
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. B. Moret, président du jury
Prof. R. Guerraoui, directeur de thèse

Prof. A. Ailamaki, rapporteur
Dr C. Cachin, rapporteur

Prof. V. Quéma, rapporteur

A High-Throughput Byzantine Fault-Tolerant Protocol

THÈSE NO 5242 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 17 février 2012

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE PROGRAMMATION DISTRIBUÉE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2012

PAR

Nikola Knezevic

. . . a programmer types in some code, compiles it, runs it, and waits for it to crash. Programs

that don’t crash are presumed to be running correctly.

— The UNIX HATERS Handbook

To my parents, my brother, and my two amazing nephews. . .

Abstract

State-machine replication (SMR) is a software technique for tolerating failures and for pro-

viding high availability in large-scale systems, through the use of commodity hardware. A

replicated state-machine comprises a number of replicas, each of which runs an agreement

protocol, with the goal of ensuring a consistent state across all of the replicas. In hostile

environments, such as the Internet, Byzantine fault tolerant state-machine replication (BFT)

is an important technique for providing robust services. During the past decade, we have seen

an emergence of various BFT protocols. In order to be adopted, besides providing correctness,

a BFT must provide good performance as well. Consequently, all of the new protocols focus

on improving performance under various conditions.

However, a closer look at the performance of state-of-the-art BFT protocols reveals that even

in best-case execution scenarios, they still remain far behind their theoretical maximum.

Based on exhaustive evaluation and monitoring of existing BFT protocols, we highlight a

few impediments to their scalability. These obstructions include the use of IP multicast, the

presence of bottlenecks due to asymmetric replica processing, and an unbalanced network

bandwidth utilization.

The goal of this thesis is to evaluate the actual impact of these scalability impediments, and to

offer a solution for a high-throughput BFT protocol in the case in which the network itself is

the bottleneck. To that end, we have developed Ring, a new BFT protocol which circumvents

the aforementioned impediments. As its name suggests, Ring uses the ring communication

topology, in the fault-free case. In the ring topology, each replica only performs point-to-point

communications with two other replicas, namely its neighbors on the ring. Moreover, all of

the replicas equally accept requests from clients and perform symmetric processing. Our

performance evaluation shows that, with the network as the bottleneck, Ring outperforms all

other, state-of-the-art BFT protocols. Ring achieves 118Mbps on the Fast Ethernet – a 24%

improvement in throughput over previous protocols.

Finally, we conducted an extensive practical and analytic evaluation of Ring. In order to analyse

benefits (and drawbacks) of Ring (and other protocols) under different settings, without

resorting to costly experimentation, we developed an analytical performance model. Our

i

performance model is based on queueing theory, and relies only on a handful of protocol-

agnostic measurements of the environment.

Keywords: algorithms, Byzantine fault tolerance, asynchronous systems, scalability, high

throughput, correctness proofs, performance, ring topology, analytic modelling, queueing

theory, replication and security.

ii

Résumé

La technique dite de State-Machine Replication, traduit en français par “réplication de machine

d’état”, est une technique logicielle permettant de tolérer les fautes et d’atteindre une haute

disponibilité dans les systèmes à grande échelle bâti avec du matériel non spécialisé. Une

machine d’état répliquée est constituée de plusieurs répliques, chacune d’elles exécutant un

protocole de consensus, dont la tâche est de maintenir un état consistent entre elles.

Dans un environnement hostile tel qu’Internet, la réplication de machine d’état tolérant les

fautes dites “Byzantines” est une technique importante pour offrir des services robustes. La

dernière décennie à vu proliférer les protocoles de réplication de machine d’état tolérant les

fautes Byzantines (dits protocoles BFT). Cependant, en pratique, en plus de fournir la garantie

d’une exécution correcte, les protocoles BFT doivent êtres performants pour être adoptés. En

conséquence les nouveaux protocoles sont spécialisé pour des types de systèmes particuliers.

Malgré cela les meilleurs protocoles BFT ont des performances très inférieures au maximum

théoriquement atteignable. Grâce à une évaluation exhaustive des protocoles BFT existants

nous mettons en lumière certaines cause de ce problème. On y retrouve l’utilisation du

multicast IP, la présence de goulots d’étranglements tels que le traitement non symétrique

des requètes, ou la mauvaise répartition de la bande passante réseau.

Cette thèse précise l’impact réel des différentes causes identifiées et propose un protocole

BFT haut-débit pour les cas dans lesquels le réseau constitue un goulot d’étranglement. Ce

protocole se nome Ring, traduit par “Cercle” en français. Comme son nom l’indique, les canaux

de communication entre répliques forment un cercle dans ce protocole. En d’autres termes,

les répliques sont organisées en cercle et une réplique ne communique que avec ses deux plus

proches voisins. De plus, chaque réplique peut recevoir les requètes des clients du système

et le traitement de celles-ci est fait de manière symétrique. Nos expériences montrent que,

lorsque le réseaux est le point faible du système, le protocole Ring dépasse le meilleur débit

parmi les protocoles BFT existants d’un facteur de 24 pourcent, pour atteindre un débit de

118Mbps dans un réseau de type Fast Ethernet.

En conclusion, nous avons évalué le protocole Ring de manière expérimentale et analytique.

Afin d’identifier les bénéfices et coûts des différents protocoles nous avons développé un

modèle analytique des performances des protocoles BFT. Ceci nous a permis d’éviter des test

difficiles à mettre en place en pratique. Notre modèle est basé sur la théorie des files d’attentes

iii

(Queuing Theory en anglais) et ne repose que sur un faible nombre de mesures faites dans

l’environnement du système.

Mots-clés : Algorithmes, fautes Byzantines, systèmes asynchrones, évolutivité, haut débit,

preuves de protocoles, performance, topologie en anneau, modèles analytiques, théorie des

files d’attente, réplication, sécurité.

iv

Zusammenfassung

Die Replikation von Zustandsautomaten ist eine Softwaretechnik, die es erlaubt herkömmliche

Hardware einzusetzen und dennoch Ausfälle zu tolerieren und die Verfügbarkeit von grossen

verteilten Systeme zu gewährleisten. Ein replizierter Zustandsautomat besteht aus einem

Satz von Instanzen die jeweils ein Vereinbarungsprotokoll ausführen um einen konsistenten

Zustand bei allen Instanzen zu erreichen. In feindseligen Umgebungen, wie z.B. im Inter-

net, ist die gegen byzantinische Fehler tolerante Replikation von Zustandsautomaten (BFT)

ein wichtiges Verfahren um robuste Dienste zur Verfügung zu stellen. Im laufe des letzten

Jahrzehnts wurden einige BFT-Protokolle entwickelt. Damit ein BFT-Protokoll Einsatz finden

kann, muss es nicht nur Korrektheit, sondern auch eine hohe Geschwindigkeit aufweisen. Aus

diesem Grund konzentrieren sich alle neuen Protokolle darauf, ihre Geschwindigkeit unter

verschiedenen Verhältnissen zu verbessern.

Eine genauere Untersuchung von aktuellen BFT-Protokollen zeigt jedoch, dass diese sogar

unter besten Ausführungsbedingungen weit unter ihren theoretischen Maximalgeschwindig-

keiten liegen. Aufgrund von vollständigen Auswertungen und Beobachtungen von existie-

renden BFT-Protokollen stellen wir einige Hindernisse zu deren Skalierbarkeit heraus. Diese

Hindernisse umfassen die Verwendung von IP-Multicast, Engpässe aufgrund von asymme-

trischer Verarbeitung durch verschiedene Instanzen und unausgeglichener Verwendung der

verfügbaren Datenrate des Netzes.

Diese Arbeit bewertet den tatsächlichen Einfluss dieser Hindernisse und erarbeitet eine Lö-

sung für ein BFT-Protokoll mit hohem Druchsatz, im Falle dass das Netz selbst den Engpass

darstellt. Hierzu entwickelten wir Ring, ein neues BFT-Protokoll, welches die zuvor genannten

Hindernisse umgeht. Wie aus dem Namen hervorgeht, verwendet Ring eine ringförmige Kom-

munikationstopologie solange kein Ausfall vorliegt. Bei der Ring-Topologie kommuniziert

jede Instanz nur mit zwei weiteren Instanzen, ihren Nachbarn im Ring. Weiterhin nehmen alle

Instanzen Anfragen von Clients im gleichen Maße entgegen und bearbeiten diese Anfragen

in gleicher Weise. Die Auswertung der Geschwindigkeit zeigt, sofern das Netz die Engstelle

darstellt, dass Ring alle anderen aktuellen BFT-Protokolle übertrifft — die erreichten 118Mbps

bei Fast Ethernet stellen eine Verbesserung von 24% dar.

Abschliessend führten wir eine umfangreiche praktische und analytische Untersuchung von

Ring durch. Um die Vorteile (und Nachteile) von Ring (und anderen Protokollen) unter ver-

schiedenen Verhältnissen zu untersuchen, ohne auf aufwendige Experimente zurückgreifen

v

zu müssen, entwickelten wir ein analytisches Geschwindigkeitsmodell. Dieses Geschwin-

digkeitsmodell basiert auf der Warteschlangentheorie und benötigt lediglich einge wenige

protokollunabhängige Messpunkte des Einsatzumfelds.

Stichworte: Algorithmen, Byzantinische Fehlertoleranz, Asynchrone Systeme, Skalierbarkeit,

Hoher Durchsatz, Korrektheisbeweise, Geschwindigkeit, Ringtopologie, Analytisches Model-

lieren, Warteschlangentheorie, Replikation und Sicherheit.

vi

Acknowledgements

As I approach the end of this inspiring, yet arduous journey, which is the process of obtaining

a Ph.D., I would like to use this opportunity to thank some of the people without whom getting

this far would not have been possible at all.

My deepest gratitude goes to my thesis advisor, Prof. Rachid Guerraoui, for giving me the

opportunity to pursue this research in his lab, and under his guidance. I am particularly

thankful to him for having had confidence in me, having given me motivation and support,

and for sharing with me an invaluable experience. Thanks to Rachid for generously guiding

me through all of the phases of my work, and, more importantly, for the full sense of freedom I

have felt while working in his laboratory, which has made my research joyful and pleasant.

My special thanks go to my previous advisor, Prof. Dejan Kostić, for inviting me to his lab in

the first place. I am thankful for his many useful advice, assistance and dedicated involvement

throughout all of our joint projects.

I thank Prof. Bernard Moret for being president of the jury. I also thank Prof. Anastasia

Ailamaki Dr. Christian Cachin and Prof. Vivien Quéma for serving on my thesis committee and

for providing me with great, insightful comments which make my thesis look more complete.

I am grateful to Vivien Quéma for sharing his experience and knowledge with me on our

projects. I owe him for teaching me many tricks, for various, yet always clear explanations of

many things, and showing me how to effectively solve problems.

I would like to thank all of the former and current lab members: Dan, Maysam, Marko, Maxime,

Radu, Mihai, Giuliano, Vasileios, Fabien, Vincent and Florian, for the numerous discussions

that we have had, and for the many activities that we have done together. I would like to

especially thank Kristine for always having time to listen to and answer my questions, for her

kindness, and for making our lab a lively, warm place. I am thankful to Dan, my friend and

office-mate, for so many interesting conversations, both on- and off-work.

vii

Acknowledgements

My gratitude also goes to Petar Maksimović who, like all great copy-editors, spotted many

errors in writing, and corrected them all in his elegant way. Without him, this thesis would be

much harder to read.

Special thanks go to my friends Aca, Deki, Nedja, Miloš, Mića, Tamara, Tanja, Voja&Flo, Simon

and many others, for spending many unforgettable moments together in Lausanne, and for

making my stay so pleasurable. I would also like to thank my friends, scattered around the

globe, Grabi&Maja, Sima&Nataša, Branka, Daca, Šale, Pak, Ruža and Teo, for being there for

me through all these years.

I thank my dear and loving Marica, for her patience and support, even though the former

goes against her nature. With her, everything becomes not only possible, but also easy and

enjoyable! I am looking forward to many mutual moments and experiences to come.

Last, but not least, I am profoundly grateful to my parents Boja and Ðuro, as well as to my

brother Jovan with his family — my two amazing nephews, Stefan and Nikola, for their love,

encouragement, and unconditional support throughout my whole life. Thank you for easing

my life immensely during all these years.

viii

Preface

This PhD thesis describes the research done at the Distributed Programming Laboratory,

School of Computer and Communication Sciences, EPFL, under the supervision of Prof. Rachid

Guerraoui, from 2009 to 2011. The work presented in this thesis is centered on high-throughput

algorithms, the accompanying challenges, and implementation techniques.

In addition to the presented material, I have also worked on Mirage [Crameri et al., 2007], an

integrated software upgrade and deployment system. Afterwards, I have briefly worked on de-

tecting and preventing inconsistencies in a deployed distributed system [Yabandeh et al., 2009].

Next, I have worked on the design and implementation of a cost-effective testbed [Knežević

et al., 2010]. The goal of this project was to implement a fully-functional networking testbed,

which would harness the power of multicore architectures in order to run many virtualized

routers on a single chip, in a time sharing manner, while retaining good performance. Some of

the evaluations presented in that paper are used in this thesis. Finally, as an introduction to

the work presented in this thesis, I worked on implementing many different BFT protocols in

the ABSTRACT framework [Guerraoui et al., 2010b].

The materials presented in this thesis are published as an LDP Technical Report [Guerraoui

et al., 2010a], or are under submission [Guerraoui et al., 2011].

List of publications

[Crameri et al., 2007] Olivier Crameri, Nikola Knežević, Dejan Kostić, Ricardo Bianchini, and

Willy Zwaenepoel. “Staged Deployment in Mirage, an Integrated Software Upgrade

Testing and Distribution System”. In: Proceedings of the Symposium on Operating

Systems Principles (SOSP). 2007.

[Guerraoui et al., 2010a] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko

Vukolić. Stretching BFT. Tech. rep. EPFL-REPORT-149105. EPFL, 2010. URL: http:

//infoscience.epfl.ch/record/149105.

[Guerraoui et al., 2010b] Rachid Guerraoui, Nikola Knezevic, Vivien Quema, and Marko

Vukolic. “The Next 700 BFT Protocols”. In: Proceedings of the European conference on

Computer systems (EuroSys). 2010.

ix

http://infoscience.epfl.ch/record/149105
http://infoscience.epfl.ch/record/149105

Preface

[Guerraoui et al., 2011] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Ali Shoker.

“Optimizing BFT Protocols: much ado about nothing?” under submission. 2011.

[Knežević et al., 2010] Nikola Knežević, Simon Schubert, and Dejan Kostić. “Towards a cost-

effective networking testbed”. In: ACM SIGOPS Operating Systems Review 43 [2010].

[Yabandeh et al., 2009] Maysam Yabandeh, Nikola Knežević, Dejan Kostić, and Viktor Kuncak.

“CrystalBall: predicting and preventing inconsistencies in deployed distributed systems”.

In: Proceedings of the Symposium on Networked Systems Design and Implementation

(NSDI). 2009.

x

Contents

Abstract (English/Français/Deutsch) i

Acknowledgements vii

Preface ix

List of figures xv

List of tables xvii

1 Introduction 1

1.1 Contributions . 2

1.2 Roadmap . 5

2 Concepts and Related Work 7

2.1 Byzantine Fault Tolerant Protocols . 7

2.1.1 Byzantine Fault Tolerance . 7

2.1.2 BFT State Machine Replication . 8

2.1.3 Overview of State-of-the-Art Protocols . 9

2.2 Related Work . 11

2.3 System Model . 13

3 Analysis of High-Throughput Working Conditions 15

3.1 Asymmetry in Resource Utilization . 16

3.1.1 CPU Asymmetry . 16

3.1.2 Network Asymmetry . 17

3.2 Protocol Inefficiencies . 19

3.3 Implementation Inefficiencies . 21

3.3.1 Connection Handling . 21

3.3.2 Message Handling On Multicore Architectures 22

3.4 Summary . 25

xi

Contents

4 Ring Design and Implementation 27

4.1 Protocol Overview . 27

4.1.1 Switching Between Instances . 29

4.2 The Abstract framework . 30

4.2.1 Overview . 30

4.2.2 Formal Specification of Abstract . 32

4.2.3 Abstract Initialization and Composition 33

4.3 Fast Mode . 34

4.3.1 Ring Authenticators . 36

4.3.2 General Notation . 38

4.3.3 Implementation . 40

4.4 Resilient Mode . 56

4.4.1 Implementation . 57

4.5 Correctness . 63

4.5.1 Fast Mode Correctness Proof . 64

4.5.2 Resilient Mode Correctness Proof . 69

5 Optimizations and Extensions 75

5.1 Optimizations . 75

5.1.1 Piggybacking . 76

5.1.2 Batching . 77

5.1.3 Read Optimization . 77

5.1.4 Out-of-Order Caching . 78

5.1.5 Checkpointing . 78

5.2 Authentication Challenges in Ring . 79

5.2.1 Optimizations and Authenticators . 79

5.2.2 Attacks On MACs . 80

5.3 Low Performance Detection . 81

5.3.1 Collected Metrics . 81

5.3.2 Slowness Detection Algorithm . 82

5.3.3 Preventing Replicas From Discriminating Clients 86

6 Performance Model 87

6.1 Queueing Theory Overview . 87

6.2 Model . 91

6.3 Modelling Ring . 95

6.3.1 Calculating the Maximal Throughput . 99

6.4 Performance Models of Other BFT Protocols . 101

6.4.1 Chain . 101

6.4.2 Zyzzyva . 102

6.4.3 PBFT . 103

6.5 Summary . 105

xii

Contents

7 Performance Evaluation 107

7.1 Experimental Setup . 108

7.1.1 System Parameters . 108

7.2 CPU Utilization . 111

7.2.1 MAC Operations . 111

7.3 Network Utilization . 114

7.4 Microbenchmarks . 115

7.4.1 4/0 Microbenchmark . 115

7.4.2 0/4 Microbenchmark . 117

7.4.3 4/4 Microbenchmark . 118

7.4.4 0/0 Microbenchmark . 120

7.4.5 Mixed Workload Microbenchmark . 121

7.5 The Impact of the Request Size . 122

7.6 The Impact of the Number of Clients . 123

7.7 Fault Scalability . 125

7.8 Accuracy of the Performance Model . 125

7.8.1 The Impact of the Request Size . 127

7.8.2 The Impact of the Execution Time . 128

7.9 Summary . 131

8 Concluding Remarks 133

Bibliography 135

About the Author 141

xiii

List of Figures

2.1 BFT library interaction with the replicated application. 9

2.2 Communication pattern of PBFT. 10

2.3 Communication pattern of Zyzzyva. 11

2.4 Communication pattern of Chain. 12

3.1 CPU utilization on different replicas, for different numbers of clients. 17

3.2 Network link utilization in Chain. 18

3.3 Network link utilization in Zyzzyva. 18

3.4 Network link utilization in PBFT. 19

3.5 Percentage of IP multicast packet drops. 20

3.6 Effect of different event loops on the throughput. 22

3.7 CPU and memory architecture of the Intel SR1560 server. 23

3.8 Description of different pinnings used in the 4-stage router processing pipeline

experiment (Figure 3.9). 24

3.9 Throughput of a 4-stage router processing pipeline, using different router-to-

core pinnings. 24

4.1 Alternating modes in Ring. 29

4.2 Time line diagram of operations in ABSTRACT. 31

4.3 Ring communication pattern in fast mode. 35

4.4 Illustration of Ring authenticators (f = 1). 38

4.5 A non-faulty execution scenario in fast mode . 46

4.6 An execution scenario after a missed message in fast mode. 50

4.7 An alternative execution scenario to the one shown in Figure 4.6. 55

4.8 The Ring communication pattern in resilient mode, for the on-behalf request. 57

4.9 A resilient-mode execution scenario for on-behalf requests without fault 58

4.10 Alternative execution to the one shown in Figure 4.9 61

4.11 The circular topology of Ring . 64

5.1 An illustration of piggybacking (f=1). 76

5.2 An illustration of batching (f=1). 77

xv

List of Figures

5.3 Illustration of a read-only operation (f=1). 78

6.1 Example of a queueing network . 88

6.2 Queueing model for a replica. 92

6.3 Representation of Ring in our model. 96

6.4 Routing probability for the representation of Ring. 97

6.5 Queueing model representation of Chain. 102

6.6 Queueing model representation of Zyzzyva. 103

6.7 Queueing network representation of PBFT. 104

7.1 Link propagation times for different message sizes, for different protocols. . . . 109

7.2 Processing times for different operations. 110

7.3 CPU utilization of Ring (and other protocols). 111

7.4 Network link utilization in the Ring protocol. 115

7.5 Throughput in the 4/0 microbenchmark. 116

7.6 Response time–throughput curve for the 4/0 microbenchmark. 116

7.7 Throughput in the 0/4 microbenchmark. 117

7.8 Response time–throughput curve for the 0/4 microbenchmark. 118

7.9 Throughput in the 4/4 microbenchmark. 119

7.10 Response time–throughput curve in the 4/4 microbenchmark. 119

7.11 Throughput in the 0/0 microbenchmark. 120

7.12 Response time–throughput curve in the 0/0 microbenchmark. 121

7.13 Throughput in the mixed workload microbenchmark. 121

7.14 Response time–throughput curve in the mixed workload microbenchmark. . . 122

7.15 Peak throughput as a function of the size of the request. 123

7.16 Throughput, as the number of client increases toward 2000, for 4KiB requests

and small replies. 124

7.17 Response time–throughput curve under heavy client load. 124

7.18 Throughput as a function of the resilience (f), with 4KiB requests and small

replies. 125

7.19 Modeled vs. measured performance with small requests 126

7.20 Modeled vs. measured performance with 4KiB requests 126

7.21 Relative difference in maximums, as the request time changes 127

7.22 The mean relative difference as the execution time changes. 129

7.23 The relative difference in maximums, as the execution time changes 129

7.24 Comparison of the modeled and the observed performance, for all of the proto-

cols, as the load and the execution time change 130

xvi

List of Tables

4.1 An overview of used variables . 41

4.2 Field names for a request . 41

6.1 Parameters used for modelling. 94

7.1 The maximum observed throughput on the testbed. 109

7.2 Parametrization of different CPU operations. 110

7.3 Comparison of the number of MAC operations. 114

xvii

1 Introduction

In the today’s society, there exists a great dependency on services provided by large-scale

computer systems, imposing a need for these services to be highly available: they should work

correctly and they should provide uninterrupted service. However, at the large-scale level,

computer failures are still considered to be the norm, rather than the exception.

Replication is an intuitive, software-based (and, thus, cost-effective) way of providing high

availability: a critical IT service is replicated over a number of machines. In a replication

scenario, a specific distributed protocol is put in charge of ensuring consistency across all

of the replicas, regardless of any malicious behaviour on part of clients or any subset of

the replicas [Bracha and Toueg, 1985; Dwork et al., 1988]. Replication consistency is usually

provided by having the protocol order the requests of the clients on all replicas of the service

(that is, make the replicas agree on what the correct order is). In addition, the replicated service

must be implemented as a deterministic state machine [Lamport, 1978; Schneider, 1990]. The

most robust replication protocols today are called BFT state machine replication protocols or,

simply, BFT protocols. BFT protocols are capable of tolerating arbitrary client failures, as well

as failures of up to one third of the replicas [Cachin, 2010; Castro and Liskov, 1999; Lamport,

2004].

For a long time, the interest in BFT protocols has remained solely theoretical, as their perfor-

mance was considered to be inadequate in a practical setting. However, more than a decade

ago, the first practical BFT protocol (called PBFT [Castro and Liskov, 1999]) appeared, opening

a new era of research in the systems community. Many protocols [Abd-El-Malek et al., 2005;

Clement et al., 2009a; Cowling et al., 2006; Guerraoui et al., 2010a; Kotla et al., 2007] have

since been proposed, with the goal of enhancing the performance of PBFT, while targeting,

in particular, its throughput and latency. These protocols do indeed provide a boost in the

best case performance of PBFT, and the obtained results have implied significant gains once

applied to the replication scheme. Moreover, in best-case executions (that is, synchronous

1

Chapter 1. Introduction

executions with no failures) they get close to the performance of non-replicated systems.

Arguably, these best-case execution scenarios are achieved frequently in practice.

However, a closer look at the performance of state-of-the-art BFT protocols reveals that even

in these best-case execution scenarios, they still remain far behind the theoretical maximum.

For instance, our experiments show that, when deployed on a Fast Ethernet network, the

most efficient BFT protocols reach a maximum throughput of 93Mbps (for 4KiB messages),

whereas the theoretical maximum [Guerraoui et al., 2010b] is 124Mbps1.

The reason behind such a discrepancy of observed throughputs lies in the fact that the state-

of-the-art protocols were implicitly optimized only for CPU-bottleneck workloads, without

giving consideration to performance in cases in which the bottleneck is, in fact, the network.

Additionally, the throughput performance issue becomes even more relevant with recent

advances in deterministic execution on multicore machines [Aviram et al., 2010; Bergan et

al., 2010], which make the leveraging of multicore architectures and the achievement of a

high CPU execution performance possible. Basically, in the near future, the presence of a

bottleneck will no longer be related to the execution speed of the replicated service, but, rather,

to the throughput of the agreement phase of the underlying replication protocol. Hence,

there exists a pressing need for the development of BFT protocols with high performance in

network-bottleneck conditions.

This thesis addresses precisely the problem of attaining high performance in cases in which

the network is the bottleneck. Furthermore, this thesis describes a novel algorithm and

implementation techniques for building highly-available, high-throughput systems which

tolerate Byzantine faults. A more detailed description of the contributions of this thesis is

provided in the following section.

1.1 Contributions

In essence, the insight of this thesis is that in a symmetric system, all components become

bottlenecks at the same time. In a non-symmetric system, some component will become the

bottleneck with a much lower utilization (compared to a symmetric system), thus limiting the

total utilization of the system. Thus, the power of symmetry lies in postponing the bottleneck

condition to a much higher utilization, that in turn enables a higher total utilization.

This dissertation explores this insight in BFT protocols, and contains the following contribu-

tions for the design, implementation, and deployment of high-throughput BFT protocols:

1. We give a thorough analysis of the bottlenecks present in current, state-of-the-art BFT

protocols, and the effects of these bottlenecks on the performance of the protocols.

1The theoretical maximum for a replicated service is n
n−1 B, where n is the number of replicas, and B is the

maximal throughput of a single network link (93Mbps on the Fast Ethernet network we are using, as reported by
the netperf tool).

2

1.1. Contributions

2. We present Ring, a new BFT protocol for high-throughput workloads. Unlike other

protocols, Ring approaches the theoretical maximum for throughput. We use formal

methods to specify the algorithm and prove its safety.

3. We perform an extensive practical evaluation of Ring, so as to assess its performance

under different settings. In addition, we develop an analytic performance model based

on queueing theory, in order to be able to reason about the performance without

resorting to costly experimentation.

In the next few paragraphs, we consider each of the contributions in more detail.

Throughput bottleneck analysis. The development and the design of Ring was influenced

by an extensive study that we have previously conducted, the goal of which was the identi-

fication of bottlenecks of the currently most-efficient BFT protocols. This study has helped

us to understand the feasibility of throughput-efficient BFT protocols protocols. Our study

(detailed in Chapter 3) has revealed the following limiting factors:

• Asymmetric replica processing: existing protocols do not equally balance the processing

load across different replicas (some replicas perform up to 20% higher CPU processing

when compared with other replicas);

• Unbalanced network utilization: existing protocols do not equally use the available

networking resources (some replicas do not send or receive any data);

• IP multicast packet drops: most BFT protocols rely on IP multicast, which is often

inefficient in highly-loaded environments, as it may result in high ratios of packet drops

(30% on the tested hardware [White et al., 2002]).

In the same chapter, we also expose message handling issues of multicores as a possible limiting

factor in reaching high throughput in the future.

Ring. The main contribution of this dissertation is our new BFT protocol, called Ring, which

circumvents all the impediments that we have discovered in our analysis. Ring attains high-

throughput performance, for several reasons:

• Ring avoids CPU bottlenecks: all of the replicas in Ring are CPU symmetric and perform

(almost) identical processing — any replica can receive a request from any client;

• Ring avoids wasting of resources: there are no underutilized network links — the load is

fully balanced across all of the available network links.

• Ring avoids IP multicast: instead, it uses a point-to-point ring topology for request

dissemination and ordering.

3

Chapter 1. Introduction

The idea of using a ring-based topology as a means for improvement of the throughput of

broadcasting protocols is not new in itself: it was adopted, for instance, in LCR [Guerraoui

et al., 2010b] and Ring Paxos [Jalili Marandi et al., 2010]. However, both LCR and Ring Paxos

focus on crash failures, while Ring is capable of handling their superset — Byzantine failures.

Tolerating Byzantine faults while maintaining a ring-based communication pattern with good

performance is the main technical difficulty in the design of Ring, and is challenging in various

aspects. For instance, a good algorithm has to ensure that a faulty replica must not trick correct

replicas into avoiding the execution of correct requests. Also, such an algorithm has to be able

to deal with the converse issue of preventing faulty replicas from forcing correct replicas into

the execution of non-existent requests, or from bypassing replicas in the ring.

Similarly to PBFT, Ring is implemented as a generic programming library that can be used to

provide Byzantine fault tolerance to various services. Additionally, Ring is implemented inside

the ABSTRACT framework [Guerraoui et al., 2010a], a framework for designing modular BFT

protocols. As such, Ring can be combined with any other protocol developed in the ABSTRACT

framework, in order to provide more versatility once the working conditions change.

Extensive practical and analytic evaluation. Even when one uses the ABSTRACT framework,

which eases the development of BFT protocols, the design and the deployment of actual

protocols is still a costly task. As noted by Singh et al. [2008] and Clement et al. [2009a], all

of the protocols behave differently under different conditions, and there does not exist a

“one solution fits all” scenario. To further complicate the deployment, protocols may exhibit

behaviour unlike the one designers anticipated and reported, once deployed on different

platforms.

Toward better understanding of the benefits of Ring, we have conducted both a practical and

analytic evaluation:

• We have performed an extensive practical evaluation of Ring on the Emulab testbed [White

et al., 2002]. Our benchmarks show that Ring outperforms other protocols in cases in

which the network is the bottleneck. More precisely, with clients issuing 4KiB requests

on a Fast Ethernet network, Ring achieves 118Mbps, whereas other protocols remain at

93Mbps.

• We have developed a theoretical performance model based on queueing theory, in order

to be able to reason about the performance and behaviour of BFT protocols on various

platforms. By using representations of different protocols in our performance model

and some protocol-agnostic measurements2, we have analysed the performance of Ring

in various settings. A thorough analysis shows that our analytic model matches our

practical evaluation.

2Such as the speed of different cryptographic operations, kernel interactions (the cost of issuing syscalls and/or
servicing times for managing multiple connections), and estimates on the data structures handling times, which
the protocol designer can either leave out, measure, or provide an estimate based on past experience.

4

1.2. Roadmap

1.2 Roadmap

The rest of the thesis is organized into seven chapters.

In Chapter 2 of the thesis, we give a gentle introduction to Byzantine Fault Tolerant protocols,

followed by an overview of the previous, state-of-the-art protocols and related work. Finally,

there we also describe the system model which was used to design Ring.

Next, in Chapter 3, we present our findings regarding the impediments to protocol scaling,

along with an experimental evaluation.

Chapter 4 is the central point of the thesis, where we present the design and implementation

details of Ring. Ring uses two operational modes to handle client requests. In this chapter, we

describe both of these modes, the implementation of each of the modes, and provide proofs

of their correctness.

The optimizations used in Ring are introduced in Chapter 5. There we also give an outline of

authentication challenges on a ring topology in the presence of such optimizations. Finally, in

this chapter we propose an algorithm for the detection of the presence of slow replicas in a

system, so as to avoid certain kinds of performance attacks [Amir et al., 2008].

In Chapter 6, we describe our analytic framework for modelling the performance of BFT

protocols. Consequently, we present our analytic tool for determining the best working

conditions of a set of protocols, for any given platform.

In Chapter 7, we present the results of our extensive evaluation of Ring, followed by a compar-

ative assessment of the accuracy of our performance model.

Finally, with Chapter 8, we conclude the thesis.

5

2 Concepts and Related Work

This introductory chapter lays out the foundation for the remaining chapters to come. First,

we briefly introduce the notion of Byzantine Fault Tolerance (BFT). Next, we introduce all of

the available, state-of-the-art protocols used later in the analysis of scaling impediments and

the evaluation. Additionally, in this chapter we catalog the related work. Finally, we describe

the system model under which Ring operates.

2.1 Byzantine Fault Tolerant Protocols

As mentioned in Chapter 1, BFT protocols allow for highly-available services, robust against

arbitrary faults, through the use of replication [Lamport et al., 1982]. In this section, we give a

short overview of Byzantine Fault Tolerance and the mechanism employed in BFT protocols

for guaranteeing consistency. The short overview is followed by a description of the current,

state-of-the-art protocols.

2.1.1 Byzantine Fault Tolerance

Byzantine fault tolerant systems [Lamport et al., 1982] are resilient to arbitrary (Byzantine)

faults which may occur during the execution of an algorithm in a distributed system. Byzantine

faults encompass both omission failures (for instance, crash failures, of failures to receive a

message) and commission failures (for instance, incorrect processing of a request, sending

inconsistent responses, or maliciously corrupting a state). Systems that are not resilient

to Byzantine faults may respond to such failures in any unpredictable manner. Correctly

functioning components of a BFT system will be able to correctly provide the services of the

system, assuming there are not too many1 Byzantine faulty components. The Byzantine failure

1Byzantine fault tolerant systems can tolerate up to one third of faulty components, as shown by Bracha and
Toueg [1985]; Lamport [2004]; Lamport et al. [1982]; Pease et al. [1980].

7

Chapter 2. Concepts and Related Work

assumption models real-world environments in which computers and networks may behave

in unexpected ways due to hardware failures, network problems, or even malicious attacks.

Members of a BFT distributed system are called processes. Processes are a logical abstraction,

represent the execution path of the distributed algorithm, and take steps in the execution. A

faulty process is one which at some point exhibits any type of failure. A process which is not

faulty is correct. A BFT algorithm must cope with any failure and satisfy the properties of the

problem it is designed to solve. The number of faulty processes a BFT algorithm could tolerate

is called the resilience of the algorithm, and is usually denoted f . Naturally, there is an upper

bound on the number of faults that any BFT algorithm can tolerate [Pease et al., 1980] — a

system of n participants tolerates up to one third of faulty components: n ≥ 3 f +1.

2.1.2 BFT State Machine Replication

BFT state machine replication consists of replicating a service over a group of servers (called

replicas). Each of the replicas maintains a set of state variables, which are handled by a

set of operations which read or modify the variables in atomic fashion. Moreover, these

operations need to be deterministic, and each of the operations needs to be executed in the

same manner on all of the replicas. In other words, assuming the same initial state on all of

the replicas, executing the same operation on any replica should generate the same final state.

