ON GRAPHS

If you have to multiply a vector (containing all the vertex) by £ you will need 2|L| exchange of
messages (where 2|L| is equal to the number of elements of £). After detail computation, we find
that the communication cost of the M iteration of the recurrence is the same as M order Chebyshev
approximation: 2 - M - |L].

Because of this result, we are going to plot the error versus the number of iteration or the order
of Chebyshev approximation (same axis).

2.2.6 Result

Looking to figure 5 and 6, we can make some observations that convince us of all the previous
theory. First, we observe that the recursive algorithms are diverging (except minimal residue)
because Anmqq iS too big. Second the filter h(z) is less good than hy(z) because the maximum
eigenvalue of K*K is bigger than the one of K.

One important result is that the filter ho(x) seems to give better results than the minimal
residue algorithm.

If we change parameters we find that Chebyshev polynomial approximation can be less good
than the minimal residue algorithm if A4, is really big. However, in that case, the matrix K has a
lot of big values (equation 38) and could not be sparsified. Thus there is no big use in implementing
it distributively.

Relative mean square error Relative mean square error

—+— Chehyshef approximatian filter 1/(=+) —— Chehyshef appraximation filter 1/¢=+y)
< Chebyshef approximation ﬂlterx;’(x2+'y) < Chebyshef approximation ﬁlterxf(xzw)
10 —*— Recursive algorithm H —*— Recursive algorithm

—5— Jacobi recursive algorithm 10 —5— Jacohi recursive algorithm

Minimal residue recursive algorithm Minimal residue recursive algarithm

Relative mean sguare error
Relative mean square error
=
|

L . L . . L . L L . L .
o 2 4 B g 10 1z 14 16 18 20 4 4 B g 10 1z 14 16 13 20
Iteration / arder of chebyshef Iteration / order of chebyshef

Figure 5: Comparison of the different methods to solve the problem and get . The parameters
are: v = 2.405, ¢ = 2. The highest eigenvalue of K is 110 and of K'K is 12'167. The plot on the
right is only a close-up of the main plot (left). Recursive algorithms (in red) are diverging.

2.2.7 Consequence of sparsification

In order to solve a problem distributively, we do not only care about the order of the Chebyshev
polynomial approximation. To get a low communication cost, we would like to sparsify the K matrix
as much as possible with the lowest induced error. In this work, we have first observed the result
of sparsifying the matrix K on «. Then, we have calculated the induced error on Y°. In fact
sparsifying the matrix K put a limit to the precision of the calculated «. This leads to a point that
even if, we increase the order of the Chebyshev polynomial, we do not reduce the error (figure 7
left).

On figure 7 (right), we observe the impact of the alpha error on the desired result Y°. We tried
a different threshold to sparsify the matrix K and for each of them, we have calculated the induced
error on Y° and the percent of zeros in the matrix K. We observe that the error on alpha is first
helping the solution to get to accuracy (negative induced error). But, when K is more sparse, the
induced error on Y* grows in same shape than the error on «. In fact it grows faster and a relative
error on « induced approximatively two times more error on Y°.

SPRING 2011 10/17

LTS2 - EPFL 3 CLASSIFICATION

o Relative mean square errar

”‘-L\%\Li j —*— Chehyshef approximation filter 1/(x+y)

-1] —= Chebyshel approximation ﬂllerxf(x2+'y)

Minimal residue recursive algorithm

Relative mean square errar

10 L L L L L L L
o z 4 [i} 10 12 14 18 18 20

lteration / order of chehyshefl

Figure 6: Comparison of the different methods to solve the problem and get . The parameters
are: v = 2.405, 0 = 1. The highest eigenvalue of K is 27 and of K'K is 741. The K matrix has
been sparsiefied with a threshold of 0.01 and had 46% of non zero values.

This last figure (7 right), varies a lot from one experience to another. Unfortunately, it’s
not really possible to make an average because we do not chose the values on the abscissa. On
other experiments, the shape is quite the same, but the error can be different (bigger or smaller).
Sometimes, the sparsification always gives positive induced error.

Errar of sparsification on e Error induced by sparsification an ¥
0.045

—— HNon sparse K " Error on the chebyshef approximation of e
—_—e 0.04 R «
Sparse K:55% Induced etror on the salution ¥

Relativ mse error
=
T

Relativ mse error
=
=
~

10 L L L L 0,005 L L L L
10 13 20 23 30 13 20 23 30 35 40 43

Qrder of polynomial approximation Percent of null element of K.

