Proactive Instruction Fetch

Michael Ferdman! 2, Cansu Kaynakz, and Babak Falsafi?
{michael.ferdman, cansu.kaynak, babak.falsafi}@epfl.ch
1Computer Architecture Lab (CALCM), Carnegie Mellon University, Pittsburgh, PA, USA
ZParallel Systems Architecture Lab (PARSA), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

ABSTRACT

Fast access requirements preclude building L1 instruction caches
large enough to capture the working set of server workloads.
Efforts exist to mitigate limited L1 instruction cache capacity by
relying on the stability and repetitiveness of the instruction stream
to predict and prefetch future instruction blocks prior to their use.
However, dynamic variation in cache miss sequences prevents
correct and timely prediction, leaving many instruction-fetch stalls
exposed, resulting in a key performance bottleneck for servers.

We observe that, while the vast majority of application instruction
references are amenable to prediction, even minor control-flow
variations are amplified by microarchitectural components,
resulting in a major source of instability and randomness that sig-
nificantly limit prefetcher utility. Control-flow variation disturbs
the L1 instruction cache replacement order and branch predictor
state, causing the L1 instruction cache to randomly filter the
instruction stream while the branch predictor and spontaneous
hardware interrupts inject the stream with unpredictable noise.
Based on this observation, we show that an instruction prefetcher,
previously plagued by microarchitectural instability, becomes
nearly perfect when modified to operate on the correct-path, retire-
order instruction stream. We propose Proactive Instruction Fetch,
an instruction prefetch mechanism that achieves higher than
99.5% instruction-cache hit rate, improving server throughput by
27% and nearly matching the performance of a perfect L1 instruc-
tion cache that never misses.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles — cache memories.

General Terms
Design, Performance

Keywords

instruction streaming, prefetching, caching, branch prediction

1 INTRODUCTION

Although aggregate on-chip cache capacity grows with each tech-
nology generation, fast access requirements prohibit building L1
instruction caches large enough to accommodate the working sets
of server workloads [10, 14, 27]. Data-dependent branches, shared

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MICRO’11, December 3-7, 2011, Porto Alegre, Brazil

Copyright © 2011 ACM 978-1-4503-1053-6/11/12... $10.00

library and operating system calls, and hardware interrupts cause
control transfers across multi-megabyte binaries, leading to high
L1 instruction-cache miss rates that account for over 40% of the
execution time [10, 27], emerging as one of the dominant perfor-
mance bottlenecks in server systems [1, 9, 10, 13, 14, 27, 29].

To bridge the gap between inadequate L1 instruction cache
capacity and the need for low-latency access to instructions,
researchers have proposed mechanisms that predict the future
execution path and prefetch instruction blocks along the predicted
path. The next-line instruction prefetchers [12, 25] effectively
mitigate the latency of L1 instruction-cache misses of spatially
contiguous blocks [14]. Correlating prefetchers predict discontin-
uous instruction-cache misses by allowing the branch predictor to
run ahead of instruction fetch [5, 22, 28, 31] or by maintaining a
separate record of the previously observed discontinuities and
predicting their repetition [6, 27].

Although effective at reducing the L1 instruction-cache miss rate,
existing prefetchers fall short of an ideal L1 cache. Prefetchers
rely on the stability and repetitiveness of the instruction reference
stream to learn the access sequence and predict when the same
sequence will repeat. However, when faced with instability and
uncertainty, the ability to learn and correctly predict diminishes;
prediction is severely hampered when previously observed
accesses disappear or when previously unseen accesses emerge in
the middle of the learned sequences.

We observe that, while the vast majority of the application instruc-
tion sequences are extremely repetitive, microarchitectural
components (L1 instruction cache, branch predictor, and interrupt
handling) are responsible for the instability and lack of repetition
in the instruction miss stream. Even small changes in control flow
affect the cache replacement order, resulting in different miss
sequences for precisely the same sequences of instruction fetches.
Furthermore, data dependencies cause branch mispredictions,
injecting an arbitrary number of wrong-path instructions, deter-
mined by the data-dependent delays of resolving mispredictions.
In turn, wrong-path cache accesses and hardware interrupts further
amplify the instability that the cache introduces. We find that
much of the ineffectiveness of prior techniques is due to vainly
attempting to predict an instruction sequence that is artificially
fragmented, filtered, and inflated. Moreover, this observation
explains why prior work could not achieve the expected speedups
observed in trace studies [6, 27].

In this work, we propose Proactive Instruction Fetch (PIF), an
instruction prefetcher that avoids the instability and randomness of
the instruction sequence introduced by the microarchitecture. We
use the correct-path, retire-order instruction sequence and
processor trap levels to record the exact instruction-fetch
sequence, unaffected by the filtering and wrong-path injection
effects of the cache, branch predictor, or hardware interrupts.

When a previously recorded address recurs, we simply prefetch
the upcoming requests by replaying the recorded sequence starting
at the most recent location of the recurring address in the recorded
sequence. Eliminating the microarchitectural randomness and
noise exposed to the prefetcher enables high prediction coverage
and accuracy.

We evaluate the stability and predictability of the instruction-fetch
sequences collected at various locations of the processor. Drawing
on the observed properties of the sequences, we propose a
prefetcher implementation that eliminates most instruction-fetch
stalls. Using full-system simulation of a large-scale, next-genera-
tion CMP running unmodified commercial server software and
industry-standard benchmarks, we demonstrate:

* Microarchitectural effects on instruction history. We ob-
serve that the instruction cache, the branch predictor, and
spontaneous interrupts hurt the effectiveness of prior techniques
by recording non-repetitive instruction history.

* Near-perfect repetitive instruction streams. We find that the
history of retired instructions provides a nearly ideal repetitive
instruction stream, enabling over 99.5% prediction coverage of
the instruction-fetch accesses.

+ Compaction of accesses to reduce history storage. We find
that considerable history storage compaction is possible
through recording spatially-correlated and temporally-corre-
lated groups of accesses rather than individual references.

* Benefits of Proactive Instruction Fetch. We propose hardware
to leverage the repetitiveness of compacted retire-order instruc-
tion streams to predict future instruction accesses. Our
technique eliminates nearly all instruction-fetch stalls, converg-
ing to the performance of a perfect L1 instruction cache.

The rest of this paper is organized as follows. We explore the alter-
natives for collecting the instruction streams suitable for accurate
prediction of the instruction-fetch sequence in Section 2. We
present a brief evaluation of the key properties motivating the
Proactive Instruction Fetch design in Section 3 and describe the
hardware design in Section 4. In Section 5, we present a sensitivity
analysis of the key design parameters and compare our design to
prior work. We discuss prominent prior work in Section 6 and
conclude in Section 7.