The properties that a state machine replication algorithm must satisfy are:

• safety: all correct replica processes execute the same requests in the same order;

• liveness: all correct requests from the clients processes are eventually executed.

These properties could be achieved either through agreement-based, or through quorum-

based communication schemes [Lynch, 1996].

Agreement-based protocols were initially proposed for Byzantine-fault-tolerant state machine

replication [Cachin, 2000; Cachin and Poritz, 2002; Castro and Liskov, 1999; Schneider, 1990;

Zhou et al., 2002]. This class of protocols relies on one primary replica to define a sequential

order of client operations, and an agreement protocol which runs amongst the replicas and

ensures an agreement on this ordering. This agreement may sometimes, in the presence of

faults, have multiple phases of all-to-all communication [Castro and Liskov, 1999; Kotla et al.,

2007]. A minimum of 3 f +1 replicas are required for the system to be able to tolerate f Byzan-

tine faults [Bracha and Toueg, 1985]. Hence, an increase in the number of tolerated faults leads

to an increase in message load, which scales quadratically due to all-to-all communication,

and may, in turn, pose a scalability problem.

An alternative approach utilizes responses from a quorum of correct replicas, rather than

relying on agreement among replicas [Malkhi and Reiter, 1997]. These protocols are inherently

optimistic, as each client contacts a quorum of replicas that independently order each of the

8

2.1. Byzantine Fault Tolerant Protocols

operations. A quorum represents a set of replicas, such that any two quorums intersect on at

least one correct replica. In quorum-based communication, operations complete only if the

assigned ordering by each of the replicas is consistent. Otherwise, quorum-based schemes

require expensive reconciliation phases (and, thus, have poor performance). This occurs most

often during write contention, where multiple clients attempt to perform a write operation

at the same time. Since high-throughput workloads mostly exhibit high-contention, these

protocols are not suitable for the workloads of interest in this thesis.

Interfacing the Service. Most BFT protocols interact with the state machine (which they

replicate) as a library. Figure 2.1 outlines the use of such a library. The library is placed as a

thin shim beneath the replicated application, on both the replicas and the clients. Clients

send messages through the library, which encapsulates the request, adding its own (necessary)

headers and authenticators. Replicas receive these messages in an event-driven loop, and

exchange them further. Once the replicas have reached the execution point, they unwrap

the payload, and make an up-call to the application to execute the request. Lastly, replicas

wrap the response, send it to the client, that unwrap the reply only if the message can be

authenticated, and perform an up-call to the application client code.

!"#$%&'()(* !"#$%&'()(* !"#$%&'()(* !"#$%&'()(*

!"#$%&'()(* !"#$%&'()(*

)++%&,)-&./)++%&,)-&./)++%&,)-&./)++%&,)-&./

,%&0/-$,.10,%&0/-$,.10

/0-2.(3&/4$56'5-()-0

Figure 2.1: BFT library interaction with the replicated application.

2.1.3 Overview of State-of-the-Art Protocols

In this section, we give an overview of the available, state-of-the-art BFT protocols. We focus on

protocols known to provide high throughput: PBFT [Castro and Liskov, 1999], Zyzzyva [Kotla et

al., 2007], and Chain [Guerraoui et al., 2010a]. These three protocols rely on a dedicated replica

which receives requests, called the primary (or the head in Chain). The primary (respectively,

the head) assigns sequence numbers to requests and forwards them to other replicas. It is

important to note that all of these protocols require at least 3 f +1 replicas to tolerate f faults

(which is optimal, by Bracha and Toueg [1985]; Lamport [2004]). Here, we do not describe

9

Chapter 2. Concepts and Related Work

quorum-based protocols [Abd-El-Malek et al., 2005; Cowling et al., 2006]2, which are known

to perform poorly under contention [Singh et al., 2008].

PBFT. PBFT is the first practical BFT protocol presented in the systems research. The

communication pattern of PBFT [Castro and Liskov, 1999] is depicted in Figure 2.2. PBFT

relies on a dedicated replica, called the primary, to order requests. Clients send requests to

the primary. There are three rounds of communication between the primary and the backup

replicas, and they are PRE-PREPARE, PREPARE, and COMMIT.

After the primary receives a request from a client, it appends a sequence number to this

new request and broadcasts a PRE-PREPARE message to all of the replicas containing the

ordered request. When a backup replica receives the PRE-PREPARE message, it acknowledges

the message by broadcasting a new PREPARE message to all of the other replicas. As soon

as any replica receives a quorum of 2 f +1 PREPARE messages, it promises to commit the

request in its local history (at the sequence number appended to the request by the primary)

by broadcasting a COMMIT message. Similarly, when a replica receives a quorum of 2 f +1

COMMIT messages, it executes the request and replies to the client. The client commits the

request if it receives f +1 matching replies. Otherwise, the client retransmits the request.

If the request does not commit after a certain time, the protocol executes a leader election

protocol to change the primary. This part of the protocol is not executed in the common case

(synchronous network, no faults), and, thus, we do not describe it in this thesis.

!"#$%&

'(#)*(+

($'"#!*,-

($'"#!*,.

($'"#!*,/

!"#$"%& '!"('!"')!" '!"')!" *+,,-& !"'./

Figure 2.2: Communication pattern of PBFT.

Zyzzyva. Zyzzyva is a successful, high-throughput BFT protocol, that improved upon PBFT.

Zyzzyva relies on speculation in order to achieve high performance. The speculation relates

to the fact that in the common case there is no faults, and all (correct) replicas will execute

requests in the correct order. Thus, there is no need to agree among replicas on the correct

order of requests, and it is only necessary to trust one replica to impose the correct ordering of

requests.

The communication pattern of Zyzzyva [Kotla et al., 2007] is depicted in Figure 2.3. Similarly

to PBFT, Zyzzyva relies on a primary to order requests, and clients to issue requests to the

primary. The primary assigns a sequence number to a request and multicasts it to other

2These protocols do not rely on a dedicated replica to order requests.

10

2.2. Related Work

replicas3. All of the replicas (including the primary) speculatively execute the request and

reply to the client. Replicas include the digest of their history in their reply. If the client receives

3 f +1 matching replies, it commits the request.

In the case where client does not receive 3 f +1 matching replies, the protocol executes a

slower path, in order to reconcile local histories of the replicas. This part of the protocol is not

executed in the common case (synchronous network, no faults), and we do not describe the

reconciliation protocol in this thesis.

!"#$%&

'(#)*(+

($'"#!*,-

($'"#!*,.

($'"#!*,/

!"#$"%&
'!("!
!"#$"%& %)"*+!"),-

Figure 2.3: Communication pattern of Zyzzyva.

Chain. Chain is another high-performance protocol, that improves upon PBFT. Chain imple-

ments efficient pipeline topology in order to achieve high-throughput in fault-free executions.

When faults occur, Chain relies on a PBFT-like, backup protocol to handle the request dissemi-

nation.

The communication pattern of Chain [Guerraoui et al., 2010a] is depicted in Figure 2.4. Chain

relies on two additional, distinct replicas: the head and the tail. All replicas are arranged in a

chain (hence the name of the protocol). A client sends a request to the head, which assigns a

sequence number to the request. The head then forwards the request to the next replica in

the chain. Each replica executes the request, appends it to its local history, and forwards the

request until it reaches the tail. Finally, the tail replies to the client. The last f +1 replicas

include the digest of their history in the forwarded request, which the tail includes in the reply

to the client. If these digests match, the client commits the request. Otherwise, the client

resorts to a backup protocol to commit the request. This backup protocol is shared by all of

the protocols implemented in the ABSTRACT framework, and Vukolic [2008] gives its detailed

description.

2.2 Related Work

In the previous section, we described PBFT, Chain, and Zyzzyva. In this section, we contrast

these protocols, as well as other relevant work, to Ring, our novel, high-throughput protocol.

3Both Zyzzyva and PBFT implement a specific optimization for large requests, which consists in having clients
multicast their requests to all of the replicas. Nevertheless, this optimization drastically decreases performance
(due to IP multicast packet drops, as explained in Section 3.2).

11

Chapter 2. Concepts and Related Work

!"#$%&

'(#)*(+,-$*.

($'"#!*/0

($'"#!*/1

&*#"

Figure 2.4: Communication pattern of Chain.

PBFT [Castro and Liskov, 1999], Zyzzyva [Kotla et al., 2007] and Chain [Guerraoui et al., 2010a]

were known to be the most efficient BFT protocols in terms of throughput under high load. We

show that, unlike Ring, none of these protocols features both symmetric CPU processing across

replicas and balanced network utilization across different links. Moreover, our evaluation

shows that Ring achieves up to 27% higher throughput than all these protocols.

Scrooge [Serafini et al., 2010] is a primary-based protocol similar to Zyzzyva and PBFT. It

reduces the number of replicas needed to achieve low-latency despite faults. In the best case,

Scrooge exhibits the same performance as Zyzzyva.

Quorum-based protocols like HQ [Cowling et al., 2006], Q/U [Abd-El-Malek et al., 2005], and

Quorum [Guerraoui et al., 2010a] exhibit low latency under very low load, when requests are

spontaneously ordered by the LAN switch. When the load increases, these protocols fail to

achieve high performance: the spontaneous order observed by the different replicas is often

different, which requires replicas to be frequently reconciled, thus resulting in performance

degradation.

A set of so-called robust BFT protocols have been recently designed: Aardvark [Clement et al.,

2009a], Prime [Amir et al., 2008], Spinning [Veronese et al., 2009] and Zyzzyvark [Clement et al.,

2009b]. These protocols aim at offering good throughput when faults occur. Unlike Ring, these

protocols do not optimize performance for the non-faulty case. However, their performance

under faults is better than that of Ring, and an interesting research challenge would be to

design a robust version of the Ring protocol.

A very recent position paper addresses the problem of building scalable BFT protocols [Kaprit-

sos and Junqueira, 2010]. The idea is to improve the throughput of replicated state machine

protocols by executing the same protocol multiple times on different (intersecting) sets of

machines. This idea is complementary to the one presented in this thesis, and indeed, to

get the most benefit out of this multiple-execution mechanism, it is necessary to have a very

efficient base protocol.

As we have pointed out, in some of the previous works (Ring Paxos [Jalili Marandi et al., 2010]

and LCR [Guerraoui et al., 2010b]), the use of a ring topology in the context of total-order

broadcast protocols has been proposed. Ring is not a simple extension of these protocols, as

it tolerates Byzantine faults of both replicas and client, while Ring Paxos and LCR can only

tolerate crash faults, which makes their design significantly easier. Another difference between

12

2.3. System Model

Ring Paxos and Ring is that the former relies on IP multicast to disseminate sequence numbers,

whereas the latter does not. Finally, despite running in a crash-fault environment, Ring Paxos

achieves lower throughput than Ring.

2.3 System Model

Our model and assumptions are similar to those made by all of the current BFT protocols [Cas-

tro and Liskov, 1999; Clement et al., 2009a; Cowling et al., 2006; Kotla et al., 2007].

First, we assume a message-passing distributed system using a fully connected network

among participants: clients and servers. The links between processes are asynchronous and

unreliable: messages may be delayed or dropped (link failures). However, we assume fair-loss

links: a message sent an infinite number of times between two correct processes will be

eventually received. We further assume existence of synchronous periods: any message sent

between two correct processes is delivered within a bounded delay, known to the sender and

the receiver, if the sender retransmits the message until it is delivered.

Second, we assume a Byzantine failure model in which (faulty) replicas or clients may behave

arbitrarily. Replicas are assumed to fail independently, and we assume an upper bound f on

the number of faulty replicas in a given window of vulnerability. There is no upper bound on

the number of faulty clients.

Next, we assume the existence of a strong adversary, who may coordinate the actions of

faulty nodes in an arbitrary manner. However, the strong adversary cannot see the state of

correct replicas. This adversary cannot subvert standard cryptographic assumptions about

collision-resistant hashes, encryption and digital signatures. Furthermore, we assume that the

replicated state-machine is deterministic.

Finally, our design ensures safety in an asynchronous network which can drop, delay, corrupt,

or reorder messages. Liveness is guaranteed only under eventual synchrony [Dwork et al.,

1988].

13

3 Analysis of High-Throughput
Working Conditions

Our goal is to design an effective protocol for conditions in which the network is the bottleneck.

In order to expose and better understand the impediments of throughput scaling in the

existing protocols under such conditions, we have analysed the available implementations

of PBFT [Castro and Liskov, 1999], Zyzzyva [Kotla et al., 2007]1, and Chain [Guerraoui et al.,

2010a]. Although we do not claim that our list is exhaustive, here we highlight the main

impediments toward achieving high throughput: asymmetric replica processing, unbalanced

network utilization, extraneous processing, and IP multicast packet drops.

Unsurprisingly, the main reasons for poor scalability are due to an imbalance in resource

utilization — some replicas become bottlenecks before other replicas, cutting off possibilities

for further performance gains. In general, the prerequisite for achieving high performance

is efficient execution, in which no time is wasted on unnecessary actions. In the case of

unbalanced network utilization, protocols either do not utilize all of the physical network

links, or send a lot of excess data per request. Similarly, the use of IP multicast can be seen

as introducing unnecessary work, due to higher chances of retransmissions, as this protocol

incurs excessive packet drops under load.

Protocols performing superfluous actions may also cause a CPU to become the main bot-

tleneck. For example, processing a large number of messages in bursts causes the kernel

to waste a lot of time delivering messages to the application, if the mechanism of delivery

is not efficient. Also, in certain circumstances, the memory sub-system cannot optimally

transport the messages from the network card, through the kernel, and finally into the ap-

plication [Menon et al., 2006]. As Dobrescu et al. [2009] and Egi et al. [2008] point out, no

processor can handle the Gigabit Ethernet throughput with small messages, precisely due

to the aforementioned reasons. Thus, in order to get the highest possible performance, one

1We could actually not conduct experiments with the original Zyzzyva code base, as (1) the implementation is
incomplete, and (2) there are bugs which prevent from running experiments with a high input load. Therefore, we
have used a different implementation of Zyzzyva, called ZLight [Guerraoui et al., 2010a].

15

Chapter 3. Analysis of High-Throughput Working Conditions

needs to resort to using a multicore processor, where processing is carefully placed over mul-

tiple cores, with a clear separation of roles present [Egi et al., 2008; Kohler et al., 2000]. This

thesis does not consider Gigabit Ethernet since, under that setting, the CPU becomes the first

bottleneck in BFT protocols2. However, it is still important to mention message handling

on multicores as a source of possible obstructions toward high performance, as there is new

research in networking [Dobrescu et al., 2009] and deterministic execution [Birman et al.,

2009] which suggests that handling Gigabit Ethernet messages may push the execution into

being network-bound.

To explore and to assess the effect of each of these limitations in achieving high throughput,

we have run different experiments on the Emulab [White et al., 2002] networking testbed. In

each of the experiments, we have used pc3000 machines – Dell PowerEdge 2850s systems,

with a single 3GHz Xeon processor, 2GiB of RAM, and 4 available network interfaces. Each

of the machines runs Ubuntu 8.04, with the default kernel (2.6.24-28). Every replica runs on

a separate machine, while the clients are deployed over a total of 15 machines. In all of our

experiments, we have used a topology in which replicas belong to one Fast Ethernet LAN, and

clients communicate with replicas over a second Fast Ethernet LAN. The reason for choosing

this topology is that it yields significantly better performance, especially for Zyzzyva and PBFT,

which can be explained by the fact that such a topology reduces the number of IP multicast

packet drops.

In our experimentation, we have used a closed-loop benchmark popularized by all of the

state-of-the-art BFT protocols [Castro and Liskov, 1999; Guerraoui et al., 2010a; Kotla et al.,

2007]. In this benchmark, clients are deployed on a (possibly different) set of machines, from

which they issue requests in a closed-loop manner: each client issues a new request only after

it has received a reply to its current request. The benchmark makes it possible to modify the

size of the requests which are issued by clients and the size of the replies which are generated

by the replicas.

3.1 Asymmetry in Resource Utilization

Whenever there is an asymmetry in resource utilization, one of the resources becomes the

bottleneck before the others do [Bolch et al., 2005]. Such behaviour is undesirable, because

this one resource effectively limits the others, and the system has underutilized, idle resources.

In this section, we measure the asymmetry present in the current BFT protocols.

3.1.1 CPU Asymmetry

As we have seen in Section 2.1.3, Chain, Zyzzyva and PBFT all rely on a dedicated replica to

handle incoming requests from clients. We monitor the CPU load at each of the replicas, in

2This is mostly due to cryptographic operations.

16

3.1. Asymmetry in Resource Utilization

order to detect whether these replicas have a higher CPU load than other replicas and are,

thus, bottlenecks.

In order to monitor the CPU load, we use the previously described benchmark. The clients

issue 8-byte requests, and we vary the number of clients so as to inject different levels of load.

Each of the clients sends 10’000 requests, and we measure the CPU load of different replicas

with the sar utility [Godard, 2010]. The results are shown in Figure 3.1 for 40, 120 and 200

clients, respectively. For each of the protocols, the first replica (replica 0) is the one handling

incoming requests (primary in PBFT and Zyzzyva and head in Chain).

Number of Clients

C
P

U
 U

ti
liz

a
ti
o
n

0

20

40

60

80

100

Chain

40 120 200

Zyzzyva

40 120 200

PBFT

40 120 200

Replica

r0

r1

r2

r3

Figure 3.1: CPU utilization on different replicas, for different numbers of clients.

We observe that for each protocol, the replica receiving client requests has a higher CPU load.

The difference is quite important for Zyzzyva and Chain (about 20% higher CPU load). This

can be explained by the fact that the primary (respectively, head) receives all of the client

requests (while it also manages all of the client connections), thus performing more work

(such as connection handling and cryptographic operations) than other replicas. Regarding

Chain, we can observe that the tail also performs more work than other replicas, which is

explained by the fact that it sends replies to clients. Interestingly, we remark that PBFT has

lower CPU consumption than other protocols, and that the CPU usage increase observed

at the primary is negligible. We explain this behaviour with the fact that, for every received

message, the nodes in PBFT have 4 communication rounds involving an IP multicast. Thus,

the replicas in PBFT spend more time sending requests, than actually processing them.

3.1.2 Network Asymmetry

Throughput inefficiency can also be caused by an unbalanced utilization of the available

network bandwidth. More precisely, if the network links are not used equally, some may

become bottlenecks and limit performance, while others can remain underutilized. Here, we

17

Chapter 3. Analysis of High-Throughput Working Conditions

Replica

N
o
rm

a
liz

e
d
 T

o
ta

l
B

y
te

s

0.0

0.2

0.4

0.6

0.8

1.0

r0 r1 r2 r3

Direction

in

out

Figure 3.2: Network link utilization in Chain.

Replica

N
o
rm

a
liz

e
d
 T

o
ta

l
B

y
te

s

0.0

0.2

0.4

0.6

0.8

1.0

r0 r1 r2 r3

Direction

in

out

Figure 3.3: Network link utilization in Zyzzyva.

study a setup with 4 replicas. To achieve good performance, each of the replicas is equipped

with two network interfaces: one for client-to-replica communications, and one for replica-

to-replica communications. We monitor the number of bytes which are sent/received by

the replicas for replica-to-replica communications, while the clients issue 4KiB requests.

Figures 3.2, 3.3, and 3.4 illustrate the normalized amount of sent and received bytes over each

of the links. In other words, these figures shows how many bytes are sent (or received) for each

byte received from a client. The bars in (out) denote the normalized amount of data on the

incoming (respectively, outgoing) links to (respectively, from) the replica, that is, how many

bytes were sent (respectively, received) for each byte received from a client.

18

3.2. Protocol Inefficiencies

Replica

N
o
rm

a
liz

e
d
 T

o
ta

l
B

y
te

s

0.0

0.2

0.4

0.6

0.8

1.0

r0 r1 r2 r3

Direction

in

out

Figure 3.4: Network link utilization in PBFT.

We observe that every protocol exhibits an unbalanced network utilization as well. In Chain,

the incoming link of the head is not used3. Indeed, no replica sends messages to the head.

For similar reasons, the outgoing link of the tail is not used. In Zyzzyva, the primary only

uses its outgoing link (it does not receive any messages from other replicas), whereas all of

the other replicas only make use of their incoming link (they do not send messages to other

replicas). Finally, PBFT uses all of the links, but the incoming link of the primary and the

outgoing links of all other replicas are still underutilized: the slight difference with Zyzzyva

stems from different amounts and sizes of PREPARE and COMMIT messages.

3.2 Protocol Inefficiencies

Another source of throughput inefficiency that we have identified is the usage of IP multicast.

Both Zyzzyva and PBFT use IP multicast to send a message to a group of replicas. This

optimization might, however, be hazardous to performance, due to packet drops. To quantify

the potential impact of IP multicast, we run a simple experiment, in which there is a set of

machines which are simultaneously multicasting messages. We vary the number of machines

— 3, 6 and 9. Each of the machines multicasts 4KiB packets to a dedicated machine, which

only listens for incoming traffic (a sink). We also vary the sending rate to achieve a total

aggregate throughput in the range of 70Mbps to 110Mbps. We choose values higher than the

maximum throughput on the Fast Ethernet network (100Mbps) to model the fact that senders

cannot be coordinated in Byzantine environments. Figure 3.5 shows the changes in loss rate

as the sending rate of each sender increases, for different number of senders. Some points on

Figure 3.5 are annotated with the total aggregate throughput at the sink.

3Because all replicas have NICs, and the other NIC receives clients requests

19

Chapter 3. Analysis of High-Throughput Working Conditions

Throughput per sender (Mbps)

L
o
s
s
 r

a
te

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

● ● ●

●

●

90 Mbps

100 Mbps

110 Mbps

90 Mbps

100 Mbps

110 Mbps

90 Mbps

100 Mbps

110 Mbps

10 15 20 25 30 35

Number of senders

● 3

6

9

Figure 3.5: Percentage of IP multicast packet drops.

We observe that the loss rate increases non-linearly when the aggregate throughput goes

above the link speed. Moreover, the loss rate increases with the number of servers in a group,

although the rate stays constant. For example, with 3 servers sending at 36.6Mbps, almost

every 4th packet is dropped. In contrast, with 9 senders serving a total aggregate rate of

110Mbps (each server sends only 12.2Mbps), every 3rd packet is dropped (these results are

consistent with similar experiments for Gigabit Ethernet networks presented by Jalili Marandi

et al. [2010]).

The packet drops can be explained by the fact that IP multicast is an unreliable protocol:

under high contention, either machines or the connecting switches drop excess packets [Jalili

Marandi et al., 2010]. This leads to retransmissions, which, in turn, congest the network even

more. Moreover, the ratio of new versus retransmitted messages drops, which lowers the

throughput. These effects are known as multicast storms, and are well known to disrupt entire

data centres [Birman et al., 2009; Vigfusson et al., 2010]4.

Note that, with the network topology that we use (a different Fast Ethernet LAN for clients-to-

replicas communications and for replicas-to-replicas communications), multicast problems

mostly affect PBFT. Zyzzyva is not affected, as there is only a single sender in the multicast

group. In contrast, we have observed that in a configuration with only one Fast Ethernet LAN,

Zyzzyva is affected by the clients-to-replicas traffic, which creates contention and leads to IP

multicast packet drops. Notice, finally, that these experiments explain the poor performance

of enabling the client-multicast optimization implemented in PBFT and Zyzzyva. Indeed, with

4IP multicast losses can be reduced by carefully configuring buffer sizes, and/or synchronizing distributed
senders (as in the Spread communication toolkit [Amir et al., 2004]). However, this is a difficult, if not impossible
task in a Byzantine environment, as malicious replicas can simply send traffic at high rate, disrupting complete
communication in the group.

20

3.3. Implementation Inefficiencies

this optimization enabled, all of the clients can potentially multicast requests concurrently,

resulting in numerous packet drops and a drastic decrease in performance.

3.3 Implementation Inefficiencies

In the previous sections, we have discussed various hindrances toward high-throughput

performance, all of which stem from protocol design. In this section, we identify some of

the impediments which could further limit the maximum throughput of a protocol, even if

it were designed without the aforementioned inefficiencies. These inefficiencies come from

the implementation and deployment. We highlight two important issues, namely connection

handling and message pipelining on multicore architectures.

3.3.1 Connection Handling

High-throughput environments can sometimes be characterized by a large number of clients

accessing servers. When using connection-less protocols, handling messages from clients does

not require any additional considerations for the main processing loop. However, connection-

less protocols may incur more message losses, implying some sort of trade-off between

simplicity and performance. On the other hand, connection-oriented protocols (such as TCP)

have implicit message retransmissions, but require additional considerations when handling

many clients.

The main implementation problem when using a connection-oriented protocol is how to

handle a large number of concurrent connections simultaneously at the server, without a

degradation in performance. Even checking for availability of the data on a connection can

take precious time, and with a large number of connections present, this unnecessary work

becomes rather cumbersome. Therefore, when a large number of connections is present, the

server needs to focus only on those connections where events (such as new data arriving)

occur, and disregard any inactive connections5. For that reason, an efficient event-dispatching

mechanism is needed to inform the server when (and where) the data is ready. The com-

munity has already tackled this problem, named C10K [Kegel, 2006], which describes this

limitation observed on most of the web-servers — more precisely, the lack of ability to handle

thousands of simultaneous connections. These studies have sought to improve mechanisms

and interfaces for obtaining information about the state of connections from the operating

system [Banga and Mogul, 1998; Libenzi, 2002; Provos et al., 2000]. As suggested by Gammo

et al. [2004], the often used select system call does not scale well, as the kernel needs to be

notified about all of the connections of interest, and return the required information. Also,

select has a limitation in the number of connections it can monitor in one call (most com-

monly, 1024 connections). The same study has found that the more efficient epoll offers

5Otherwise, the main processing logic might get blocked waiting for the data to arrive.

21

Chapter 3. Analysis of High-Throughput Working Conditions

much higher scalability, due to a separation of mechanisms for obtaining events from the ones

used to declare and control interest in events.

Event loop type

T
h

ro
u

g
h

p
u

t
[o

p
/s

]

48000

49000

50000

51000

52000

epoll poll select

Figure 3.6: Effect of different event loops on the throughput. Boxes represent the standard
deviation, while the mid-line represents the mean of the dataset. Vertical lines for each event
represent the range of observed throughputs.

To measure the effect of connection handling, we have added support for different event

processing loops in Chain — namely, a select, poll, and an epoll event loop. Based on a

configuration parameter, Chain uses one of these three event processing loops. The rest of

the implementation has remained unchanged. In the experiment, we have used 240 clients to

connect to our set of replicas, and we have repeated each of the experiments 10 times, in order

to achieve statistically significant accuracy. In order to emphasize the event-processing loop

effects on CPU processing, all of the clients have sent 8B requests (effectively saturating the

CPU) in a closed-loop, and have received 8B replies. Figure 3.6 reports the observed average

throughput for these 10 runs, with standard deviation. The obtained results suggest that

replacing select with the epoll event loop increases performance by 6%, which confirms

the premise about the importance of proper connection handling in order to achieve high

throughputs.

3.3.2 Message Handling On Multicore Architectures

In this section, we present an important implementation detail for high-throughput process-

ing, related to multicore architectures. Since multicore architectures are becoming prevalent,

a reasonable assumption would be that all of the future BFT protocols will utilize them, in one

way or another. The presented findings were obtained in a context of a different project [Kneže-

vić et al., 2010], but are also applicable to BFT protocols, as high-throughput environments

usually encompass a massive processing of messages.

One of the major issues with current BFT protocol implementations is their inherent single-

thread execution model, stemming from the transformation from pseudo-code to the real-

22

3.3. Implementation Inefficiencies

ization. The whole pipeline of the execution occurs in a single thread: message verification,

message handling, execution within the state machine, and message authentication. This rep-

resents a serious bottleneck, and may be changed in the future [Birman et al., 2009]. However,

even in such configurations, once the application issues a send call to dispatch the request,

the kernel takes over the message, and may perform the actual sending on a different core.

Even if the execution pipeline is partitioned over multiple threads, these different processing

contexts may occur on different cores. Either way, such a behaviour creates stress on the

memory subsystem, possibly reducing overall performance, as it increases the chance of the

CPU becoming the bottleneck. Thus, a well-thought, efficient implementation and a careful

placement of processing contexts are necessary.

Figure 3.7: CPU and memory architecture of the Intel SR1560 server.

In order to evaluate the impact of a processing unit placement inside a single server, we have

conducted the following experiment. The hardware platform is an Intel SR1560 Series rack 1U

server with 2 Intel Quad-Core Xeon X5472 processors running at 3GHz (Figure 3.7). Each CPU

is equipped with 12MiB of L2 cache (2×6MiB). The machine has 8GiB of 800MHz RAM that

is accessible over the 1600MHz Front Side Bus. Figure3.7 also shows the memory architecture

of the Intel SR1560 server. Each core has its own small L1 cache, and L2 caches are shared by

pairs of cores. Each CPU is connected to the memory banks through the northbridge, via one

Front-side bus. The major obstacle in achieving high throughputs in such an environment is

the hierarchical structure of the memory, and the limited throughput of the memory bus.

For this experiment, we have used FreeBSD-RELEASE-p3 7.1, and all of the measurements

were done for processing inside the kernel. On each of the cores, we have run a Click 1.6.0

instance [Kohler et al., 2000], with our patches so that it could work under FreeBSD. Each of

the cores did some simple processing of a UDP packet (checksumming, destination checking).

We have used a pipelined, source-sink topology in this experiment, where router 0 generates

messages (the source), while router 3 discards them (the sink). Each of the routers on this

virtual topology takes the message from the previous router in the pipeline. Several config-

urations that we have used in this experiment are shown in Figure 3.8. In this topology, the

message is copied from one L2 cache to the L2 cache of the processing router. If the next core

in line to process the message does not share its L2 cache with the previous core, the modified

portion of the message is transferred back to the main memory and, subsequently, the whole

23

Chapter 3. Analysis of High-Throughput Working Conditions

packet will be copied to the L2 cache of the following core. As these actions repeat for each of

the hops in the topology, significant memory bandwidth is lost on these transfers. Moreover,

the whole system is slowed down, because the new messages can not be transferred, as the

memory subsystem is working at its peak throughput. Thus, it is important to keep the packets

in L2 cache as much as possible, or, in other words, process them locally as much as possible.

Figure 3.8: Description of different pinnings used in the 4-stage router processing pipeline
experiment (Figure 3.9).

Pinning configuration

k
p
p
s

0

50

100

150

200

P Q R X Y Z

Request size

74

576

1500

Figure 3.9: Throughput of a 4-stage router processing pipeline, using different router-to-core
pinnings.

Figure 3.9 shows how the throughput changes as we vary the placement of the routers (depicted

in Figure 3.8). For each of the configurations, the throughput is shown for 74, 576 and 1500B

Ethernet packets6. As expected, larger messages lead to an increase in overall throughput that

6The minimum, the average, and the maximum size of Ethernet packet.

24

3.4. Summary

the system can achieve, although the number of messages drops. The reason for this is the

fact that the routers spend more time processing larger packets, thus reducing the stress on

the memory subsystem.

In the extreme case, the configurations on the right-hand side of the bar chart exercise more

packet transitions from one CPU socket to another, putting stress on the memory subsystem.

As seen in Configurations X, Y, and Z, as soon as we start shipping packets between different

CPU sockets, the forwarding performance starts to decrease. In Configurations P, Q, and R we

can see a smaller drop in performance, although their number of transitions is the same as

in Configurations X, Y, and Z, due to Intel’s Cache snooping filter [Intel Corporation, 2007],

which saves memory bandwidth if the data is in a nearby cache.

As shown by this experiment, thread (or processing) placement plays an important role in

handling high-throughput workloads. The reason for this is that the memory subsystem may

become the bottleneck, due to increased data traffic. An increase in the number of L2 caches

touched by a single message results in lower performance than in the case involving just a

single processing core.

3.4 Summary

In this chapter, we have shown that all of the protocols suffer from having underutilized

replicas, and use the network in an unbalanced way. Every protocol uses only at most 50% of

the available links, or (in case of PBFT) has moderate overheads per byte of the request of the

client. Additionally, all of the protocols except PBFT suffer from asymmetric replica processing.

Moreover, PBFT is subject to IP multicast losses, and there is evidence [Guerraoui et al., 2010a]

that without IP multicast, the performance of PBFT suffers significantly. Finally, we have

shown that, even if a protocol avoids the asymmetry in processing, special considerations

must be taken during implementation, to avoid extraneous processing or the creation of

bottlenecks.

25

4 Ring Design and Implementation

In this chapter, we present Ring, a novel high-throughput BFT protocol. The design of Ring

is influenced by the observations reported in the previous chapter, and Ring constitutes the

main contribution of the thesis. As its name indicates, Ring uses a ring topology for message

dissemination between replicas. The task of handling Byzantine faults on a ring topology

is complex, as the protocol must ensure that: (1) no replica in the ring can be bypassed,

(2) Byzantine clients sending malformed requests cannot corrupt the total order on correct

requests, and (3) the reply sent by the last replica1 in the Ring is not forged.

At the conceptual level, Ring consists of two operational modes: a fast mode, which is executed

when there are no replica faults, and a resilient mode, which is executed only when one or

more replicas in the Ring are faulty. Both of the modes can work in the presence of faulty

clients. The description of the switching mechanism and the switching conditions are also

described in this chapter.

We begin the chapter by giving an overview of our protocol, followed by an in-depth description

of the fast and the resilient mode. Finally, we provide correctness proofs for both of the

operational modes.

4.1 Protocol Overview

Ring is named after the ring topology it uses for communications between replicas. Unlike

most of the BFT protocols, Ring does not use IP multicast: it only relies on a unicast message

exchange. Each replica in Ring has exactly one predecessor, and exactly one successor. Com-

munication flows in only one direction over the ring, with each of the replicas forwarding

requests only to its successor. Ring clients send requests to any replica on the ring, and receive

1This is the replica which replies to the client.

27

Chapter 4. Ring Design and Implementation

responses from that replica’s predecessor. We assume that all of the nodes2 know the identities

of all of the participating replicas, and that all of the replicas know the identities of all of other

nodes. One replica in the Ring, called the sequencer, is in charge of assigning a sequence

number to each of the new requests that it receives.

As stated previously, Ring has two operational modes: a fast mode and a resilient mode. The

fast mode is very efficient during executions in which there are no faulty replicas3. Note that,

in the fast mode, unlike some of the other protocols, Ring continues committing requests

even if there are faulty clients. The resilient mode, on the other hand, ensures progress in the

presence of faulty replicas, and Ring uses the ABSTRACT framework [Guerraoui et al., 2010a;

Vukolic, 2008] to switch between the two modes when faults are detected. An overview of the

ABSTRACT framework is given in Section 4.2.

In the context of this framework, a BFT protocol is an infinite sequence of different, predeter-

mined instances of the ABSTRACT protocol. Each of the instances runs until its own correctness

and progress conditions have been satisfied. Otherwise, the instance stops, and the system

switches to another instance. The order of the instances is deterministic, known to all of the

nodes — in this way, the nodes do not need to run an agreement on the next instance to switch

to.

