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The literature on gradient and differential microphone arrays makes a distinction between

the two types, but it nevertheless shows how both types can be used to obtain the same

directional responses. A more theoretically sound rationale for using delays in differential

microphone arrays has not yet been given. A gradient analysis of the sound field viewed as a

spatiotemporal phenomenon is presented, giving a theoretical interpretation of the working

principles of gradient and differential microphone arrays. It is shown that both types of

microphone arrays can be viewed as devices for approximately measuring spatiotemporal

derivatives of the sound field. Furthermore the design of high-order differential microphone

arrays using the aforementioned spatiotemporal gradient analysis is discussed.

0 INTRODUCTION

The concept of gradient microphones dates back to the

middle of the last century and the works of Olson [1], [2],

who described gradient microphones as arrays of

pressure-sensing elements whose signals are combined

in a similar way as gradients are approximated with finite

differences. Gradient microphones have been used in a

variety of applications, such as surround and spot

recording (for example, see [3], [4]), and as particle

velocity and sound intensity measurements called p-p

probes [5]–[8].

The works of Olson [1], [2] also showed how the

combination of responses from gradient microphones of

different order can be equivalently obtained by combining

signals from multiple pressure microphones with appro-

priately chosen delays. This more flexible family of

microphone arrays found applications in hands-free

communication [9] and hearing-aid devices [10], [11].

Later microphone arrays of the latter type, which use

delay elements, have been termed differential microphone

arrays, and they were more extensively analyzed in the

works of Elko at the start of the last decade [12], [13].

However, to the best of our knowledge the relation

between these two microphone array types, and the

rationale behind the idea of combining the delayed

microphone signals in differential microphone arrays,

has not been presented yet.

This paper presents a slightly different analysis of the

sound pressure field, which is viewed as both a spatial and

a temporal phenomenon, that is, as a multivariate function

of spatial location and time. This analysis then exposes

the operations of taking gradients and directional

derivatives of the sound pressure field as combinations

of its spatial and temporal derivatives. This new

perspective gives a clear interpretation of gradient and

differential microphones and microphone arrays—the

former as devices used for approximately measuring only

spatial derivatives, and the latter as devices used for

approximately measuring spatiotemporal derivatives of

the sound pressure field. In other words, it shows their

equivalence.

This paper is organized as follows. Section 1 gives a

theoretical analysis of spatiotemporal derivatives of the

sound pressure field when the latter is viewed as both a

spatial and a temporal phenomenon, that is, as a

multivariate function of space and time. Section 2 shows

a number of practical differential microphone arrays

which follow from the theoretical analysis in Section 1.

Conclusions are given in Section 3.

1 THEORETICAL ANALYSIS OF
SPATIOTEMPORAL DERIVATIVES OF THE
SOUND FIELD

1.1 Spatial Derivatives of Sound Pressure Field

The sound pressure at a position defined by vector r

of a plane wave propagating with wave vector k is given
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by1

pðr; tÞ ¼ Ae
jðxtþk�rÞ ð1Þ

where x is the temporal frequency of the plane wave.

The spatial derivative of the sound pressure field along

the direction defined by vector u quantifies the rate of

change of the sound pressure in that direction. It is given

by the projection of the spatial gradient of the sound

pressure field onto the vector u,

Duðr; tÞ ¼ rpðr; tÞ � u
¼ jpðr; tÞðk � uÞ
¼ jk cos hpðr; tÞ ð2Þ

where h is the angle between vectors k and u.

Generalizing to the nth-order spatial derivative along

the direction defined by vector u gives

D
n

u pðr; tÞ ¼ ðjkÞnðcos hÞnpðr; tÞ: ð3Þ

The nth-order spatial derivative of the sound pressure

field composed of a plane wave has a bidirectional

characteristic whose shape has the form

d
nðhÞ ¼ AðxÞðcos hÞn ð4Þ

where A(x) ¼ ( jk)n is a complex frequency-dependent

gain, and h is the angle between the direction along which

the spatial derivative is taken and the direction of

propagation of a plane wave. The directional characteris-

tics of a plane wave’s spatial derivatives of different

orders n along the positive direction x are shown in Fig. 1.2

Also the plane wave’s nth-order spatial derivative has

at all angles a high-pass magnitude frequency character-

istic proportional to ( jk)n or, equivalently, ( jx/c)n, as

shown in Fig. 2.