2 MICROARCHITECTURAL EFFECTS
ON INSTRUCTION STREAMS

Instruction-fetch stalls are a known critical bottleneck for server
workloads [10, 27]. Prefetching the instruction blocks into the
instruction cache prior to a core’s request can avoid stalling the
processor, mitigating the bottleneck. Existing instruction prefetch-
ers leverage the regularity and repetitiveness of the instruction
cache reference stream to predict future instruction cache requests.
However, we find that microarchitectural components such as the
instruction cache, the branch predictor, and hardware interrupt
handling limit an instruction prefetcher’s ability to correctly
predict future accesses.

Instruction caches have no mechanism to ensure that blocks that
are accessed together either all remain in the cache or are all
evicted from the cache. The replacement policy operates at block
granularity, treating each block independently and selecting victim
blocks without regard to their content or relationship to the other

cached blocks. The selection of victim instruction blocks changes
dynamically throughout program execution, arbitrarily filtering
and fragmenting the cache miss stream as compared to the more
regular and repetitive stream of instruction fetches.

The branch predictor speculatively forges ahead of the known
control flow, mispredicting the instruction path when unstable
data-dependent branches are encountered. While a reorder buffer
can tolerate branch mispredictions that are quickly resolved,
wrong-path instruction references are arbitrarily injected into the
instruction reference stream, appearing both as instruction
accesses and as instruction-cache misses, damaging the regularity
and repetitiveness of the observed instruction stream and
precluding prediction by mechanisms that rely on stable history.

We explore the microarchitectural side effects on the instruction
streams in detail and find that retire-order instruction streams
exhibit near-perfect repetitiveness compared to both instruction-
cache access and cache-miss streams. Retire-order instruction
streams are not affected by the instruction-cache filtering nor by
the noise injected by the branch predictor. Retire-order streams
provide a clean instruction stream for effective and timely predic-
tion of future accesses, enabling an instruction prefetcher that can
eliminate nearly all of the instruction-fetch stalls.

2.1 Eliminating the Instruction Cache as a Filter
Despite being an effective mechanism for reducing the instruction-
fetch stalls, the instruction cache cannot remove all stalls because
the low latency requirements preclude caches large enough to
capture the entire—multi-megabyte [8]—instruction working sets
of server workloads. Moreover, by filtering and fragmenting the
instruction stream, the cache limits the effectiveness of instruction
prefetchers that rely on the stability of the reference stream.

Because program control flow is repetitive, the processor front-
end typically fetches the same sequence of instruction blocks in
the same order, resulting in temporal correlation among consecu-
tively accessed instruction blocks. Thus, recording and replaying
temporal instruction streams, sequences of instruction blocks that
appear together and in the same order during program execution,
was shown to be effective at correctly and accurately predicting
instruction-cache misses [6].

In the case of the LRU replacement policy, a block’s chance of
being present in the cache is determined by how frequently it is
referenced and how frequently the other blocks in the same set are
referenced. The instruction cache tracks all blocks independently,
ignoring the temporal correlation between consecutive accesses to
the instruction blocks.

In Figure 1 (left), we show an example of how the instruction
cache fragments access sequences and creates non-repetitive miss
sequences. For demonstration purposes, we use a four-block,
direct-mapped instruction cache. We assume an initially empty
cache and two unique access sequences: ABCD and RS. The first
time the ABCD access sequence arrives at time T;, the miss
sequence is exactly the same as the access sequence, because the
cache initially does not contain any of the accessed blocks. When
the RS access sequence arrives, R replaces 4 and S replaces C. By
time T,, 4 and C are evicted from the instruction cache, while
their temporally-correlated blocks B and D remain in the cache.
The second time the ABCD access sequence appears at time Ts,
the corresponding miss sequence, AC, is different from the access

?ggﬁ:ce: ABCD RS ABCD
T1 \ T2 T3

A R A

misses B B B

hits c s c

D D D

Miss \

sequence: ABCD RS AC

Function:

On misprediction, sequence in history:
A D

squashed wrong path

not predicted
On subsequent call:

references: A B
predictions: A

conditional branch

2R

O|lO|ld|w |V || >

mispredicted

Figure 1. Fragmentation of the instruction sequences by the instruction cache (left) and Branch predictor noise (right)

sequence, because the instruction cache still contains some of the
blocks in the access stream. As a result, the next time ABCD
occurs, an instruction prefetcher that follows the most-recently
recorded miss stream starting with 4 (stream AC), will prefetch C
but will not prefetch B and D. The instruction cache evicts the
blocks independently of the rest of their temporal access stream,
separating the temporally-correlated block addresses from each
other in the miss stream. Thus, the instruction cache fragments the
access streams, losing the correlation information between blocks.

Figure 2 shows the fraction of the correct-path instruction-cache
misses that can be predicted by recording the temporal instruction
streams at various places in the processor and replaying the most
recent stream when the first address of that stream recurs. For this
study, we use a cycle-accurate model of a 16-core out-of-order
CMP with 2-way 64KB L1 instruction caches. We trace the
instruction references for 50M cycles of cycle-accurate execution
of server workloads at a steady state (system and workload details
are listed in Section 5), presenting the results averaged across the
16 simulated cores. The processor behavior is undisturbed by the
experiment, as we only track the predictions that would be made,
but do not prefetch or perturb the cache state in any way.

In Figure 2, the left-most Miss bar shows the predictor coverage1
achieved by predicting the instruction-cache miss streams, while
the Access bar shows the instruction-cache miss coverage
achieved by predicting the cache accesses. The disparity in the
predictor coverage for the two streams highlighted by this experi-
ment arises directly from the randomized filtering and fragmenting
effects of the instruction cache, as all other aspects (including the
actual instruction stream) are exactly identical.

We find that losing the temporal correlation information of the
instruction access streams always results in less regular and less
repetitive streams, limiting the prediction capability of a
prefetcher. For example, the instruction-cache miss streams that
result from the same instruction reference stream lose the opportu-
nity to predict more than 20% of the correct-path instruction-cache
misses in the Web workloads.

1. Coverage is the fraction of the correct-path instruction cache
misses predicted through temporal correlation. In some cases,
wrong-path accesses may prefetch the correct-path instruction
blocks. We take this effect into account in our experiment; the cor-
rect-path accesses following wrong-path misses are counted as
cache hits and not included in our coverage computation.