Although Ring contains two operational modes, one ABSTRACT instance corresponds only to

a single operational mode. Therefore, performing a switch in Ring could be viewed as the

following process:

1. A quorum of replicas in the current instance agrees on the switch.

2. The system instantiates a new instance of the opposite operational mode, possibly with

a different set of nodes.

3. All nodes of the current instance abort the incoming requests from the clients, effectively

stopping the instance. The aborted requests carry the state necessary to initialize the

new instance.

Thus, one can observe the execution of Ring as an infinite sequence of alternating instances of

fast and resilient operating modes. Whenever we instantiate a new instance of an operating

mode in Ring, we also increase the invocation number of that mode. The invocation number

denotes the number of times a switch to the particular operational mode has been performed,

during the lifetime of the system.

2Term “nodes” encompasses both replicas and clients.
3We use the term “faulty replica” (respectively, “faulty client”) to refer to the origin of the fault in the system.

28

4.1. Protocol Overview

4.1.1 Switching Between Instances

Ring alternates between the fast and the resilient mode in the following way: it first runs in

fast mode, with high performance, until a fault occurs. Once a fault has occurred on one (or

more) of the replicas, the system switches to an instance in resilient mode. The reason for the

switch is that an instance of fast mode does not tolerate faults on the replicas, although it can

detect them. Since the resilient mode does not ensure the highest performance possible, Ring

tries to stay in this mode for as little as possible. In our design, Ring stays in the resilient mode

until it has processed 2k requests, or until at least 2 f +1 replicas have voted for changing the

mode. The parameter k represents the invocation number of the resilient mode. It is reset

after reaching a certain threshold, in order to prevent the system to spend long time in the

resilient mode.

!"#$"%&"'(
)

!"#$"%&"'(
)

!"#$"%&"'(
*

!"#$"%&"'(
*

!"#$"%&"'(
+

,-!.(/01" ,-!.(/01" ,-!.(/01"'"!232"%.(/01" '"!232"%.(/01"
!" !#$" !#%" !#&" !#'"

,-
$3
.

,-
$3
.,-
$3
.4

!"
#$
"%
&"
'

,-
$3
.4

!"
#$
"%
&"
'

Figure 4.1: Alternating modes in Ring. Each of the boxes represents one instance, and the
number in the lower left corner denotes the instance number. Ring runs in fast mode, until a
fault4occurs, when Ring switches to resilient mode, using the same set of replicas, with the
same identities. If a fault occurs in this mode, and the fault happens to be at the sequencer,
Ring switches to a new instance of fast mode, with a different configuration.

In Figure 4.1, we illustrate the switching order in Ring. In fast mode, Ring tolerates faulty clients,

although with slightly reduced performance than in situations in which there are no faults

at all. When a fault occurs, Ring switches to resilient mode, keeping the same configuration

(the same set of replicas, and the same identities between nodes). In the resilient mode, Ring

tolerates faulty replicas. However, if the sequencer is faulty or the network is slow, the given

instance will not progress (this is the progress condition of the resilient mode). In that case, the

replicas in Ring will be able to detect this faulty situation, and switch to another instance of fast

mode but, this time, with a different configuration. In the new configuration, nodes assume

new identities, and a new (physical) node is appointed as the sequencer. Most importantly, the

nodes have to establish new peering connections. All of these constrains are met by having a

predetermined sequence of instances5. That way, the cost of switching is minimized (as there

are no additional steps to agree on new sequencer), and overheads are reduced. The benefit

of using the strategy to change the topology only when switching from the resilient mode

4A fault that the fast mode can not tolerate, such are faults on replicas.
5Each instance has its own associated configuration: the set of nodes, their peering connections (topology), and

running parameters.

29

Chapter 4. Ring Design and Implementation

instance to the fast mode instance is twofold: (1) it allows Ring to end up in an instance of

resilient mode in which the sequencer is correct, and (2) it avoids frequent, lengthy, topology

changes6.

4.2 The ABSTRACT framework

Since the implementation of Ring uses ABSTRACT, or Abortable Byzantine faulT-toleRant stAte

maChine replicaTion, we will first present it. ABSTRACT is a new generic abstraction which

significantly reduces the development and maintenance cost of BFT algorithms, and makes it

considerably easier to develop efficient ones. ABSTRACT resembles state machine replication,

and it can be used in order to make any shared service Byzantine fault-tolerant, with one

exception: it may sometimes abort a client request. The (non-triviality) condition under which

Abstract cannot abort is a generic parameter.

ABSTRACT allows for the composability of protocols: when a particular instance aborts a client

request, ABSTRACT returns an unforgeable (digitally signed) request history, which can then be

used by the client to perform a “recovery”, using another instance of ABSTRACT. Any composi-

tion of ABSTRACT instances is possible, and thus, one is free to build modular, composable BFT

protocols, which have a small number of lines of code. For example, Guerraoui et al. [2010a]

reports that they needed less than 5000 lines of code to implement a protocol which mimics

the behaviour of Zyzzyva [Kotla et al., 2007].

As stated previously, an important property of ABSTRACT is that it can abort a request made by

a client. In that case, ABSTRACT returns the abort history. The client, in turn, uses this abort

history to switch to another ABSTRACT instance. In this section, we will describe the switching

mechanism and necessary formalism. For the thorough treatment of ABSTRACT, we refer to

dissertation by Vukolic [2008].

4.2.1 Overview

Every ABSTRACT instance is uniquely identified through its instance number i , and we will, in

the continuation of this text, consider these two to be synonyms. When i commits a request,

i returns a state-machine reply to the invoking client. Like any state machine replication

scheme, i maintains a local history h of committed requests. This local history represents a

total order of all of the committed requests, and the reply to the client is put together using

this order. In the case in which i aborts a request, it returns to the client a digest of the history

of requests that were committed by i (possibly along with some uncommitted requests);

this digest is called an abort history. In addition to the abort history, i returns to the client

the identifier of the next instance (next(i)) which should be invoked by the client: the next

function has to be the same across all abort indications of instance i , and this we denote

by we saying that instance i switches to instance next(i). ABSTRACT considers only static

6Given the assumption that the probability of having a faulty sequencer is less that one third.

30

4.2. The Abstract framework

switching: the function next is always a pre-determined function (e.g., known to the servers

which implement a given ABSTRACT instance).

Once the client has obtained an abort indication, it uses the abort history h of i , provided

by i , to invoke next(i). However, next(i) considers h to be an init history, and next(i) uses

h to establish its initial local history, before committing or aborting any requests. Through

this initialization step, next (i) obtains the information about the requests committed within

instance i , and in this way, the total order of all of the committed requests is preserved across

all of the instances.

!"#$%&'$!

"#$%&#'(!)*

!"#$%&'$!

"#$%&#'(!)*

!"#$%&'$!

"#$%&#'(!)*
()*+,$-. ()*+,$-!

+(,-($%!).*

'/00"%!).*

+(,-($%!).*11

&2/+%!).*113!4"$%*3!#(5%6)7

!!!

+(,-($%!).*113!4"$%*3!#(5%6)7

'/00"%!).*11

+(,-($%!)8*

&2/+%!)8*3!4"$%*3!#(5%6)7

'/00"%!)8*

+(,-($%!)8*3!4"$%*3!#(5%6)7

+(,-($%!)897

!!!

&2/+%!)8973!4"$%73!#(5%6):

+(,-($%!)8973!4"$%73!#(5%6):

'/00"%!)897

+(,-($%!).711

'/00"%!).711

$(,#/!*

$(,#/!;;

$(,#/!*11

!!!

$(,#/!*1*

$(,#/!79*

!!!

$(,#/!797

$(,#/!79:

Figure 4.2: Time line diagram of operations in ABSTRACT.

Figure 4.2 depicts a possible run of a BFT system built using ABSTRACT. To preserve consistency,

ABSTRACT properties ensure that, at any point in time, only one ABSTRACT instance, called

active instance, may commit requests. In Figure 4.2, Client A starts sending requests to the first

ABSTRACT instance #1. This first instance commits the requests #A1 through #A99, but aborts

the request #A100, effectively becoming an inactive instance. In the abort indication to Client

A, ABSTRACT instance #1 includes an unforgeable history hist 1, as well as the information

about the next instance to be used (next = #2). Now, Client A sends this information along

with its aborted request to ABSTRACT instance #2. This instance then initializes its own local

31

Chapter 4. Ring Design and Implementation

history, executing request #A100 at position 100. Roughly at the same time, Client B tries to

submit its request #B1 to an inactive instance (the first ABSTRACT instance), which returns an

abort indication, forcing the client to resend the request (again, along with the abort history)

to ABSTRACT instance #2. This instance executes the request of Client B at position 101. This

active instance then continues to commits further requests, until the request #B42 from Client

B, which it aborts. Analogously to the previous switch, instance #2 returns a new abort history

(hist 2), along with the next instance to be used (next = #3) to Client B. Similarly to Client A

earlier, Client B uses this information to invoke the next ABSTRACT instance #3, which executes

and commits the request #B42 at location 242 of its local history. Finally, Client A sends the

request #A200 to the third instance, which successfully commits this request at position 243.

Note that Client A directly accesses the third instance, unlike Client B, which initially first

contacted ABSTRACT instance #1. This is possible if Client A knows which instance is active, or

if all three of the ABSTRACT instances are implemented over the same set of replicas: replicas

can then, for example, “tunnel” the request to the active instance.

4.2.2 Formal Specification of ABSTRACT

ABSTRACT (without initialization) is defined as follows:

Definition (Abstract) ABSTRACT is a State Machine Replication algorithm that exports one

operation:

• Invoke(m) — we say the client invokes the request m.

Every ABSTRACT instance returns two indications for the Invoke(m) operation:

• Commit(m, h) , and

• Abort(m, h) .

We say the client commits (aborts) the request m with history h, where h is a sequence of

requests that the client can use to compute a reply (respectively, to recover). If the client com-

mits (respectively, aborts) m with history h, we refer to h as the commit history (respectively,

abort history).

ABSTRACT ensures the following properties:

1. (Termination) If a correct client invokes a request m, it eventually commits or aborts m

with h, and h contains m.

2. (Commit Ordering) Let h and h′ be any two commit histories: either h is a prefix of h′ or

vice versa.

32

4.2. The Abstract framework

3. (Abort Ordering) Every commit history is a prefix of every abort history.

4. (Validity) In every commit/abort history h, no request appears twice and every request

was invoked by some client.

5. (Non-Triviality) If a correct client invokes a request m and some predicate N T is satisfied,

the client commits m.

The Non-Triviality property is generic; the undefined predicate N T may vary depending on

the design goals and the environment in which a particular ABSTRACT implementation is to

be deployed.

The property that defined the behavior of ABSTRACT in the case of abort is Abort Ordering.

Intuitively, ABSTRACT returns histories that represent the ordering of the clients requests. In

case of a commit, this ordering is definitive and the reply of the implemented object is uniquely

determined by the order of the requests in the history. This is not the case with the abort

history. As specified by Abort Ordering, every abort history contains every commit history as

its (non-strict) prefix; that is, Abort Ordering prevents any new request, invoked after some

request is aborted, from being committed.

4.2.3 ABSTRACT Initialization and Composition

An instance of ABSTRACT could be used on its own. However, a particular ABSTRACT becomes

practically useless after aborting even a single request, since it must also abort every subse-

quent request. Therefore, an ABSTRACT instance is much more interesting when composed

with other ABSTRACT instances. Hereafter, we consider multiple ABSTRACT instances, com-

bined to work for a “common good”, with the ultimate goal of producing a flexible, full-fledged

BFT state machine replication algorithm that can benefit from good performance under

different scenarios.

We assume a fixed, predetermined, ordering among ABSTRACT instances, known by all pro-

cesses in the system. This ordering is used by clients to know which ABSTRACT instance i ′ to

invoke after aborting from a specific ABSTRACT instance i ; we talk about a client switching

from ABSTRACT instance i to i ′. We call i the preceding ABSTRACT for i ′ (respectively, i ′ is the

succeeding ABSTRACT for i).

Clients use abort histories received from the preceding ABSTRACT to invoke a special INIT

request, used to initialize a specific instance of ABSTRACT (Fig. 6.1). INIT request invocations

have the form Invoke (m,hi), where m is the request aborted by the preceding ABSTRACT i ,

and where hi is the corresponding abort history; in the context of the INIT request invocation,

hi is called init history.

We enhance ABSTRACT properties of Definition 4.2.2 to account for INIT requests by: (a) slightly

modifying the notion of an invoked request in the Validity property to include any request

33

Chapter 4. Ring Design and Implementation

contained in an init history hi of any INIT request invocation Invoke (m,hi), and (b) by adding

the following property:

6. (Init Ordering) Any common prefix of init histories of all invoked INIT requests is a prefix

of any commit or abort history.

Moreover, client invocations must be well-formed, meaning that before invoking a “non-INIT”

request, correct client c must invoke an INIT request. Notice that an INIT request may be

committed or aborted (according to the specification of a particular ABSTRACT), just like any

other request.

ABSTRACT Switching

As stated previously, every ABSTRACT instance has a unique identifier (called instance number)

i . When an instance i commits a request, i returns a state-machine reply to the invoking client.

Like with all state machine replication schemes, i establishes a total order on all committed

requests according to which the reply is computed for the client. If, however, i aborts a

request, it returns to the client a digest of the history of requests h that were committed by i

(possibly along with some uncommitted requests); this is called an abort history. In addition,

i returns to the client the identifier of the next instance (next(i)) which should be invoked

by the client: next is the same function across all abort indications of instance i , and we say

instance i switches to instance next (i). We describe deterministic (static) switching: next is a

pre-determined function (that is, known to servers implementing a given ABSTRACT instance).

The client uses abort history h of i to invoke next(i); in the context of next(i), h is called an

INIT history.

Once i aborts some request and switches to next(i), i cannot commit any subsequently

invoked request. We impose switching monotonicity: for all i , next(i) > i . Consequently,

ABSTRACT instance i that fails to commit a request is abandoned and all clients go from there

on to the next instance, never re-invoking i . Thus, we add the following property to ABSTRACT:

7. (Switching Monotonicity) For every ABSTRACT instance i , i < next (i).

This concludes the formal specification of ABSTRACT. The next sections cover the implementa-

tion of Ring in the context of ABSTRACT.

4.3 Fast Mode

In this section, we give an overview of the fast mode, followed by a description of Ring Authen-

ticators, and a detailed description of the implementation.

34

4.3. Fast Mode

As previously stated, the role of the fast mode is to provide highest performance in the periods

during which there are no faults, and when the computation is not the bottleneck. Hence,

in this mode, Ring uses lightweight authenticators, called Ring Authenticators, to reduce

both the handling and the computational complexity of message processing. Specifically,

Ring Authenticators are a collection of Message Authentication Codes (MACs). As such, Ring

Authenticators allow for low-overhead checking of the correct handling of the request over the

ring.

!"#$%&

'$("#!)*+

'$("#!)*,

'$("#!)*-

'$("#!)*.

Figure 4.3: Ring communication pattern in fast mode.

The message pattern used in the fast mode is shown in Figure 4.3. A client submits a request

to any of the replicas, which is called the entry replica for that particular request (for instance,

replica 2 is the entry replica for the request in the given figure). Each of the submitted requests

is then forwarded around the ring, until it reaches the predecessor of the entry replica (replica

1 in the example is the predecessor of the entry replica). At the end of this first round, each of

the replicas stores a copy of the request. This request flow is represented by a thick black line.

The thickness of the line represents the fact that in the first round replicas may exchange large

messages.

Consequently, in this request flow, the request has passed through the sequencer (replica 0 in

the example on Figure 4.3, and was assigned a sequence number. This sequence number is

added to the header of the message. In order for each of the replicas to know of this sequence

number, the predecessor of the entry replica, called the exit replica (for that particular request)

generates an acknowledgement (ACK) for the request, that is forwarded around the ring. The

ACK message only contains the header of the message, and its flow is denoted, in Figure 4.3,

by a thin line, used to represent the fact that the size of these acknowledgements is minuscule.

The acknowledgement message is forwarded until it reaches the exit replica (replica 1 in the

example). This replica then replies to the client. Note that each of the replicas executes the

request only after it has received the acknowledgement message.

The protocol ensures that none of the replicas is bypassed, and that the messages are not

corrupted by replicas before being forwarded around the ring. This is achieved using Ring

Authenticators (RA), which share some similarities with Chain Authenticators, presented

in [Guerraoui et al., 2010a], but with significant differences, due to the presence of ACK

messages.

In the case in which a client does not receive a correct reply (see the last step in Figure 4.4), or

in the case in which the client does not receive a reply at all, the client sends a panic message

to all of the replicas, after a given timeout. A panic message contains the uncommitted

35

Chapter 4. Ring Design and Implementation

request which has timed out without being committed. The goal of this panic message is

notify the replicas about a possible fault, and possibly to switch from fast mode to resilient

mode. Byzantine clients might deliberately generate fake panic messages in order to force the

system to switch to resilient mode. To prevent this attack, before switching to resilient mode,

Ring uses the following, novel mechanism: upon receiving a panic message from a client, a

replica handles the request on behalf of the client. It forwards the on-behalf request (OBR) to

the sequencer, waits until the request gets processed along the ring, (possibly) receives the

response and replies to the client. If the replica also does not receive a suitable response, a

conclusion can be drawn that it is indeed necessary to switch to resilient mode. The replica

then broadcasts a message to the other replicas, requesting of them to switch to resilient mode.

As soon as 2 f +1 replicas send such messages, Ring switches to resilient mode.

4.3.1 Ring Authenticators

Ring Authenticators are implemented using message authentication codes (MACs). Roughly

speaking, to tolerate f faults, each of the replica generates (verifies) f +1 MACs for (respectively,

from) its f +1 successors (respectively, predecessors).

Message Authentication Codes (MACs)

BFT protocols, in general, rely on cryptography in order to establish the identities of the nodes

in the communication, as well as to provide the integrity of messages. The two methods

used in practice are digital signatures, and Message Authentication Codes. Ring uses both,

depending on the situation.

Digital signatures are computed using public-key cryptography. In communication schemes

involving digital signatures, the sender of a message computes a signature, which is a function

of the message and the sender’s private key. Before sending, the sender appends the signature

to the message. Then, upon receiving the message, the receiver can verify authenticity and

integrity of the message, by verifying the signature using the public key of the sender.

Since only the sender knows the signing key, and the verification key is public, the receiver can

also convince a third party that the message is authentic. It can prove the message was sent

by the original sender by simply forwarding the signed message to that third party. However,

the drawback of using public-key cryptography lies in its performance — all too often, digital

signatures prove to be too slow for practical use.

On the other hand, MAC-based communication schemes use symmetric cryptography to

authenticate communication between two parties which share a secret key. The sender of

a message computes a MAC, which is a function of the message and the key it shares with

the receiver. Prior to sending, the sender appends this (usually small in size) MAC to the

message. Upon receiving the message, the receiver can check the authenticity of the message

by computing the MAC in the same way as the sender, and comparing it to the one appended

36

4.3. Fast Mode

to the message. MACs prove to be quite fast, sometimes more than two orders of magnitude

faster than digital signatures.

However, MACs are not as powerful as signatures: the receiver is not able to convince a

third party that the message is authentic. This is a fundamental limitation, inherent to the

symmetry of a MAC computation. The third party is unable to verify the MAC because it

does not know the key which was used to generate it. The use of MACs to authenticate client

requests also raises additional problems. It may be possible for some of the replicas to be able

to authenticate a request, while the others could not. This can lead both to safety violations

and liveness problems, and we explain how we deal with these problems in Section 5.2.

Formally, we assume that there exists a pair of secret keys sk for each pair of nodes i and j ,

such that ski , j is used to compute the MACs for messages sent from i to j , while sk j ,i is used

for the opposite direction. Digital signatures require that each node has its own private and

public key. Formally, each node i has pki_sk i as a private key, and pki_pk i as a public key.

We further assume that these keys (except the public keys, that are public) are disseminated

between all of the nodes in a secure manner, and further distribution and synchronization is

treated as orthogonal to the topic of this thesis.

Point-to-point messages contain only a single MAC. If messages are broadcast to multiple

recipients, or if the recipients forward a message, then the message contains authenticators —

a vector of MACs, one for each of the recipients. The receiver verifies the authenticity of the

message by checking the corresponding MAC in the authenticator. Similarly to other protocols,

Ring uses authenticators, as replicas forward the message around the ring.

Although MACs can not simply replace [Aiyer et al., 2008; Castro, 2001; Rompel, 1990] digital

signatures, and even though MACs are less powerful, they are still commonplace in all of

the modern BFT protocols, because of their performance. Consequently, Ring utilizes MACs

in fast mode, as it aims for high performance in the situations in which the CPU is not the

bottleneck.

Ring Authenticators in Action

Figure 4.4 illustrates the flow of a request in Ring, with the involved MAC operations, when the

resilience is 1 (f = 1). The red underlined labels represent generated MACs, while the green

strikedthrough labels represent verified MACs in that operation. In step 1 of Figure 4.4, a client

chooses replica 2 as its entry replica, and sends the request. The client generates two MACs,

one for replica 2, and one for replica 3 (f +1 MACs in total), in order to tolerate against f faults

on subsequent replicas). These two MACs represent the Ring Authenticator (RA) generated by

the client. Replica 2 receives the message and verifies a single MAC added by the client. In

step 2, replica 2 generates its RA – containing two MACs, one for replica 3, and one for replica

0 – and forwards the request to replica 3. Replica 3 receives the request, verifies the MAC from

the client, and one MAC from its predecessor – replica 2. Steps 3 and 4 are similar to Step 2.

37

Chapter 4. Ring Design and Implementation

r2 sends:
req, 0, [c-r3], [r2-r3],[r2-r0]
r3 receives:
req, 0, [c-r3], [r2-r3], [r2-r0]

r3 sends:
req, 0, [r2-r0], [r3-r0],[r3-r1]
r0 receives:
req, 0, [r2-r0], [r3-r0], [r3-r1]

r0

r1

r2

r3

req

client

r0 sends:
req, sn, [r3-r1], [r0-r1], [r0-r2]
r1 receives:
req, sn, [r3-r1], [r0-r1], [r0-r2]

r0

r1

r2

r3

req

client

r1 sends:
ack, sn, [r0-r2], {r1-r2},{r1-r3}
r2 receives:
ack, sn, [r0-r2], {r1-r2}, {r1-r3}

r0

r1

r2

r3

ack
client

r0

r1

r2

r3

ack
client

r0

r1

r2

r3

ack

client

r0

r1

r2

r3

ack

client

r0

r1

r2

r3

reply

client

r0

r1

r2

r3

client
req

client sends:
req, 0, [c-r2],[c-r3]

r2 receives:
req, 0, [c-r2],[c-r3]

r2 sends:
ack, sn, {r1-r3}, {r2-r3},{r2-r0}
r3 receives:
ack, sn, {r1-r3}, {r2-r3}, {r2-r0}

r3 sends:
ack, sn, {r2-r0}, {r3-r0},{r3-r1}
r0 receives:
ack, sn, {r2-r0}, {r3-r0}, {r3-r1}

r0 sends:
ack, sn, {r3-r1}, {r0-r1}, [r0-c]
r1 receives:
ack, sn, {r3-r1}, {r0-r1}, [r0-c]

r1 sends:
reply, [r0-c], [r1-c]
client receives:
reply, [r0-c], [r1-c]

r0

r1

r2

r3

req
client

1 2 3 4 5

6 7 8 9

client

replica

the sequencer

[c-r2] verified

[r1-c] generated

req
message sent

{r3-r1} MAC for ACK

[r3-r1] MAC for RING

Figure 4.4: Illustration of Ring authenticators (f = 1).

In step 5 of Figure 4.4, replica 1 (the exit replica, or the predecessor of the entry replica)

generates an ACK for the given request, and forwards the acknowledgement to its successor

– replica 2. Before sending the ACK, replica 1 generates MACs for replica 2 and replica 3.

Replica 2 receives the ACK, and verifies the MAC from replica 0 (generated for the request the

replica already received), and a MAC from replica 1. In step 6, replica 2 forwards the ACK, after

generating MACs for replica 3 and replica 0. Steps 7 and 8 are similar. Finally, in the last step,

replica 1 verifies MACs for the ACK from replica 3 and replica 0. Replica 1 then generates one

MAC for the client, and sends the reply to the client. The client receives the reply and verifies

two MACs – one from replica 0, and one from replica 1. If these MACs are correct, the client

commits the reply.

4.3.2 General Notation

In this section, we describe the notation used in the specification and the pseudo-code

implementation of Ring.

Nodes in Ring use Message Authentication Codes (MACs) to authenticate data between two

entities. MACs are based on the symmetric key cryptography — only the sender and the

receiver share a key that is known only to these two entities. In order to used MACs, nodes in

Ring rely on two operations: authenticate and verifyauth .

38

4.3. Fast Mode

A node p may authenticate a part (as a bit-string) x of a message m (or full message) for

the node q by using authenticate(p, q, x) operation. This operation returns an authenticator

a. The verifyauth(q, p, x, a) operation takes the identity of the receiver node q , the sender

node p, a bit-string x, and a putative authenticator a as parameters. Then, verifyauth returns

boolean > (true) if and only if authenticate(p,q,x) = a. Since MACs are based on a shared

secret, successful call to verifyauth(q,p,x,·) by q confirms that there was a previous call to

authenticate(p,q,x) by p, that authenticated the same data x. Since MACs are based on fast

symmetric cryptographic primitives in practice, they can be computed and verified very fast.

A digital signature scheme provides data authentication in systems where nodes do not need

to exchange secrets beforehand. Digital signature scheme relies on associating a public and a

private key to each node in the system. As the name implies, the node must keep the private

key as a secret, while the public key can be shared with anyone. A node can use its private key

to generate a signature for any content. Anyone with access to the public key of the node can

verify that signature and confirm the identity of the signer. Ring uses digital signatures for the

cases where multiple recipients need to receive the same message. This avoids a possibility for

a malicious node to create such message that can be correctly verified on a subset of recipients,

and fail on other, as it is possible with MAC scheme. In order to use digital signatures, nodes

in Ring rely on two operations: sign and verifysig .

A node p may sign a part (as a bit-string) x of a message m (or full message) by issuing sign(p,x)

operation. This operation returns a signature s. The verifysig(p,x,s) operation takes the identity

of the sender, a bit-string x, and a putative signature s as parameters. Then, verifysig returns

boolean > (true) if and only if sign(p,x) = s. In other words, verifysig will return > if and only

if there was a preceding call to sign(p,x) by p, that generated signature s for the bit-string x.

We assume that all of the nodes have the public keys of all of the other nodes in the system, in

order to verify the signatures.

In addition, we denote, by D(m), the digest of message m. Also, we assume that during

synchronous periods there exists a time interval ∆, which represents the maximal propagation

delay between any two correct nodes in the system. Σ represents the set of all 3 f +1 replicas.

A short-hand notation 〈m〉σp denotes the fact that p signed the message m with its private

key. The same notation at the recipient side denotes the fact that any node can successfully

verify the signature in such message, sent by node p. For MACs, a short-hand notation 〈m〉µp,q

denotes the fact that p added its MAC for message m, destined for q . Similarly, the same

notation on the recipient side denotes the fact that node q can successfully verify this MAC.

Every operational mode of Ring7 has one replica designated as the sequencer, and a fixed

ordering of replica IDs (called the ring order), which is known to all processes. The sequencer

precedes all of the replicas in the ring order, and the last replica in the ring order is the physical

predecessor of the sequencer on the ring. Without loss of generality, we assume that the

7And, by extension, every ABSTRACT instance corresponding to that mode.

39

Chapter 4. Ring Design and Implementation

sequencer in the current instance is, in fact, the replica r0. To simplify the notation, as there

is a finite number of replicas, we treat the ring order as a sequence of numbers in the finite

group of modulo order 3 f +18. Thus, the successor of node ri is ri⊕1, where ⊕ is addition

modulo 3 f +1. When a replica receives a request from a client, the replica becomes the entry

replica for the request. The replica which replies back to the client is the exit replica for a given

request. The exit replica is the predecessor of the entry replica (rexit = rentryª1, where rexit and

rentry hold the IDs of the exit and the entry replicas).

We indicate the predecessor set (respectively, the successor set) of replica r j as ←−r j (respectively,
−→r j). Also, we denote the sequenced predecessor set of replica r j by r̂ j . In the sequenced

predecessor set of replica r j are all of the replicas which may have received a request with

a sequence number from the sequencer. We, also, reference by Σlast the set of the last f +1

replicas in the ring order: Σlast = {r j ∈Σ : j ≥ 2 f }. Further, we denote by Σreq
last the set of the last

f +1 replicas in the ring order, with respect to request req :

Σ
req
last =

{
r j ∈Σ : req .entryª (f +1) ≤ j ≤ req .entryª1

}
where req .entry denotes the entry replica of request req (Table 4.2).

4.3.3 Implementation

In this section, we describe the implementation of the fast mode in Ring. First, we present the

list of variables used in the implementation, along with the description of their use. Next, we

describe all of the steps that the algorithm takes in order to commit a request, starting from a

client, through replicas, and then back to the client. The description encompasses all of the

possible executions, with the fault-handling cases described separately.

In Table 4.1, we list all of the variables used in the pseudo-code given in this section. As nodes

communicate by passing messages, we list the field names of the requests in Table 4.2.

Pseudo code for the fast mode algorithm. For clear presentation, we place the pseudo code

close to its first use. In the following text, we give an overview of the pseudo code used in this

section.

For brevity, none of the pseudo code presented in this thesis does not contain code for

processing INIT requests. In ABSTRACT, these messages initialize the replicas of the next

instance with a valid abort history. However, the explanation of steps will contain descriptions

of how to handle INIT requests.

Algorithm 4.3 on page 45 contains the client pseudo code. This algorithm relies on a method

called extract_history , which is part of the ABSTRACT framework. We explain this method at

8In the case the system utilizes more than this optimum, the modulo operation must be changed accordingly.

40

4.3. Fast Mode

Variable Purpose

RASET The set of Ring Authenticators, used by both the clients and the replicas
MACSET The set of MAC s, authenticating the reply, generated by the replicas

LH The local history of a replica
self The variable holding the ID of a replica

sn The sequence number associated with a request
lastreq An array indexed by a client ID, holding the last request sent by the

client
lastsn An array indexed by a client ID, holding the last sequence number

given to a request from the client
lasthist An array indexed by a client ID, holding the last history sent to the

client
active A boolean variable, representing the running state of a particular AB-

STRACT instance
sequencer_id A variable containing the ID of the sequencer in the current ABSTRACT

instance
pending A list of pending requests at the replicas

OBRpending A list of pending on-behalf requests (OBR) at the replicas

Table 4.1: An overview of used variables

Field name Purpose

o Replicated state machine command
tc The time-stamp for the request of the client

cid The ID of the client
entry The ID of the entry replica to which the client sent the request

Table 4.2: Field names for a request

the end of Section 4.4.1. Algorithm 4.1 on page 42 contains some miscellaneous methods,

which are shared between the fast and the resilient mode.

Algorithms 4.2, 4.4, 4.5, and 4.6 represent the pseudo code for the replica in the fast mode of

Ring. The full algorithm was split into these four parts for better readability, and also because

important functionalities are grouped together in this manner. Algorithm 4.2 on page 44 covers

only the initialization of replicas in the fast mode of Ring. Algorithm 4.4 on page 47 contains

the code for handling the RING (the name of the request message in the implementation of

Ring) and the ACK messages. Finally, Algorithm 4.5 on page 52 and Algorithm 4.6 on page 53

contain the code for handling faults and on-behalf requests (split in two, for easier following).

41

Chapter 4. Ring Design and Implementation

Algorithm 4.1 Miscellaneous functions used by pseudo code for replicas

function distance(src, dst) returns int is
1: return dst ª src

function updateMACs(MACSET, req, c, LH) returns SET is
2: myMACSET ← MACSET
3: if distance(req.entry, self) > 2 f then
4: myMACSET ← myMACSET ∪ authenticate(self, c, 〈req,D(LH)〉)
5: returnmyMACSET

function authenticateRA(RASET, req, sn, is.req) returns RASET is
6: myRASET ← RASET
7: myRA ←;
8: for all RA ∈ RASET do
9: RA’ ← RA

10: if RA’ = 〈self,∗,∗,∗〉 then
11: myRASET ← myRASET \ RA’
12: if distance(req.entry, self) ≤ 2 f ∨ is.req => then
13: end ← self ⊕(f +1) {we write f +1 MACs}

14: else
15: end ← req.entryª1 {request is leaving the system in less than f +1 communication steps}

16: for j = self⊕1 to end do
17: {iterate clockwise on the circle}
18: if is.req = > then
19: myRA ← myRA ∪〈

j , self, sn,authenticate(self,r j ,〈Type REQ,req , sn〉)〉
20: else
21: myRA ← myRA ∪〈

j , self, sn,authenticate(self,r j ,〈Type ACK,req , sn〉)〉
22: returnmyRASET ∪ myRA

function verifyRA(RASET, req) returns boolean is
23: {checks the well-formedness of Ring Authenticators}
24: RASET’ ← sort RASET using <(3 f +1,r eq.entr y)

25: if ∃ R,S ∈ RASET’ : {request cannot have two different sequence numbers}

R=〈∗,∗, sn1,∗〉, S=〈∗,∗, sn2,∗〉,
sn1 6= nil ∧ sn2 6= nil ⇒ sn1 6= sn2 then

26: return false
27: if ∃ R,S ∈ RASET’ : {once the sequence number is set, it must persist}

R=〈 j1, i1, sn1,∗〉, S=〈 j2, i2, sn2,∗〉,
(j1, i1) <(3 f +1,i) (j2, i2) ⇒ sn1 6= nil ∧ sn2 = nil then

28: return false
29: if

∧
distance(req.entry,self) ≤ f +1 ⇒ {MAC from the client}

∃R A ∈ R ASET : R A = 〈i ,∗, sn′, M AC ′〉,verifyauth(self,req .cid,〈req , sn′〉) =>∧∀r j ∈
←−−
self,∃R A ∈ RASET : {MAC from a predecessor}

R A = 〈i , j , sn′, M AC ′〉,verifyauth(j , self,〈req , sn′〉) => then
30: return true
31: return false

42

4.3. Fast Mode

Miscellaneous Functions Used in the Pseudo Code

Algorithm 4.1 on page 42 contains various functions used by the rest of the pseudo code, that

is shared between the fast and the resilient mode. Function distance returns the distance

between two nodes on the ring. Function updateMACs takes a set of MACs MACSET from a

message, associated r eq , the identity of the client c who issued the request r eq , and the local

history LH as parameters. This function adds the replica’s authenticator for the request and

current local history to MACSET. updateMACs returns updated MACSET.