=)
o

Figure 7: Comparison of the different methods to solve the problem and get «. The parameters
are: v = 2.405, 0 = 2. On the left we see the effect of the sparsification over iterations on a. On
the right we see the induced error by sparsification.

3 Classification

Until now, we have solved regression problems although some applications need a discrete
solution. For instance, imagine that we would like to determine what the written number on an
image is. We have already labelled some samples and the goal is to determine all the others. This
problem can be solved with graph reconstruction techniques. First we create the graph. For this,
we assign the distance between two images to the edge connecting the corresponding two vertices.
(In order to get a sparse edge matrix we can add some other conditions like a minimum threshold
or maximum number of elements per line). If we formulate the problem like this, it becomes
equivalent to classifying elements into different classes. To solve this type of problem, we can just

SPRING 2011 11/17

LTS2 - EPFL 3 CLASSIFICATION

classify the solution of a regression problem. Unfortunately, this technique gives bad results when
the number of classes is greater than two.

In order to avoid reclassification trouble, we can directly consider the discrete problem. We
have to reformulate it a little, but in the end, it would still be possible to use our Chebyshev
approximation trick (shown in part 2.1.4).

The algorithm and his solution are shown in [1] and [3]

3.1 A new formulation of the problem

We have a set of n points X = {x1, 9, ..., 2, } which can take ¢ (1,2, ...,c) different labels. We
only know some of them.
Let’s define a matrix B of sizen x ¢. B;; = 1if ; = j and B; ; = 0 otherwise. Moreover,
B; ; = 0 if the label of z; is unknown.
If we solve:
: 2 2
Jmin (1B~ FI? + 4| VF|?) (1)

The solution of our classification problem is given by y; = j with j satisfying max,<. F; ;

3.2 Another edge derivative

In the previous problem, we considered the edge derivative as being %(U) =/ L(u,v)(f(u) —

f(v)). In fact, it’s not the only way to define this derivative. Other ways would just lead to other
Fourier Graph Transform definitions. Let’s look at an example to make it clear.
We can define the edge derivative like this:

080) _ S 1)

AN 42
e, Va Vi ()
Let’s calculate the norm of the gradient of f. We have:
1 0f(v)\2 1.1
”Vf||2:§ZZ(ge()) =f'D 2D 2f=fTL,f (43)

The last equation shows that for our new definition of the edge derivative, we need to consider
the normalized laplacian. As a result, the graph Fourier transform will be computed with the
eigenvector of the normalized laplacian. We see that taking another edge derivative definition
simply leads to another basis.

Remark: Later we are going to consider two more definitions of laplacian: D~'£ and £T D~
There are a lot of others (K-scaling, L-scaling, inverse cosine, ...).

3.2.1 The different basis we tested

L is the usual definition of the laplacian, D is the diagonal of £ and I the identity matrix.

’ Laplacian \ Recurrence matrix \ Name given to the method
L I1-L Unnormalized Laplacian
L,=D9%.£.D% | §=T—-L, Normalized Laplacian
Loo=D"1.L P=1—-L,9 Label propagation with P
Los=L-DT Pl =1—-L,3 Label propagation with P?

The recurrence matrix is the one used to solve the problem iteratively with (46) (In that
equation the recurrence matrix is given by S).

Remark: When we solve a problem, we don’t really care about the edge derivative. In fact, we
just need the definition of the laplacian (or the kernel) that will impose the graph Fourier transform.
We cannot take a random matrix in order to get a valid basis. We need the eigenvectors all to be
linearly independent from each other. Thus, we will take only positive definite matrices as bases.

SPRING 2011 12/17

LTS2 - EPFL 3 CLASSIFICATION

3.3 Solution of the discrete problem
The solution of (41) is:

F=(ul,+1)"" B (44)

We can reformulate it with a matrix: S = I —£,, and two new variables: o = ﬁ and 5 = ﬁ:

F=3-(I-aS)™'-B (45)
This formulation can be found in literature because it suggests an iterative algorithm. We will
adopt the new formulation in order to compare our results easily. The iterative algorithm is:
Fk+1)=aSF(k)+(1—-a)B (46)
The obtained solution after t iteration is:

Ft)=(aS) 'B+(1-a) i(aS)iB (47)

=0

—

Providing @ Apaz < 1 (where A4, is the maximal eigenvalue of S),the solution of this recursion
is correct to a factor 7 f —. We do not really care about this factor, as we need to take the maximum
of each line.