Miss m Access M Retire m RetireSep

100% -

E
g
5 80%
S 60%
L c
S
23S 40%
o =
=2
S 20%
o
O

0%

Qry17 | Apache

Figure 2. Percentage of correctly predicted L1-I misses

2.2 Eliminating the Branch Predictor Noise

The instruction-cache access streams are made up of instruction-
block addresses generated by the processor front-end, including
both the correct-path and wrong-path references. However, wrong-
path accesses are unstable and change frequently between visits to
the same code. The dynamic behavior of the branch predictor
sometimes injects wrong-path accesses into the instruction stream
and sometimes does not. Moreover, because of the variance in the
pipeline behavior (due to data-cache misses, data-dependent laten-
cies, load/store dependencies, resource stalls, etc.), the latency to
detect a branch misprediction and squash the wrong-path instruc-
tions from the pipeline is unpredictable, resulting in an arbitrary
time spent exploring the wrong path and, therefore, an arbitrary
number of wrong-path accesses injected into the reference stream.

Figure 1 (right) illustrates how branch predictor noise is injected
into the instruction access sequence. The function in the example
spans multiple instruction blocks and has a conditional branch
instruction in block B which will cause the blocks R, S, and 7 to be
skipped if the branch is taken. In our example, the branch
predictor mispredicts and decides not to take the branch. The fetch
unit sends requests for the instruction blocks 4, B, R, and S before
the branch misprediction is resolved, and then continues with C
and D, after the instructions from the blocks R and S are squashed
in the pipeline. The recorded instruction access sequence now
contains the correct-path access sequence 4, B, C, D, interspersed
with noise (blocks R and S). The next time the same function
executes, the branch predictor is likely to correctly predict the
branch as taken. An instruction prefetcher that follows the previ-
ously recorded stream will send requests for 4, B, R, S. However,

100% A
m2 034 m58 09-16 m17-32

80% A

60% -

40% A
20% A
0% -

DB2 | Oracle [Qry2
OLTP DSS Web

References to Spatial Regions

Qry 17 | Apache | Zeus

Figure 3.

the actual access sequence is 4, B, C, D and the prefetcher will not
prefetch C and D. At the same time, blocks R and S will be
prefetched and will pollute the cache and delay the arrival of
blocks C and D. As we show in the example, the branch predictor
introduces noise to the instruction access streams, preventing the
prefetcher from issuing accurate prefetch requests.

Figure 2 presents the effect of branch mispredictions on the
instruction stream by comparing the correct-path miss coverage
achieved by predicting the front-end instruction accesses, the
Access bar, with the correct-path miss coverage achieved by
predicting the sequence of retired instructions, the Retire bar. The
retired-instruction streams contain only the correct-path instruc-
tions, regardless of the outcome of intermediate branch predictions
or other events that may dynamically reset the reorder buffer or
pipeline. We observe up to 10% miss coverage loss in OLTP on
Oracle from predicting the instruction-cache access sequence
compared to predicting the correct-path retire-order sequence.

2.3 Interrupt Handlers and Application References
Unlike scientific and engineering workloads, server workloads
actively use disk and network I/O and frequently interact with the
operating system. Spontancous hardware-interrupt handlers (e.g.,
network card interrupts and TLB misses) occur in the pipeline
frequently [11], temporarily redirecting the instruction stream to
execute the handlers. The instruction access stream is fragmented
at arbitrary places by the injection of references to the handler
code, reducing the regularity and repetitiveness of the application
references and imposing further challenges to correctly predicting
the instruction stream.

To eliminate the effects of the noise introduced by interrupt
handlers, we separate the instruction reference streams belonging
to different processor trap levels and record them in separate
temporal streams. In Figure 2, the RetireSep bar illustrates the
effectiveness of this approach, indicating that up to an additional
2% of predictor coverage can be achieved, yielding nearly perfect
opportunity to eliminate all correct-path instruction-cache misses.
Notably, although the coverage loss due to interrupts is small, the
misses that occur shortly after a handler returns are often the most
costly to performance, as the reorder buffer is empty and the core
is entirely stalled, waiting for an instruction-cache fill.

100% -
m2 034 m58 0O9-16
80% A
60% -
40% -
NEa i

v [

DB2 |Oracle Qry 2 |er17 Apache Zeus

OLTP DSS Web

References to Spatial Regions

Density of spatial regions (left) and discontinuous (non—next-line) accesses in spatial regions (right)

3 COMPACTING STREAMS

To take advantage of temporal streaming, an instruction prefetcher
must record address streams and predict future accesses by
replaying recorded streams. Unfortunately, addresses in temporal
streams exhibit no simple patterns such as strides [7] or delta
correlation [18]. Functions are typically distributed throughout the
instruction memory at the whim of the programmer, the compiler,
and the dynamic library loader, yielding data-dependent jumps in
arbitrary directions and for arbitrary distances as instructions are
executed. Options for encoding the temporal streams are therefore
limited, requiring to record addresses one by one, resulting in large
storage overhead for predictors relying on temporal streams [18,
32]. In turn, storage capacity emerges as a major constraint,
limiting the full prefetcher potential because predictor coverage
must be traded off for capacity.

Fortunately, many instruction blocks are not only temporally
correlated, but also exhibit spatial and temporal locality. Func-
tions nearly always comprise multiple consecutive instruction
blocks, with many tight loops and local branches constrained
within a relatively small number of instruction blocks. While prior
proposals [6, 32], both for instruction and data prefetching, record
temporally correlated stream addresses into a circular buffer one
by one, we can take advantage of the locality between instruction
blocks by representing them in a compact form, recording an
address per spatial region (typically, a function) rather than per
address and avoiding redundant storage of multiple iterations of
tight loops.

3.1 Leveraging Locality in Instruction Streams
A function’s instructions are likely to be stored in consecutive
instruction cache blocks, executed sequentially until a long-
distance discontinuity is encountered (e.g., a function call, a
distant branch in a large function, or a system call). We explore the
space savings of recording only a single record per spatial region,
a group of spatially-adjacent instruction cache blocks. Each spatial
region record has a trigger address (the first instruction’s address
accessed within the spatial region) and a bit vector, where each bit
represents an adjacent cache block. We divide the bit vector in two
parts, with the left part of the bit vector representing the blocks
that precede the trigger and the right part representing the blocks
that succeed the trigger.

We quantify the spatial region densities in Figure 3 (left). For each
spatial region, we count only unique accesses to that region,

Processor Index

Core

Front-end
Back-end
Compactor

Stream
Address

Buffers A

Buffer

L1
Instruction
Cache

Figure 4. PIF hardware and data flow (single core)

avoiding over-counting due to small loops that fall within the
boundaries of the spatial region. For all workloads studied, we find
that more than 50% of the spatial regions have more than one
block accessed, with many regions having up to 8 accessed
instruction blocks. We conclude that considerable space saving
opportunity exists for storing temporal streams of spatial region
records rather than individual instruction addresses.