Functions authenticateRA and verifyRA deal with Ring Authenticators. Ring Authenticators

are represented as a RASET field in a message. Function authenticateRA adds MACs to this

set, for any replica ri . There are two steps. First, replica ri updates RASET by removing all

of the MACs destined for itself (line 11 of Algorithm 4.1 on page 42). Then, the replica adds

an RA authenticating the tuple
{
Type REQ,req ,sn’

}
(line 19 of Algorithm 4.1) for every replica

in its successor set, −→ri . The first element of the tuple can take the value of either Type REQ

or Type ACK, and serves as a protection against copy attacks. With this in place, none of the

replicas can forge ACK messages, by using the RA of the original RING message. This function

authenticates the content of the request, and associates it with its sequence number sn’ . This

way, replicas ensure that the information on the right sequence number will propagate, if the

sequencer is correct. authenticateRA returns an updated RASET .

Function verifyRA checks if the RASET of the message contains correct MACs, and proper

authenticators. This function returns a boolean > indicating that RASET is correct and prop-

erly authenticates the message. Otherwise, the function returns ⊥. Function verifyRA first

check well-formedness of the Ring Authenticator:(1) MACs do not authenticate request for

different sequence numbers; and (2) MACs do not authenticate request with no sequence

number, although request already had one.Then, the function checks if the MACs in the Ring

Authenticator from the client (on first f +1 replica) and the predecessors match the content.

Replica Initialization and Helper Methods in the Pseudo Code

Algorithm 4.2 describes the initialization of replicas in the fast mode, the code for assigning

the sequence numbers to requests, and the code for executing the request.

Initialization (described in lines 1–8 of Algorithm 4.2 on page 44) sets all values to ; or nil . It

also sets the value of variable active to true to enable the instance.

Procedure sequence_request takes a placeholder variable and a request. If the current replica

is the sequencer, the procedure increments the replica’s global sequence number counter.

Then, the procedure assigns this value to the placeholder variable, and returns.

Procedure execute executes the request. This procedure takes a sequence number (sn’) and a

request (req). The procedure:

43

Chapter 4. Ring Design and Implementation

1. executes the request and stores the reply (lines 12–23),

2. appends req to its local history LHi (line 16), and

3. updates the data which reflects the execution of the last request by the client req .c by

storing req and sn i into corresponding data structures: lastsn i [req .c], and lasthist i [req .c]

(line 14).

Algorithm 4.2 Fast mode: pseudo code for initialization with helper methods, of replica ri .

Initialization:
1: pending ←;
2: sn← 0
3: active ← true
4: TOBR ← (3 f +1)∆
5: for all c ∈ Clients do
6: lastreq[c] ← nil
7: lastsn[c] ← 0
8: lasthist[c] ← nil

Implementation:
procedure sequence_request(sn’, req) is

9: if i = sequencer_id then
10: sn ← sn + 1
11: sn’ ← sn
procedure execute(sn’, req) is
12: if lastreq[req .c].tc ≥ r eq.tc then
13: return
14: sn ← sn’
15: sn j ← sn’
16: LH ← LH ◦〈r eq〉
17: lasthist[req .c] ← LH
18: lastsn[req .c] ← sn
19: lastreq[req .c] ← req
20: for req’ ∈ OBRPending ∧ req’.c = req.c do
21: if req’.tc < lastreq[req .c].tc then
22: OBRPending ← OBRPending \{r eq ′}
23: stop(TOBRr eq′)

Processing Requests in the Best Case, Without Faults

In Figure 4.5, we show the steps taken during the processing of a request, in the case in which

there are no faults. The process starts with the client issuing the request to any of the replicas,

and continues with the replicas exchanging the request, until the client commits the response.

In order to follow the terminology from the ABSTRACT framework, algorithm steps are denoted

44

4.3. Fast Mode

as Step RN, referring to the Nth step, where R stands for fast mode of Ring (to match notation

of other protocols in ABSTRACT). In order to avoid confusion between communication steps

and algorithm steps, communication steps will be referred to as communication phases.

For processing a request in a fault free case, Ring takes 4 algorithm steps, that span over 10

communication phases. The following text will now explain these steps.

Algorithm 4.3 Ring: pseudo-code of the client.

Initialization:
1: tc ← 0
2: entry ← 0
3: TRing ← (2(3 f +1)+2)∆

Implementation:
procedure invoke(o) is

4: tc ← tc +1
5: entry ← any number in 0..3 f
6: req ← 〈o, tc , self as cid, entry〉
7: clientsig ← sign(req) {clients may generate MACs here, for f=1, consult Section 5.2}

8: start_timer(TRing)
9: send 〈RING, req, nil , clientsig, ;〉 to rentry

upon event 〈REPLY, req, MACSET, LH〉 from rentryª1 do {predecessor on the ring answers}

10: if ∀ri ∈←−r entry : ∃a ∈ MACSET ⇒verifyauth
(
ri , self,〈req ,D(LH)〉, a

)
then

11: trigger 〈COMMIT(req, LH)〉
12: cancel(TRing)

upon TRing expires do
13: panicsig ← sign(self, req)
14: send 〈PANIC, req, panicsig 〉 to all replicas

upon event 〈GET-A-GRIP, h, req〉σri
from f +1 different replicas with the same h

15: trigger 〈COMMIT(req, h)〉
upon event 〈ABORT, LHiσri , req, ri 〉µri ,c from 2 f +1 different replicas, matching req
16: LH’ ←;
17: j ← 1
18: hist ← ⋃

i LHi

19: while ∃req’ : ∃LH j ⊂ hist : (|LH j | ≥ f +1)∧ (∀h,h′ ∈ LH j : h[j] = h′[j] = req’) do
20: {LH j is a subset of histories in hist j }
21: LH’ ← LH’ ◦〈req’〉
22: j ← j + 1
23: abortH ← choose LH” : isPrefix (LH” ,LH’)∧ (∀req 1,req 2 ∈ LH” : req 1 6= req 2)
24: if req 6∈ abortH then
25: abortH ← abortH ◦〈req〉
26: trigger 〈ABORT(req, abortH)〉

45

Chapter 4. Ring Design and Implementation

!"

!#

!$

!%

!"#$%&
'()*'

+()*+

,()*+

-()*+

.()*+

!"

!#

!$

!%

!"#$%&

/()*,

0()*,

1()*,

2()*,

'3()*-4

Figure 4.5: A client invokes a request, by sending a message to replica r2, and receives a reply
from replica r1 afterwards. The circles represent the nodes (clients and replicas), the arrows
denote a flow of the communication. The labels of arrows denote the communication phase,
and the algorithm step.

Step R1. A client can send a request to any replica (lines 4–9 of Algorithm 4.3 on page 45)

When invoking an operation o, the client c first chooses entry, the index of the entry replica

(line 5 of Algorithm 4.3). Then, the client c forms a req = 〈o, tc ,c, i 〉, which contains the

operation in question, the identifier for the request, the id of the client, and the id of the entry

replica. Next, the client sets clientsig to the signature of req . The client creates a request (a

RING message) for replica rentry (line 9). The client does not fill in the sequence number and

RASET fields of the message (line 9), as these fields are set by the replicas. Finally, the client

sends the message to replica rentry.

Upon sending a RING message to the entry replica, the client starts the timer Tring , which is

set to expire after a period (2(3 f +1)+2)∆ (line 3). The expiration time is set to match the

maximum response delay when the system is synchronous. If the timer expires before the

client receives a response, the client will panic (line 13) and notify the replicas. We assume that

the clients wait for the response from a replica before issuing new requests (in other words,

there is at most one outstanding request from any one of the clients in the system).

(Note) Handling INIT Requests The first message sent by the client must contain also the

INIT tag and the valid init history IH (which is an unforgeable abort history from the preceding

ABSTRACT).

Step R2. Upon receiving a request (a RING message), the replica ri updates the message

fields and forwards the message to its successor (lines 1–14 of Algorithm 4.4 on page 47)

Upon receiving (line 1 of Algorithm 4.4) a 〈RING ,req ,sn’ ,RASET ,MACSET〉 message from the

predecessor (or from the client, in the case in which the replica ri is the entry replica for the

request), the replica first tries to authenticate and accept the message. This check consists of

several conditions (lines 1–5):

46

4.3. Fast Mode

Algorithm 4.4 Fast mode: pseudo code for request processing, of replica ri .

upon event 〈RING, req, sn’, clientsig, RASET〉σc from riª1or client c
1: when

∧
active {only if the instance is active}

2:
∧

distance(rentry ,ri) ≤ f ⇒ verifysig(c, self, req, clientsig)
3:

∧
verifyRA(R ASET,r eq)

4:
∧

req.tc > lastreq [req .c].tc

5:
∧

(sn’ 6= nil ⇒sn’=sn+1)
do

6: pending ← pending ◦{r eq}
7: sequence_request(sn’, req)
8: if sn’ 6= nil then
9: execute(sn’, req)

10: RASET ← authenticateRA(RASET, req, sn’, >)
11: if i = predecessor(req.entry) then
12: send 〈ACK, sn’, D(req), req.c, RASET, ;〉 to ri⊕1

13: else
14: send 〈RING, req, sn’, RASET, clientsig 〉 to ri⊕1

upon event 〈ACK, sn’, D’, c, RASET, MACSET〉 from riª1

15: when
∧

active
16:

∧∃req ∈ pending : req.c = c ∧D(r eq) = D
17:

∧
verifyRA(RASET, req)

18:
∧

(sn’ = sn+1)
do

19: execute(sn’, req)
20: pending ← pending \ req
21: myMACSET ← updateMACs(MACSET, req, req.c, LH)
22: RASET ← authenticateRA(RASET, req, sn, ⊥)
23: if predecessor(req.entry) = self then
24: send 〈REPLY, req, myMACSET, LH〉 to req.c
25: else
26: send 〈ACK, sn, D(req), RASET, myMACSET〉 to ri⊕1

1. The first f + 1 replicas check whether some Ring Authenticator (RA) in the RASET

contains a valid authenticator (a signature) for the request req , generated by the client;

2. every replica ri checks whether RASET contains an RA with a valid MAC for every

replica r j in the predecessor set, ←−r j , authenticating req and sn’ . (Note: by definition, the

predecessor set of the entry replica is empty ←−r req .entry =;);

3. every replica accepts a RING message only if the timestamp of the client of the request

req (req .tc) is higher than the last seen (and executed) request timestamp from that

same client (lastreq i [req .c].tc);

4. finally, if the sequence number sn’ of the message is either equal to nil or sn i +1, the

replica accepts the RING message.

47

Chapter 4. Ring Design and Implementation

Note that the handler is guarded with active boolean (line 1). If this boolean is true, that means

that the instance is active. Otherwise, the instance is not active, and it will not take any new

requests.

If the aforementioned checks succeed, then replica ri proceeds to the processing of the

request. First, every replica stores req in pending [req .c]. The sequencer then increments the

local sequence number sn 0, and sets sn’ = sn 0 (line 7 of Algorithm 4.2). Now, if sn’ is not nil ,
then the replica executes the request (lines 12–23 of Algorithm 4.2 on page 44), through several

steps. Replica:

• stores sn’ into the local variable sn i (line 14 of Algorithm 4.2);

• appends request req to its local history LH (line 16 of Algorithm 4.2);

• updates the data which reflects the execution of the last request by the client req.c by stor-

ing req and sn i into corresponding data structures: lastsn i [req.c], and lasthist i [req.c]

(lines 17–18 of Algorithm 4.2);

• updates the information about the last known request from the client, by storing the

request into lastreq [req .c] (line 19 of Algorithm 4.2); and

• cancels all alarms related to OBR messages, and clears stale information in OBRPending

list (lines 20–23 of Algorithm 4.2).

After processing req , the replica ri forwards the request, unless ri is the exit replica. Replica ri

sends the RING message containing req and sn’ , as well as the updated set RASET calculated

in line 10 of Algorithm 4.4, by calling function authenticateRA .

Finally, the replica ri sends the RING message, containing req , sn’ , RASET , and ; in place of

MACSET (line 14).

If the replica ri is the exit replica, instead of forwarding the request, the replica generates an

acknowledgement – an ACK message (line 12). The replica first updates the RASET , this time

authenticating the tuple
{
Type ACK,req ,sn’

}
(line 21 of Algorithm 4.1 on page 42). Finally, the

replica ri sends the ACK message to the successor. The ACK message initially contains the

following fields: D(req), req .c, sn’ , RASET , and the empty set (as the MACSET field).

(Note) RING message verification failure If a verification of a received RING message fails,

a correct replica ri can safely discard the received message.

(Note) Handling INIT Requests The first message that the sequencer can assign a sequence

number to must contain the INIT tag and a valid init history IH . Moreover, if the local history

LH i of replica i is empty, replica i may only execute the INIT request with a valid init history

48

4.3. Fast Mode

IH . More precisely, replica i executes the entire IH , by appending the entire IH (instead only

req) to its (empty) history LH i . All (non-INIT) requests received before are discarded. If LH i

is not empty, replica i neglects IH and processes only req , as described above.

Step R3. Upon receiving an acknowledgement (an ACK message), the replica ri updates

the message fields and forwards the message to its successor. (lines 15–26 of Algorithm 4.4

on page 47)

The replica ri receives 〈ACK ,D,sn’ ,c ′,RASET ,MACSET〉 from the predecessor, and processes

the message in similar fashion to the RING message. First, the replica checks whether it can

successfully authenticate and accept the message (lines 15–18). The conditions differ from the

RING message case, namely in that:

1. if there is no stored request req corresponding to the ACK message in the pending list

(line 16), the message is discarded; otherwise, req is taken from the pending list,

2. if RASET contains an RA with a valid MAC for every replica r j in the predecessor set ←−ri ,

the replica authenticates req and sn’ ; otherwise, the replica discards the message,

3. finally, every replica accepts the ACK message only if the sequence number of the

message (sn’) equals sn i +1 (line 18).

If the request was not executed previously by replica ri , the replica does the same steps as

when handling the RING message: it calls the execute procedure (defined in lines 12–23 of

Algorithm 4.2 on page 44). This procedure first check whether it was executed before for the

same request, to ensure idempotent execution.

After executing the request, the replica ri forwards the ACK message. Beforehand, the replica

updates the RASET , and the MACSET fields of the message. The MACSET is effectively updated

only by the f +1 predecessors of the entry replica (line 21). These replicas authenticate the

pair {req ,D(LHi)}, where D(LHi) denotes the digest of the local history of the replica. If the

replica ri is not the exit replica, the replica forwards the ACK message, containing D(req),

sn’ , req .c, RASET , and MACSET (as seen in line 26). Otherwise, the replica ri sends a REPLY

message (a reply) to the client named in req .c , containing the entire local history of the replica

(LHi) (line 24).

(Note) ACK message verification failure If any of the check conditions does not hold, the

replica may safely discard the request. At this point, there is no MAC from the client in the

RASET , so the replica may assume that some of the predecessors are Byzantine, and simply

discard the request.

49

Chapter 4. Ring Design and Implementation

(Note) Handling INIT Requests The first message that the sequencer can assign a sequence

number to must contain the INIT tag and a valid init history IH . Moreover, if the local history

LH i of replica i is empty, replica i may only execute the INIT request with a valid init history

IH . More precisely, replica i executes the entire IH , by appending the entire IH (instead only

req) to its (empty) history LH i . All (non-INIT) requests received before are discarded. If LH i

is not empty, replica i neglects IH and executes only req , as described above.

Step R4a. Upon receiving the REPLY message from the exit replica before the expiration

of the timer, if the client successfully verifies the reply, the client commits the request.

(lines 10–12 of Algorithm 4.3 on page 45)

If the client c receives the 〈REPLY ,req ,∗,∗,∗,MACSET ,LH〉 message (line 10) from the exit

replica (rentryª1), that can be successfully verified, then the client commits the request req with

Ring commit history LH (line 12). A successful verification (described in line 10) occurs when

the set MACSET contains valid MACs from the last f +1 replicas in the ring order (predecessors

of the exit replica), destined for the client c, which authenticate the pair 〈req ,d〉, where d is

the digest of the history (d = D(LH)).

Processing Request in the Presence of Benign Faults

Figure 4.6 depicts request processing when there are benign (non-Byzantine) faults, in the

system. In such situations, the client does not receive the response, and starts panicking.

However, the majority of the replicas is able to successfully respond to the client. The client re-

ceives the response, and continues with its operation. Ring handles these situations gracefully,

with lower performance than in the case without faults.

In this case, the processing involves all of the replicas trying to execute the request on behalf

of the client. This concept is novel in Ring, and allows the replicas to detect whether the client

is misreporting, or is there indeed a faulty replica in the system.

!"

!#

!$

!%

!"#$%&
'()*+,

-()*+,./

!"

!#

!$

!%

!"#$%&

0(*+,.-1

2()*+,./

/()*+,.'

+()*+,./

3()*+,./
4(*+,.-1.'

Figure 4.6: A client invokes a request, but does not receive a reply. The client panics, sending a
PANIC message to all of the replicas. The majority of replicas successfully answer. For clarity,
we present only the actions of replica r2.

50

4.3. Fast Mode

Step R4b. The client does not receive the REPLY message from the exit replica, and/or

the client can not verify the message before the expiration of the timer. (lines 13–14 of

Algorithm 4.3 on page 45)

If the client does not receive the message before timer TRing expires, or the message cannot

be verified, the client panics (line 14). The client c sends a 〈PANIC ,req ,panicsig〉 message to

all of the replicas. The PANIC message is carries the digital sign of the request, by the client.

Moreover, the client periodically resends the PANIC message to the replicas, until the client

commits or aborts the request.

Step R4b.1. A replica receives a PANIC message from the client, and the replica retries to

execute the request on behalf of the client. (lines 1–7 of Algorithm 4.5 on page 52)

Replica ri , upon receiving a 〈PANIC ,req ,panicsig〉 message (line 1 of Algorithm 4.5), if the

message contains a valid signature, tries to commit the request by invoking Steps R1 through

R4a on behalf of the client. Toward that end, replica ri acts as the client and sends the

〈OBR ,ri ,req ,panicsig ,snOBR = nil ,RASETOBR = ;,MACSETOBR = ;〉µri ,r0
message to the se-

quencer (line 6). Subsequently, the replica starts the timer TOBRreq . If the timer expires before

the replica receives a response for the OBR request, the replica will abort the protocol (lines 4–7

of Algorithm 4.5).

The OBR message is similar to the RING (and the ACK) messages, albeit some differences

exist:

• the OBR message contains an additional field which the replica ri (the originator of the

OBR request) populates with its own ID.

• the RASET field is initially empty, as the signature of the client is included in the message.

Finally, it is important to note that a correct replica ri sends an OBR request to the sequencer

if and only if the request is not old (the req .tc field of the PANIC message is greater or equal

than lastreq i [req .c].tc , as seen in the line 2). Moreover, the replica ri abandons waiting for the

RING message from replica rsequencer_idª1 (the predecessor of the sequencer), and cancels its

timer if tr i [c] becomes greater than req .tc (suggesting there is a new request from client c).

These steps are explained on lines 20–23 of Algorithm 4.2 on page 44.

51

Chapter 4. Ring Design and Implementation

Algorithm 4.5 Fast and resilient mode: pseudo-code for switching, of replica ri (part 1).

upon event 〈PANIC, req, panicsig 〉 from client c
1: when

∧
active

2:
∧

req.tc ≥ lastreq[req.c].tc

3:
∧

verifysig(c, req, panicsig)
do

4: OBRPending ← OBRPending ∪{ req }
5: SIGSET ← sign(self, req)
6: send 〈OBR, self, req, panicsig, 0, SIGSET, ;〉 to rsequencer_id

7: trigger 〈TOBRr eq 〉
upon event 〈PANIC, req, panicsig 〉 from client c {only when not active}

8: when
∧¬ active

9:
∧

verifysig(c, req, panicsig)
do

10: send 〈ABORT, LHσsel f , req, self 〉µsel f ,req.c to client denoted in req.c

upon event 〈OBR, r j , req, panicsig, sn’, SIGSET, MACSET〉 from rk

11: when
∧

active
12:

∧
verifysig(req.c, req, panicsig)

13:
∧∀r j ∈

←−−
self : ∃sig ∈ SIGSET: verifysig(r j , req, sig)

14:
∧

req.tc ≥ lastreq[req.c].tc

15:
∧

self > 0 ⇒ sn’ = sn+1
do

16: if req = lastreq[req.c] ∧ lastsn[req.c] 6= nil then
17: snOBR ← lastsn[req.c]
18: LHOBR ← lasthist[req.c]
19: else
20: sequence_request(sn’, req)
21: execute(sn’, req)
22: snOBR← sn
23: LHOBR ← LH
24: MACSET’ ← updateMACs(MACSET,req,r j ,LHOBR)
25: if self = sequencer_id ª1 then
26: send 〈〈OBR, r j , req, panicsig, snOBR , ;, MACSET’〉,LHOBR 〉 to r j

27: else
28: SIGSET ← SIGSET ∪ sign(self, req)
29: send 〈OBR, r j , req, panicsig, snOBR , SIGSET, MACSET’〉 to ri⊕1

52

4.3. Fast Mode

Algorithm 4.6 Fast and resilient mode: pseudo-code for switching, of replica ri (part 2).

upon event 〈〈OBR,self,req,panicsig,*,*,MACSET〉,h〉 from rsequencer_idª1

1: when active
do

2: if ∀r j ∈←−r sequencer_id,∃a ∈ M AC SET ⇒ verifyauth(s j ,self,D(h)) then
3: send 〈GET-A-GRIP, h, req〉σsel f to client denoted in req.c
4: stop(TOBRr eq)

upon TOBRr eq expires do
5: active ← false
6: send 〈STOP, LH, req, self 〉σsel f to every replica rk

7: send 〈ABORT, LHσsel f , req, self 〉µsel f ,req.c to client denoted in req.c

upon event 〈STOP, LH’, req, r j 〉σr j
from 2 f +1 different replicas with matching req

8: active ← false
9: send 〈STOP, LH’, req, r j 〉 to every replica rk

10: send 〈STOP, LH, req, self 〉σsel f to every replica rk

11: send 〈ABORT, LHσsel f , req, self 〉µsel f ,req.c to client denoted in req.c

Step R4b.2. A replica receives an OBR message and processes the message in a similar

way to both the RING (Step R2) and ACK messages (Step R3.). (lines 11–29 of Algorithm 4.5

on page 52)

Replica ri first checks whether it can successfully authenticate and accept a message, upon

receiving the 〈OBR ,rk ,req ,panicsig ,sn ,SIGSET ,MACSET〉 message from the predecessor (or

from replica rk , in case ri is the sequencer). This check consists of several conditions:

1. the replica ri checks whether the signature of the client matches the request (line 13);

2. the replica ri checks (at line 13) whether the SIGSET contains an RA with a valid MAC

for every replica r j in the predecessor set, ←−r j , authenticating req and sn’ . (Note: the

predecessor set for the sequencer in this case is empty ←−r0 =;);

3. the replica accepts the OBR message only if the timestamp of the client which has

initiated the request req (req .tc) is greater or equal than the timestamp of the last seen

(and executed) request from the client (lastreq i [req .c].tc), as shown in line 14;

4. finally, every replica except the sequencer accepts the OBR message if the sequence

number sn’ of the message is equal to sn i +1.

If these checks succeed, then replica ri proceeds to the execution part of processing (line 21).

The replica only executes the request if the request is new (that is, req .tc is higher than the

last stored request from the client, line 13 of Algorithm 4.4 on page 47). Otherwise, the

53

Chapter 4. Ring Design and Implementation

replica takes the stored response and the sequence number, and skips the next step (line 18 of

Algorithm 4.5).

Like in the case of the RING and the ACK messages, the sequencer updates the sequence

number and executes the request (lines 20–21), by calling procedures sequence_request and

execute . the replica stores sn’ into the local variable sn i of the replica. Moreover, every replica

ri updates its sn OBR and LH OBR with the corresponding values (lines 17–18 and lines 22–23).

Upon executing req , the replica forwards (line 29) the OBR message, unless the replica is

the predecessor of the sequencer (ri 6= rsequencer_idª1). In that case (line 26), the replica

rsequencer_idª1 sends the reply back to the replica rk (indicated as one of the fields of the

OBR message). Beforehand, the replica updates the RASET .

Step R4b.3a. The replica commits the request on behalf of the client and forwards the

commit history to the client. (lines 4.6–4 of Algorithm 4.5 on page 52)

If ri receives an OBR message from the predecessor of the sequencer (line 4.6), containing

MACs for the pair 〈req ,D(h)〉 for the last f +1 replicas in the MACSET , as well as the entire

history h (line 2), then the replica ri simply sends the 〈GET_A_GRIP ,h,req〉µri ,req .c message to

the client named in req .c (line 3). We say that ri commits the OBR for req with the history h.

To counter for possible message losses, if a replica receives repeated PANIC messages for req

after committing the OBR for req , the replica replies to these messages by re-sending the

GET_A_GRIP message to the client.

Step R4b.3a.1. The client receives f + 1 GET_A_GRIP messages containing the same

history and commits the request. (Line 15 of Algorithm 4.3 on page 45)

If the client has received f +1 〈GET_A_GRIP ,h,req〉 messages from different replicas, with the

same history, the client commits the request by returning Commit (req ,h).

Processing Request in the Presence of Faulty Replicas

Figure 4.7 shows the behaviour of the algorithm in the presence of detectable, faulty replicas.

In such a case, when processing requests on behalf of the client, a replica will not receive an

answer. This failure to receive the answer signals that replica that there are faulty replicas in

the system, and the replicas will stop processing requests. Further, the replica in question will

proceed to abort the current instance.

54

4.3. Fast Mode

!"

!#

!$

!%

!"#$%&

'()*+,

-()*+,./,

/()*+,./,

/()*+,./,

/()*+,./,

!"

!#

!$

!%

!"#$%& 0()*+,./,.-

1()*+,./,.'

1()*+,./,.'

1()*+,./,.'

+()*+,./,.'

Figure 4.7: An alternative execution to the one shown in Figure 4.6: The replica r2 cannot
commit the request. It then aborts, and stops the current instance.

Step R4b.3b. The replica does not commit the request on behalf of the client, stops pro-

cessing the new request, and sends a signed history to the client. (lines 4–7 of Algorithm 4.5

on page 52)

If the replica ri does not receive the OBR request before the expiration of the timer, the replica:

(a) stops accepting new RING , ACK , and OBR messages, by setting a global flag which forces

Ring to stop accepting requests (line 5); (b) sends a signed local history to client req .c using

an 〈ABORT ,LH iσri
,req .tc ,ri 〉µri ,req .c message (line 6); and (c) stops all of the OBR timers. In

addition, the replica sends 〈STOP ,req〉µri ,r j
to every other replica (line 7). Again, to counter

possible message losses, we assume that ri periodically retransmits this STOP message.

(Note) Handling INIT Requests If the history LH i of replica i is empty, the replica acts in

this step only on a PANIC message for an INIT request (that contains correctly authenticated

init history IH from preceding ABSTRACT). In this case, upon receiving the first such PANIC

message, replica i , before sending an ABORT message sets LH i to IH . The following PANIC

messages for INIT requests are treated as described above, neglecting the init histories.

Step R4b.3b.1. The replica receives a STOP message from some other replica, stops pro-

cessing new requests, and sends its signed history to the client. (lines 7–11 of Algorithm 4.5

on page 52)

The replica ri now aborts all of the requests from clients, similarly as in the Step R4b.3b. The

replica: (a) stops accepting new RING , ACK , and OBR messages, by setting a global flag which

forces Ring to stop accepting requests; (b) sends a signed local history to all of the clients

referenced in the active OBR timers (there is a timer for every outstanding OBR request req’),

using an 〈ABORT ,LH iσri
,req’ .tc ,ri 〉µri ,req’ .c message; and (c) stops all of the OBR timers. In

addition, the replica sends 〈STOP ,req〉µri ,r j
to every other replica. Again, to counter possible

message losses, we assume that ri periodically retransmits this STOP message.

55

Chapter 4. Ring Design and Implementation

Step R4b.3b.2. A client receives 2 f +1 matching ABORT messages, extracts the abort

history, and aborts the request. (lines 16–26 of Algorithm 4.3 on page 45)

A matching ABORT message for a 〈PANIC ,req〉 message is any ABORT message with a match-

ing request identifier req .tc . When a client receives a matching ABORT message from 2 f +1

different replicas, the client extracts the abort history abortH in the following way:

• the client generates the history LH’ , such that LH’ [j] equals the value that appears at

position j ≥ 1 of f +1 different histories LHi received in the ABORT messages. If such a

value does not exist for position j , then LH’ does not contain a value at positions j and

higher.

• the longest prefix LH” of LH’ is selected such that no request appears in LH” twice.

• if req = 〈o, tc ,c〉 does not exist in LH” , the request is appended to LH” . The resulting

sequence is an abort history abortH .

Then, the client c aborts req by returning Abort (req ,abortH). To prove the validity of abortH ,

the abort history is accompanied by the set of 2 f +1 ABORT messages.

4.4 Resilient Mode

The role of the resilient mode is to handle situations in which there are severe faults in the

system, such as the presence of Byzantine replicas which may block the flow of requests. In

this mode, Ring handles RING , ACK , and PANIC messages in the same way as the fast mode

does. The main difference, however, stems from the approach in handling of OBR messages.

In the resilient mode, Ring tries to prevent malicious replicas from blocking the flow of requests,

by utilizing more than one successor connections. Here, replicas use connections to their f +1

successors9. Under the assumption that only f replicas may be faulty, this assures that at least

one correct replica will receive an OBR message, and forward it further. Also, in this mode,

Ring breaks off the linear (circular) structure, and replies only when the request has been

processed by at least 2 f +1 replicas. Ring uses digital signatures as a method of discovering

the identities of the replicas which have processed the request. The propagation of an OBR

message is shown in Figure 4.8, following a panic message received by Replica 2 (all of other

replicas also send the message to the sequencer, but we omit those for sake of clarity).

Similarly to the case of the fast mode, the replicas initially send the OBR message to the se-

quencer, and await the arrival of the response. If the sequencer is Byzantine, a replica may not

receive this response, and in that case, the replica will panic and stop the processing, triggering

a switch to a new instance of Ring, with a different configuration, and a new sequencer.

9Here, when we refer to f +1 successors of a replica, we, in fact, refer to the successor of the replica, the successor
of the successor of the replica, etc., rather than implying that a replica actually has f +1 successors.

56

4.4. Resilient Mode

!"#$%&

'$("#!)*+

'$("#!)*,

'$("#!)*-

'$("#!)*.

Figure 4.8: The Ring communication pattern in resilient mode, for the on-behalf request.

For brevity and clarity, we present only the difference between the fast and the resilient mode

in the following text. The client code, as well as the handling of RING , ACK , and PANIC

messages, all remain the same.

4.4.1 Implementation

In this section, we describe the implementation of the resilient mode in Ring. The following

text uses the same notation as in Section 4.3.3. Similarly as in Section 4.3.3, we describe all of

the steps that the algorithm takes in order to commit a request, starting from a client, through

replicas, and then back to the client. In this section, however, we focus only on the execution

after a fault has occurred at a panicking client. In the exposition, we consider the cases in

which a replica does receive a response to its on behalf request, and those in which it does not

receive one.

Pseudo code for the resilient mode. Algorithm 4.7 describes the difference between a fast

mode and a resilient mode instance. The difference stems mainly from the differences in

handling the on behalf requests. As in Section 4.3.3 we place the algorithm close to the

description in the text of the algorithm steps.

Processing Requests When No Faults Occur

Similarly to Section 4.3, Figure 4.9 illustrates a flow of messages. Steps are denoted Step R+N,

referring to Nth step of the resilient mode (R+ stands for the resilient mode).

Figure 4.9 illustrates the steps in a situation after a client has started to panic. Replica r2

receives the PANIC message, and sends an OBR request to the sequencer (r0). The sequencer,

after assigning the sequence number to the request, signs the request, and forwards it to its

f +1 successors. Replicas r1 and r2 receive this message, execute it in correct order, and sign it,

forwarding it to their f +1 successors. In the next step, replicas r2 and r3 receive the message

carrying 2 f +1 different signatures, execute the request, unless they have done it so far, and

send a response to the client. We elaborate on these 5 algorithm steps in the text to follow.

57

Chapter 4. Ring Design and Implementation

!"

!#

!$

!%

!"#$%&
'()*

+
,-

!"

!#

!$

!%

!"#$%&

.()*,
+
-/'

!"

!#

!$

!%

!"#$%&

0()*
+
,-/.

0()*
+
,-/.

,()*
+
,-/.

1()*
+
,-/02

3()*
+
,-/02/'

1()*
+
,-/02

,()*
+
,-/.

,()*
+
,-/.

,()*
+
,-/.

3()*
+
,-/02/'

Figure 4.9: A client panics, sending a PANIC message to all replicas. For clarity, here we
proceed as if only replica r2 has received the message. The replicas utilize the links to their f +1
successors, and after receiving a response processed by at least 2 f +1 other replica, a replica
replies back to the client (in this execution, replicas r2 and r3 reply after 5 communication
steps.

Step R+4b. The client does not receive the RING message from the exit replica, and/or

the client can not verify the message, before the expiration of the timer. (Line 14 of

Algorithm 4.3 on page 45)

If the client does not receive the message before the timer TRing expires, or the message cannot

be verified, the client panics. The client c sends a 〈PAN IC ,req ,panicsig〉 message to all of the

replicas. The PANIC message is carries the digital sign of the request, by the client. Moreover,

the client periodically resends the PANIC message to the replicas, until the client commits or

aborts the request.

Step R+4b.1. A replica receives a PANIC message from the client, and the replica retries

Ring on behalf of the client. (lines 1–7 of Algorithm 4.5 on page 52)

Replica ri , on receiving a 〈PANIC ,req ,panicsig〉 message, if that message contained a valid

signature, attempts to commit the request by invoking Steps R1-R4a on behalf of the client.

Toward that end, replica ri acts as a client and sends the 〈OBR ,ri ,req ,panicsig ,snOBR =
nil ,R ASETOBR =;, M AC SETOBR =;〉σri

message to the sequencer. Subsequently, the replica

starts the timer TOBRreq . If the timer expires before the replica has received a response for the

OBR request, the replica will abort the protocol.

The handling of the OBR message is similar to the handling of the RING (and the ACK)

message, albeit some differences exist:

• the OBR contains an additional field, which the replica ri (the originator of the OBR

request) populates with its own ID.

• the RASET field is initially empty, as the signature of the client is included in the message.

Note that the replica authenticates the message with the signature.