Thus, we have two ways of solving the problem. Either we iterate the recurrence, or we
approximate the filter function with Chebyshev polynomials.

Remark: Because we take the maximum to recover the label, this problem becomes highly non
linear. In fact, we just do the filtering for each class and then, for each vertex, we watch which
class contaminated it the most. With this method, the class with the biggest amount of labelled
vertex will have an advantage because it also has the most energy. We can abolish this privilege
by dividing each column of F by the number of labelled elements of each class after the filtering.
The result will be slightly improved. Let’s call this last method: "optimized classification" and
the original one "original classification".

3.4 USPS dataset

This dataset is composed by hand-written numbers (16 x 16 pixels black and white images).
Our goal is to be able to assign a number to each image. We only work on four numbers (1 to 4).
First we are going to create a graph by taking into account the distance between all the images.
The inverse distance function we have used is (z is the vector of features, for USPS, it’s made of
all the pixel values):

Ti; — T4
A;j = exp(— ”T‘QJH) (48)

Thus the obtained matrix (A) will be symetric and positive definite. This implies that the chosen
basis, £,£,,S,P,Pt are also symetric positive definite.

In order to get a sparse graph, we set all edges smaller than a threshold T to zero(We can
also consider the k closer neighbour exclusively). This is, of course, not the best way to create
the graph, however our goal is not to obtain the best result possible, but to compare two different
methods.

3.4.1 Results: the big non linearity

On the USPS dataset, the algorithm gives the best result with a very small «, but non zero
(between 0.001 and 0.1)(see figure 8). This means a very small y and a very small contribution of
the prior. We hardly filter the signal. In that case, the convergence is also really fast: We nearly
converge with the first order approximation. With a big «, close to 1 (=> big u), the algorithm
converges to a solution which is not the right one at all. Moreover, it takes more iteration to reach
the convergence.

SPRING 2011 13/17

LTS2 - EPFL 3 CLASSIFICATION

Evolution of the error, alpha=0.05 Evolution of the error, alpha=0.8
1 T T T T T T 1 T T T T T T
=— Normalised Laplacian - Chebyshef <— Normalised Laplacian - Chebyshef
09 Normalised Laplacian - Recursive 09 “~ Normalised Laplacian - Recursive
—&— Label propagation with P - Chebyshef —<— Label propagation with P - Chebyshef
sl —— Label propagation with P - Recursive | | ol —— Label propagation with P - Recursive ||
Label propagation with P' - hebyshef Label propagation with P' - Ghebyshef
o7t Label propagation with P' - Recursive | | ol Label propagation with P' - Recursive ||
_ 06 B _o6F i) ~ ~ 4
s 8 - > 7 -
5 5
2os5r q 2 o5 B
B S
3]
o «
04 7 7
03 1 1
02) i) 7 7
01f 4
0 o
2 4 6 8 10 12 14 2 4 6 8 10 12 14
M {Gheb order or number of iterations) M (Gheb order or number of iterations)
Evolution of the error, alpha=0.05 Evolution of the error, alpha=0.8
1 T T T T T T 1 T T T T T T
<— Normalised Laplacian - Chebyshef —— Normalised Laplacian - Chebyshet
ool Normalised Laplacian - Recursive ool “ Normalised Laplacian - Recursive
—&— Label propagation with P - Chebyshef —<— Label propagation with P - Chebyshef
o5l —— Label propagation with P - Recursive | | ol —— Label propagation with P - Recursive ||
Label propagation with P' - Ghebyshef Label propagation with P* - Ghebyshef
o7t Label propagation with P' - Recursive || o7h Label propagation with P' - Recursive ||
06 7 06 7
5 5
E E
5 5
= 050 4 > 050 4
3 B
& &
04t 4 o0 a9 & 4
03[1 1
02 - - N - N - N - - - 1 7
o1 1 1

o L L L L L L L ° L L L L L L L
2 4 6 8 10 12 14 2 4 6 8 10 12 14

M (Cheb order or number of terations) M (Gheb order or number of iterations)

Figure 8: Result obtained for the USPS datasets:
- First plot: original classification with «=0.05

- Second plot: original classification with a«=0.8

- Third plot: optimized classification with a=0.05
- Fourth plot: optimized classification with a=0.8

This strange result is due to our dataset (in order to get a connected graph, we need to keep
to edges) and to the non linearity of our algorithm. In order to get the correct class, we look
(line by line) for the column with the maximum value. Considering this, we understand why we
do not need to filter a lot of the data. In fact, the algorithm with a small o will give a solution
very similar to the "closest neighbourhood algorithm" (look for the closest labelled neighbour and
adopt its label).