We note that spatial locality does not imply that only sequential
blocks are accessed within a region. Gaps may exist due to condi-
tional branching behavior such as never-executed error handling
code. We quantify the number of discontinuous groups of sequen-
tial blocks inside spatial regions in Figure 3 (right). We find that
approximately one fifth of all spatial regions observe discontin-
uous accesses. Although, in some of these cases (short forward
jumps), an aggressive next-line prefetcher can correctly predict
future accesses, this approach would considerably increase the
number of unnecessarily fetched blocks and cache pollution.

Recording accesses as spatial regions introduces another advan-
tage for stream space reduction by enabling compact storage of
accesses exhibiting temporal locality. When a loop body fits into a
single instruction block, the accesses to the block are recorded
only once, regardless of the number of iterations of the loop.
However, small loop bodies frequently span multiple consecutive
instruction blocks within one region or span a small number of
different regions (e.g., when a tight loop includes a call to a helper
function). The instruction blocks comprising the loop are accessed
on every iteration of the loop. By encoding accesses to regions and
skipping regions that repeat in tight loops, unnecessary redun-
dancy is avoided in the temporal stream storage, providing further
space savings.

3.2 Effects of Space Reduction on Coverage

Compacting the instruction stream and avoiding storing repetition
not only reduce the temporal stream storage, but also improve the
repetitiveness and predictability of the temporal streams. In a
traditional temporal stream, the iterative accesses are recorded
unnecessarily, as they cannot improve cache-miss coverage
because instruction blocks are brought into the cache on the first
iteration of the loop and remain there until after the loop termi-
nates. Moreover, if the number of loop iterations recorded in the
temporal history does not match the subsequent encounter of the
same loop, the temporal stream fails to predict blocks following
the loop termination. Encoding loop blocks as a single record
enables correct prediction of these blocks, as well as the blocks
that follow the loop, regardless of the data-dependent number of

Spatial Compactor Temporal Compactor
Retired Trigger Bit Vector

Instr. PC Prec; Succ. MRU LRU
@PCA [PCA] OJ00 | | |
(QPCuag PCa [OJOT | | |
(®)PCri[_PCa [1[01 |\| |
(9)PCs [PCs [0[00 |\|PCA(101) |PCa(101)
(5)PCx [PCa [0[00 | “[PCs(000),PCA(T01) JPC5(000)
(6)PCasg _PCa | 0[01 |\|PCB(000),PCA(101)|
(7)PCs [PCs | 0]00 | “[PCa(101),PCs(000) |D’Scardpc

Figure 5. Compacting the instruction address sequence

loop iterations. Therefore, counter-intuitively, we find that
compacting the storage actually leads to more repetitive streams,
thus, higher coverage.

4 DESIGN

The Proactive Instruction Fetch mechanism is based on recording
and replaying the retire-order instruction access streams to predict
future correct-path instruction fetches. We base our design on the
Global History Buffer [18] G/AC prefetcher. Although designing a
new mechanism specifically suited to our observations and
targeting instruction prefetch would enable a number of engi-
neering optimizations, particularly with regard to reducing the
predictor storage overheads, we instead adapt an existing design to
isolate the benefits of avoiding microarchitectural noise,
promoting a clearer understanding of our contributions in the
context of prior prefetching literature [6, 18, 32]. For example,
although storage benefits can be attained by sharing predictor
structures among multiple cores or virtualizing the predictor
storage in the L2 cache [4], we avoid these designs in favor of
simplicity, simulating completely independent dedicated predictor
hardware for each core.

Proactive Instruction Fetch introduces four hardware structures,
shown shaded in Figure 4. The Compactor tracks retired instruc-
tion addresses, leveraging the spatial and temporal locality among
instructions for compaction. The compacted records are stored in
the History Buffer. The history buffer stores a continuous sequence
of spatial regions, while the /ndex provides a fast search mecha-
nism for instruction streams in the history buffer. The Stream
Address Buffers read records from the history buffer and coordi-
nate prefetch requests by monitoring the instruction cache
accesses of the core’s front-end.

4.1 Compacting the Retire-Order Sequence

The compactor monitors the back-end of the processor core and
records the addresses of retiring instructions. However, storing
individual PCs that flow out of the core would result in wasted
space, because the history buffer is used to predict instruction
block addresses rather than addresses of individual instructions.
We therefore collapse all consecutively retired PCs belonging to
the same instruction block into a single address. The block address
of the retiring instruction is checked against the block address of
the previous retired instruction; if the new retiring PC is in the
same block, the new PC is discarded.

The compactor comprises the spatial and temporal compaction
mechanisms whose operation is depicted in Figure 5. Taking

Index History Buffer Core
: Stream Address Buffer = =
o c
O|lm|> @ A
o TRl
C el S e C om
PC, :111 [

L1-I Cache
Figure 6. Predicting future instruction accesses

advantage of the spatial locality across instruction blocks, the
spatial compactor combines instruction-block addresses that fall
within a spatial region, a group of adjacent instruction blocks. The
spatial compactor defines the boundaries of a spatial region
according the first access within the region, which we call a
trigger. The new spatial region comprises N blocks preceding the
trigger and M blocks succeeding the trigger, corresponding to
N+M+1 instruction blocks in total. In the example in Figure 5,
PC, an instruction in the block 4, is the trigger of the new spatial
region that spans one instruction block preceding the trigger
instruction’s block, 4-7, and two instruction blocks succeeding the
trigger instruction’s block, A+/ and 4+2. When a new spatial
region is encountered, the compactor defines the boundaries of the
new region, records the trigger PC, and clears the bit vector where
each bit represents an instruction block within the spatial region
(step 1 in Figure 5). As instructions within the current spatial
region retire, corresponding bits are set in the bit vector (step 2 and
step 3). When an instruction outside the current spatial region
retires, the existing spatial region record (trigger PC and bit
vector) is sent to the temporal compactor and the spatial
compactor starts monitoring the blocks within the new spatial
region (step 4).

Tight code loops constitute a large fraction of the executed instruc-
tions, with the instruction footprint of the loops typically spanning
several spatial regions. When an instruction prefetcher is
employed, ideally, all instruction blocks of the loop are prefetched
into the L1 instruction cache prior to the first loop iteration. There
is no benefit from predicting the subsequent iterations because the
instruction blocks have already been brought into the cache. To
avoid recording the spatial region records that belong to such
subsequent iterations, the temporal compactor tracks a small
number of the most-recently-observed spatial region records. If an
incoming spatial region record does not match any of the records
in the temporal compactor (if the trigger PC is not found in the
temporal compactor or if the incoming bit vector is not a subset of
the bit vector of the spatial region record in the temporal
compactor), the temporal compactor stores the evicted spatial
region record, evicting the least-recently-used record, and sends
the new record to the history buffer to be recorded and used for
later predictions (step 4 and step 5). If a matching spatial region
record is found in the temporal compactor, the spatial region
record that comes from the spatial compactor is discarded and the
corresponding record in the temporal compactor is promoted to the
MRU position (step 7).