1.2 Spatiotemporal Derivatives of Sound Pressure
Field

Without loss of generality, the analysis will be given in

a two-dimensional plane, such that the pressure field can

be written as a function p(x, y, t) of two spatial

coordinates x and y, and one temporal coordinate t. Since

such a pressure field is a function of three independent

coordinates, its gradient is given by

rpðx; y; tÞ ¼ ]p

]x

]p

]y

]p

]t

� �T

: ð5Þ

The gradient of the sound pressure field, as defined in

Eq. (5), shows how it—and subsequently all its

projections—can be measured in a point. In particular

one needs to measure the spatial derivatives of the sound

field along directions x and y,3 and its temporal derivative

in the given point. This is the principle of p-p sound

intensity probes (see, for example, [5], [6], [8]), which

can measure the sound intensity vector in two and three

dimensions, and also some sound field microphones [7].

The following analysis for a sound field composed of a

plane wave with temporal frequency x and wave vector k

¼ [k cos h k sin h]T is given by the expression

pðx; y; tÞ ¼ Ae
jðxtþkx cos h�ky sin hÞ ð6Þ

where the angle h defines the direction of propagation of a

plane wave.

1.2.1 First-Order Spatiotemporal Derivatives of
Sound Pressure Field

The gradient of the sound pressure field given in Eq. (6)

has the form

rpðx; y; tÞ ¼ jkpðx; y; tÞ½cos h sin h c�T ð7Þ

where c is the speed of sound propagation (k ¼ x/c).

Let the unit vector u, onto which the pressure gradient

is projected, be defined as

u ¼ ½qu cos /u qu sin /u ut�
T ð8Þ

where qu (qu 2 [0,1]) and /u (/u 2 [0,2p]) define the

spatial coordinates, and ut (ut 2 [0,1]) is the temporal

coordinate of the vector u. Note that since the vector u

has a unit norm, q2
u þ u2

t ¼ 1, the ratio qu/ut gives the

relation between its spatial part and its temporal part.

The derivative of the sound pressure field along the

spatiotemporal direction defined by the vector u is given by

Du pðx; y; tÞ ¼ rpðx; y; tÞ � u

¼ jkpðx; y; tÞ½qu cosðh� /uÞ þ cut�: ð9Þ

The directional characteristic of a spatiotemporal

derivative of a plane wave with wave vector k and

temporal frequency x is a combination of a first-order

(bidirectional) directional characteristic of its spatial

gradient, given by the term qn cos (h � /u), and a zero-

order (omnidirectional) directional characteristic of a

temporal differentiator, given by the term cut.

The relative contributions of the two derivatives—

spatial and temporal—given by the ratio qu/ut determine

the shape of the directional characteristic of a spatiotem-

poral derivative of a plane wave. In the two extreme cases

when qu ¼ 0 and qu ¼ 1, the directional responses are

omnidirectional and bidirectional, respectively. When qu

¼ cut, the directional response has a well-known cardioid

polar pattern, and when the value of qu is smaller or larger

than cut, the directional response is a variation of a

subcardioid or a ‘‘tailed cardioid.’’ Some well-known

first-order polar patterns, resulting from different qu/ut

ratios, are given in Table 1 and shown in Fig. 3.

1.2.2 Higher Order Spatiotemporal Derivatives of
Sound Pressure Field

The expression for a general nth-order spatiotemporal

derivative of the sound pressure field along a single

1 In this paper the wave vector k is chosen to point to the
direction from which waves emanate, as opposed to the direction
of wave propagation used in standard texts, such as [14].

2 The directional characteristics are plotted in the plane z ¼ 0.
3 In three dimensions, one needs to add the z direction.
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direction given by the vector u is obtained by iterating the

operations of taking its gradient and projecting it along

the vector u. For the sound field of a plane wave given by

Eq. (6) the nth-order spatiotemporal derivative along the

direction given by Eq. (8) has the form

D
n

upðx; y; tÞ ¼ ðjkÞn½qucosðh� /uÞ þ cut�
n
pðx; y; tÞ: ð10Þ

Also, instead of along a single direction, higher order

spatiotemporal derivatives can be taken along multiple

directions. Given an n-tuple of vectors U ¼ (u1, . . ., un),

with each vector of the form

ui ¼ ½qui
cos /ui

qui
sin /ui

uti �
T
;

a mixed derivative of the sound pressure field along

directions given by U has the form

D
n

Upðx; y; tÞ ¼ ðjkÞnpðx; y; tÞ
Yn

i¼1

qui
cosðh� /ui

Þ þ cuti

� �
:

ð11Þ

As with the spatial derivative, the spatiotemporal

derivative of the sound pressure field composed of a single

plane wave has a high-pass frequency characteristic at all

angles which is proportional to (jk)n, as shown in Fig. 2.

The directional characteristic is, however, proportional

to a linear combination of spatial gradients of different

orders, resulting from expanding the product Pn
i¼1½qui

cos

ðh� /ui
Þ þ cuti � in Eq. (11), or the term [qu cos (h� /u)

þ cut]
n in Eq. (10), which is a special case of Eq. (11).