On figure 8, we also see that the "optimized classification" algorithm gives slightly better results
than the original one.

It seems that our Chebyshev algorithm is better for a big «. But, the algorithm converges to
a bad solution. For a small «, Chebyshev or the recursiv algorithm converges directly after one
iteration to a good solution. As a result, we cannot really say that one of those two methods is
better.

3.5 Minessota dataset

We know that our results depend highly on the chosen dataset. Thus we have tested our
method to another dataset. We create a fake problem with the graph of the road of Minessota.
The problem consists in classifying all the labels in 5 different classes with only 5 percent of known
labels. To create the problem, we just add the sign function of the 4** and the 8" eigenvector of

SPRING 2011 14/17

LTS2 - EPFL

3 CLASSIFICATION

the Laplacian matrix. The result is shown on figure 9

Original

graph

Reconstructed graph

H
3
Y
Yo oogs
.‘,'&.- I

£.%%0e8 s 3.8.0

*edd soe « [e

Figure 9: The first graph shows the label of the graph. The second is a reconstructed graph with
a = 0.1 for 5 percent of known labels

In this problem, the graph is far more sparse than in the USPS. As a result it takes more
iteration (or bigger order of the Chebychev approximation) to converge the solution. The role of «
seems to be different (see figure 10). The results are slightly better for a bigger « (near one). We
also remark that the choice of the basis has hardly any influence on the solution. This was really
different for the USPS dataset.

Evolution of the error alpha=0.05

°
©

o
®

° o
> 2

Relativ error
°
o

> Normalised Laplacian - Chebyshef
—— Normalised Laplacian - Rectrrsive
~—&— Label propagation with P - Chebyshef
Label propagation with P - Recursive
Label propagation with P' - Chebyshef

Label propagation with P' - Recursive

04l \ 1
03 S 1
o2f T 1
o1r 1
o

2 4 6 8 10 12 14

M (Cheb order or number of iterations)

Figure 10: Result obtained for the Minessota dataset:
- First plot: original classification with a=0.05
- Second plot: original classification with a=0.95

Relativ error

06"

°
@

0.4

Evolution of the error alpha=0.95

> Normalised Laplacian - Chebyshef
—— Normalised Laplacian - Recursive
—&— Label propagation with P - Chebyshef
—— Label propagation with P - Recursive
Label propagation with P* - Chebyshef

Label propagation with P* - Rectirsive

W (Cheb order or number of iterations)

SPRING 2011

15/17

LTS2 - EPFL 3 CLASSIFICATION

3.6 Other datasets

We have also tested 3 other classical datasets.

’ Name \ Description Feature Instances \ Categories
Iris Classification of flowers 4 150 3
Letter Recognition Recognition of English capital 17 20000 26
letters
Prediction of the survival of
Haberman’s Survival | patients who had undergone | 3 306 2
surgery for breast cancer

All the features of these datasets have been normalized to a zero mean and unity variance.
To create the graph we have used the basis function as for USPS (see (48)). As we would like to
minimize the communication cost, we need a sparse graph. For this we can play on two different
parameters: o the variance of the inverse distance function given by (48) and T the threshold
above which we set an edge to zero.

3.6.1 Results
We are not going to present all the result in details. Instead we will just give the principal

conclusions. We made the test for different basis’, values of «, o, and thresholds.

Evolution of the error alpha=0.85
1 T T

T T T
—&— Normalised Laplacian - Chebyshef
—+<— Normalised Laplacian - Recursive i
——&— Label propagation with P - Chebyshef
—— Label propagation with P - Recursive
0.8 Label propagation with P! - Chebyshef]
Label propagation with P!- Recursive
0.7+ 1

09+

06 B

Relativ error
(=]
o
T
Il

041 B

1 1 1
6 8 10 12 14
M (Cheb order or number of iterations)

N
g

Figure 11: Result obtained for the iris dataset with ¢ = 0.5 and 7" = 0.02. Out of 150 samples,
25% are labelled. The resulting basis is made of 26% of non zero elements (approximatively 37
connection per vertex). P is close to singularity.