4.2 Learning the Instruction Sequences

The history buffer is a circular buffer that stores the sequence of
retired instructions in FIFO order. A tail pointer determines the
next location to be written in the history buffer. Each history buffer
location stores the block address of a trigger instruction and the bit
vector of the surrounding spatial region.

The index table, a small cache-like structure, facilitates fast search
of the history buffer. The index table maintains a mapping between
a trigger PC and the location of its most-recent record in the
history buffer. Instructions that were not explicitly prefetched are
tagged at the fetch stage and carry the tag through the pipeline and
compactors. At the time of insertion of a spatial region record into
the history buffer, if the trigger PC of the spatial region is tagged,
the trigger PC (the trigger of the new stream) is also inserted into
the index table pointing to the current tail pointer (the location at
which new the spatial region record is being inserted). We note
that only the index table insertion is conditional; an insertion into
the history buffer is always performed independent of whether the
region contains a tagged instruction.

4.3 Making Predictions for Future Accesses

If a sequence of instructions is executed once, the same sequence
of instructions is likely to be executed again. Proactive Instruction
Fetch predicts future instruction-cache accesses by replaying
previously recorded instruction sequences as depicted in Figure 6.
We identify a sequence of instructions by the trigger PC of the first
spatial region. When the core issues an instruction fetch that was
not prefetched, the prediction mechanism is triggered. The predic-
tion mechanism searches for the PC of the accessed instruction in
the index table. If a valid index table entry exists for the searched
PC, a new active prediction stream is allocated.

Every active prediction stream is tracked by a Stream Address
Buffer (SAB). An SAB tracks a window of consecutive spatial
regions.2 The SAB maintains a pointer to the sequence in the
history buffer, initially set to the pointer taken from the index table
lookup. The prediction mechanism reads the start of the sequence
from the history buffer into the SAB. For each record, the SAB
calculates the addresses of the instruction blocks that are encoded
by the bit vector and issues prefetch requests for these addresses.
Predictions are made by traversing the bit vector from left to right,
as this typically predicts the accesses in the order they will be
issued by the core.

Before queuing for prefetch, predictions first probe the instruction
cache to confirm that the block is not present in the cache. As in
prior work [27], we find that a line buffer between the core and the
L1 instruction cache ensures ample bandwidth to the instruction
cache tags for both the instruction-fetch and prefetch mechanisms
without the need to duplicate the instruction-cache tags.

After issuing predictions from the initial window of the stream, the
SAB monitors fetch requests from the core to the L1 instruction
cache. L1 requests that fall within an active stream advance the

2. We maintain four SABs for concurrent active prediction
streams, replacing the least-recently-used SAB when a new active
stream is allocated. We empirically find that, for maximum perfor-
mance with our core microarchitecture and cache latencies, the
window in the SAB should track seven consecutive regions.

Table I.System and application parameters

UltraSPARC IIT ISA
Sixteen 2 GHz 00O cores
3-wide dispatch / retirement
96-entry ROB, 64-entry LSQ
TSO memory model

64KB, 2-way, 64B-block,
2-cycle load-to-use L1-I cache
24-entry pre-dispatch queue
Hybrid branch predictor
16K gShare & 16K bimodal

64KB, 2-way, 64B blocks,
2-cycle load-to-use,
2 ports, 32 MSHRs

Unified, 512KB per core,16-way,
64B blocks, 16 banks,
15-cycle hit latency, 64 MSHRs

Processing Nodes

I-Fetch Unit

L1D Caches

L2 NUCA Cache

3 GB total memory,
45 ns access latency,
64B coherence unit

4x4 2D mesh

Main Memory

Interconnect

SAB’s history buffer pointer, reading subsequent records from the
history buffer into the SAB and issuing prefetch requests for the
corresponding cache blocks.

S EVALUATION

We evaluate Proactive Instruction Fetch and compare it to the
most-recently proposed temporal instruction prefetcher using
trace-based and cycle-accurate full-system simulation of a 16-core
CMP modeled in Flexus [33]. The details of the simulated archi-
tecture are listed in Table I (left). Flexus models the SPARC v9
instruction set architecture and is able to run unmodified server
operating systems and applications. We simulate systems running
the Solaris 8 operating system and executing the server workload
suite described in Table I (right).

For the trace-based analyses, we use correct-path, in-order instruc-
tion reference traces. We collect traces of sixteen billion
instructions (one billion per core) for the transaction processing
and web serving workloads running in steady state. For the DSS
workloads, we collect traces for the entire time of query execution.
Our traces contain all application and operating system instruc-
tions, including hardware interrupt handlers.

For performance evaluation, we use the SimFlex multiprocessor
sampling methodology [33]. Our samples are drawn over an
interval of 10 to 30 seconds of simulated time for the OLTP and
Web workloads and over the entire query execution for the DSS
workloads. For each measurement, we launch simulation from
checkpoints with warmed caches, instruction prefetcher tables, and
branch predictors, and run 100,000 cycles to of detailed cycle-
accurate simulation to warm queues and interconnect states before
collecting measurements for the subsequent 50,000 cycles. As the
performance metric, we use user instructions committed per cycle
(UIPC), which is proportional to the overall system throughput
[33]. We present speedups based on the average UIPC computed at
a 95% confidence level with less than +5% error.

OLTP - Online Transaction Processing (TPC-C v3.0)

IBM DB2 v8 ESE,
DB2 100 warehouses (10 GB),
64 clients, 2 GB buffer pool

Oracle 10g Enterprise Database Server,
Oracle 100 warehouses (10 GB),
16 clients, 1.4 GB SGA

Web Server (SPECweb99)

Apache HTTP Server v2.0,

Apache 16K connections,
fastCGlI, worker threading model
Zeus Web Server v4.3,
Zeus 16K connections,
fastCGI
DSS — Decision Support Systems (TPC-H)
Qry 2 IBM DB2 v8 ESE,
er}}; 1% 480 MB buffer pool,

1GB database

5.1 The Need for Deep History Storage

To demonstrate the need for accurate storage of long temporal
streams, Figure 7 presents the number of instruction block
accesses between two occurrences of the same stream (the jump
distance), weighted by the number of correct predictions made by
the corresponding stream. Short jump distances belong to
frequently repeating streams, while long jump distances belong to
rarely repeating streams. Although recent streams are used
frequently to predict, we observe that medium-aged and old
streams contribute to as many correct predictions as recent
streams, highlighting the necessity for long temporal history
capable of retaining and using old streams for prediction.