Fig. 1. Directional characteristics of plane-wave spatial derivatives for different derivative orders n.

Fig. 2. Magnitude responses of plane-wave spatial derivatives of different orders n.
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As with the first order, the shape of the directional

characteristic of a higher order spatiotemporal derivative

of a plane-wave sound field is determined by the choice of

the vectors ui, that is, the parameters qui
;/ui

; and uti :
Some well-known second-order polar patterns, resulting

from different choices of ratios qu1
=ut1 and qu2

=ut2 and

angle differences D/ ¼ /u1
� /u2

; are given in Table 2,

and shown in Fig. 4.

2 PRACTICAL SPATIOTEMPORAL
DIFFERENTIAL MICROPHONE ARRAYS

Section 1 presented a theoretical analysis of the spatio-

temporal derivatives of a plane-wave sound field, which

serves as a basis for designing gradient and differential

microphone arrays with desired directional responses.

Table 1. Some well-known first-order polar patterns

expressed through the ratio qu/ut of the spatiotemporal

derivative.

Response Type qu/ut

Cardioid c

Subcardioid (0, c)

Hypercardioid 3c

Supercardioid

3�
ffiffiffi
3
p

ffiffiffi
3
p
� 1

c

Fig. 3. Directional characteristics of plane-wave first-order spatiotemporal derivatives for different ratios qu/ut as given in

Table 1.

Table 2. Some well-known second-order polar patterns expressed through the ratios qu/ut and angle differences D/ of the

spatiotemporal gradient.

Response Type qu1
=ut1 qu2

=ut2 D/ ¼ /u1
� /u2

Cardioid c c 0

Hypercardioid ð
ffiffiffi
6
p
� 1Þc ð

ffiffiffi
6
p
þ 1Þc p

Supercardioid

4�
ffiffiffi
7
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 3

ffiffiffi
7
pp

ffiffiffi
7
p
� 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 3

ffiffiffi
7
pp c

4�
ffiffiffi
7
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 3

ffiffiffi
7
pp

ffiffiffi
7
p
� 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 3

ffiffiffi
7
pp c

0

J. Audio Eng. Soc., Vol. 59, No. 1/2, 2011 January/February 23

PAPERS GRADIENT ANALYSIS OF DIFFERENTIAL MICROPHONES



Practical differential microphone arrays are based on

the principle of the finite-difference approximation of the

spatiotemporal derivatives of a sound pressure field. They

combine values of the sound pressure field in multiple

closely spaced points in space and time,4 either acousti-

cally (pressure at two faces of a diaphragm, and different-

length acoustic paths to the two faces of a diaphragm) or

electronically (pressure at different microphones of a

microphone array combined with delay elements).

This section will present a few practical differential

microphone array realizations based on the analysis from

the previous section.

2.1 First-Order Differential Microphone Arrays:
Cardioid, Hypercardioid, and Supercardioid

The first-order directional responses of the spatiotem-

poral derivatives of a sound field, presented in Section 1

and shown in Fig. 3 can be obtained by a finite-difference

approximation of the spoatiotemporal derivative of a sound

field, which involves taking differences of the sound

pressure, both in space and in time. Two closely spaced

microphones, spaced at a distance d, together with a delay

element, as shown in Fig. 5, can be used for a practical

realization of any first-order differential microphone array.

The response of a practical first-order differential

microphone array, as shown in Fig. 5, in a sound field

of a plane wave, expressed in Eq. (1), is given by

pdðtÞ ¼ 2j sin
k

2
ðd cos hþ ctdÞ

� �
p r; t � td

2

� �
ð12Þ

where k is the wavenumber, d the intermicrophone dis-

tance, td the delay used, and r the position of the micro-

phone array center (midpoint between the two micro-

phones). At low frequencies, Eq. (12) can be approximated

by

pdðtÞ’ jkðd cos hþ ctdÞp r; t � td
2

� �
ð13Þ

from which it can be seen that the ratio d/td determines the

directional response of a practical differential microphone

array in the same way the ratio qu/ut determines the

directional response of the spatiotemporal derivative in

Eq. (9) of the plane-wave sound field.

Fig. 6 shows directional responses of the practical

cardioid, supercardioid, and hypercardioid microphones

realized with the microphone combination shown in Fig.

5, with d ¼ 20 mm.

From Fig. 6 it can be seen that the shape of the directional

responses of practical first-order microphone arrays is

frequency dependent, and that it corresponds to the desired

responses, shown in Fig. 3, only at low frequencies. Above

the aliasing frequency5 the directional characteristics

Fig. 4. Directional characteristics of plane-wave second-order spatiotemporal derivatives for different ratios qu/ut and angle

differences D/ as given in Table 2.