Sparsity: The sparsification does not really make the error of classification grow (some per-
cent). For the letter recognition, the sparsification is even good as it improves the percent of good
classification. This suggests that classification problems can be solved distributively with a low
communication cost.

Recursive algorithm VS Chebyshev polynomials The basis P can be close to singularity
when we try to spasify it. This is a problem for the recursive algorithms. In fact they converge to

SPRING 2011 16/17

LTS2 - EPFL REFERENCES

a point, but it’s not the right one. The Chebyshev polynomial approximation is far more stable
and doesn’t suffer from this (See figure 11).

Conclusion: Because of its stability, the Chebyshev polynomial approximation seems to be
better than the recursive algorithm.

4 Conclusion

In this work we have studied Chebyshev polynomial approximation in two different cases:
regression and classification. The first problem was really general and our method allows us
to reconstruct a transformed signal providing the self-adjoined matrix of the transformation is
defined. In that case, a graph regression problem, we have seen that Chebyshev allows us to solve
the problem quickly.

Then we have worked on ridge regression. We mented on different datasets. We studied
in more detail the convergence of Chebyshev approximation. We find that for sparse matrices,
Chebyshev converges faster than traditional recursive algorithms. We also calculated the impact
of sparsification on the answer.

In the second times, we care about classification. We have studied different datasets and basis’.
We have observed that Chebyshev has the same communication cost as the recursive algorithm.
But it’s more stable and it always converges to the right solution, unlike to the recursive algorithm,
which needs a basis with good properties.

The main conclusion of this work is that Chebyshev polynomial approximation is really efficient
and stable for sparse matrices. As a consequence, it’s well adapted for graph signals with a few
edges. We have also observed that it’s possible to create sparse graphs based on data without
depleting the solution too much. Thus, we have a very stable way to implement a regression or a
classification problem distibutively.

References

[1] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf, “Learning with local and global
consistency,” in Adv. Neural Inf. Process. Syst., S. Thrun, L. Saul, and B. Schélkopf, Eds. MIT
Press, 2004, pp. 321-328.

[2] D. L. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev polynomial approximation for
distributed signal processing,” CoRR, vol. abs/1105.1891, 2011.

[3] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph
theory,” Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129-150, Mar. 2011.

[4] P. L. Combettes and J.-C. Pesquet, “Proximal Splitting Methods in Signal Processing,” ArXiv
e-prints, Dec. 2009.

[5] O. Chapelle, V. Vapnik, and J. Weston, “Transductive inference for estimating values of func-
tions,” Advances in Neural Information Processing Systems, vol. 12, pp. 421-427, 1999.

[6] C. Cortes and M. Mohri, “On transductive regression,” Advances in Neural Information Pro-
cessing Systems 19, vol. 19, pp. 305-312, 2007.

[7] R. Panigrahy, K. Talwar, and U. Wieder, “Lower bounds on near neighbor search via metric
expansion,” CoRR, vol. abs/1005.0418, 2010.

[8] A.J.Smola and R. Kondor, “Kernels and regularization on graphs,” in Proc. Ann. Conf. Comp.
Learn. Theory, ser. Lect. Notes Comp. Sci., B. Schélkopf and M. Warmuth, Eds. Springer,
2003, pp. 144-158.

SPRING 2011 17/17

	Introduction
	Some theorical definition about graph
	Graph Fourier Transform

	Some theorical definition about Chebyshev polynomial approximation

	Regression on graphs
	One first general problem
	Splitting the problem
	Gradient of 86422285 b-Ax 86422285 2
	Proximity operator for 86422285 x 86422285 2
	A shortcut through the Fourier graph transform and Chebyshev's polynomial approximation
	Final algorithm
	Implementation
	Conclusion of the first regression problem

	Ridge Regression
	Presentation of ridge regression
	Using Ridge Regression
	Datasets
	Constructing the K matrix
	Comparison of methods
	Result
	Consequence of sparsification

	Classification
	A new formulation of the problem
	Another edge derivative
	The different basis we tested

	Solution of the discrete problem
	USPS dataset
	Results: the big non linearity

	Minessota dataset
	Other datasets
	Results

	Conclusion
	References