5.2 Optimal Spatial Region Size

Proactive Instruction Fetch uses bit vectors to encode accesses to
adjacent blocks, after the trigger access within a spatial region
occurs. The left portion of the bit vector represents the blocks
before the trigger access and the right portion represents the blocks
after the trigger access.

We measure the access frequencies to instruction blocks with
different offsets from the trigger access in the spatial region.

100% -

S 80% A

2

8

= 60% -

g —o—OLTP DB2

2 40% - —B—OLTP Oracle

— —4—DSS Qry 2

£ 20% A —%—DSS Qry 17

S (]

= —¥— Web Apache
o Web Zeus

0% =~*r—-—TTrrrrrrrrrrrrrrr—

13 65 7 9 11 13 15 17 19 21 23 25

Jump Distance in History (Log,)
Figure 7. Weighted jump distance in history

OLTP mDSS m Web
40% -

30% A

20% A

10% o

References within Spatial Regions

0% -
4321123456 78910 1112
Distance from First Access in Region

100% 1
80% -

8 60% -

o

S

S 40% -
20% -
0% A

TLO|TL1|TLO|TL1|TLO|TL1|TLO|TL1|TLO|TL1|TLO|TL1
DB2 Qry 17 | Apache

Figure 8. Distribution of accesses around the trigger block (left) and Spatial region size sensitivity (Trap Levels 0 and 1) (right)

Figure 8 (left) depicts the frequency of accesses to the blocks
around the trigger accesses. As expected, the most frequently
accessed blocks immediately follow the trigger access, with
farther blocks not accessed as frequently. Most importantly, we see
that there is a need to keep track of a small number of blocks
before the trigger access, as backward jumps occur with signifi-
cant frequency. Keeping two blocks preceding the trigger access in
the same spatial region prevents storing additional entries in the
temporal stream for backward jumps. Additionally, keeping the
preceding block within the same spatial region allows correct
prediction of subsequent blocks regardless of whether the back-
ward jump is taken or not, as is the case when a function call is
performed near the end of a loop body.

As expected, Figure 8 (left) shows that access frequency decreases
significantly as the distance from the trigger block increases, indi-
cating little benefit in storing spatial regions larger than 8 blocks
because most of the bits would be zero. Additionally, we conclude
that regions should be skewed toward blocks following the trigger
access; we therefore consider only two blocks preceding the
trigger as being part of the region.

Compacting storage with spatial regions not only reduces the
temporal history space, but also increases coverage. Figure 8
(right) shows the predictor coverage as the region size is varied
from one to eight. Trap-Level 0 (TLO) coverage is the coverage of
application instruction misses, while Trap-Level 1 (TL1) coverage
is the hardware interrupt coverage. We find that TLO coverage
increases slightly as the region size increases, whereas TL1
coverage improves significantly due to shorter sequences in the
presence of very compact code with carefully crafted data-depen-
dent jumps, often optimized to skip entire blocks of instructions to
avoid instruction cache pollution.

5.3 Temporal Stream Lengths

The temporal prefetcher is likely to miss on the first access to each
temporal stream, losing opportunity on the first access and poten-
tially suffering from untimely prefetches for the subsequent one or
two blocks within that stream. Temporal correlation therefore
relies on long and repetitive streams that offer higher coverage and
better timeliness, as prefetches along the temporal stream can be
made farther in advance of demand, with the delay of bringing the
first few blocks into the cache amortized over the stream length.

We analyze the temporal stream lengths and their contribution to
correct predictions in Figure 9 (left). We see that temporal streams
have highly variable lengths. More importantly, we note that
medium and long streams contribute more to correct predictions
than short streams. Because we analyze correct-path streams,
avoiding the filtering effects of the instruction cache, separating
interrupt handlers from regular program flow, and avoiding local
control-flow ambiguities by grouping spatial regions, we see many
streams comprising thousands of instruction blocks (despite the
fact that spatial regions filter most of the local loop repetitions).

5.4 Sensitivity to Temporal Stream Storage

The prediction effectiveness depends directly on the ability of the
history buffer to maintain as many repeating temporal streams as
possible. Figure 9 (right) presents the predictor coverage as the
history buffer size is varied. Coverage increases monotonically
with the allotted storage. As an engineering trade-off, there is little
justification for growing temporal stream storage beyond 32K
regions. We note that prior work indicates (and we corroborate
these findings) that the working sets of server applications are on
the order of megabytes [8]. Although the history buffer that stores
32K regions consumes considerable chip real-estate, an additional
level of instruction cache of the same capacity would offer practi-
cally no performance benefit, especially for OLTP workloads, and
may actually harm performance due to the additional latency to
probe an intermediate level of instruction cache.

It is important to note that, to eliminate the ambiguity introduced
by the instruction cache, the results in Figure 9 (right) depict the
predictor coverage, rather than the cache-miss coverage. In our
design, temporal stream heads may be present in the instruction
cache, thus not experiencing a cache miss on the first access to the
temporal stream while still enabling correct prediction and
prefetch of subsequent blocks. Therefore, unlike prior temporal
streaming proposals, only a small fraction of the coverage loss
experienced by the predictor is observed as cache misses.

5.5 Competitive Comparison

We compare the cache-miss coverage of Proactive Instruction
Fetch with an aggressive next-line prefetcher and Temporal
Instruction Fetch Streaming (TIFS), a state-of-the-art temporal
instruction-fetch streaming proposal. To stress the fundamental
difference in predictor effectiveness, we present the coverage of
both techniques without history storage limitations, showing the
maximum possible opportunity. Figure 10 (left) shows that PIF

100% -
80% -
(72}
S
T 60% A
B3
& —o—OLTP DB2
B 40% —&— OLTP Oracle
3 —£—DSS Qry 2
20% —%—DSS Qry 17
—¥— Web Apache

e —&— Web Zeus
0% — T —

13 5 7 9 1 13 15 17 19 21
Stream length (log, of 8-block regions)

100%

90%
©
S 80% 5 —o—OLTP-DB2
3 i —B—OLTP - Oracle
4 —A—DSS - Qry 2
70% A ——DSS - Qry 17
—*— Web - Apache
60% — o Webrzas
1 3 5 7 9 o

History size (log, of 8-block K regions)

Figure 9. Temporal stream size contribution to prediction (left) and History size sensitivity (right)

Next-Line uTIFS mPIF
100% -

80% A
60% A
40% -
20% A
0% A

DB2 Oracle | Qry2 | Qry17 | Apache | Zeus
OLTP DSS Web

L1 miss coverage

Next-Line ®™TIFS ®PIF mPerfect
16 1
o 14 4
2
S
(5]
1.2 1

DB2 Oracle | Qry2 | Qry17 | Apache | Zeus
OLTP DSS Web

Figure 10. Competitive coverage comparison (left), competitive performance comparison (right)

has nearly perfect coverage across all workloads studied, while
TIFS coverage is between 65-90%, corroborating prior work [6].