4 Points are spaced at a distance much shorter than the
wavelength, and at a time much shorter than the period.

5 The aliasing frequency of a first-order gradient microphone
array is dependent on the intermicrophone distance d and the
delay td used.
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deviate from the desired ones, as can be observed in Fig. 6

for frequency f¼ 7000 Hz.

2.2 Second-Order Differential Microphone Arrays

In this part it is shown how clover-leaf directional

responses sin 2h and cos 2h can be realized in two

different ways based on the analysis from Section 1.

2.2.1 Clover-Leaf Response sin 2h: Quadrupole
Microphone Array

The clover-leaf directional response sin 2h can be

represented as the product of the directional responses of

two spatial derivatives of a plane-wave sound field, the

spatial derivative along the axis x, which has a

directional response cos h, and the spatial derivative

along the axis y, which has a directional response sin h
[or cos (h � p/2)]. As such the directional response sin

2h can be realized as a cascade of two spatial derivative

approximations—first along the axis x and then along the

axis y, or vice versa.

Fig. 7 illustrates a configuration of four pressure

microphones used as an approximation of the previously

described cascade of spatial derivatives of the sound field.

Fig. 8 shows the directional responses at various

frequencies of the quadrupole microphone array shown

in Fig. 7 when the intermicrophone distance d¼ 20 mm is

used.

2.2.2 Clover-Leaf Response cos 2h:
Three-Microphone Line Array

The clover-leaf directional response of the form cos 2h
can be represented as

cos 2h ¼ 2 cos
2
h� 1 ð14Þ

or, equivalently, as

cos 2h ¼ ð
ffiffiffi
2
p

cos h� 1Þð
ffiffiffi
2
p

cos hþ 1Þ ð15Þ

which is a product of the directional responses of two

first-order spatiotemporal derivatives of a plane-wave

Fig. 5. First-order differential microphone realization using

two pressure microphones and a delay element.

Fig. 6. Directional responses at various frequencies of first-order differential microphones realized as shown in Fig. 5, with d¼
20 mm and td¼ d/c (cardioid), td ¼ dð

ffiffiffi
3
p
� 1Þ=cð3�

ffiffiffi
3
p
Þ (supercardioid), and td¼ d/3c (hypercardioid).
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sound pressure field. Consequently the response cos 2h
can be obtained by cascading two spatiotemporal

derivative operations: one with qu=ut ¼ �
ffiffiffi
2
p

and the

other with qu=ut ¼
ffiffiffi
2
p

or, equivalently, two spatiotem-

poral finite differences: the first with d=td ¼ �
ffiffiffi
2
p

c and

the second with d=td ¼
ffiffiffi
2
p

c; or vice versa, as shown in

Fig. 9.

Fig. 10 shows the directional responses at various

frequencies of the microphone array shown in Fig. 9, with

the intermicrophone distance d ¼ 20 mm and the delay

td ¼ d=
ffiffiffi
2
p

c:

Like the first-order differential microphone arrays, the

second-order differential microphone array has a direc-

tional response that is frequency dependent. At low

frequencies it corresponds well to the desired response,

and above the aliasing frequency it deviates from the

desired response. This can be observed in Fig. 10, which

shows how the shape of the directional response of the

microphone array from Fig. 9 deforms at the frequency f

¼ 7000 Hz.

Note that the directional response of the form sin 2h
can also be obtained by rotating by 458 the microphone

array of Fig. 9.

3 CONCLUSIONS

This paper presented an analysis of the sound pressure

field as a multivariate function of spatial location and

time, which helps explaining the working principles of

gradient microphones, differential microphones, and

arrays as devices for approximately measuring the

spatiotemporal derivatives of a sound pressure field and

shows their equivalence.

The presented analysis framework enables not only

analyzing the response of a given gradient or differential

microphone or microphone array, but it can also be used for

designing differential microphone arrays. The appropriate

adjustment of the microphone array parameters—such as

array orientation and shape, intermicrophone distances, and

microphone signal delays—enables meeting the desired

response requirements of the microphone array.

Fig. 7. Quadrupole microphone array used to obtain clover-

leaf directional response sin 2h.

Fig. 8. Directional responses at various frequencies of

quadrupole microphone array shown in Fig. 7, with

intermicrophone distance d¼ 20 mm.

Fig. 9. Line array with three microphones used to obtain

clover-leaf directional response cos 2h.

Fig. 10. Directional responses at various frequencies of

microphone array shown in Fig. 9, with intermicrophone

distance d¼ 20 mm and intermicrophone delay td ¼ d=
ffiffiffi
2
p

c.
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M. Kolundžija C. Faller M. Vetterli
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