58

4.4. Resilient Mode

Algorithm 4.7 Resilient mode: pseudo-code of replica ri (differences with respect to fast-mode
implementation)

Initialization:
1: pending ←;
2: sn← 0
3: active ← true
4: stored_sigs ←;
5: TOBR ← (3 f +1)∆

Implementation:
upon event 〈OBR, r j , reqσr eq.c , sn’, SIGSET, MACSET〉 from rk

6: when
∧

req .tc ≥ lastreq [req .c]t .c
7:

∧
reqσreq .c is valid

8:
∧

i > 0 ⇒ (sn′ = sn +1)
do

9: SIGS ← valid signatures in SIGSET from different servers
10: stored ← stored_sigs[req]
11: if SIGS ⊂ stored then
12: break upon
13: stored_sigs[req] ← stored ∪ SIGS
14: if stored ≥ 2 f +1 then
15: if req = lastreq[req.c] ∧ lastsn[req.c] 6= nil then
16: snOBR ← lastsn[req.c]
17: LHOBR ← lasthist[req.c]
18: else
19: sequence(sn’, req)
20: execute(sn’, req)
21: snOBR← sn
22: LHOBR ← LH
23: SIGSET ← SIGSET ∪ σsel f (self, req.c, D(req)) ∪ stored
24: if j=i then
25: send 〈GET-A-GRIP, h, req〉σsel f to req.c
26: send 〈OBR, r j , reqσr eq.c , snOBR , SIGSET, MACSET’〉 to −→ri

27: else
28: SIGSET ← SIGSET ∪ σsel f (self, req.c, D(req)) ∪ stored
29: send 〈OBR, r j , reqσr eq.c , sn’, SIGSET, MACSET’〉 to −→ri

Finally, it is important to note that a correct replica ri sends an OBR request to the sequencer

if and only if the request is not old (the req .tc field of the PANIC message is greater or equal

than lastreq i [req .c].tc). Moreover, replica ri abandons waiting for the RING message from

replica r3 f (predecessor of the sequencer), and cancels its timer, if tr i [c] becomes greater than

req .tc (suggesting there is a new request from client c).

59

Chapter 4. Ring Design and Implementation

Step R+4b.2. A replica receives an OBR message and processes the message, possibly

executing the request. The replica then forwards the message to its f +1 successors. (lines 6–

29 of Algorithm 4.7 on page 59)

Replica ri first checks whether it can successfully authenticate and accept a message, upon

receiving the 〈OBR ,rk ,req ,panicsig ,sn’ ,R ASET, M AC SET 〉 message from one of its prede-

cessors (or from replica rk , in case that ri is the sequencer). This check consists of several

conditions:

1. the replica ri checks whether the signature of the client matches the request (line 7);

2. the replica accepts the OBR message only if the client’s timestamp of the request (req .tc)

is greater or equal than the timestamp of the last seen (and executed) request from the

client (lastreq i [req .c].tc , shown at line 6);

3. finally, every replica except the sequencer accepts the OBR message if the sequence

number sn’ of the message is equal to sn i +1 (line 8).

If these checks succeed, then replica ri collects all of the signatures in the OBR message, and

verifies each in turn (line 9). If at least one of the signatures has not been seen previously,

then the replica continues processing the request. Otherwise, the replica drops the request

(line 12).

If there are more than 2 f +1 valid signatures, the replica proceeds to the execution part of

processing (line 14). The replica only executes the request if the request is new (that is, req .tc

is higher than the last stored request from the client). In this case, the sequencer updates the

local sequence number sn 0, and sets sn’ = sn 0, while other replicas just store sn’ into their

local variable sn i (line 19). Otherwise, if the request is old, the replica takes the stored response

and the sequence number, and skips the execution step.

Each replica executes the request, if the request is new. Every replica ri : (1) appends req to its

local history LHi , and (2) updates the data which reflects the last request by the client req .c by

storing req , sn i and LHi into lastreq i [req .c], lastsn i [req .c], and lasthist i [req .c], respectively.

Finally, every replica stores req in pending [req .c].

Upon executing req , replica adds its own signature to the message (line 23). Then, the replica

forwards the request to its f +1 successors (line 26).

If there were less than 2 f +1 valid signatures in the request, the replica adds its own signature,

and forwards the updated request to its f +1 successors (lines 28–29).

60

4.4. Resilient Mode

Step R+4b.3a. The replica commits the request on behalf of the client and forwards the

commit history to the client. (lines 23–26 of Algorithm 4.7 on page 59)

If ri receives an OBR message with at least 2 f +1 valid signatures from other replicas, then the

replica simply sends the 〈GET_A_GRIP ,h,req〉µri ,req .c message to client named in req .c (line 25).

We say that ri commits the OBR for req with the history h.

To counter possible message losses, if a replica has received repeated PANIC messages for

req after committing the OBR for req , the replica replies to these messages by re-sending the

GET_A_GRIP message to the client.

Step R+4b.3a.1. The client receives f +1 GET_A_GRIP messages containing the same

history and commits the request. (Line 15 of Algorithm 4.3 on page 45)

If the client has received f +1 〈GET_A_GRIP ,h,req〉 messages from different replicas, with the

same history, the client commits the request by returning Commit (req ,h).

Processing Requests When the Sequencer Is Faulty

If the sequencer is faulty, it may omit sequencing the message, or might not reply to any of

the OBR messages. In that case, the replicas will detect a fault, and proceed to switching to

another instance, with another configuration. The steps that the replicas take are shown in

Figure 4.10, which is similar to Figure 4.7, and the differences between the two are brought on

by the situation in which a replica does not receive a response to the OBR message, after a

predefined timeout.

!"

!#

!$

!%

!"#$%&

'()*
+
,-.'

!"

!#

!$

!%

!"#$%&

/()*
+
,-./

,()*
+
,-.0-

0()*
+
,-.0-

,()*
+
,-.0-

1()*
+
,-.0-.'

2()*
+
,-.0-.'

2()*
+
,-.0-.'

2()*
+
,-.0-.'

3()*
+
,-.0-./

Figure 4.10: Alternative execution to the one shown in Figure 4.9: Replica r2 cannot commit
the request, because the sequencer does not respond. The replica aborts, and stops the current
instance.

61

Chapter 4. Ring Design and Implementation

Step R+4b.3b. The replica does not commit the request on behalf of the client, stops

processing new requests, and sends a signed history to the client. (lines 4–7 of Algorithm 4.4

on page 47)

If replica ri does not receive the OBR request with at least 2 f +1 valid signatures from other

replicas, before the expiration of the timer, the replica: (a) stops accepting new RING , ACK ,

and OBR messages, by setting a global flag which forces the current instance of the resilient

mode to stop accepting requests (line 5); (b) sends its signed local history to client req .c using

an 〈ABORT ,LH iσri
,req .tc ,ri 〉µri ,req .c message (line 6); and (c) stops all of the OBR timers. In

addition, the replica sends 〈STOP ,req〉µri ,r j
to every other replica (line 7). Again, to counter

possible message losses, we assume that ri periodically retransmits this STOP message.

Step R+4b.3b.1. The replica receives a STOP message from some other replica, stops

processing new requests, and sends a signed history to the client. (lines 7–9 of Algorithm 4.4

on page 47)

Replica ri aborts all of the requests from clients, similarly as in Step R+4b.3b. Replica: (a) stops

accepting new RING , ACK , and OBR messages, by setting a global flag which forces Ring to

stop accepting requests; (b) sends its signed local history to all of the clients referenced in the

active OBR timers10, using an 〈ABORT ,LH iσri
,req’ .tc ,ri 〉µri ,req’ .c message; and (c) stops all OBR

timers. In addition, the replica sends 〈STOP ,req〉µri ,r j
to every other replica. Again, to counter

possible message losses, we assume that ri periodically retransmits this STOP message.

Step R+4b.3b.2. A client receives 2 f +1 matching ABORT messages, extracts the abort

history, and aborts the request. (lines 16–26 of Algorithm 4.3 on page 45)

A matching ABORT message for a 〈PANIC ,req〉 message is any ABORT message with a match-

ing request identifier req .tc . Once a client has received a matching ABORT message from

2 f +1 different replicas, it extracts the abort history abortH in the following way:

• the client generates the history LH’ , such that LH’ [j] equals the value that appears at

position j ≥ 1 of f +1 different histories LHi received in the ABORT messages. If such a

value does not exist for position j , then LH’ does not contain a value at positions j and

higher.

• the longest prefix LH” of LH’ is selected such that no request appears in LH” twice.

• if req = 〈o, tc ,c〉 does not exist in LH” , the request is appended to LH” . The resulting

sequence is an abort history abortH .

10There is a timer for every outstanding OBR request req’ .

62

4.5. Correctness

Then, the client c aborts req by returning Abort (req ,abortH). To prove the validity of abortH ,

the abort history is accompanied by the set of 2 f +1 ABORT messages.

4.5 Correctness

Both operational modes of Ring are, in fact, an implementation of ABSTRACT, each with its

own Non-Triviality property. The Non-Triviality property in an ABSTRACT model defines the

conditions under which a protocol should commit client requests.

Definition (Fast Mode Non-Triviality)

If (a) a correct client c invokes a request m, (b) there are no replica failures, (c) the set of

replicas (Σ) is synchronous, and (d) messages from c to Σ (and back) are synchronous, then

the client c commits m.

Definition (Resilient Mode Non-Triviality)

If (a) a correct client c invokes a request m, (b) the sequencer is not faulty, (c) the set of replicas

(Σ) is synchronous, and (d) messages from c to Σ (and back) are synchronous, then the client

c commits m.

In addition, we say that a correct replica r j executes req at position pos if sn j = pos when r j

executes req .

The list of properties every ABSTRACT instance must satisfy is given in Section 4.2. Before

proving these properties, we first prove a set of auxiliary lemmas.

Definition (Ring order) The ring order defines the total order of replicas on the ring. We say

that this ordering starts at a particular replica r j , and define a total order operation such that:

j < j +1 < ·· · < j +3 f .

Figure 4.11 illustrates the circular topology of Ring. For the ring order which starts at replica

r0, we have the following relation: r0 < r1 < r2 < r3. On the other hand, if the order were to

start at, for instance, r2, we would have: r2 < r3 < r0 < r1.

Note that by protocol design, Switching Monotonicity holds for both Fast mode and Resilient

mode instances, hence we will not prove this property.

63

Chapter 4. Ring Design and Implementation

!"

!#

!$

!%

Figure 4.11: The circular topology of Ring

4.5.1 Fast Mode Correctness Proof

In this section, we prove that fast mode implements ABSTRACT with Fast Mode Non-Triviality.

To do so, we need to show that fast mode satisfies the properties listed in Section 4.5. First, we

prove some necessary lemmas.

Lemma 4.5.1. Let r j be a correct replica and let LH req
j be the state of LH j when r j executes req.

Then, LH req
j remains a prefix of LH j forever.

Proof. A correct replica r j modifies its local history LH j only in Step R2 (page 46) or Step R3

(page 49) or Step R4b.2 (page 53) by sequentially appending requests to LH j . Hence, LH req
j

remains a prefix of LH j forever.

Lemma 4.5.2. If a correct replica ri accepts a request req (via the RING message) at time t1,

then all of the correct replicas r j (req .entry ≤ j < i)11 have accepted the request before t1. Note

that we do not discuss execution of the request. If replica accepts a request, it means that it has

previously verified the request, and stored it in some internal structure.

Proof. By contradiction. Assume that the lemma does not hold, and fix r j to be the first correct

replica that accepts req , such that there is a correct replica rx (x < j) that never accepts req .

We say that r j animates req . Since RING messages are authenticated using RAs, r j accepts

req only if r j receives a RING message with MACs authenticating req from all of the replicas

from ←−r j , that is, only after all of the correct replicas from ←−r j have accepted req . If rx ∈←−r j , rx

must have accepted req — a contradiction. On the other hand, if rx ∉←−r j , then r j is not the first

replica which animates req , since any correct replica (at least one) from ←−r j animates req — a

contradiction.

Lemma 4.5.3. If a correct replica ri accepts a request req, then the request was invoked by a

client.

Proof. By contradiction, assume that some correct replica has accepted a request not invoked

by any client, and let r j be the first correct replica to accept such a request req’ in Step R2

11If not stated otherwise, we presume to use the ring ordering.

64

4.5. Correctness

(page 46). In the case in which j ∈ {req’ .entry. . .req’ .entry⊕ (f +1)}, r j accepts the req’ only if

r j receives a RING message with a signature from the client, that is, only if some client invoked

req , or if req is contained in some valid INIT history. On the other hand, if j is not in that set,

Lemma 4.5.2 yields a contradiction with our assumption that r j is the first correct replica to

accept req’ .

Lemma 4.5.4. If a correct replica receives a non-nil sequence number (sn) for a request req,

either through a RING, an ACK, or an OBR message, that sn was generated by the sequencer.

Proof. By construction. The guard conditions in Step R2, and Step R3 (page 49) prevent such

case, along with the check of Ring Authenticators.

Lemma 4.5.5. If a correct replica ri executes a request req, at position sn, at time t1, then all of

the correct replicas r j (0 ≤ j < i) have executed the request at position sn before t1. Note that

here, we refer to the ring order.

Proof. By contradiction, assume that the lemma does not hold, and fix r j to be the first correct

replica which executes req (at position sn), such that there is a correct replica rx (x < j) which

never executes req . We say that r j is the first replica for which req skips. Since RING (and

ACK) messages are authenticated using RAs, r j executes req at position sn only if replica r j

receives a RING (or an ACK) message with MACs authenticating the pair 〈req ,sn〉12 from all of

the replicas from ←−r j , that is, only after all of the correct replicas from ←−r j have accepted req . If

rx ∈←−r j , then rx must have accepted req — a contradiction. On the other hand, if rx ∉←−r j , then

r j is not the first replica at which req skips, since at any correct replica (at least one) from ←−r j

req skips — a contradiction. Similar reasoning applies to the handling of an OBR request.

Note that the sequence number sn associated by the sequencer is indeed equivalent to the

position at which a replica executes req , since (1) if the replica is the sequencer, sn is incre-

mented by one, and (2) if the replica is not the sequencer, the replica accepts req with the

associated sequence number, only if sn’ = sn +1. These conditions are described in Step R2

(on page 46), Step R3 (on page 49), and Step R4a (on page 50).

Lemma 4.5.6. If a correct replica ri receives an ACK for the request req, at position sn and time

t1, then all of the correct replicas r j (req .entry ≤ j < i) have executed the request req at position

sn, before t1. Note that we use the ring order, which starts at req .entry.

Proof. If a replica ri receives a valid ACK, that means that all of the correct replicas have

received the request (execution condition in Step R3 from page 49, and Lemma 4.5.2). From

Step R3, and Lemma 4.5.5, we have that all of the correct replicas r j (0 ≤ j < i) have executed

the request. Let us fix the ring order, so that the sequence starts from 0, and ends at 3 f . We

consider two cases:

12Where sn is not nil.

65

Chapter 4. Ring Design and Implementation

1. if 0 ≤ req .entry < i , then the claim follows immediately from Lemma 4.5.5;

2. if 0 ≤ i < req .entry, from Step R2 on page 46 we get that ACK was generated at req .entryª
1. It holds that 0 ≤ i ≤ req .entryª1. From Step R3, by construction, we have that all of the

correct replicas rx (x ∈ req .entryª1. . . i) have received the ACK. From the previous case,

we have that the request is executed on all of the correct replicas rk (req .entry ≤ k < 0),

and from Lemma 4.5.5 we have that request is executed on all of the correct replicas r j

(0 ≤ j < i).

Lemma 4.5.7. If a benign (that is, non-Byzantine) client c commits the request req with history

h (at time t1), then all of the correct replicas in Σreq
last execute req (before t1) and the state of their

local history upon executing req is h.

Proof. To prove this lemma, notice that a correct replica r j ∈ Σreq
last generates a MAC for the

client authenticating req and D(h′) for some history h′ (Step R2, or Step R3): (1) only after r j

has executed req and (2) only if the state of LH j upon execution of req equals h′. Moreover,

by Step R2/R3, no correct replica executes the same request twice. By Step R4a on page 50,

a benign client (respectively, a replica) cannot commit req with h unless it receives a MAC

authenticating req and D(h′) from every correct replica in Σlast. Using Lemma 4.5.5, we get

the claim. By Step R4b.3a.1 (page 54), a benign client (respectively, a replica), cannot commit

req with h unless it receives a GET_A_GRIP message with a MAC authenticating req and D(h′)
from every correct replica in Σlast. Again, using Lemma 4.5.5, we get the claim.

Next, we proceed with proving that Ring satisfies every ABSTRACT property.

Well-formed commit indications. By Step R4a (on page 50), in order to commit a request,

the client needs to receive MACs authenticating Digest LH = D(h′) for some history h′ and a

reply digest from all of the replicas from Σ
req
last, including at least one correct replica. By Step R3

from page 49, the digest of the reply sent by a correct replica is D(rep (h′)). Hence, h′ is exactly

the commit history h and is uniquely defined, due to our assumption of collision-free digests.

Moreover, since a correct replica executes an invoked request before sending an ACK message

in Step R3 (or a GET_A_GRIP message in Step R4b.3a on page 54), it is straightforward to see

that if req is committed with a commit history hreq , then req is in hreq .

66

4.5. Correctness

Validity. For any request req to appear in an abort (commit) history h, at least f +1 replicas

must have sent h (respectively, a digest of h) in Step R3 on page 49 (or in Step R4b.3a.1 on

page 54), such that req ∈ h. Hence, at least one correct replica has executed req .

Directly from Lemma 4.5.6, we observe that all of the correct replicas execute only requests

invoked by clients.

Moreover, by Step R2 or Step R3 or Step R4b.1, no replica executes the same request twice

(every replica maintains a list of last-seen identifiers — t j [c]). Hence, no request can appear

twice in any local history of a correct process, and consequently, no request appears twice in

any commit history. In the case of abort histories, no request appears twice by construction.

Termination. By assumption of a quorum of 2 f + 1 correct replicas and fair-loss links:

(1) correct replicas eventually receive a PANIC message sent by a correct client c (in Step R4b

on page 51) and (2) c eventually receives 2 f +1 ABORT messages from correct replicas (sent in

Step R4b.3b from page 55). Hence, if the correct client c panics, the client eventually aborts the

invoked request req , in the case in which c did not commit req beforehand.

Moreover, to see that a committed request req must be in its commit history hreq , notice that

the client needs to receive a MAC for the same local history digest D(hreq) from all of the f +1

replicas from Σ
req
last, including at least one correct replica r j . By Step R2/R3, r j executes req ,

and appends the request to the replica’s local history LH j before authenticating the digest of

LH j . Therefore, req ∈ hreq . By Step R4b.2 on page 53, the replica r j executes req , and appends

the request to its local history LH j . Furthermore, the replica embeds this history in the OBR

message. Only after these steps, and prior to sending the GET_A_GRIP message to the client,

does the replica r j authenticate the digest of LH j . Hence, req ∈ hreq .

Commit Order. Assume, by contradiction, that there are two committed requests req (by a

benign client c) and req ′ 6= req (by a benign client c ′) with different commit histories hreq and

hr eq ′ , such that neither is the prefix of the other. By Lemma 4.5.7, all of the correct replicas in

Σ
req
last (Σr eq ′

last) have executed the request req (respectively, req’), with history hreq (respectively,

hr eq ′). Let r req be the first correct replica in Σreq
last, and let r r eq ′

be the first correct replica in

Σ
r eq ′

last . There are two distinct cases:

• these replicas are the same (r req = r r eq ′
). A contradiction with Lemma 4.5.1.

• one of the replicas precedes the other, in the ring order which starts from the sequencer.

Without loss of generality, we can assume that r req < r r eq ′
. By Lemma 4.5.5, r req has

executed all of the requests that r r eq ′
has executed, at the same positions. A contradic-

tion.

67

Chapter 4. Ring Design and Implementation

Abort Order. Let us assume, by contradiction, that there is a committed request reqC (by

some benign client) with commit history hreqC and an aborted request req A (by some benign

client) with commit history hreq A , such that hreqC is not a prefix of hreq A . By Lemma 4.5.7, and

the assumption of at most f faulty replicas, all of the correct replicas (at least one) from Σ
reqC

last
execute reqC , and their state upon executing reqC is hreqC . Let r j ∈ΣreqC

last be a correct replica

with the highest (w.r.t. the ring order which starts at reqC .entry) index among all of the replicas

in ΣreqC

last . By Lemma 4.5.6, all of the correct replicas rk (reqC .entry ≤ k < j) execute all of the

requests in hreqC at the same positions that these requests have in hreqC .

In addition, a correct replica executes all of the requests in hreqC before sending any ABORT

message (Step R4b.3b.1, page 55); indeed, before sending any ABORT message, a correct

replica must stop any further execution of requests. Therefore, for every local history LH j that

a correct replica sends in an ABORT message, hreqC is a prefix of LH j .

Finally, by Step R4b.3b.2 (page 56), a client which aborts a request waits for 2 f +1 ABORT

messages, including at least f +1 from correct replicas. By construction of the abort history,

every commit history including hreqC is a prefix of every abort history, including hreq A . A

contradiction.

Init Order. Under the constraint that if a replica’s local history is empty, the first request

to which the sequencer can assign the sequence number and the first request a replica may

execute must be INIT requests, we obtain that replicas initialize their local histories before

sending any RING, ACK or ABORT request.

Since any common prefix C P of all of the valid init histories is a prefix of any particular init

history I H , C P is a prefix of every local history sent by a correct replica in a RING or ABORT

message. Init Order for commit histories immediately follows. In the case of abort histories,

notice that out of at least 2 f +1 ABORT messages received by a client on aborting a request

in Step R4.3b.2 (page 56), at least f +1 are sent by correct processes and contain local histories

that have C P as a prefix. Hence, by Step R4b.3b.2, C P is a prefix of any abort history.

Non-Triviality. Non-Triviality relies on the fact that the timer of the client, triggered in Step

R1 is set in such a way that it does not expire in the case when the set of replicas, including the

client, is synchronous.

Let us assume, by contradiction, that there is a correct client c which panics and denote the first

such time by tPAN IC . The client c has invoked the request req at t = tPAN IC − (2(3 f +1)+2)∆.

Since no client has panicked by tPAN IC , all of the replicas will have executed all of the requests

they have received by tPAN IC . Then, it is not difficult to see, since there are no link failures,

that: (i) by the time t +∆, the entry replica receives req and takes Step R2, and (ii) by the time

68

4.5. Correctness

t+3 f ∆< tPAN IC all of the replicas take Step R2 for req , and (iii) by the time t+(2(3 f +1)−1)∆<
tPAN IC all of the replicas take Step R3. Since the sequencer is correct, then we have that all of

the replicas execute all of the requests received before tPAN IC in the same order (established

by the sequence numbers assigned by the sequencer). Hence, by t + (2(3 f +1)+2)∆= tPAN IC ,

c receives f +1 identical replies (Step R4a), commits the request req , and never panics. A

contradiction.

In addition, a correct replica ri executes Step R4b.3b (on page 55) and stops appending new

requests, only if ri fails to commit an OBR request for a RING message signed by some client.

Since such an OBR request cannot raise a verification failure, ri can fail to commit such a

request only in the case in which there is asynchrony in the set of replicas, or in the case in

which some replica has failed.

4.5.2 Resilient Mode Correctness Proof

In this section, we prove that resilient mode implements ABSTRACT with Resilient Mode Non-

Triviality. First, we prove several auxiliary lemmas.

Lemma 4.5.8. If a correct replica ri receives a request req (via the OBR message) at time t1, then

all of the correct replicas r j (0 ≤ j < i) have received that request before t1.

Proof. By contradiction. Let us assume that the lemma does not hold, and let us fix r j to be the

first correct replica which receives req , such that there is a correct replica rx (x < j) that never

receives req . We say that r j is the first replica for which req obr-skips. A correct replica sends a

request to its f +1 successors. Hence, if rx ∈←−r j , rx must have received req — a contradiction.

On the other hand, if rx ∉←−r j , then r j is not the first replica for which req obr-skips, since any

correct replica (at least one) from ←−r j obr-skips req — a contradiction.

Lemma 4.5.9. When processing OBR requests, after at most min(f +1,4) communication steps

from the time the non-malicious sequencer has received an OBR request, all of the replicas will

have received the message.

Proof. By contradiction. Let us assume that it takes more than four steps for all of the replicas

to receive the request. Let R1 be the last replica in the ring order which has received the

request in the first step. Similarly, let R2 (R3, R4, R5) be the last replicas which have received

the request in the second (respectively, third, fourth, fifth) step. Let d0 be the distance between

69

Chapter 4. Ring Design and Implementation

the starting replica r0 and R1. Likewise, let d1 be the distance between R1 and R2, d2 be the

distance between R2 and R3, etc. . . We have the following equations:

d0 +d1 +d2 +d3 +d4 < 3 f +1 (4.1)

1 ≤ d0,d1,d2,d3,d4 ≤ f +1 (4.2)

f +1 ≤ d0 +d1 (4.3)

f +1 ≤ d1 +d2 (4.4)

f +1 ≤ d2 +d3 (4.5)

f +1 ≤ d3 +d4 (4.6)

2 f +1 ≤ d0 +d1 +d2 (4.7)

2 f +1 ≤ d1 +d2 +d3 (4.8)

2 f +1 ≤ d2 +d3 +d4 (4.9)

Equation 4.1 states that, after five communication steps, we reach all of the correct nodes on

the ring (at most 3 f +1). Equations 4.3-4.6 state that a replica reached in two steps could not

have been reached in a single step. Similarly, Equations 4.7-4.9 state that a replica reached in

three steps could not have been reached in less than three steps. From Equations 4.7 and 4.6,

we get a contradiction with Equation 4.1:

(d0 +d1 +d2)+ (d3 +d4) ≥ 3 f +2 (4.10)

When f = 1 or f = 2, we take less equations into consideration. In the case in which f = 1,

only d0, d1, and d2 exist. Similarly, when f = 2, only d0–d3 exist.

Lemma 4.5.10. When processing OBR requests, after at most min(2 f +2,8) communication

steps from the time the non-malicious sequencer receives an OBR request, all replicas will receive

the message with 2 f +1 correct signatures.

Proof. Due to Lemma 4.5.9, after min(f +1,4) communication steps, all correct replicas will

have a copy of the message (assuming that the sequencer is correct). All correct replicas will

forward the message further. Thus, if we apply Lemma 4.5.9 once more, treating each replica

as the sequencer, then after additional min(f + 1,4) steps, all replicas will have messages

from all other correct replicas. Since all correct replicas memorize the set of previously seen

signatures for the request (Line 13 of Algorithm 4.7), after min(2 f +2,8) communication steps

all replicas will receive the message with 2 f +1 correct signatures.

Well-formed commit indications. The proof is the same as for the fast mode case.

70

4.5. Correctness

Validity. The proof is similar as the proof for the fast mode case.

Init Order. The proof is the same as for the fast mode case.

Termination. The proof is the same as for the fast mode case.

Commit Order. Let us assume, by contradiction, that there are two committed requests req

(by a benign client c) and req’ 6= req (by a benign client c ′) with different commit histories hreq

and hreq’ , such that neither of them is the prefix of the other. The clients commit requests

either as a response to a RING, or to a PANIC message. There are three possible cases:

• Both of the committed requests are direct responses to RING messages. By Lemma 4.5.7,

all of the correct replicas in Σreq
last (Σr eq ′

last) have executed the request req (respectively, req’),

with history hreq (respectively, hr eq ′). Let r req be the first correct replica in Σreq
last, and let

r r eq ′
be the first correct replica in Σr eq ′

last . There are two distinct cases:

– these replicas are the same (r req = r r eq ′
). A contradiction with Lemma 4.5.1.

– one precedes the other, in the ring order which starts from the sequencer. Without

loss of generality, we can assume that r req < r r eq ′
. By Lemma 4.5.5, r req has

executed all of the requests that r r eq ′
has executed, at the same positions. A

contradiction.

• Both of the committed requests are a direct response to OBR messages. From Step

R+4b.3a.1 (on page 61), a client commits a request, if there are f +1 matching GET_A_GRIP

messages. By Step R+4b.3a on page 61, a replica executes a request and sends a GET_A_GRIP

message if there are at least 2 f +1 correct signatures. Thus, each of the clients commits

a request after receiving a message executed by at least f +1 correct replica. These

two sets (carried in GET_A_GRIP messages) of correct replicas intersect on one correct

replica, which has executed both of the requests. A contradiction with Lemma 4.5.1.

• One committed request is a direct response to a RING message, while the other is a

direct response to an OBR message. Without loss of generality, let us assume that client

c has committed req as a direct response to the RING message, while the client c ′ has

committed req’ as a direct response to the OBR message. By Lemma 4.5.7, all of the

correct replicas in Σreq
last have executed req . Let r req be the first correct replica in Σreq

last. By

Lemma 4.5.5, all of the correct replicas in the range {rreq .entry . . .r req } have executed the

request, and there are at least f +1 correct replicas in that range (as r req belongs to the

last f +1 replica in the ring orders starting from req .entry). Similarly to the previous case,

71

Chapter 4. Ring Design and Implementation

the client c ′ commits the request after receiving f +1 matching GET_A_GRIP messages.

Every replica which has sent the GET_A_GRIP message had executed the request after

receiving an OBR message with at least 2 f +1 signature. Thus, the set of correct replicas

which has executed req , and the set of replicas which has executed req’ intersect on at

least one correct replica. A contradiction with Lemma 4.5.1.

Abort Order. Let us assume, by contradiction, that there is a committed request reqC (by

some benign client) with a commit history hreqC and an aborted request req A (by some benign

client) with commit history hreq A , such that hreqC is not a prefix of hreq A . There are two different

cases:

• reqC was committed without the client sending a PANIC message. By Lemma 4.5.7,

and the assumption of at most f faulty replicas, all of the correct replicas (at least one)

from Σ
reqC

last execute reqC , and their state upon executing reqC is hreqC . Let r j ∈ΣreqC

last be a

correct replica with the highest (w.r.t. the ring order which starts at reqC .entry) index

i nd among all of the replicas in ΣreqC

last . By Lemma 4.5.6, all of the correct (at least f +1)

replicas rk (reqC .entry ≤ k < j) execute all of the requests in hreqC at the same positions

that these requests have in hreqC .

• reqC was committed during the handling of the PANIC message sent by the client. By

Lemma 4.5.10, and Step R+4b.3a (on page 61), all of the correct replicas (at least 2 f +1

replicas) execute reqC .

In addition, a correct replica executes all of the requests in hreqC before sending any ABORT

message (Step R+4b.3b.1, listed on page 62); indeed, before sending any ABORT message, a

correct replica must stop any further execution of requests. Therefore, for every local history

LH j that a correct replica sends in an ABORT message, hreqC is a prefix of LH j .

Finally, by Step R+4b.3b.2 from page 62, a client that aborts a request waits for 2 f +1 ABORT

messages, including at least f +1 from correct replicas. By construction of the abort history,

every commit history, including hreqC , is a prefix of every abort history, including hreq A . A

contradiction.

Non-Triviality. Non-Triviality relies on the fact that the timer of the replica, triggered in

Step R+4b.1 (on page 58) is set in such a way that it does not expire in the case when the set of

replicas, including the client, is synchronous.

Let us assume, by contradiction that there is a correct replica r which stops, and denote the

first such time by tST OP . Replica r has sent the OBR message m at t = tST OP − ((2 f +1)+1)∆.

Since no client has panicked by tPAN IC , all of the replicas will have executed all of the requests

they have received by tPAN IC . Then, it is not difficult to see, since there are no link failures,

72

4.5. Correctness

that: (i) by the time t +∆, the sequencer receives m and takes Step R+4b.2 (page 60), and (ii) by

the time t + (f +1+1)∆< tST OP , all of the correct replicas take Step R+4b.2 for m, and (iii) by

the time t + ((2 f +1)+1)∆< tST OP , all of the correct replicas take Step R+4b.3a (page 61). Since

the sequencer is correct, then we have that all of the correct replicas execute of the all requests

they have received before tST OP in the same order (established by the sequence numbers

assigned by the sequencer). Hence, by t + ((2 f +1)+1)∆= tST OP , r receives a message with at

least 2 f +1 signatures (Step R+4b.3a), commits the request req (associated with m) and does

not abort. A contradiction.

In addition, a correct replica ri executes Step R+4b.3b (on page 62), and stops appending

new requests, only if ri fails to commit the OBR request for a RING message signed by some

client. Since such an OBR request cannot raise a verification failure, ri can fail to commit such

request only in the case there is an asynchrony in the set of replicas, as, per Lemma 4.5.10, if

the sequencer is correct, a malicious replica cannot prevent correct replicas from receiving

the OBR message.

73

5 Optimizations and Extensions

We have designed several techniques which improve the efficiency of BFT implementations,

and have implemented some of them in Ring. This chapter addresses these techniques, which

range from protocol optimizations to protocol extensions which enable the detection of low-

performance operations. In Section 5.1, we have described protocol optimizations, while the

methods of handling authentication are described in Section 5.2. The last section elaborates

on the methods of detecting and defending against slow replicas.

5.1 Optimizations

We have implemented a set of optimizations to further improve the performance of Ring.

These optimizations mostly aim at reducing the number of performed MAC operations per

request, and the number of sent messages. These optimization are suitable for the fast mode

of operation, although they may also be applicable to the resilient mode.

The tasks of optimizing for the reduction of the number of performed MAC operations, and

lowering the overall number of sent messages have been challenging, as Ring Authenticators

carry dependencies on the content of the request during the next f +1 communication steps,

and each of these fields in the message is serially processed by a different replica. Let us

consider, for instance, a request entering the system at replica 1. At some later point in

time, replica 1 receives the acknowledgement from the sequencer (replica 0), and needs to

authenticate the request using a MAC from both replica 3 and replica 0. Replica 3 has created

the MAC for the request, without a sequence number being set. Replica 0 created the MAC

for the acknowledgement, with the sequence number being set (replica 0 had updated this

sequence number). Replica 1 needs to take both of these conditions into account during the

verification of MACs. The next section explains the encountered challenges in detail, along

with our approach to solving them.

75

Chapter 5. Optimizations and Extensions

5.1.1 Piggybacking

The goal of this optimization is to reduce the number of messages which are sent over the

network. The optimization works as follows: when a replica generates an ACK message (the

acknowledgement message), it takes one (or more) client request(s), and piggybacks the

acknowledgement onto the request. Next, the replica generates Ring Authenticators for the

union of the requests and the acknowledgement. Lastly, the replica forwards the piggybacked

request. When such a message reaches the last replica for the request, acknowledged by the

piggybacked acknowledgement, this last replica needs to take special care in order to generate

a proper MAC for the client, and also to generate proper MACs for the request(s) onto which

the acknowledgement was piggybacked.

Figure 5.1 illustrates the process of the piggybacking of acknowledgements, when two clients

send requests. Replica 1 receives a forwarded request from replica 0, and detects an out-

standing request from client b. First, replica 1 creates an acknowledgement for the request

forwarded by replica 0 (from client a), and then attaches that acknowledgement to the request

from client b. The subsequent replicas process both the acknowledgement and the request.

Later, replica 1 receives back the acknowledgement it has created for the request from client a,

and the acknowledgement of the request from client b1. Then, replica 1 performs the following

steps: (1) splits the message, (2) takes the acknowledgement of the request from client a,

(3) replies to the client a, and (4) forwards the rest of the message to replica 2.

!"#$%&'(

)$*"#!('+

)$*"#!(',

)$*"#!('-

)$*"#!('.

!"#$%&'/

Figure 5.1: An illustration of piggybacking (f=1). Solid lines represent the request from the
client a, while dashed lines represent the request from the client b. Thick lines denote requests,
thin lines denote corresponding acknowledgements. Piggybacked requests are represented as
a line parallel to the line of the carrying request.