Importantly, the coverage shown for TIFS in Figure 10 (left)
cannot be achieved in systems with branch prediction, as further
coverage loss is experienced by TIFS due to the injection of
wrong-path accesses into the temporal stream. Conversely, the
coverage shown for PIF closely tracks the correct-path prediction
coverage observed in cycle-accurate simulation.

5.6 Performance Improvement

We compare the Proactive Instruction Fetch performance against
the next-line prefetcher and TIFS [6], and present the maximum
speedup that can be achieved with a perfect-latency instruction
cache.? Figure 10 (right) shows the performance improvements
achieved by the corresponding mechanisms, normalized to the
baseline case, where no instruction prefetching mechanism is
employed.

The relative performance improvements of the instruction stream-
ing mechanisms match the coverages in Figure 10 (left). As we
expect, Proactive Instruction Fetch outperforms the next-line
prefetcher and TIFS, converging to the performance of a perfect

3. The perfect-latency cache we simulate always returns the
requested instruction block with the latency of a cache hit, with all
other externally-observed behaviors of the cache matching the
Next-Line configuration.

instruction cache. Compared to the next-line prefetcher, Proactive
Instruction Fetch is able to prefetch the discontinuity points as
well as the adjacent instruction blocks that are captured by the
next-line prefetcher. Compared to TIFS, Proactive Instruction
Fetch is more accurate for discontinuities, because it has a
concrete instruction access history unfiltered by the instruction
cache and without wrong-path noise injected by the branch predic-
tor. Although the Proactive Instruction Fetch implementation we
present is no more complex than the TIFS design, the Proactive
Instruction Fetch design hides nearly all of the instruction access
latencies from the core. As a result, Proactive Instruction Fetch
achieves 27% performance improvement on average, nearly
matching the 29% performance improvement of a perfect instruc-
tion cache. For two benchmarks, the PIF performance is
marginally higher than the perfect-latency cache design; this is
primarily due to the PIF design inducing less pressure on the on-
chip interconnect compared to our perfect-latency cache
configuration.

6 RELATED WORK

Instruction-fetch-related stalls are a key performance bottleneck
for server workloads. Computer architects initially addressed this
problem with simple next-line instruction prefetchers to take
advantage of inherently sequential instruction accesses [2]. Subse-
quent next-line prefetcher designs expanded on this concept,
issuing prefetch requests upon various conditions (e.g., upon an
instruction access or miss) and observing varying degrees of
prefetch depth and lookahead [21, 24, 25]. Proactive Instruction

Fetch effectively predicts both the sequential accesses to instruc-
tion blocks and the control transfers that are beyond the reach of
next-line prefetchers, while limiting over-predictions that arise
with next-line prefetchers as they continue to issue sequential
prefetches beyond the end of the accessed region.

A branch predictor running ahead of the fetch unit can predict
control transfers by issuing requests for possible future instruction
accesses [5, 19, 22, 23, 28]. An idle thread [15] or speculative
threading mechanisms [30, 35] can be employed to generate future
instruction accesses. Run-ahead execution prefetches the instruc-
tion blocks that will later be requested by the fetch unit [17].
Unlike the branch-predictor directed approaches, PIF relies on
previously seen instruction streams, instead of relying on branch
speculation. Proactive Instruction Fetch operates at instruction
region granularity, rather than the granularity of each branch,
offering much greater prediction accuracy and lookahead [6].

The discontinuity prefetcher [27] and TIFS [6] also address the
lookahead limitations of the branch-predictor directed prefetchers
by operating at instruction-block granularity and keeping the
history of non-sequential transitions. However, the discontinuity
prefetcher has a lookahead limitation of handling only one transi-
tion at a time to prevent gross over-prediction. On the contrary,
Proactive Instruction Fetch maintains a complete history of
accesses and has no lookahead limitation while following a
temporal stream. Unlike TIFS, PIF maintains a clean and highly
repetitive instruction-fetch history, unencumbered by microarchi-
tectural effects such as instruction-cache filtering, injection of
noise by the branch predictor, or the spontaneous occurrence of
interrupt handlers. Furthermore, Proactive Instruction Fetch signif-
icantly improves on temporal storage efficiency and on predictor
coverage by temporal streams using a compact stream representa-
tion rather than explicitly recording all addresses [6].

Many orthogonal software approaches have attempted to eliminate
the instruction-fetch-related stalls by optimizing the application
code for higher locality [10, 20, 34], employing the compiler to
insert prefetch instructions [3], and performing call graph
prefetching [16]. These approaches make the instruction sequence
more regular and predictable, in some cases providing hints of
future accesses to the hardware. The Proactive Instruction Fetch
implementation can potentially benefit from these techniques to
further improve coverage and reduce temporal stream storage.

7 CONCLUSIONS

We showed that microarchitectural components such as the
instruction cache, the branch predictor, and hardware trap handlers
disrupt the repetitive behavior of instruction streams. While the L1
cache filters the reference stream, the branch predictor and hard-
ware interrupts inject wrong-path references, limiting the
predictability of future instruction references. We demonstrated
that the retire-order instruction stream, unfiltered by the instruc-
tion cache and unaffected by the branch predictor, can be used to
correctly predict over 99.5% of the instruction fetches. In this
work, we proposed Proactive Instruction Fetch, a hardware mech-
anism that efficiently records correct-path instruction fetch
streams and replays them to predict future instruction accesses,
hiding instruction-fetch stalls from the core. Through cycle-accu-
rate simulation of a 16-core CMP running server workloads, we
demonstrated that Proactive Instruction Fetch outperforms a next-
line prefetcher and TIFS, a state-of-the-art temporal instruction

prefetcher, improving the performance on our server benchmark
suite by 27% on average, and converging to the performance of a
perfect cache.

Acknowledgements

The authors would like to thank the members of PARSA at EPFL
and the anonymous reviewers for their feedback on drafts of this
paper. This work was partially supported by grants from Intel
Corporation and the Swiss National Science Foundation.

References

[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and
David A. Wood. DBMSs on a modern processor: Where does
time go? In The VLDB Journal, pages 266-277, September
1999.

[2] D. W. Anderson, F. J. Sparacio, and Robert M. Tomasulo.
The IBM system/360 model 91: Machine philosophy and
instruction handling. IBM Journal of Research and Develop-
ment, 11(1):8-24, 1967.

[3] Murali Annavaram, Jignesh M. Patel, and Edward S.
Davidson. Call graph prefetching for database applications.
ACM Transactions on Computer Systems, 21(4):412-444,
2003.

[4] Ioana Burcea, Stephen Somogyi, Andreas Moshovos, and
Babak Falsafi. Predictor virtualization. In Proceedings of the
13th International Conference on Architectural Support for
Programming Languages and Operating Systems, March
2008.

[5] I-Cheng K. Chen, Chih-Chieh Lee, and Trevor N. Mudge.
Instruction prefetching using branch prediction information.
In Proceedings of the International Conference on Computer
Design, October 1997.

[6] Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki,
Babak Falsafi, and Andreas Moshovos. Temporal instruction
fetch streaming. In Proceedings of the 41st International
Symposium on Microarchitecture, December 2008.

[71 John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride
directed prefetching in scalar processors. In Proceedings of
the 25th Annual International Symposium on Microarchitec-
ture, November 1992.

[8] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and
Anastasia Ailamaki. Reactive NUCA: Near-optimal block
placement and replication in distributed caches. In Proceed-
ings of the 36th Annual International Symposium on
Computer Architecture, June 2009.

[9] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju
Mancheril, Anastassia Ailamaki, and Babak Falsafi. Database
servers on chip multiprocessors: Limitations and opportuni-
ties. In Proceedings of the 3rd Conference on Innovative
Data Systems Research, January 2007.

[10] Stavros Harizopoulos and Anastassia Ailamaki. STEPS
towards cache-resident transaction processing. In Proceed-
ings of the 30th International Conference on Very Large
Databases, August 2004.

[11] Aamer Jaleel and Bruce L. Jacob. In-line interrupt handling
for software-managed TLBs. In Proceedings of the Interna-
tional Conference on Computer Design, September 2001.

[12] Norman P. Jouppi. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache and
prefetch buffers. In Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, May 1990.

[13] Kimberly Keeton, David A. Patterson, Yong Qiang He,
Roger C. Raphael, and Walter E. Baker. Performance charac-
terization of a Quad Pentium Pro SMP using OLTP
workloads. In Proceedings of the 25th Annual International
Symposium on Computer Architecture, June 1998.

[14] Jack L. Lo, Luiz Andre Barroso, Susan J. Eggers, Kourosh
Gharachorloo, Henry M. Levy, and Sujay S. Parekh. An
analysis of database workload performance on simultaneous
multithreaded processors. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, June
1998.

[15] Chi-Keung Luk. Tolerating memory latency through soft-
ware-controlled pre-execution in simultaneous
multithreading processors. In Proceedings of the 28th Inter-
national Symposium on Computer Architecture, June 2001.

[16] Chi-Keung Luk and Todd C. Mowry. Cooperative
prefetching: Compiler and hardware support for effective
instruction prefetching in modern processors. In Proceedings
of the 31st Annual International Symposium on Microarchi-
tecture, December 1998.

[17] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt.
Runahead execution: An effective alternative to large instruc-
tion windows. IEEE Micro, 23(6):20-25, Nov.-Dec. 2003.

[18] Kyle J. Nesbit and James E. Smith. Data cache prefetching
using a global history buffer. In Proceedings of the 10th
International Symposium on High-Performance Computer
Architecture, February 2004.

[19] Jim Pierce and Trevor Mudge. Wrong-path instruction
prefetching. In Proceedings of the 29th Annual International
Symposium on Microarchitecture, December 1996.

[20] Alex Ramirez, Luiz Andre Barroso, Kourosh Gharachorloo,
Robert Cohn, Josep Larriba-Pey, P. Geoffrey Lowney, and
Mateo Valero. Code layout optimizations for transaction
processing workloads. In Proceedings of the 28th Annual
International Symposium on Computer Architecture, June
2001.

[21] Alex Ramirez, Oliverio J. Santana, Josep L. Larriba-Pey, and
Mateo Valero. Fetching instruction streams. In Proceedings
of the 35th Annual International Symposium on Microarchi-
tecture, December 2002.

[22] Glenn Reinman, Brad Calder, and Todd Austin. Fetch
directed instruction prefetching. In Proceedings of the 32nd
Annual International Symposium on Microarchitecture,
December 1999.

[23] Glenn Reinman, Brad Calder, and Todd M. Austin. Optimiza-
tions enabled by a decoupled front-end architecture. I[EEE
Transactions on Computers, 50(4):338-355, 2001.

[24] Oliverio J. Santana, Alex Ramirez, and Mateo Valero.
Enlarging instruction streams. /[EEE Transactions on
Computers, 56(10):1342-1357, 2007.

[25] Alan Jay Smith. Sequential program prefetching in memory
hierarchies. Computer, 11(12):7-21, 1978.

[26] Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki,
and Babak Falsafi. Spatio-temporal memory streaming. In
Proceedings of the 36th Annual International Symposium on
Computer Architecture, June 2009.

[27] Lawrence Spracklen, Yuan Chou, and Santosh G. Abraham.
Effective instruction prefetching in chip multiprocessors for
modern commercial applications. In Proceedings of the 11th
International Symposium on High-Performance Computer
Architecture, February 2005.

[28] Viji Srinivasan, Edward S. Davidson, Gary S. Tyson, Mark J.
Charney, and Thomas R. Puzak. Branch history guided
instruction prefetching. In Proceedings of the 7th Interna-
tional Symposium on High-Performance Computer
Architecture, January 2001.

[29] Robert Stets, Kourosh Gharachorloo, and Luiz Andre
Barroso. A detailed comparison of two transaction processing
workloads. In Proceedings of the International Workshop on
Workload Characterization, November 2002.

[30] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg.
Slipstream processors: Improving both performance and fault
tolerance. In Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and
Operating Systems, November 2000.

[31] Alexander V. Veidenbaum. Instruction cache prefetching
using multilevel branch prediction. In Proceedings of the
International Symposium on High-Performance Computing,
November 1997.

[32] Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardav-
ellas, Jangwoo Kim, Anastassia Ailamaki, and Babak Falsafi.
Temporal streaming of shared memory. In Proceedings of the
32nd International Symposium on Computer Architecture,
June 2005.

[33] Thomas F. Wenisch, Roland E. Wunderlich, Michael
Ferdman, Anastassia Ailamaki, Babak Falsafi, and James C.
Hoe. SimFlex: Statistical sampling of computer system simu-
lation. IEEE Micro, 26(4):18-31, July-Aug. 2006.

[34] Jingren Zhou and Kenneth A. Ross. Buffering database oper-
ations for enhanced instruction cache performance. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, June 2004.

[35] Craig B. Zilles and Gurindar S. Sohi. Execution-based
prediction using speculative slices. In Proceedings of the 28th

International Symposium on Computer Architecture, June
2001.