Note that this optimization can be considered fragile, as malicious clients could disrupt the

performance of Ring by sending malformed messages, which would be dropped at later

replicas. Indeed, when an acknowledgement is piggybacked onto a new request, and the

request authentication fails, both the acknowledgement and the request will be dropped. For

that purpose, we have decided to disable this optimization when the number of committed

requests between two switchings to the resilient mode is below a configurable threshold.

1Replica 0 has created the acknowledgement for the request of client b in the previous step

76

5.1. Optimizations

5.1.2 Batching

The goal of this optimization is twofold. First, it aims at the decrease of the number of messages

sent over the network, and to reduce the number of MAC operations which are performed

per request. Upon receiving a request from a client, a replica checks whether there are other

pending requests from other clients. If there are such requests, the replica batches them

together, and generates RAs for the union of requests. Lastly, the replica forwards the batch.

Note that the first f +1 replicas need to verify client MACs, for each single request of the batch,

and a joint MAC for the whole batch. Moreover, the last f +1 replicas need to generate MACs

for the whole batch for their successors in the Ring, and a MAC for every client separately.

Finally, note that when generating the acknowledgement for the batch, the replica creates a

batch of acknowledgements, to allow for message fragmentation. Request batching is shown

in Figure 5.2.

!"#$%&'(

)$*"#!+',

)$*"#!+'-

)$*"#!+'.

)$*"#!+'/

!"#$%&'-

!"#$%&',

!
!
!

Figure 5.2: An illustration of batching (f=1). Thick line represents a batch of requests, while
a thin line between replicas represents a batch of acknowledgements. The difference in
thickness of the lines symbolizes the fact that the acknowledgements are smaller in size than
the requests.

Similarly to piggybacking, this is a fragile optimization that we choose to disable when the

number of committed requests between two switches to the resilient mode is below a config-

urable threshold.

5.1.3 Read Optimization

The goal of the read optimization is to reduce the latency of read requests. In general case,

read requests do not need to be totally ordered, because they do not affect the state of replicas.

However, if different replicas have a different state, then read operation will return mismatch-

ing replies. In such cases, clients submit read requests so that these read operations are totally

ordered by the protocol.

Similar approach is taken in Ring. Having to totally order read requests would get them to

circulate twice around the ring, which would unnecessarily add to the latency, and increase

77

Chapter 5. Optimizations and Extensions

the processing time per request on each replica. Thus, we first submit read requests so they

exit the ring after being processed by f +1 consecutive replicas, as shown in Figure 5.3. Once

a client has received the reply to its read request, it compares the f +1 MACs contained in the

reply. If they match, the client commits the reply. Otherwise, it is a signal to the client that the

replicas had been in different states. Thus, the client sends the read request as a write request,

in order for it to be totally ordered.

Note that read requests can be batched with write requests. However, that would complicate

the authentication and verification of requests (generation of MACs). Therefore, in order to

keep the protocol implementation simple, read requests are only batched with other read

requests.

!"#$%&

'$("#!)*+

'$("#!)*,

'$("#!)*-

'$("#!)*.

Figure 5.3: Illustration of a read-only operation (f=1).

Note that we have also tested the read optimization used in state-of-the-art BFT proto-

cols [Amir et al., 2008; Castro and Liskov, 1999; Clement et al., 2009a; Kotla et al., 2007],

in which clients multicast their read requests to f +1 replicas and wait for f +1 matching

replies. We have observed that this approach does not yield good performance. With such

a read optimization, we heve observed a high number of request retransmissions, due to

mismatching replies (as different replicas on the ring were in different states). The reason for

this behaviour is that the pipelining approach used for request propagation interferes with the

parallel approach used to send read requests.

5.1.4 Out-of-Order Caching

The protocol description (Section 4.3.3 and Section 4.4.1) dictates that replicas should process

requests in ascending order of their sequence numbers. In practice, this is hard to achieve

in Ring, because the requests arrive in different order, due to the fact that request obtain

their sequence number at different stages of processing. Thus, to increase performance,

Ring caches all messages, processes them out-of-order (of arrival), but according to their

appropriate sequence numbers.

5.1.5 Checkpointing

As the execution proceeds, message logs of all of the executed requests may grow without

bound. Thus, the replicas must truncate the log containing the messages that have been

executed on all of the replicas. The replicas have to be careful not to delete requests which

78

5.2. Authentication Challenges in Ring

have been seen or executed by less than 2 f +1 replicas, as safety would be violated otherwise.

To truncate the execution history, Ring uses the Lightweight Checkpointing Subprotocol (LCS)

of the ABSTRACT framework, which we briefly outline in the this section.

LCS truncates the history by a predefined number of messages, a number which is the same

for every replica. LCS consists of the following steps, which are executed by every replica,

independently of the main request processing:

• Every replica keeps a checkpointing counter, and increments it for every executed

request;

• Whenever that counter reaches a predefined threshold value, every replica sends a

checkpoint message to all of the other replicas, containing the signed digest of the

history and the value of the counter;

• Whenever a replica sends the checkpoint, it triggers a checkpoint timer. If the timer

expires, the replica stops and aborts all future requests;

• When a replica receives the same checkpoint from all of the other replicas, it collapses

its history. The replica truncates the history up to the checkpointing counter referenced

in the checkpoint message.

5.2 Authentication Challenges in Ring

As mentioned in Section 4.3.1, MAC authenticators are an important overall optimization, due

to their good performance characteristics over digital-signatures. Another difference between

the two is that digital signatures are written only once per message, per sender, while the

authenticators are usually a vector of MACs, each for one designated recipient. Thus, handling

MAC authenticators is not as straightforward as handling digital signatures, especially with the

optimizations described in the previous section. In this section, we outline several challenges

of using MACs over complex message interactions. Also, we describe an attack [Clement et al.,

2009a], which causes a crash in all state-of-the-art BFT protocols, while reducing performance

in Ring. We also describe our counter-measures for this attack.

5.2.1 Optimizations and Authenticators

In this section, we describe the effect of each of the optimizations on MAC handling.

When creating a batch of requests, a replica will create an authenticator for all of the messages

in the batch. All successive replicas will verify the whole batch, create a batch of acknowl-

edgements, and process each acknowledgement in the batch. However, there are some issues

which need to be taken into consideration during the handling of batched messages. The

first f +1 replicas will need to read a MAC per client, for a single message, and for each of

79

Chapter 5. Optimizations and Extensions

the replicas. Similarly, the last f +1 replica will need to write, for each of the messages in the

batch, a single MAC for the client who created the request. Clearly, the process of handling

MACs for batched messages becomes a complex task, as there are many conditions that need

to be taken into account.

When handling piggybacked requests, authenticator processing becomes more complicated.

The reason is as follows — when a replica receives a piggybacked request, and if the replica

is one of the f successors of the entry replica of the request, it needs to do the following

tasks: (1) check the MAC written by the client for the carrier request; (2) check the MACs,

written by the predecessors of the entry replica, of the carrier request, for the piggybacked

acknowledgement; (3) check the MACs written by its predecessors, for the joint, piggybacked

request (both for the request, and the acknowledgement). Furthermore, the f predecessors of

the exit replica for the piggybacked acknowledgement need to write the MACs for the carrier

request and the acknowledgement separately.

Therefore, writing MAC authenticators for a combination of batched and piggybacked requests

becomes quite a complex operation, one which requires careful design and implementation.

Our evaluation shows that batching and piggybacking do indeed improve performance. How-

ever, the trade-off lies between the performance of the code, and its maintainability.

5.2.2 Attacks On MACs

Clement et al. [2009a] described a well-known attack against all state-of-the-art BFT protocols

which use MAC authenticators. The crux of the attack is in the independence of MACs in

the authenticator — there is one MAC per receiver, stored in the authenticator. For example,

Zyzzyva’s communication pattern is such that the primary first receives the request, sequences

it after authentication, and then multicasts it to other replicas. These other replicas receive

the request, authenticate it, and execute it. When a client writes MAC authenticators in such a

way that the primary can only correctly verify the MAC for itself, while other replicas fail the

authentication, it will create a discrepancy in the state of the replicas. Thus, the system will

need to go through an expensive phase of re-consolidation, in order to correctly continue its

operation. In theory, this attack should affect performance, while, in practice, it causes of the

all replicas to crash, leaving the system in an unusable state. A similar behaviour occurs with

Chain, as well.

As Ring’s fast mode aims toward high performance in the best case (in which there are no

errors), any additional processing may negatively affect the performance. Thus, we are faced

with a trade-off between high-performance and increased robustness. In the general case,

one solution would be to use digital signatures instead of Ring Authenticators. However, this

approach severely reduces performance. Thus, in the general case, we leave the task of fighting

off such attacks to either blacklists, or by forcing the system to go through the resilient mode.

80

5.3. Low Performance Detection

Nevertheless, in a configuration for tolerating at most one fault (f = 1)2, Ring’s topology allows

for a simple protection against such an attack. The attack poses a problem only if a replica,

other than the primary (respectively, the head, the sequencer) receives the request to which it

assigns a sequence number, but that request still contains a MAC from the client, intended

for other replicas. In Ring, we solve this problem by prohibiting the sequencer to sequence

any requests for which it is the entry replica. This forces the sequencer to assign the sequence

number to the the acknowledgement of the request. This approach does not violate the safety,

nor the correctness of the algorithm, because all of the other replicas in the system will receive

the acknowledgement with the sequence number.

5.3 Low Performance Detection

Ring has a highly symmetrical topology but, on the other hand, it exhibits a linear communica-

tion pattern: a replica receives a request from its predecessor, and forwards it to its successor.

These two factors make Ring sensitive to performance disruptions. If there is at least one

replica being slower then the rest, the performance of the whole system will be affected. To

this regard, Ring is similar to quorum-based systems, where any single member is capable

of affecting the performance of the whole system. Essentially, Ring is as fast as the slowest

replica, entailing that malicious or faulty replicas can significantly hurt its performance.

To remedy this situation, Ring runs its slowness detection algorithm, which detects if there

are any slowdowns in the system. If the algorithm returns a positive answer, the replicas can

signal the operator about the observed fault, or switch to another instance, possibly using a

different set of replicas.

5.3.1 Collected Metrics

Each replica ri in Ring collects the following statistics, in last 1, and 5 s:

• throughput of requests processed from the predecessors, per entry replica (bi
q [j], j ∈

(0,3 f +1))

• throughput of requests sent to the successor (B i
q)

• throughput of requests processed from clients (bi
c)

• throughput of requests sent to clients (B i
c)

• average round trip time (RT T) for requests for which the replica is the entry replica

(RT T i)

• ping time (denoted T i
hop), which represents the time it takes the request to reach replica

i +1.
2Which should be the most prevalent configuration.

81

Chapter 5. Optimizations and Extensions

5.3.2 Slowness Detection Algorithm

This algorithm relies on the symmetry of Ring. The intuition here is that if all of the replicas

were to share the information on their working conditions, then the majority of them will

report what the good working conditions are.

Another insight comes from the manner in which the replicas in Ring process the requests.

Each of the replicas keeps two queues of incoming requests — one queue accepts requests

from clients, while the other queue holds requests from the predecessor. The replica processes

requests from both of the queues, one-by-one, so that the ratio between the throughputs

from both queues is around 3 f + 1, in the favour of the predecessor queue, because that

is the number of flows (from different replicas) that the predecessor queue holds. We use

the well-known token bucket algorithm Shenker and Wroclawski, 1997 for keeping the ratio

between the flows at 3 f +1.

In our approach to detecting the slowness in the system, we rely on the fact that if a request

were to leave from one replica to another, and immediately return, the whole round trip would

capture the propagation time and the queueing time on both replicas. The queueing time

accounts for the processing of all of the previous requests, giving an insight into the working

conditions.

In brief, the outline of the slowness detection algorithm is:

• each of the replicas measures the average time it takes a request to go once over the ring

(RTT_avg - Round trip time).

• each of the replicas measures the time it takes the successor to accept and process a

message.

• each of the replicas exchanges its previous two values with other replicas.

• based on the gathered data, if the round trip time and the handling time at the successor

do not match, the replica can suspect the presence of slow replicas in the system.

The intuition behind Algorithm 5.1 is quite simple. A replica sends a ping (or piggybacks it

to another message) to another replica, and measures how long it takes for it to receive an

answer. Since both replicas operate in the same conditions, half of that time is the propagation

of the message to the processing site at the next replica.

Algorithm 5.2 describes a part of the slowness detection algorithm, in charge of exchanging

data received in Algorithm 5.1, and deciding if there exists a slow replica in the system or not.

A replica sends a signed message with its own time, and each other replica appends (after

signing) its own time to the message. Once the message has returned to its originating replica,

it will contain times measured by all of the other replicas. At that moment, the originating

replica can decide if there are any slow replicas in the system. Also, it forwards this message

82

5.3. Low Performance Detection

Algorithm 5.1 Ring: calculating propagation time between neighbours

procedure send_ping() is
1: {this procedure is executed periodically}
2: Tping ← current_time()
3: nonce ← new nonce
4: send 〈PING, nonce〉 to ri+1

upon event 〈PING, nonce〉 from ri−1 do
5: send 〈PONG, nonce〉 to ri−1

upon event 〈PONG, nonce’〉 from ri+1 do
6: if nonce’ = nonce then
7: Tpong ← current_time()

8: Thop ← Tpong−Tping

2

along the ring once more, so all of other replicas can obtain all of the data values, and make a

decision for themselves.

Algorithm 5.2 Exchange of propagation times

procedure exchange_ping_times() is
1: {this procedure is executed periodically}
2: nonce ← new nonce
3: HOPSET ←;∪〈Thop, nonce〉σ
4: send 〈RT_CHECK, nonce, i, HOPSET〉 to ri+1

upon event 〈RT_CHECK, nonce, entry_replica, HOPSET〉 from ri−1 do
5: if entry_replica = i

then
6: if ∀ i ∈ HOPSET: signature(i) is correct then
7: send 〈RT_REPORT, nonce, i, HOPSET〉 to ri+1

8: decide_slowness(HOPSET)
9: else

10: HOPSET ← HOPSET ∪ 〈Thop, nonce〉σ
11: send 〈RT_CHECK, nonce, entry_replica, HOPSET〉 to ri+1

upon event 〈RT_REPORT, nonce, entry_replica, HOPSET〉 from ri−1 do
12: if i 6= entry_replica then
13: if ∀ i ∈ HOPSET: signature(i) is correct then
14: decide_slowness(HOPSET)

The slowness detection algorithm (Algorithm 5.3) is used to detect the presence of slow replicas.

Calculations in this algorithm rely on Klat, a known network-specific constant which accounts

for latency variability. After receiving all ping times, a replica sorts these times, picks the

f +1-th time from the top of the list, and uses this value to estimate the message propagation

time around the ring. If the calculated time (with latency variability taken into account) is less

than the measured time, we have a signal that there is a slow replica in the system. The replica

83

Chapter 5. Optimizations and Extensions

broadcasts its finding (in the form of a yes or no decision). Then, the replica waits to receive

findings from 2 f other replicas. If the majority (f +1) of decisions is yes, the replicas need to

either switch to a new instance of ABSTRACT, or try to detect which replicas are slow.

When performing the comparison between the calculated and the measured time, the replicas

in Ring take into the account a constant ε. ε is set by the operator, and describes the allowed

extent of variance in the performance.

Algorithm 5.3 Slowness detection algorithm

Initialization:
1: certificate ←;

Implementation:
procedure decide_slowness(HOPSET) is

2: times ← []
3: for all H ∈ HOPSET do
4: {get all times in a list}
5: times ← times || H.Thop

6: sort_ascending(times)
7: Tcand ← times[f+1]
8: TATexp ← (3 f +1)∗Tcand ∗Klat

9: nonce ← new nonce
10: if TATexp ∗ (1+ε) <TATmeasured then
11: send 〈RT_DECIDE, i, nonce, 〈YES, nonce〉σ 〉 to all
12: certificate ← certificate 〈YES, nonce〉σ
13: else
14: send 〈RT_DECIDE, i, nonce, 〈NO, nonce〉σ 〉 to all
15: certificate ← certificate 〈NO, nonce〉σ
upon event 〈RT_DECIDE, id, nonce 〈ANSWER, nonce〉σ(i d) 〉 from ri−1 do
16: if 〈ANSWER, nonce〉σ(i d) is correctly signed then
17: certificate ← certificate ∪〈ANSWER, nonce〉σ(i d)

18: if size(certificate) ≥ 2 f +1 then
19: DECIDE ← majority(certificate)

Attacks

The attacker can mount numerous attacks against the aforementioned algorithms. We assume

that the attacker cannot drop messages, since that will be a signal that the system is not

synchronous, and will cause Ring to switch to another instance of ABSTRACT. A malicious

replica can:

• respond to the ping message immediately upon receipt. This way, Thop will be shorter

than the actual time.

84

5.3. Low Performance Detection

• wait longer to respond to the ping message.

• report a large time for the RT_CHECK message.

• report NO during the RT_DECIDE phase.

Clearly, for a malicious replica, the goal of which is to slow down the traffic, sending premature

responses to ping message is ill-advised. Such an action will cause that its predecessor gets a

lower Thop, and will increase the chance that other replicas will pick a small ping time in the

decide_slowness method, increasing the chance that the malicious activity will be detected.

Correctness of the Algorithm

Proposition 1. Malicious replicas can not insert wrong times in the RT_CHECK message.

Proof. This is guaranteed by the properties of digital signatures. If a malicious replica alters

any signature, this discrepancy will be detected at subsequent replicas, and a switch will be

made to the next (more robust) instance of ABSTRACT.

Definition A correct Thop is the Thop value measured between two correct replicas.

Proposition 2. A minimum number of correct Thop values in the RT_REPORT message is f +1.

Proof. Every malicious replica could affect Thop value measurements at two replicas. The first

one is its predecessor, while the second one is the malicious replica itself. Hence, for the f

malicious replicas in the system, there will be at most 2 f affected values. Since RT_REPORT

message carries values from 3 f + 1 different replicas, it leaves at least f + 1 correct Thop

values.

Proposition 3. Malicious replicas can not force correct replicas to choose a Thop which is greater

than all of the correct Thop values.

Proof. The proof comes directly from Proposition 2 and the fact that in the decide_slowness

method, a replica chooses the f +1st value.

Definition There is an attack if and only if the system is acting slower than a system com-

prised of the slowest of all correct replicas.

Proposition 4. Malicious replicas can not cause a misdetection of a performance attack. The

performance attack causes a degradation of throughput.

85

Chapter 5. Optimizations and Extensions

Proof. If there is an attack which causes slower traffic, all of the replicas will see a higher RTT

(higher than in the case without an attack). Based on Proposition 3, all of the correct replicas

will obtain a Thop which is less than or equal to the maximal correct Thop. By definition, the

chosen value is at most Klat times smaller than the maximal correct Thop. Next, if there is

an attack, (3 f +1)∗max(Thop) would be less than the measured RTT (by the definition of an

attack). Hence, by transitivity, we have that (3 f +1)∗Klat ∗Tchosen will be higher than the

measured RTT, as Klat ∗Tchosen ≤ max(Thop).

5.3.3 Preventing Replicas From Discriminating Clients

One attack which malicious replicas may try to perform in Ring is to discriminate clients. A

malicious replica, acting as the exit replica for a client’s request, may reply to the client slowly,

or with a delay. This attack reduces the overall throughput. To combat such a behaviour, the

clients in Ring perform similar actions as replicas in Amir et al. [2008]:

• Before sending a request, the client starts a timer set to some value Tc .

• Upon receiving the response, the client stops the timer.

• If the timer expires, the client reissues the same request to another replica.

• Periodically, the client sends a special message with instructions for replicas to send

back the statistics. This message traverses the system as a regular request (over the ring).

• When a replica receives such a message, it appends its ∆i times to the message.

• When the client receives the reply to its special message, it takes all of the listed ∆ times,

sorts them in ascending order, and picks a value greater than the 2 f +1th value in the

list. The client then sets this value as its next Tc .

86

6 Performance Model

Even extensive experimentation before the deployment of a protocol is often not enough to

assess all of the benefits (and, more importantly, drawbacks) of the protocol, nor to predict

its performance in the deployment environment. Therefore, we turn to analytic models,

which can provide invaluable assistance in explaining experimental results and in predicting

performance in situations for which experimental data does not exist. However, an analytic

model is only useful if it matches reality.

In this chapter, we present an analytic model for the performance of BFT protocols, developed

using queueing theory. To the best of our knowledge, this is the first application of queueing

theory to modelling performance of BFT protocols. We start the chapter by explaining the

assumptions which we take, followed by the presentation of the analytic model itself. Finally,

we show how Ring is represented in our model, along with the representations of other

protocols.

6.1 Queueing Theory Overview

The term “queueing theory” refers to the mathematical theory of queues (waiting lines) [Klein-

rock, 1975]. More generally, queueing theory is concerned with mathematical modelling and

analysis of systems which provide service to random demands, in a stationary regime 1. Queue-

ing theory is used for performance analysis of different processes in various technical systems,

such as telephone and computer networks, production systems, hospitals, etc.

The main element in queueing theory analysis is a queue. Here, a queue may hold either a

finite or an infinite number of requests, which arrive according to some distribution of arrival

times. The queueing discipline of a queue denotes how, when and which requests are taken

1A stationary regime is a regime in which the mean and the variance of the observed property do not change
over time.

87

Chapter 6. Performance Model

out from the queue and passed to an associated processing element. The most usual queueing

discipline is FIFO (First-In-First-Out), while the other disciplines include prioritization, LCFS

(Last-Come-First-Served), processor sharing, or pre-emption [Boudec, 2010]. Each queue

may have one (or more) associated processing elements, called servers2. The most important

characteristic of a server is its type of service process, and this process denotes the distribution

of servicing times. A queue with its associated server(s) forms a simple station. A station is a

general term in queueing theory, denoting a collection of queues (along with their associated

servers) which perform the same, high-level, work.

Clearly, a simple station in isolation cannot be used to represent many real-world systems. As

realistic models of information and communication systems involve interconnected systems,

many queues may represent such a system through a queueing network [Boudec, 2010; Wal-

rand, 1988]. In queueing networks, as the name implies, queues (or, more precisely, stations)

are interconnected. One such simple network, modelling users submitting jobs to a batch

processing system is shown in Figure 6.1.

In Figure 6.1 we observe a station representing 3 users, which submit jobs to a service station

consisting of a single CPU and two disks. Users submit only one outstanding request (per user)

that goes to the CPU. After a request is serviced on the CPU, it can either return to the user,

or go to either of the disks. In general, the path the request takes is probabilistic — there is a

certain probability associated with each of the paths. These probabilities influence the mean

number of visits to each queue, which, in turn, affects the total response time (we discuss the

actual mechanisms later in the chapter). Note that there is no queue in front of the station

denoted “users”. The reason for this is that each of the users submits only one request, and so

the requests do not wait for service upon returning to users.

!"#

$%&'()

$%&'(*!"#$"

"#$%&'#(")*)&+,

Figure 6.1: Example of a queueing network

As Figure 6.1 illustrates, queueing networks may consist of many different queues, with various

interconnections among the queues. As such, queueing networks are not solvable in general.

However, there is a broad class of queueing networks, the so-called multiclass product-form

queueing networks [Baskett et al., 1975; Gordon and Newell, 1967; Jackson, 1963; Kelly, 1979]

for which exhaustive results exist. Requests visit stations, where they either queue or receive

2“Server” is a well-established term in queueing theory. Consequently, we use the term “replica” to denote the
participants in the BFT system.

88

6.1. Queueing Theory Overview

service according to a particular servicing disciple of that station. Upon service, requests move

to another station, or leave the system (if this the case, the network is called an open network3).

Each of the request has an attribute (taken from a finite set of possible values), called the class.

Requests change their class in transit between stations4, according to Markov routing [Walrand,

1988]. Markov routing defines routing over different queues in the network, and is, essentially,

represented by a matrix (a routing matrix) which defines the probabilities of moving a request

from the pair (queue ,class) to another pair (queue’ ,class’). Routing probabilities are denoted

as q s′,c ′
s,c , where s is the current queue, c is the current class, s′ is the next queue, and c ′ is the

next class. Thus, the concept of classes helps in determining the next queue for a request to

take. The purpose of the routing matrix is to allow for the calculation of visiting rates.

The visiting rate of a station is a per-class quantity which represents the rate with which a

request of a particular class visits the station. It could be either calculated (for example, by

using the routing matrix), inferred from the system description, or measured from the real-

world system. Given the visiting rate and the mean servicing time, one may calculate some

important statistics related to a particular system, such as: the average number of requests

in a queue, the average waiting time, the average servicing time (or a response time), and the

average throughput.

The modelling process. When modelling any real system, the modeller first builds a model

in which he is evaluating the performance of the system. In our case, the model is built using

queues and stations (elements of queueing theory models). The model describes how given

elements in the real system are mapped onto elements in the mathematical representation of

the system. The entire modelling process consists of several phases:

1. Building the representation. In the first phase, the modeller (in our case, the protocol

designer/evaluator) builds a queueing network which represents the modelled protocol.

The queueing network must contain queueing stations, representing all of the parts of

the real system (in our case, the replicas) which are accessed by a request, during its

lifetime. Moreover, the routing matrix must be such that the path the request takes in

the queueing network (visited resources) matches the resources visited in the actual

system.

2. Visit rate calculation. Next, using the queueing network from the previous phase, the

protocol designer/evaluator calculates the visiting rates — the statistical mean of times

a request has visited each of the resources, during its lifetime.

3. Parametrization of servers. Unlike the previous two phases, this phase depends on

the environment in which the protocol will run (or currently runs). In this phase, the

protocol designer/evaluator measures various properties of the system, such as the

3In an open networks, customers can join and leave the system. Conversely, in a closed networks the total
number of customers within the system remains fixed.

4Transits are instantaneous.

89

Chapter 6. Performance Model

latencies or processing times for various operations. Using these measurements, the

protocol designer/evaluator then calculates the total processing time for each of the

requests, for each of the server resources in the queueing network.

4. Application. Finally, the protocol designer/evaluator uses the results from the previous

three phases as an input to some analytic or numerical method (algorithm) for comput-

ing the metrics of interest for the given multiclass product-form queueing network. In

our approach, we use the Mean Value Analysis (MVA) algorithm [Reiser and Lavenberg,

1980]. The output of the MVA algorithm is some metric of interest — the throughput,

the response time, or the average queue length.

The first two phases usually occur only once during the entire evaluation process. The

parametrization phase has to be re-assessed every time the conditions change — a change

in hardware, a change in network settings, or a change in system parameters (for example,

using requests of different size). On the other hand, the second phase does not depend on the

hardware, and only depends on the associated routing probabilities of the queueing network.

The modeller goes through the last phase any time he needs to query the model and obtain

the metrics of interest.

MVA algorithm. The Mean Value Analysis algorithm [Reiser and Lavenberg, 1980], outlined

in Algorithm 6.1, is an efficient method of calculating the metrics of interest in multiclass

product-form queueing networks, and it has extensions for a broad class of queueing networks.

The MVA could be applied to both the open and closed types of queueing networks.

Algorithm 6.1 Mean Value Analysis algorithm

Input: θs
c , visit rates for all stations, such that θ1 = 1

Input: S
s
, average processing time of each of the stations

Output: λs , throughput for all of the stations
1: K ← population size
2: λ← 0 {throughput}

3: Qs ← 0 for all station s ∈ FIFO {total number of customers at station s}

{Qs =∑
c N

s
c }

4: θs =∑
c θ

s
c for every s ∈ FIFO

5: h =∑
s∈IS

∑
c θ

s
c S

s +∑
s∈FIFOθ

sS
s

{a constant term}

6: for k = 1 : K do
7: λ= k

h+∑
s∈FIFO θ

sQ s S
s

8: Q s =λθsS
s
(1+Q s) for all s ∈ FIFO

9: return λs =λθs

The MVA algorithm aims at the computation of expected queue lengths (denoted Q in Algo-

rithm 6.1) in the equilibrium state. The essence of this iterative algorithm lies in the Arrival

theorem [Boudec, 2010]: in a system with k clients, an arriving client observes the rest of

the system to be in an equilibrium state for a system with k −1 clients. The MVA starts by

90

6.2. Model

initializing the waiting times for all of the queues in the system, and then iteratively adds

clients one by one, adjusting these waiting times. Using Little’s Law, which relates throughput

(denoted λ) with the waiting time:

λ= k∑
w

where k is the total number of requests, and
∑

w is the total waiting time on all of the queues,

one obtains the overall throughput of the system. The additional output of the MVA are the

mean response times, as the algorithm calculates the waiting time at each of the queues [Bolch

et al., 2005].

6.2 Model

In this section, we first describe the assumptions that we make in order to build our model.

Next, we describe the model itself — how the elements from a real system (such as replicas,

clients, network links, requests, . . .) are mapped onto the elements of our queueing theory

model. Afterwards, we outline how different queues in our model are parametrized. Finally,

we describe the effects of various optimizations on the parametrization process.

Assumptions. We assume a closed system, i.e., that there is a fixed, finite, total number of

clients accessing a finite number of replicas. This is a reasonable assumption for existing BFT

systems, which require all of participants to exchange their cryptographic keys, thus limiting

the number of clients which can participate in the system.

In a traditional BFT system, the clients submit their requests to the service over links which

have a certain communication delay. The replicas enqueue requests from clients if they are

currently processing another request. Consequently, every request spends some time in

transit, and some time being processed (and also executed in the replicated service) by the

replicas.

The model. To model both the networking and computational effects, we represent each

of the replicas as a station containing several substations. The substations represent each

of the incoming and outgoing network links, and one substation represents the CPU. The

representation of a replica in our model is shown in Figure 6.2. Note that, as we use 2 network

interface cards in the actual deployment, we have to represent that in the model by having

multiple substations for each of the network interface cards. Next, the incoming and outgoing

network links are represented as separate substations, as all of the links are full-duplex. Indeed,

all of the modern network cards indeed have different hardware queues. A substation which

represents a network link consists of single-server FIFO queues and a delay station5 (denoted

5A delay station does not incur any queueing, and only adds a delay (called thinking time Z) to any of the
requests that it receives.

91

Chapter 6. Performance Model

!"#$%&'()*+,%-& !"#$%&'()*+,%*.(

/0.

!" !"

!"#1%&'()*+,%-&

!"

!"#1%&'()*+,%*.(

!"

#$%&'()(*)+&,$%#-./01

+&,$%#-)(*)+&,$%#-./01

Figure 6.2: Queueing model for a replica: IS denotes a delay station, while all of the other
queues adhere to the FIFO discipline.

IS), in a chain. The FIFO queues adhere to the First-In-First-Out processing discipline, match-

ing the behaviour of the network links. In the context of network link related substations,

the FIFO queues model the use of bandwidth, while delay stations model the latency. The

CPU is modelled as a single-server 6 FIFO queue, with the processing time independent of the

processing times of other FIFO queues in the replica station. The output of the incoming link

substations is connected to the input of the CPU queue, while the output of the CPU queue

is connected to the inputs of the outgoing link substations. This arrangement matches the

fact that in all of the implementations, a separate thread fetches incoming requests to the

main memory, where requests are processed by the CPU, and then propagated further over

the network.

The clients in the system are represented only by their requests, as we assume that clients

have only one outstanding request. The delays on the client links, and the client processing,

are represented by a single delay station [Boudec, 2010], which is shown later in the chapter.

Although we can analyse different execution scenarios (as long as there exists a stationary

working regime7), we focus only on the best case execution, for two reasons:

• arguably, the best-case execution is the predominant working mode, and, as such, has a

stationary working regime.

• practitioners are usually interested in improving the best performance [Guerraoui et al.,

2010a; Kotla et al., 2007; Serafini et al., 2010].

6Although any other representation of a CPU would also be valid. Our model aims at simplicity, and so we have
chosen to use just a single queue.

7This is a shortcoming of queueing theory.

92

6.2. Model

In each of the protocols, the clients issue requests, which then get processed by replicas. The

clients commit the requests upon receiving a response or a quorum of responses. Thus, in the

best execution scenario, the commit rate at the client is determined by the slowest response it

receives. In order to capture this observation, we focus only on the longest, single path (the

critical path) taken by a request during its lifetime. We do not try to model multicast, where

one request spawns multiple other requests. The longest path is protocol-dependent, and

using the longest path is a trade-off between the simplicity of the model and its accuracy.

Indeed, relying on the longest path removes some interactions (e.g., waiting for the client to

collect a quorum of responses). A special type of queueing stations, called fork-join [Duda

and Czachórski, 1987] queues, allow for the representation of previously stated interactions,

at the expense of added complexity of the calculation, as well as convoluted modelling. Our

experiences and the results we report in Chapter 7 show that considering only the longest

path yields very satisfactory results.

Model parameters. In order to have an accurate model, we need to accurately parametrize

each of the server in our model, by conducting several measurements. One of our goals is to

make our model simple to use and versatile, while retaining accuracy. The main difficulty lies in

capturing all of the important behaviour through measurements (as these factors directly affect

the accuracy), while keeping the number of measurements as small as possible. We achieve

the balance by requiring only a few, protocol-agnostic parameters from the environment.

These protocol-agnostic parameters are easy to obtain from every system, and in order to

ease the process of obtaining the set of system parameters, we have developed a set of simple

benchmarks to measure them, requiring no operator involvement.

Our model includes the representation of both CPU and network elements, and, therefore, the

parametrization process has to capture the parameters of both of them. In the following text,

we list the system parameters that our benchmarks measure:

• Parametrization of servers representing replicas: we parametrize the server associated

with computational aspects (the central, CPU queue in Figure 6.2) by measuring the

speeds of different operations on a given platform: cryptographic operations (authenti-

cation and verification of messages that are sent/received by the replicas), the execution

time in the application layer, and kernel level operations (such as the send() system

call). The processing time of the server (the inverse of the processing speed) is rep-

resented as a linear combination of the costs of these operations. Note that we do

not measure the involved data structures handling speed, as it highly depends on the

particularities of the implementation, and is not quantifiable in a generic manner. Nev-

ertheless, the protocol designer can measure (or estimate) the data structure handling

time and add it to the model if he wants to make more accurate predictions.

• Parametrization of servers representing network links: we parametrize the servers for

the networking queues by measuring the latency between any two of the replicas in

93

Chapter 6. Performance Model

the system, for all (or a subset of) possible message sizes. For each message size, the

processing speed of the servers representing the network links is equal to the inverse of

the measured latency8. Also, to parametrize the bandwidth related queues, we measure

the maximum bandwidth on a link.

The exhaustive list of parameters which we use to parametrize the servers associated to both

the replicas and the network links is given in Table 6.1.

Variable Purpose

Texec application execution time
Tdigest the time needed to compute a digest of a message
Tmacg the time needed to generate a MAC for a message
Tmacv the time needed to verify a MAC for a message

Th the time needed to handle the necessary data structures
Tsend the time needed to issue a send() system call

Tproc (i) the time needed to process a message at replica i ; Tproc (i) is a linear
combination of all of the times listed so far

Tn one-hop delay (latency)
B maximum throughput of a network link
M average message size
Z the thinking time of a client

Table 6.1: Parameters used for modelling; all of the parameters depend on the average message
size, and denote a value-per-message.

The effect of batching and optimizations. Protocol designers often use different optimiza-

tions, such as batching, to improve the performance [Castro and Liskov, 1999]. Such optimiza-

tions reduce the cost-per-request of an operation. We need to capture such behaviour, and in

our model we do so by appropriately changing the affected parameters. For example, a with

batching factor b, the cost of MAC generation at the primary in Zyzzyva reduces by b, along

with the same factor improvement (per request) for the cost of sending.

Assessing the throughput of BFT protocol. As explained in the previous paragraph, we

focus on the critical path of a request when modelling performance. Based on resources

involved in the processing of a request on the critical path, we obtain the total processing time.

Request handling encompasses different operations, making the total processing time a linear

combination of values presented in Table 6.1, and this linear combination depends on the

protocol. Additionally, for each of the requests we calculate the visiting rates (denoted θ) —

the number of times a request has visited each of the servers on the critical path.

8To be more precise, this is the inverse of half of the latency, because between any two replicas in one direction,
there are two queues representing the network links: one outgoing and one incoming.

94

6.3. Modelling Ring

6.3 Modelling Ring

In the previous section, we have given a detailed description of our model, followed by a

description of the modelling process. In this section, we give an example of the modelling

process applied onto Ring. Ring relies on batching and piggybacking optimizations, and we

include this knowledge in the parametrization phase.

Modelling Ring is a complex task, due to the following two design features of Ring: (1) the

clients may contact any of the replicas, and (2) each of the requests makes two rounds around

the ring. Since replicas in Ring handle requests in a complex manner, using two round of

communication, we resort to modelling Ring using a multi-class queueing network [Bolch et

al., 2005; Dijk, 1993]. As we cannot represent all of the possible interactions with a multi-class

queueing network, we model only an approximate behaviour of Ring. For example, requests in

queueing theory model are invariant, in the sense that there is no accurate way of modelling

piggybacking of an acknowledgement. Nevertheless, we still achieve good accuracy despite

resorting to approximations, as the results in Chapter 7 show.

Classes and the routing matrix. When representing Ring in our model, we use the concept

of classes to handle the aforementioned design features of Ring. First, the routing probability

from the IS station, representing all clients, to any replica is set to q x,1
1,1 = 1

n = 1
3 f +1 . By this

we represent the fact that any client can access any of the replicas, under the assumption of

uniform load. Second, to track the progress of a request, the request changes its class in transit

between each replica. Thus, a class contains information on the “count” of the number of steps

that each request took through its lifetime. We use deterministic routing: the probabilities of a

request going from one replica to another9 is either 1 or 0. Once the request reaches the last

step of processing, the probability of moving to the queue of another replica is 0, while the

probability of moving to the IS station, representing all of the clients, is 1. After forming the

routing matrix, we determine the visit rates at each of the queues, and use them as the input

to the MVA algorithm, in order to compute the mean occupancy times.

In order to model piggybacking, we resort to an approximation of this behaviour. The role of

piggybacking is to reduce the used bandwidth. Hence, piggybacked data is negligible, and,

as the name implies, this data is piggybacked onto another request. Thus, we can think of

piggybacked requests as requests that do not use any bandwidth, but spend some time in

transit over links. Consequently, we form the routing matrix such that an acknowledgement

goes around any FIFO queue of stations representing the network links. However, an acknowl-

edgement will still go through the IS station, as that station models link delays. As evaluation

in Chapter 7 suggests that this approximation adds only a small error to the final calculation.

We use 9 classes to denote each of the processing stages of Ring in our queueing model. The

replica are represented as in Figure 6.2. Figure 6.3 shows the interconnections among replicas,

9Or, more precisely, to their corresponding queues.

95

Chapter 6. Performance Model

!" !"

!" !"

#$$ #$%

#$& #$'

#$(

#$) #$*

#$+ #$,

!" !"

!" !"

#%$ #%%

#%& #%'

#%(

#%) #%*

#%+ #%,

!" !"

!" !"

#&$ #&%

#&& #&'

#&(

#&) #&*

#&+ #&,

!" !"

!" !"

#'$ #'%

#'& #''

#'(

#') #'*

#'+ #',

!"

#$

Figure 6.3: Representation of Ring in our model.

96

6.3. Modelling Ring

for f = 1. There are in total 20 FIFO queues (16 for modelling network links bandwidths, 4

for modelling processing at each replica), and 17 IS stations. The routing matrix (or, more

precisely, the routing probabilities) are presented in Figure 6.4.

q13,14
1,2 = q23,24

1,2 = q33,34
1,2 = q43,44

1,2 = 1

q14,15
2,2 = q24,25

2,2 = q34,35
2,2 = q44,45

2,2 = 1

q15,18
2,2 = q25,28

2,2 = q35,38
2,2 = q45,48

2,2 = 1

q18,19
2,2 = q28,29

2,2 = q38,39
2,2 = q48,49

2,2 = 1

q19,21
2,2 = q29,31

2,2 = q39,41
2,2 = q49,11

2,2 = 1

q21,22
2,3 = q31,32

2,3 = q41,42
2,3 = q11,12

2,3 = 1

q22,25
3,3 = q32,35

3,3 = q42,45
3,3 = q12,15

3,3 = 1

q25,28
3,3 = q35,38

3,3 = q45,48
3,3 = q15,18

3,3 = 1

q28,29
3,3 = q38,39

3,3 = q48,49
3,3 = q18,19

3,3 = 1

q29,31
3,3 = q39,41

3,3 = q49,11
3,3 = q19,21

3,3 = 1

q31,32
3,4 = q41,42

3,4 = q11,12
3,4 = q21,22

3,4 = 1

q32,35
4,4 = q42,45

4,4 = q12,15
4,4 = q22,25

4,4 = 1

q35,38
4,4 = q45,48

4,4 = q15,18
4,4 = q25,28

4,4 = 1

q38,39
4,4 = q48,49

4,4 = q18,19
4,4 = q28,29

4,4 = 1

q39,41
4,4 = q49,11

4,4 = q19,21
4,4 = q29,31

4,4 = 1

q41,42
4,5 = q11,12

4,5 = q21,22
4,5 = q31,32

4,5 = 1

q42,45
5,5 = q12,15

5,5 = q22,25
5,5 = q32,35

5,5 = 1

q45,48
5,5 = q15,18

5,5 = q25,28
5,5 = q35,38

5,5 = 1

q48,49
5,5 = q18,19

5,5 = q28,29
5,5 = q38,39

5,5 = 1

q49,12
5,5 = q19,22

5,5 = q29,32
5,5 = q39,42

5,5 = 1

q12,15
5,6 = q22,25

5,6 = q32,35
5,6 = q42,45

5,6 = 1

q15,19
6,6 = q25,29

6,6 = q35,39
6,6 = q45,49

6,6 = 1

q19,22
6,6 = q29,32

6,6 = q39,42
6,6 = q49,12

6,6 = 1

q22,25
6,7 = q32,35

6,7 = q42,45
6,7 = q12,15

6,7 = 1

q25,29
7,7 = q35,39

7,7 = q45,49
7,7 = q15,19

7,7 = 1

q29,32
7,7 = q39,42

7,7 = q49,12
7,7 = q19,22

7,7 = 1

q32,35
7,8 = q42,45

7,8 = q12,15
7,8 = q22,25

7,8 = 1

q35,36
8,8 = q45,46

8,8 = q15,16
8,8 = q25,26

8,8 = 1

q36,37
8,8 = q46,47

8,8 = q16,17
8,8 = q26,27

8,8 = 1

q37,1
8,1 = q47,1

8,1 = q17,1
8,1 = q27,1

8,1 = 1

q1,13
1,1 = q1,23

1,1 = q1,33
1,1 = q1,43

1,1 = 1

4

q s′,c ′
s,c = 0 otherwise

Figure 6.4: Routing probabilities for the representation of Ring. The station numbers corre-
spond to stations in Figure 6.3.

Visiting rates. The next step in modelling Ring is the calculation of the visiting rates. The

per-resource, per-class visiting rates for closed queueing networks, based on the routing matrix,

up to a multiplicative constant, are defined, by the Equation (6.1), as:

θs
c =

∑
s′,c ′ θ

s′
c ′q

s′,s
c ′,c (6.1)

97

Chapter 6. Performance Model

Similarly, Equation (6.2) defines the per-resource, per-chain visiting rates:

θs
C =∑

c∈C
θs

c (6.2)

If there is only a single chain in the network, we can omit the subscript from Equation (6.2).

Being a chain is an equivalence relation between classes, and two classes are chain-equivalent

if they are the same, or a customer of one class may become a customer of the other class. As

such, chains simplify calculations related to visiting rates, and, consequently, the metrics of

interest. In Ring, all of the classes belong to the same chain, since each of the requests starts

with class “0” and finishes in the client substation with class “8”.

Hence, the routing probabilities from Figure 6.4 yield the following, per-chain, visiting rates

(when n = 4 since n = 3 f +1, f = 1):

θ1 = 1 client station visiting rate, arbitrarily set

θ11 = θ21 = θ31 = θ41 = n −1

n
= 3

4
client-to-replica NICs, inbound bandwidth station

θ12 = θ22 = θ32 = θ42 = 2n −2

n
= 6

4
client-to-replica NICs, inbound delay station

θ13 = θ23 = θ33 = θ43 = 1 replica-to-replica NICs, inbound bandwidth station

θ14 = θ24 = θ34 = θ44 = 1 replica-to-replica NICs, inbound delay station

θ15 = θ25 = θ35 = θ45 = 2n −1

n
= 7

4
CPU

θ16 = θ26 = θ36 = θ46 = 1 client-to-replica NICs, outbound bandwidth station

θ17 = θ27 = θ37 = θ47 = 1 client-to-replica NICs, outbound delay station

θ18 = θ28 = θ38 = θ48 = n −1

n
= 3

4
replica-to-replica NICs, outbound bandwidth station

θ19 = θ29 = θ39 = θ49 = 2n −2

n
= 6

4
replica-to-replica NICs, outbound delay station

Parametrization. Finally, we calculate the processing times for all of the servers, as required

by the MVA algorithm. In order to obtain the total processing time of a request, we must:

(1) measure the parameters of the system for the network related stations, and (2) account

for all of the processing for each class of requests at the CPU stations. Both of the steps are

platform-dependent, and we present the corresponding measurements in Section 7.1.1. For

the second step, we first make a breakdown of operations involved, by taking into account

that:

• a replica computes the digest of the request 2 times (when receiving the request for the

first time, and then again to compare the associated acknowledgement);

98

6.3. Modelling Ring

• the replica also computes a digest of a reply, when generating a reply to the client;

• the replica generates and verifies the MACs the same number of times per request;

• the replica executes the request exactly once;

• the replica sends the request twice, but we account for only one, to represent the fact

that the requests are piggybacked. Moreover, the sending factor is reduced b times, as

we assume that Ring batches b messages together;

• the replica sends the reply exactly once, and the batching does not have any effect on

this operation;

• the replica allocates the memory for the request, the acknowledgement and the reply.

Also, the replica allocates the memory once again, during the send operation.

Due to the symmetry of Ring, all of the processing times are equal across all of the replicas.

Thus, we obtain the following formulas for the processing times, per request, given a batching

factor b:

T ring
proc = 2T req

digest +T reply
digest +

1

2
Mavg Tmacv + 1

2
Mavg Tmacg +Texec + 1

b
T req

send +T reply
send +T ring

h

In this equation, the term Mavg is calculated in Section 7.2.1, and represents the number

of MAC operation per replica, per request. In Ring, MAC operations are symmetric, and

any replica reads and writes the same number of MACs. All of the parameters (variables) are

described in Table 6.1. In our model, we use the cost of memory allocation as an approximation

for the cost of data structure handling. For each of the messages, the system allocates memory,

and performs operations on a memory copy of the content of the messages. Hence, memory

allocation correlates with the use of necessary data structures. The actual values for the lengths

of these operations depend on the environment and we measure them in Section 7.1.1.

6.3.1 Calculating the Maximal Throughput

Next, we demonstrate how our analytic model could be used to obtain various properties of

the system, even without resorting to measurements. Namely, we use our analytic model to

calculate the maximal throughput that Ring can achieve. We validate our initial claim that the

maximal throughput Ring could achieve is n
n−1B, where B is the maximum throughput of the

network (we assume that all of the links are equal).

If we denote by λs
c the flow of requests of class c at station s, and we denote by λC the

throughput of chain C , the relation between these flows is [Boudec, 2010]:

λs
c (
−→
K) =λC (

−→
K)θs

c (6.3)

The Equation (6.3) states that for any population of requests (
−→
K) the flow of requests of class c ,

through some station s is equal to the product of the per-chain flow and the visit rate of class c

99

Chapter 6. Performance Model

to resource s. The total throughput through a single station is equal to the sums of all of the

per-class throughputs going through that station (given that there is only a single chain C)) is:

λs(
−→
K) =∑

c∈C
λs

c (
−→
K)

=∑
c∈C

λC (
−→
K)θs

c (6.4)

Due to Equation (6.2), we finally obtain:

λs(
−→
K) =λC (

−→
K)θs (6.5)

where we drop the per-chain index on the visit rate.

Now, consider the throughput through the station representing clients: λ1. This is the through-

put of requests which enter the system, and protocol designers optimize in order to increase

λ1. Due to Equation (6.5), we have that:

λ1 =λC θ
1 where θ1 = 1

Similarly, from Equation (6.5), we obtain the relation between the flow to a replica and the

per-chain flow:

λ11 =λC θ
11 where θ11 = n −1

n
(6.6)

which leads to:

λ11 =λ1 n −1

n
(6.7)

If we consider the constraint that no flow to a replica exceeds the line rate B:

λ11 =λ21 =λ31 =λ41 ≤B (6.8)

then, by using Equation (6.7), we obtain the following inequality for the maximal throughput

through the ring:

λ11 =λ1 n −1

n

=⇒ λ1 n −1

n
≤B substituting from Equation (6.8)

=⇒ λ1 ≤ n

n −1
B (6.9)

100

6.4. Performance Models of Other BFT Protocols

The calculation in Equation (6.9) gives the maximum throughput in Ring, where we consider

the throughput of requests going into replicas over the client-to-replica network. We prove

that, indeed, the maximum throughput in Ring is n
n−1B.

6.4 Performance Models of Other BFT Protocols

Now, we present the representations of other BFT protocols (which we use in the evaluation)

in our performance model. Similarly to the previous presentation of Ring, we limit the analysis

to the throughput.

We consider the following three state-of-the-art protocols: Chain, Zyzzyva, and PBFT. Although

we have applied our performance modeling framework on Quorum-like protocols (such as

Q/U [Abd-El-Malek et al., 2005], and HQ [Cowling et al., 2006]), we do not present them here,

since quorum-like protocols only run in contention-free environments — a requirement which

is in stark contrast to achieving high-throughput [Singh et al., 2008]. Chain, Zyzzyva, and PBFT

rely on a dedicated replica, which receives requests, to order them and to forward them to

other replicas. Again, it is important to note that all of these protocols require 3 f +1 replicas

in order to be able to tolerate f faults (which is optimal, according to [Lamport, 2004]). For the

simplicity of the presentation, here we will consider only the best-case execution scenarios.

6.4.1 Chain

As stated in Section 2.1.3, Chain relies on two distinct replicas: the head and the tail. All

replicas are arranged in a chain (from which the protocol derives its name). A client sends a

request to the head, which assigns a sequence number to the request. The head then forwards

the request to the next replica in the chain. Each replica executes the request, appends it to

its local history, and forwards the request until the request reaches the tail. Finally, the tail

replies to the client. The last f +1 replicas include the digest of their history in the forwarded

request, which the tail sends to the client. If these digests match, the client commits the

request. Otherwise, the client resorts to a backup protocol to commit the request. We do not

describe this backup protocol as it is not used in the standard case (synchronous network, no

faults).

Contrary to the complex representation of Ring, the representation of Chain in our perfor-

mance model is simple, as depicted on Figure 6.5. In Chain, all 3 f +1 replicas are on the

critical path, and some of the links remain unused. Visiting times to any visited resource are

exactly 1. There is no complex, probabilistic routing, and there is just one class. To simplify

our presentation, we assume that f = 1. All replicas send exactly one message. The head reads

one MAC, and writes 2 MACs. All of the other (except the last) replicas read 2 MACs and write

2 MACs, while the last replica writes only one MAC.

101

Chapter 6. Performance Model

!"

}

#$%&

'()* '()*

!"#$ %#&'

Figure 6.5: Queueing model representation of Chain. Each node box represents one instance
of queues from Figure 6.2. The IS cloud represents a single delay station, modeling processing
at the clients. Note that the replicas use one set of network links, while the clients connect to
another set of network links, at the head and the tail.

T chain
proc (1) = Tdigest (1) +Tmacv +2Tmacg +Texec +Tsend +T chain

h (6.10)

T chain
proc (2) = Tdigest (2) +2Tmacv +2Tmacg +Texec +Tsend +T chain

h (6.11)

T chain
proc (3) = Tdigest (3) +2Tmacv +2Tmacg +Texec +Tsend +T chain

h (6.12)

T chain
proc (4) = Tdigest (4) +2Tmacv +Tmacg +Texec +Tsend +T chain

h (6.13)

6.4.2 Zyzzyva

In Zyzzyva, a client sends its request to the primary (a special, dedicated replica). The primary

assigns a sequence number to the received request, and multicasts the request, along with its

sequence number to other replicas (backup replicas). Each replica (including the primary)

executes the request, appends the result to its local history, and sends the response to the

client. Whenever faults occur, the replicas execute certain recovery mechanisms. Due to its

speculative nature (replicas execute the request as soon as they receive it, without making

sure that the sequence number is correct), Zyzzyva exhibits high performance when there are

no faults.

Similarly to Chain, the representation of Zyzzyva is simple in our model, as there are only two

replicas on the critical path, and the visiting times are exactly 1. Additionally, there is only just

one class, and there is no complex routing. The first replica on the path is the primary. The

primary performs several cryptographic operations: it verifies one MAC from the client, and

generates 3 f +1 MACs (one for each backup replica and one for the client). Moreover, the

primary sends two messages: the request that it multicasts to other replicas, and the reply to

the client. The primary does, thus, issue two send() calls. Consequently, the processing time

of the primary is the following:

102

6.4. Performance Models of Other BFT Protocols

T zyzzyva
proc (1) = Tdigest (1) +Tmacv + (3 f +1)Tmacg +Texec +2Tsend +T zyzzyva

h

T zyzzyva
proc (2) = Tdigest (2) +2Tmacv +Tmacg +Texec +Tsend +T zyzzyva

h

!"

!"#$%"& '%()*!

#$%& #$%&

Figure 6.6: Queueing model representation of Zyzzyva.

As the load increases, one of the queues becomes the bottleneck, and we observe the queueing

effects. The utilization of the queue (precisely, of its associated server) is equal to 1, and the

throughput is limited by the inverse of the servicing time [Bolch et al., 2005]. The servicing

time includes both the processing and the queueing time. Since every request visits each

queue exactly once, we can obtain an upper bound on the throughput under contention, as

follows:

λ≤ min{
1

Tproc (1)
,

1

T incoming
n(1)

,
1

T outgoing
n(1)

,
1

Tproc (2)
,

1

T incoming
n(2)

,
1

T outgoing
n(2)

} (6.14)

Naturally, this upper bound depends on the request size.

6.4.3 PBFT

Similarly to Zyzzyva, PBFT relies on a dedicated replica, called the primary to order the

requests. To issue a request, a client has to send it to the primary, which appends a sequence

number to the request and broadcasts a PRE-PREPARE message to all of the other replicas

containing the ordered request. When a backup replica receives the PRE-PREPARE message, it

acknowledges the message by broadcasting a PREPARE message to all of the replicas. As soon

as a replica receives a quorum of 2 f +1 PREPARE messages, it promises to commit the request

(at the sequence number appended to the request by the primary) by broadcasting a COMMIT

message. Lastly, when any replica receives a quorum of 2 f +1 COMMIT messages, it executes

the request and replies to the client.

PBFT uses an optimization regarding COMMIT messages, called tentative execution — if all of

the requests which have a lower sequence number have been executed, replicas reply to the

103

Chapter 6. Performance Model

client before sending the commit message. Since this is the case in best-case execution, we

include that behaviour in our representation of PBFT.

The client commits the request upon receiving f +1 matching replies. Otherwise, the client

retransmits the request. If the request does not commit after a certain time, the protocol

executes a leader election protocol, in order to change the primary. This part of the protocol is

not executed in the common case (synchronous network, no faults), and for this reason we do

not describe such a protocol in this section.

All protocols employ different kinds of optimization, with the predominant one being batching,

where multiple requests from different clients are batched in order to reduce the overall

processing time. Although the batching is, in general, configurable, in PBFT one can only

control the batching of the requests. For all of the other stages, PBFT aggressively batches the

messages itself, out of user control.

!" !"

!" !"

#$$ #$%

#$& #$'

#$(

#$) #$*

#$+ #$,

!" !"

!" !"

#%$ #%%

#%& #%'

#%(

#%) #%*

#%+ #%,

!"

#$

Figure 6.7: Queueing network representation of PBFT.

PBFT has 4 different message-exchange stages, with each stage having a different processing

time on the same replica. Thus, we have resorted to modeling an approximate behaviour.

Our approximation matches the performance of PBFT well, as shown in Chapter 7. Our

approximation of the behaviour of PBFT takes into consideration only two replicas in the

system, and is as follows: 1) the client sends a request; 2) the primary processes the request,

and sends it to a backup replica; 3) the backup receives the request, and forwards it back to

104

6.5. Summary

the primary; 4) the primary receives the request, and sends a reply to the client. Each of these

steps corresponds to one of the communication steps depicted in Figure 2.2. In every step,

the request changes its class, similarly to the case of Ring. Using this approach, we are able to

emulate multicast communication which occurs at every stage.

If we denote the station representing the clients as station 1, the primary as station 2, and the

backup replica as station 3, the routing probabilities are:

q1,11
1,1 = q11,12

1,1 = q12,15
1,1 = q15,16

1,1 = q16,17
1,1 =

= q17,23
1,2 = q23,24

2,2 = q24,25
1,1 = q25,26

2,2 = q26,27
2,2 =

= q27,13
2,3 = q13,14

3,3 = q14,15
3,3 = q15,18

3,3 = q18,19
3,3 =

= q19,1
3,1 = 1

q s′,c ′
s,c = 0 otherwise

From the given routing matrix, we obtain that each of the requests visits the CPU on the

primary 2 times, and visits any other resource exactly once:

θ1 = 1 arbitrarily set

θ15 = 2

θ11 = θ12 = θ13 = θ14 = 1

θ16 = θ17 = θ18 = θ19 = 1

θ21 = θ22 = θ28 = θ29 = 1

θ23 = θ24 = θ26 = θ27 = 0 these stations are not used

Finally, by simply accounting for all of the the processing for each of the classes of requests

arriving at a particular server, we obtain:

T pbft
proc (2) = Tdigest (2) +7Tmacv + (2+ 6 f

b
)Tmacg +Texec + (1+ 2

b
)Tsend +T pbft

h (6.15)

T pbft
proc (3) = Tdigest (3) +Tmacv + (1+ 2 f

b
)Tmacg +Texec + (1+ 1

b
)Tsend +T pbft

h (6.16)

6.5 Summary

In this chapter, we have given an overview of queueing theory, necessary for the building of

our performance model. Next, we have outlined the assumptions that we take, the modelling

process and our performance model. Further, we demonstrated the use of our model, and built

a representation of Ring. Using this representation, we have analytically shown that, indeed,

105

Chapter 6. Performance Model

the maximum throughput of Ring is n
n−1B. Finally, we presented how our performance model

applies to other, state-of-the-art BFT protocols.

We will present the evaluation of our performance model, along with an analytic comparison

of different BFT protocols in Chapter 7.

106

7 Performance Evaluation

In this section, we report on the results of both the practical and the analytic performance

evaluation of Ring, in comparison with the three state-of-the-art protocols: PBFT, Chain, and

Zyzzyva (described in Section 2.1.3).

PBFT is taken from http://www.pmg.lcs.mit.edu/bft/bft.tar.gz, and slightly modified to run

our version of benchmarks. Zyzzyva was taken from http://research.microsoft.com/en-us/

people/kotla/. However, we had problems running Zyzzyva on our platform, and thus we used

our implementation of Zyzzyva, called Zlight. Zlight has the same communication pattern as

Zyzzyva, but achieves higher performance [Guerraoui et al., 2010a]. We implemented Chain in

the context of the ABSTRACT framework [Guerraoui et al., 2010a].

Similarly to these protocols, Ring is also implemented in C++. The replicas and the clients

communicate over a TCP connections. In order to be able to handle a large number of client

connections, we use the epoll event-notification mechanism. We observe that epoll is more

efficient than the select mechanism, as claimed by Gammo et al. [2004]. Moreover, in order

to prevent malicious participants from exhausting all of the network resources, Ring uses a

token bucket [Shenker and Wroclawski, 1997] mechanism for establishing fairness among

TCP flows. In our implementation, the token bucket splits the incoming throughput between

the predecessor and (all) client traffic, using the ratio 3 f : 1.

We begin this section by giving a description of the experimental setup we have used, along

with the discovery of the system parameters, needed for our analytic model. Next, we show

that, unlike existing protocols, Ring equally balances both the CPU utilization on the various

replicas, and the network utilization on the various network links. Afterwards, we present an

exhaustive performance comparison of Ring and the state-of-the-art protocols. More precisely,

we show that Ring significantly outperforms other protocols in terms of throughput (+27%)

when the network is the bottleneck, and that it achieves up to 14% lower response time than

state-of-the-art protocols when a large number of clients issue requests. Finally, the last part

107

http://www.pmg.lcs.mit.edu/bft/bft.tar.gz
http://research.microsoft.com/en-us/people/kotla/
http://research.microsoft.com/en-us/people/kotla/

Chapter 7. Performance Evaluation

of the evaluation is reserved for the assessment of the accuracy of our performance model.

The experimental comparison shows that, for the most cases, the relative error is below 5%.

7.1 Experimental Setup

We have performed all of the experiments on the Emulab [White et al., 2002] testbed. In each of

the experiments, we have used pc3000 machines – Dell PowerEdge 2850s systems, with a single

3GHz Xeon processor, 2GiB of RAM, and 2 NICs. The replicas are systematically running on

their own, separate machine, while the clients are collocated on a total of 40 machines. Finally,

we use a topology in which the replicas belong to one LAN, and clients communicate with

replicas over a second LAN.

We use the benchmarks described in PBFT [Castro and Liskov, 1999], where the clients per-

form requests in a closed-loop manner. In closed-loop benchmarks, clients issue only one

outstanding request and wait until they have received the response. Such a behaviour models

the synchronous, blocking model of programming, present in nearly all of the POSIX systems.

Benchmarks have the option to vary the size of the request issued by the clients and the size

of the replies produced by the replicas. The request and reply size could be set to any of the

values from the range 8 to 16’000B. We use 8B replies, unless stated otherwise. Each of the

experiments was repeated three times, and we report the average of these three executions.

7.1.1 System Parameters

Our model, based on queueing theory, requires some measurements for different data sizes

of the underlying system, such as link latencies, throughput, processing speeds for different

request-handling operations, and the time required to actually send the message from the

application.

Network parameters In order to parametrize network-related substations in our model,

we measure the propagation time for different protocols (TCP, UDP, and IP multicast) of the

underlying Fast Ethernet network, while varying the message size. In this experiment, we set

two machines, a server and a client, to exchange messages. The client issues 100 batches of

100’000 messages, and reports the response time for each of the batches. We also measure the

time of local delivery (i.e., the time it takes to send the same message on the same machine), in

order to exclude the effects of the underlying operating system. We report the link propagation

time as one quarter of the difference between the total propagation time and the local delivery

time. Figure 7.1 illustrates the link propagation time for all of the three used protocols (TCP,

UDP, and IP multicast).

108

7.1. Experimental Setup

request size [B]

la
te

n
c
y
 [
m

s
]

0.5

1.0

1.5

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

2000 4000 6000 8000

Protocol

● IP Multicast

TCP

UDP

Figure 7.1: Link propagation times for different message sizes, for different protocols.

As Figure 7.1 suggests, Emulab has a sub-millisecond latency for small requests. For large

requests1, the latency is between 1ms and 1.5ms.

We use the iperf tool [Tirumala et al., 2010] to measure the throughput. Table 7.1 contains

our findings. Expectedly, UDP achieves higher throughput due to less protocol overhead.

However, the difference is less than 1.5%.

Throughput (Mbps)

UDP 93.704
TCP 90.947

Table 7.1: The maximum observed throughput on the testbed.

CPU parameters Next, we measure the speed of various operations generally involved

in request processing (such as the generation and verification of digests and MACs, the

time needed to send a message, and memory allocation). To obtain these protocol-agnostic

measurements, we wrote a set of simple benchmarks which mimic the common behaviour of

many BFT protocols. Our benchmark ensures that the caches are invalidated before processing

each of the requests, since we attempt to replicate conditions of running under a high load,

where caches are often evicted. We use the rdtsc syscall to measure the time needed to

perform each of the operations. The benchmark executes each of the operations 100’000 times,

for a set of different message sizes, and reports the average number of ticks per operation. We

repeat each experiment 100 times, to obtain statistically significant means.

1In context of BFT replicated protocols.

109

Chapter 7. Performance Evaluation

request size [B]

ti
m

e
 [
u
s
]

 5

10

15

2000 4000 6000 8000

Operation

digest

macg

macv

mem

send−mcast

send−tcp

send−udp

Operation (fitted)

digest

macg

macv

mem

send−mcast

send−tcp

send−udp

Figure 7.2: Processing times for different operations.

Figure 7.2 summarizes the processing times for different operations. The figure plots all

of the data points produced by the benchmark. We also plot the linear regression model

which fits the data, per operation. The list of parameters we use to parametrize the servers

associated with the replicas is given in Table 7.2. This table contains a single-dimension linear

regression model of all of the parameters, dependent on the request size. Lengths of all of the

operations are linearly dependent on the request size, although an extension to the model

where operation lengths depend on multiple parameters is straightforward. The reported

values are presented in seconds.

Parameter fit

T digest 4.750579×10−7 + 12.47527 ×10−10 ×M
T macg 8.293719×10−7 + 8.536017×10−10 ×M
T macv 7.362421×10−7 + 8.617151×10−10 ×M
T mem 10.63922 ×10−7 + 3.079504×10−10 ×M

T send-mcast 31.09838 ×10−7 + 18.59765 ×10−10 ×M
T send-tcp 57.15264 ×10−7 + 3.717047×10−10 ×M

T send-udp 33.80395 ×10−7 + 18.20803 ×10−10 ×M

Table 7.2: The parameters used for parametrization of different CPU operations; We use a
linear model, where lengths of all of the operations depend only on the request size (denoted
by M). The reported values are based on the linear fit of the data from Figure 7.2. The unit
which was used is the second.

Interestingly, we note that, for a wide range of message sizes, it is more expensive to issue a

send() system call, then to perform any of the computational operations. The only exception

are TCP messages larger than 6KiB, for which computing digests is more costly than the

sending operation. Thus, in this case, batching should improve performance to an extent.

110

7.2. CPU Utilization

Moreover, Figure 7.2 suggests that a single MAC operation is less expensive than performing

a digest. However, performing three or more MAC operations (which is the case for all of

the protocols, for f ≥ 1), is more expensive than performing the digest operation. Finally,

Figure 7.2 shows that sending a TCP packet is less expensive than sending an UDP message,

but only for large messages. With small messages, UDP performs more than 50% better, at the

protocol level.

7.2 CPU Utilization

Figure 7.3 illustrates CPU utilization for Ring, alongside the values of CPU utilization for other

protocols (previously shown in Figure 3.1, in Section 3). We observe that all of the replicas in

Ring are equally loaded. This balance is a consequence of the fact that there is no asymmetry

in replica processing: all of the replicas perform virtually the same computations, and each of

the replicas receives the same amount of client requests2. Consequently, all of the replicas in

Ring become the bottleneck at the same time.

Number of Clients

C
P

U
 U

ti
liz

a
ti
o
n

0

20

40

60

80

100

Ring

40 120 200

Chain

40 120 200

Zyzzyva

40 120 200

PBFT

40 120 200

Replica

r0

r1

r2

r3

Figure 7.3: CPU utilization of Ring (and other protocols).

7.2.1 MAC Operations

Since message authentication/verification is a CPU-intensive task, the number of MAC opera-

tions represents a good indicator of the likely bottlenecks in the system — the replicas which

execute the most operations will become bottlenecks first. In Ring, all of the replicas are equal,

given the balanced load. Nevertheless, we calculate the average number of MAC operations

per request in a steady, balanced state, as a comparison to other protocols.

2Provided that clients uniformly balance their requests across different replicas, which is trivially achieved by
having clients choose the entry replica in a round-robin manner.

111

Chapter 7. Performance Evaluation

As described in Chapter 4, each of the request in Ring takes two rounds. In the first round, the

replicas forward the request. In the second round, the replicas forward the corresponding

acknowledgement. Each of the replicas first verifies (reads) a set of MACs before processing

the requests. If these MACs match the request, the request is executed (or just processed, if the

sequence number is still not known), and forwarded later along the ring. Before forwarding

the request, the replica authenticates (writes) the request, by writing a set of MACs. If Rr
i (W r

i)

denotes the number of MAC read (respectively, write) operations at replica i within Ring, the

account of performed MAC operations throughout the lifetime of the request on all n = 3 f +1

replicas is3:

Rr
0 = (1)+ (f +1) W r

0 = (f +1)+ (f +1)

Rr
1 = (2)+ (f +1) W r

1 = (f +1)+ (f +1)

.

Rr
f −1 = (f)+ (f +1) W r

f −1 = (f +1)+ (f +1)

Rr
f = (f +1)+ (f +1) W r

f = (f +1)+ (f +1)

.

Rr
2 f = (f +1)+ (f +1) W r

2 f = (f +1)+ (f +1)

Rr
2 f +1 = (f +1)+ (f +1) W r

2 f +1 = (f +1)+ (f)

.

Rr
3 f −1 = (f +1)+ (f +1) W r

3 f −1 = (f +1)+ (2)

Rr
3 f = (f +1)+ (f +1) W r

3 f = (f +1)+ (1)

In Ring, every replica takes every role for the same amount of time, on average (i.e., is an entry

replica, a sending replica, or a replica in the middle of processing chain). Thus, the per-replica

average number of MAC operations (presented separately for reads and writes), per request,

is:

Rr
avg-req = 1

3 f +1

∑3 f
0 Rr

i = 1

3 f +1

(
(3 f +1)(f +1)+ (2 f +1)(f +1)+ f (f +1)

2

)

= (f +1)(11 f
2 +1)

3 f +1

= 1

2
(f +1)

(
4− f +2

3 f +1

)
W r

avg-req = 1

3 f +1

∑3 f
0 W r

i

= 1

2
(f +1)

(
4− f +2

3 f +1

)

3A term in the first (second) parenthesis represents the number of performed MAC operations in the first
(respectively, second) round.

112

7.2. CPU Utilization

Hence, the average number of MAC operations (denoted M r) per request is:

M r
avg-req = Rr

avg-req +W r
avg-req = (f +1)

(
4− f +2

3 f +1

)
(7.1)

Ring uses piggybacking to improve performance. Hence, we extend Equation (7.1) to account

for the MACs introduced by this optimization. The piggybacked acknowledgement introduces

f +1 additional read MAC operations, and f +1 write MAC operations. In addition, there are

two requests in the same flow (the carrier and the piggybacked acknowledgement):

M r
avg-pb = 1

2

(
M r

avg +
(f +1)+ (f +1)

3 f +1

)
= 1

2

(
(f +1)

(
4− f +2

3 f +1

)
+2

f +1

3 f +1

)
= (f +1)

(
4− f

3 f +1

)
= 11

3
f + 34

9
+ 2

9(3 f +1)
(7.2)

Ring also uses batching as another form of optimization. Apart from reducing the number of

sent messages, batching b messages together reduces the total number of MAC operations.

A replica needs to read a MAC written by a client for each of the requests in the batch, and

it needs to write a MAC for the client for each of the requests in the batch. Otherwise, when

there are no MACs written by a client, the replicas generate a MAC for the whole batch, as if it

were a single request. Thus, the average number of MACs operations, for a batch of b requests,

is:

M r
avg-b = 1

b

1

3 f +1
(Rr

avg-b +W r
avg-b)

= 1

b

f +1

3 f +1

(
(10+b) f +2

)
(7.3)

where

Rr
avg-b =W r

avg-b = b
f (f +1)

2
+ (2 f +1)(f +1)+ (3 f +1)(f +1)

Finally, we obtain the average number of operations, when both piggybacking and batching

are used. To do so, we apply the same process as in obtaining Equation (7.2) on Equation (7.3)

and Equation (7.2), and make use of the fact that we also piggyback a batch of b requests:

M r
avg =

1

2b

(
bM r

avg-b +b
(f +1)+ (f +1)

3 f +1

)
= 1

2b

f +1

3 f +1

(
(10+b) f +2+2b

)
(7.4)

113

Chapter 7. Performance Evaluation

Table 7.3 reports the number of per-request MAC operations performed at different replicas for

PBFT, Zyzzyva, Chain and Ring. Additionally, the table also reports the number of per-request

MAC operations when batching is used, assuming that the batch size is b. Table 7.3 shows

that PBFT and Ring do not differentiate replicas, in terms of the number of MAC operations.

Zyzzyva exhibits a highly asymmetric behaviour, but compensates this CPU-bound asymmetry

with a small number of MAC operations.

Number of MAC operations
No batching Batching

Protocol Primary Other Primary Other

PBFT 12 f +2 12 f +2 2+ 8 f +1
b 2+ 5 f +1

b

Zyzzyva 3 f +2 2 2+ 3 f
b

2
b

Chain f +2 2 f +2 1+ f +1
b 2 f +1

b

Ring 11
3 f + 34

9 + 2
9(3 f +1)

1
2b

f +1
3 f +1

(
(10+b) f +2+2b

)
Table 7.3: Comparison of the number of MAC operations on different replicas for different
protocols. For the row marked “Chain”, the column Primary contains the number of MAC
operations at the sequencer, while the column Other contains the number of MAC operations
at the bottleneck (middle) replica. The number of MAC operations for Ring represents an
average, since replicas in Ring can take any role, with regard to request processing.

7.3 Network Utilization

In Figure 7.4, we show the number of bytes which are sent/received by Ring replicas during

replica-to-replica communication (let us recall that each of the replicas has two network

interfaces: one for client-to-replica communications, and one for replica-to-replica communi-

cations). The clients issue 1KiB requests. Similarly to Figures 3.2, 3.3, and 3.4, in Figure 7.4

we present the number of bytes which are sent (or received) for each byte received from a

client. The bars in (out) denote the normalized amount of data on the incoming (respectively,

outgoing) links to the replica.

The first observation that we can make is that network utilization is perfectly balanced across

the different links: each of the replicas equally uses its incoming and outgoing links. The

reason for such a balance stems from the fact that each of the replicas sends/receives, on

average, the same number of messages. This is a consequence of the fact that each of the

replicas acts, on average, the same number of times as an “entry replica”, and, also, as an “exit

replica”. Consequently, when considering network utilization in Ring, each of the replicas has

the same (indistinguishable) “role” in the protocol.

The second observation that we can make is that for every 1B transmitted by a client, a replica

only transmits (receives) 0.78B on its outgoing (respectively, incoming) link. This is explained

by the fact that there are 4 replicas-to-replicas links, and only 3 of them are used to disseminate

request payloads (the link from the exit replica to the entry replica is not used). As any replica

114

7.4. Microbenchmarks

Replica

N
o
rm

a
liz

e
d
 T

o
ta

l
B

y
te

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r0 r1 r2 r3

Direction

in

out

Figure 7.4: Network link utilization in the Ring protocol.

can have the role of the “entry replica” for each of the requests, then each of the replicas has

the same probability to have one of its links not used. Consequently, the average number of

bytes which is transmitted on each of the links should be 3
4 = 0.75B, which is very close to the

0.78B, that we observe. The slight difference comes from the fact that messages have headers

and that an acknowledgement is produced for every message, thus increasing the number of

bytes that are transmitted over the network links.

7.4 Microbenchmarks

The previous two sections show that all of the replicas in Ring perform similar processing and

send/receive similar number of bytes. In this Section, we evaluate the impact of this balanced

CPU and network utilization on the overall performance of the protocol.

First, we evaluate Ring using a standard set of microbenchmarks [Castro and Liskov, 1999],

when f = 1. These microbenchmarks resemble various workloads, and each of them stresses

different parts of the system. Then, using the same set of microbenchmarks, we assess the

peak throughput that each of the protocols attains, as a function of the message size. Next, we

evaluate the effects of the client load on the protocol throughput, for 1KiB requests. Finally,

we evaluate the fault scalability of Ring.

7.4.1 4/0 Microbenchmark

We first evaluate the throughput of the different protocols in the so-called 4/0 microbenchmark.

In this benchmark, the clients issue large requests (4KiB), while the expected responses are

small (8B). This benchmark exactly emulates the network-bottleneck conditions which Ring

was designed for. Moreover, the 4/0 microbenchmark models write-intensive applications,

115

Chapter 7. Performance Evaluation

similar to a networked storage, or a networked syslog facility. Figure 7.5 shows the results for

throughput, while Figure 7.6 shows a response time vs. throughput curve for this particular

benchmark.

Number of clients

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

0

20

40

60

80

100

120

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.5: Throughput in the 4/0 microbenchmark.

Throughput [Mbps]

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

10

20

30

40

50

60

70

● ●
●

● ●
●

●
●

●
●

●

●

●

●

●

● ● ● ● ● ●
●
●

●
●

●

●

●

●

●

● ● ● ●
●
●
●
●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

4 8

200

4 8

200

4 8

200

4 8

200

0 20 40 60 80 100 120

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.6: Response time–throughput curve for the 4/0 microbenchmark. Some points are
annotated with the number of clients for which the given parameters were measured.

The main observation is that Ring, indeed, outperforms all of the other protocols, with as few

as 60 clients. Other protocols reach a plateau of 93Mbps, with only as few as 10 clients, with

up to 7% difference in maximum throughput. On the other hand, Ring surpasses 100Mbps

with 90 clients, and reaches 114.6Mbps with 200 clients.

The difference between Chain and Zyzzyva rises from the fact that Chain has larger message

headers, which take up the bandwidth. With more than 20 clients, the performance of PBFT

116

7.4. Microbenchmarks

starts to degrade slightly, due to its multiple communication rounds. Additionally, we observe

the ill-effect of IP multicast, which congests the inter-replica LAN.

Despite having a lengthy communication pattern, Figure 7.6 shows that Ring actually achieves

a lower response time than the other protocols, once it has reached its maximal throughput.

With 200 clients, Ring’s response time is 60ms, while the other fastest protocol, Zyzzyva,

is 20% slower. The reason for this low response time in Ring is the fact that the queueing

(waiting) time at a replica is inversely proportional to the throughput. Hence, the requests in

Ring wait for less time before being processed, than in other protocols. Due to the reduced

queueing time, Ring achieves an lower overall response time, even though messages take more

communication steps.

7.4.2 0/4 Microbenchmark

The 0/4 microbenchmark models read-intensive applications, such as networked data-indexes

and storage. The clients issue small requests, while the replicas generate large replies. Due

to its format, this benchmark evaluates the efficiency of replica-to-client communication.

Although the 0/4 microbenchmark resembles a read-intensive workload, we turn off read-

optimizations in all of the protocols, and measure the performance of a more costly write

operation.

Number of clients

T
h
ro

u
g
h
p
u
t
[k

ilo
 o

p
/s

]

 0

 2

 4

 6

 8

10

12

14

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●
● ● ●

0 20 40 60 80 100 120 140

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.7: Throughput in the 0/4 microbenchmark.

Figure 7.7 (Figure 7.8) presents the throughput (respectively, the response time vs. throughput

curve) for this benchmark. In Ring, different replicas reply to different clients4, thus reducing

the stress on the replica-to-client communication. Figure 7.7 supports this fact, as Ring out-

performs other protocols, and reaches around 11kops (kilo-operations per second). Moreover,

Ring surpasses the other protocols with as few as 27 clients.

4Only one replica replies to one client.

117

Chapter 7. Performance Evaluation

Throughput [kilo op/s]

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

10

20

30

40

50

● ●
● ● ● ● ● ●

● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●
●
●

●

●

●

●

● ● ● ● ●

●

●

●

●

4

120

150

4

150

4

120

150

4

120

150

 2 4 6 8 10

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.8: Response time–throughput curve for the 0/4 microbenchmark. Some points are
annotated with the number of clients for which the given parameters were measured.

We note that, in this microbenchmark, Chain exhibits low performance. In this respect,

the performance of Chain in the 0/4 microbenchmark is similar to its behaviour in the 4/0

microbenchmark, where the head was the bottleneck, due to large requests. Here, however,

the tail is the bottleneck, due to large replies, which saturate the replica-to-client link. Zyzzyva

and PBFT achieve a higher throughput than Chain, because different replicas may send the full

reply to the client5. However, both Zyzzyva and PBFT perform worse than Ring. As is shown

in Figure 7.7, Ring effectively utilizes all of the outgoing links, having 4 times the throughput

of Chain. Zyzzyva (and PBFT) reach 8kops (respectively, 10kops) due to the fact that every

replica replies to every client. Moreover, PBFT reaches a congestion collapse with more than

100 clients.

Similarly to the 4/0 microbenchmark, we observe a lower response times in Ring, too. Chain

immediately enters saturation, as Figure 7.8 shows — with only a few clients, the response

time vs. throughput curve becomes a vertical line on the figure. PBFT experiences a sharp

increase in response times after the congestion collapse, due to frequent retransmissions,

which we observe on the same figure, as the line going from the lower right corner to the upper

left corner.

7.4.3 4/4 Microbenchmark

The 4/4 microbenchmark stresses all of the network links, as both the clients send large

messages and the replicas issue large replies. This benchmark resembles a high-throughput

P2P file-sharing service, for instance, a video on demand service. Figure 7.9 shows the results

5Some protocols use this optimization, in which only a certain, random replica sends the full reply, while other
replicas send only a digest of the reply.

118

7.4. Microbenchmarks

obtained for throughput, while Figure 7.10 shows a response time vs. throughput curve for

this particular benchmark.

Number of clients

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

0

20

40

60

80

100

120

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.9: Throughput in the 4/4 microbenchmark.

Throughput [Mbps]

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

 5

10

15

20

25

30

35

● ●

●

●
●

●

●

●

●

●

●

● ● ● ● ● ●
●

●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

4

40

4

40

80

4

40

80

100

4

16

40

80

100

0 20 40 60 80 100 120

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.10: Response time–throughput curve in the 4/4 microbenchmark. Some points are
annotated with the number of clients for which the given parameters were measured.

Similarly to the 4/0 microbenchmark, Ring outperforms other protocols as soon as there are

more than 40 clients. We also observe that even with 80 clients, Ring has a notably lower

response time.

Due to large replies, PBFT reaches a congestion collapse after 20 clients. We could not obtain

measurements for PBFT with more than 40 clients, due to constant crashes. However, even

without crashes, PBFT would not achieve better performance than Zyzzyva [Kotla et al., 2007].

119

Chapter 7. Performance Evaluation

Other protocols (except Ring) also crash with more than 100 clients. Therefore, we report

results for up to 100 clients.

7.4.4 0/0 Microbenchmark

The 0/0 microbenchmark models a CPU-intensive workload, as it uses small messages and

small requests. Thus, context switching when processing a network message, request handling,

and cryptographic operations dominate the total cost of operations. Due to the small request

size, this microbenchmark favours protocols with short communication paths (because it

takes less to propagate a short message), and a small number of cryptographic operations.

Number of clients

T
h
ro

u
g
h
p
u
t
[k

ilo
 o

p
/s

]

 0

10

20

30

40

50

60

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0 50 100 150 200

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.11: Throughput in the 0/0 microbenchmark.

Figures 7.11 and 7.12 summarize the results of the 0/0 microbenchmark. As expected, Zyzzyva

dominates when there is a small number of clients, as the system is not in the bottleneck

condition, and throughput depends mainly on the response times. The response time of

Zyzzyva is less than that of Chain (shown in Figure 7.11), as the requests in Zyzzyva take

3 communication steps, while the communication in Chain spans over 5 separate steps.

Once the CPU becomes the bottleneck, Chain achieves the highest throughput, although the

number of MAC operations is the same as with Zyzzyva (2 f +2 vs. 3 f +1). The reason for this

is that the primary in Zyzzyva spends more time processing requests, as it needs to answer

to the client, while handling many client requests. The response time of Ring is quite high,

as each of the requests takes 9 communication steps, and the number of MAC operations is

higher than in other protocols. However, we note that with over 200 clients, Ring overtakes

PBFT, as the latter enters saturation, as shown in Figure 7.12. Moreover, all of the protocols,

except for Ring, reach saturation with less than 200 clients. The reason for this is the inherent

symmetry of Ring, as each of the replicas takes one fourth of clients. Thus, Ring stays away

from the CPU bottleneck zone, even with a large number of clients present.

120

7.4. Microbenchmarks

Throughput [kilo op/s]

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

1

2

3

4

5

●

● ● ●
●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8

20

40

200

8

20
40

120

200

8
20

40

120

200

8

20

40

120

200

10 20 30 40 50

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.12: Response time–Throughput curve in the 0/0 microbenchmark. Some points are
annotated with the number of clients for which the given parameters were measured.

7.4.5 Mixed Workload Microbenchmark

So far, all microbenchmarks used the constant request size. However, real applications issue

request of various sizes. In order to assess the impact of variable request size, we modified the

clients to issue requests of sizes: 8B, 512B, 2048B, 256B and 4096B, in that order6.

Number of clients

T
h
ro

u
g
h
p
u
t
[k

ilo
 o

p
/s

]

0

2

4

6

8

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

0 50 100 150 200

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.13: Throughput in the mixed workload microbenchmark.

Figures 7.13 and 7.14 summarize the results of the mixed workload microbenchmark. Note

that we express the throughput as kilo ops, since requests are not of an uniform size. Due to

6We require deterministic order, to ensure repeatability

121

Chapter 7. Performance Evaluation

Throughput [kilo op/s]

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

 5

10

15

20

25

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

40

80

120

200

1

40

1

40

80

120

200

1

40

80

120

200

1 2 3 4 5 6 7 8

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.14: Response time–Throughput curve in the mixed workload microbenchmark. Some
points are annotated with the number of clients for which the given parameters were mea-
sured.

a bug in the implementation of PBFT, we could not obtain measurements for more than 40

clients.

We observe that with a low load, Zyzzyva has the best performance, since it behaves the best

with small requests. However, with more than 150 clients, Ring begins to dominate, and

improves by 6% upon Zyzzyva. Moreover, the trend shows that, unlike other protocols, Ring

does not reach saturation. The reason is the same as for the 4/0 microbenchmark: Ring

can utilize more links to accept incoming requests, thus enabling higher total throughput.

Similarly to 4/0 microbenchmark, we observe that, with 200 clients, Ring again has lower

response time than other protocols with much shorter communication path.

7.5 The Impact of the Request Size

Next, we study how the throughput of different protocols is affected by the size of the requests

issued by the clients. In Figure 7.15, we show the peak throughput per protocol. We have

varied the size of the requests and the number of clients, while measuring the throughput. For

every considered request size, we report the maximal throughput that we have observed. Note

that the x-axis on the figure uses a logarithmic scale.

The first observation that we make from Figure 7.15 is that the behavior of protocols is similar

to the simulated behaviour reported by Singh et al. [2008]: PBFT and Zyzzyva perform very

similarly. The network setting that we use for these experiments influences the behaviour

of Chain and Zyzzyva, as observations differ from those reported by Guerraoui et al. [2010a]:

Zyzzyva and Chain exhibit negligible differences with large messages. The difference is due

122

7.6. The Impact of the Number of Clients

Request size [B]

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

0

20

40

60

80

100

120

●

●

●

●

●
● ●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●
●

10 100 1'000 10'000

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.15: Peak throughput as a function of the size of the request.

to the fact that clients communicate with replicas using a separate, dedicated LAN. This

setup reduces the number of IP multicast packet drops in Zyzzyva, effectively increasing its

performance.

It can further be seen from Figure 7.15 that, with small requests (below 1000B), all of the

protocols perform similarly, which we later confirm with our performance model. With

larger requests, Ring significantly outperforms other protocols. More precisely, state-of-the-

art protocols have a peak throughput ranging between 90Mbps for PBFT and 93Mbps for

Zyzzyva and Chain. Ring, on the other hand, has a peak throughput of about 118Mbps, which

represents a 27% performance improvement over the most efficient state-of-the-art BFT

protocols. Ring achieves a throughput of 118Mbps on a Fast Ethernet network because the

replicas in Ring only send/receive 0.78B for every 1B of a client request. To conclude, we

are safe to say that, with large messages, the throughput of Ring is very close to the optimal

replication throughput that can be achieved on a Fast Ethernet: 124Mbps.

7.6 The Impact of the Number of Clients

Network bottleneck conditions may be reached when either a certain number of clients issues

large requests, or when a large number of clients issues requests of modest size. Either way, it

is important for BFT protocols to be able to graciously handle traffic from all of the clients, and,

furthermore, a robust7 protocol should be able to retain good performance as the number of

clients increases.

Similarly to the microbenchmarks in Section 7.4, Figures 7.16 and 7.17 illustrate the perfor-

mance of different protocols, as the number of clients varies from 1 to 2000. Figure 7.16

7In terms of client scalability.

123

Chapter 7. Performance Evaluation

shows the throughput as the number of clients varies, while Figure 7.17 shows the dependency

between the response time and the throughput. In this experiment, the clients issue 4KiB

requests, while the replicas send 8B replies.

Note that we do not issue 16KiB requests (which yields the best results for all protocols, as

illustrated in Figure 7.15) because both Zyzzyva and PBFT were crashing when being stressed

with a large number of clients (> 120) issuing 16KiB requests. Moreover, even with 4KiB

requests, PBFT crashes with more than 200 clients, while Chain and Zyzzyva crash with more

than 1000, and 1200 clients, respectively. Ring does not crash, even with 2000 clients present.

Number of clients

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

0

20

40

60

80

100

120

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●●●● ● ● ● ● ●

● ●

●

●

●

●

●
●

●
●

0 500 1000 1500 2000

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.16: Throughput, as the number of client increases toward 2000, for 4KiB requests and
small replies.

Throughput [Mbps]

R
e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

100

200

300

400

500

600

● ●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●●●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

20

1000

2000

20

1000

1200

2
20

150

1000

20

150

0 20 40 60 80 100 120

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.17: Response time–throughput curve in the case in which the system is handling a
large number of clients, for 4KiB requests and small replies.

124

7.7. Fault Scalability

We note that all of the protocols reach saturation after 20 clients have started using the

system. Also, as the number of clients increases, all of the protocols exhibit slight performance

variations, due to the high load. However, we do not observe any significant performance

drops, except in the case of PBFT. One reason for such a steady performance of Ring stems

from its design — the clients connect to different replicas, thus reducing the overall load.

7.7 Fault Scalability

Number of clients

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

0

20

40

60

80

100

120

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

Fault factor

1

2

3

Figure 7.18: Throughput as a function of the resilience (f), with 4KiB requests and small
replies.

An important characteristic of BFT protocols is the level of their performance, as the number of

tolerated faults increases. Figure 7.18 illustrates the throughput of Ring in the 4/0 microbench-

mark, when f varies between 1 and 3. Kotla et al. [2007] reports that the peak throughput

of PBFT and Zyzzyva slightly drops with the increase of f . Similarly, Guerraoui et al. [2010a]

reports the same finding for Chain. We, too, observe a noticeable drop in performance in

Ring. The reason is that the peak throughput in Ring is dependent on f , and amounts to

bmax = 3 f +1
3 f B. As is suggested in Figure 7.18, with the increase of f , the peak throughput in

Ring approaches the link limit, which is, incidentally, the peak throughput of other protocols.

Note that the maximum reported throughput of Ring in this experiment is 115Mbps, as we

use 4KiB requests.

7.8 Accuracy of the Performance Model

This section discusses the accuracy of the performance model presented in Chapter 6.

Figures 7.19, and 7.20 compare the modeled versus the observed throughput for small and

large requests, respectively. We obtain the modeled throughput using the MVA algorithm.

125

Chapter 7. Performance Evaluation

All of the models are parametrized with the values obtained in Section 7.1.1. The observed

throughput represents the throughput of a nil service — a service with no execution time. The

same service is also used in the presented microbenchmarks in Section 7.4.

Number of clients

T
h
ro

u
g
h
p
u
t
[k

o
p
/s

]

 0

10

20

30

40

50

60

70

0 50 100 150 200

Protocol

Chain

PBFT

Ring

Zyzzyva

Kind

Modeled

Measured

Figure 7.19: Comparison of the modeled and the measured (Section 7.4.4) throughput, as the
number of load changes, with small requests and small replies.

Number of clients

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

0

20

40

60

80

100

120

0 50 100 150 200

Protocol

Chain

PBFT

Ring

Zyzzyva

Kind

Modeled

Measured

Figure 7.20: Comparison of the modeled and the measured (Section 7.4.1) throughput, as the
number of load changes, with 4KiB requests and small replies.

As Figure 7.19 suggests, the difference between the modeled and the measured data may

sometimes be as much as 30%. The reason for such a discrepency is twofold: (1) our model is

quite simple, and (2) we can not capture all of the possible behaviours of the system, especially

memory interactions, which matter in cases of CPU-constrained workload. Nevertheless, we

note that the modeled data allows for reaching the same conclusions as the measured data.

Namely:

126

7.8. Accuracy of the Performance Model

• Chain achieves the highest throughput;

• Zyzzyva achieves a higher throughput than Chain, when the number of clients is small;

and

• Ring overtakes PBFT with higher loads, by a small margin.

On the other hand, in Figure 7.20, the difference between the maximum throughputs is shown

to be lower than 3%. Under a low client load, there are some discrepancies. For example,

the “knee” of the performance curve in the modeled data is reached with a higher number

of clients, when compared to the measured data. This difference in behaviour is due to the

fact that our model assumes a uniform operation cost over all of the possible loads. However,

under a low client load, all of the operations take less time to execute. We chose not to take

this dependency into account, as it would complicate the model. Nevertheless, including

load-dependent processing into the model remains a possibility [Bolch et al., 2005].

7.8.1 The Impact of the Request Size

The next step in the evaluation of our performance model is the analysis of the impact of the

request size on the model’s accuracy.

Figure 7.21 illustrates the relative difference between the predicted and the observed maximum

throughput, as the request size varies. In this experiment, we replicate the nil service — a

service which does not incur any overhead.

Request size [B]

R
e
la

ti
ve

 d
if
fe

re
n
c
e

0.00

0.05

0.10

0.15

0.20

1000 2000 3000 4000

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.21: Relative difference between the predicted and the measured maximum through-
put, as the request size changes.

We observe that the relative difference between the predicted and the observed maximum

throughput declines, as the request size increases. The reason is that, with larger requests,

127

Chapter 7. Performance Evaluation

processing times are greater, hence the errors in measuring the overall process time have a

small effect on the total processing time.

However, for some of the values of the request size, we can see an increase in the relative

difference, especially for 512B requests. The reason for such an increase is a consequence of

the inaccuracy in calculated costs per operation. As Figure 7.2 shows, we use a simple linear fit

for all of the system parameters, and yet, network-related system parameters are not linearly

dependent on the request size, for some values of the request size. That is exactly what we

observe for 512B requests, where the send operation incurs 40% more overhead than the fitted

model predicts. Such a large difference affects the subsequent calculations, as Figure 7.21

suggests.

The error in predicting the maximum throughput is generally8 below 10%, except in the case of

PBFT. PBFT is presented through a simplified model that does not take all of the interactions

(and optimizations) into account. Therefore, we observe an around 20% difference when

predicting the performance of PBFT.

7.8.2 The Impact of the Execution Time

In this section, we address how varying the execution time affects the accuracy of the model.

So far, we have conducted all of the measurements using the nil service — a service which

takes 0s to process a request. However, in real deployments, the service time is significant,

probably higher than the total agreement time [Clement et al., 2009b]. In this experiment, we

instruct clients to issue small requests, while replicas issue small replies. We focus on small

requests and small replies, because such a workload is CPU-intensive. An increase in the

execution time also affects the CPU load. Moreover, as the previous section implies, our model

contains the highest error in this setting. Thus, we can observe the effect of the increase in the

execution time more clearly.

In Figure 7.22, we show the mean relative difference as the execution time changes, with

a 95% confidence interval. The mean relative difference (MRD) represents an average of

magnitudes of relative differences between the modeled and the measured throughput, for all

of the measured points:

MRD = 1

n

∑n
1

∣∣xi
measured −xi

model

∣∣
xi

measured

where n is the sample size and xi is the ith sample. In our experiments, the sample size is 6 —

we sample the throughput when the load is 20, 40, 80, 120, 160 and 200 clients.

Besides the fitted mean relative difference, in Figure 7.22 are also displayed the individual per-

protocol relative differences, for the sake of reference. We observe that with short execution

8For a large range of values.

128

7.8. Accuracy of the Performance Model

Execution time [us]

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

0.00

0.05

0.10

0.15

0.20

0.25

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
��

�

�

�

�

�

�

�

�
�

�
���

0 100 200 300 400 500

Protocol (fitted)

Chain

PBFT

Ring

Zyzzyva

Protocol

� Chain

PBFT

Ring

Zyzzyva

Figure 7.22: The mean relative difference as the execution time changes.

Execution time [us]

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

0.00

0.05

0.10

0.15

0.20

0 100 200 300 400 500

Protocol

Chain

PBFT

Ring

Zyzzyva

Figure 7.23: The relative difference between the predicted and the measured maximum
throughput, as the execution time changes.

times, an individual relative difference could be as high as 30% for some client load. However,

as the execution time grows, the mean relative difference rapidly drops, and drops below 5%

for a large range of the values.

Similarly to the previous section, in Figure 7.23 we report the relative difference in the modeled

and the observed maximum throughput, as the execution time of the replicated service varies.

Both Figure 7.22 and 7.23 illustrate the same global trend — as the execution time increases,

the error in prediction rapidly drops. For example, as soon as the execution time grows over

10µs, the error in prediction is less than 5%, for all of the protocols. Moreover, for execution

129

Chapter 7. Performance Evaluation

times longer than 100µs, the prediction error is less than 1% for most of the protocols, and

only 2% for Ring.

Number of clients

T
h

ro
u

g
h

p
u

t
[k

o
p

/s
]

 0
10
20
30
40
50
60

 0

10

20

30

40

50

 0

10

20

30

40

 0

 5

10

15

0

2

4

6

8

0.0

0.5

1.0

1.5

Chain

50 100 150 200

PBFT

50 100 150 200

Ring

50 100 150 200

Zyzzyva

50 100 150 200

0
5

1
0

5
0

1
0
0

5
0
0

Figure 7.24: Comparison of the modeled and the observed performance, for all of the protocols,
as the load and the execution time change, for small requests and small replies. The solid lines
represent modeled performance, while the dotted lines represent observed performance. The
greyed area at the bottom of each of the facets denotes the absolute difference between the
model and the observed measurement.

In addition, Figure 7.24 displays, side-by-side, the differences for all protocols, as the exe-

cution time varies. This figure gives a visual overview of how well the model and the actual

measurements match. Figure 7.24 supports the observation that the accuracy improves as

the execution time increases. The reason is that the execution time becomes the dominant

factor in the overall processing time. In turn, the total error in assessing the overall processing

time decreases, increasing the accuracy of the model. Finally, we can conclude that our simple

model achieves good accuracy, as we have rarely observe differences higher than 10%.

130

7.9. Summary

7.9 Summary

The results in this chapter show that, under the network-bottleneck conditions, Ring outper-

forms the state-of-the-art protocols (Chain and Zyzzyva).

The results obtained from microbenchmarks show that Ring has up to 27% higher throughput

than other protocols, in the majority of the experiments. In these microbenchmarks, some-

what surprisingly, Ring achieves the best response time, although each of the requests takes 9

communications steps. The reason for such a good performance lies in the fact that, in the

bottleneck conditions, the response time is inversely proportional to the throughput.

Ring achieves lower throughput (22% less than that of Zyzzyva, and 30% less than that of

Chain), only in microbenchmarks in which operations have small arguments and result sizes.

In those particular microbenchmarks, Ring generates more CPU load (on average) than other

protocols, although the load is well balanced among the replicas. Ring achieves slightly higher

performance than PBFT, even though (as shown in Section 7.2) Ring operates at a higher load,

because with this higher load, the IP multicast incurs high message drops, and we observe

lower performance in PBFT. The main reason for the lower performance of Ring in the 0/0

microbenchmark, conversely, stems from the long communication path of Ring — with small

requests, transporting a request takes more time than its actual processing, which directly

affects the throughput. As opposed to other protocols, Ring does not reach saturation with

even 200 clients, precisely due to this long communication pattern.

The experimental results show that our analytic performance model is accurate: the absolute

value of the relative prediction error for the throughput was below 10% of the experimental

results, in almost all of the experiments. Our analytic model achieves good accuracy although

it requires only a small number of (protocol-agnostic) measurements.

131

8 Concluding Remarks

As our society relies deeply on computers, and as faults are still more the norm than the

exception, highly-available fault-tolerant systems are a necessity. In the recent years, we have

witnessed the emergence of Byzantine fault tolerant systems, aimed at the improvement of

throughput under CPU-constrained workloads.

This thesis has focused on exploring a different design space — one in which throughput is

scarce. The thesis has offered an analysis of scaling impediments in current, state-of-the-

art protocols, for such throughput-constrained conditions. These impediments range from

imbalances in resource utilization (e.g., when not all of the links are equally loaded), over

protocol inefficiencies (e.g., the fact that IP multicast is fragile under high-load), to various

implementation deficiencies, such as problems with handling large number of connections,

and processing requests on multicore platforms.

Given the aforementioned analysis, we have proposed a design and an implementation of

Ring — a BFT protocol which utilizes ring topology to achieve high-throughput. Ring is an

agreement-based BFT protocol, with a specific replica in charge of imposing order on all of

the requests. However, in Ring, that task is negligible to the extent that all of the replicas in

Ring can safely be considered identical — a feature which shares a significant similarity with

quorum-based BFT protocols. Furthermore, all of the replicas accept and reply to requests

from clients, and it is this inherent symmetry that allows for a balanced usage of resources in

Ring, thus overcoming one of the major highlighted impediments to performance scaling.

Such symmetrical processing, paired with a ring topology, allows a maximum theoretical

throughput of n
n−1B, where n is the number of replicas, and B is the link bandwidth. The

throughput of all of the other protocols is limited to B . The evaluation, among other interesting

properties, shows that our implementation of Ring approaches this limit, and that Ring

outperforms all other, state-of-the-art protocols by 27%.

133

Chapter 8. Concluding Remarks

In the last chapter of the thesis, we have presented a performance analysis framework, based

on queueing theory. To the best of our knowledge, this is the first use of queueing theory in

modelling the performance of BFT protocols. Our model uses protocol-agnostic measure-

ments of the environment for parametrizing various parts of the system. Furthermore, the

model is simple, and requires building the network of queues representing each processing

stage only once, for each of the protocols. Given its simplicity, this performance model predicts

the performance with, somewhat surprisingly, a below 5% error for realistic execution times,

and below 20% for short (sub 10ms) execution times.

The research on deterministic execution on multicore systems, along with the points raised in

this thesis, opens a path toward efficient, scalable, and polymorphic BFT systems. Guerraoui

et al., 2010a has laid out the foundation for moving correctly in-flight from one instance

of a BFT protocol to another. In this thesis, we have described a protocol implemented in

this framework, suitable for specific working conditions, in which it outperforms all state-of-

the-art protocols. Thus, one could easily envision a system (implemented using guidelines

presented in this thesis), which would monitor environment conditions, use our performance

model to detect a better protocol to run, and switch to it by using the ABSTRACT framework.

Ultimately, we would be able to achieve best performance for any given workload.

Finally, the main insight this thesis offers is that the advantage of symmetric systems is

that all components become bottlenecks at the same time. In a non-symmetric system,

some component will become the bottleneck with a much lower utilization (compared to

a symmetric system), thus limiting the total utilization of the system. Thus, the power of

symmetry lies in postponing the bottleneck condition to a much higher utilization, that in

turn enables a higher total utilization.

134

Bibliography

[Abd-El-Malek et al., 2005] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,

Michael K. Reiter, and Jay J. Wylie. “Fault-scalable Byzantine Fault Tolerant services”.

In: Proceedings of the Symposium on Operating Systems Principles (SOSP). 2005.

[Aiyer et al., 2008] Amitanand S. Aiyer, Lorenzo Alvisi, Rida A. Bazzi, and Allen Clement. “Ma-

trix Signatures: From MACs to Digital Signatures in Distributed Systems”. In: Proceedings

of the Conference on Distributed Computing (DISC). 2008.

[Amir et al., 2004] Yair Amir, Claudiu Danilov, Michal Miskin-Amir, John Schultz, and Jonathan

Stanton. The Spread Toolkit: Architecture and Performance. Tech. rep. Johns Hopkins

University, 2004.

[Amir et al., 2008] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. “Byzantine

replication under attack”. In: Proceedings of the Conference on Dependable Systems and

Networks (DSN). 2008.

[Aviram et al., 2010] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. “Efficient

System-Enforced Deterministic Parallelism”. In: Proceedings of the Symposium on

Operating Systems Design and Implementation (OSDI). 2010.

[Banga and Mogul, 1998] Gaurav Banga and Jeffrey C. Mogul. “Scalable kernel performance

for internet servers under realistic loads”. In: Proceedings of the annual conference on

USENIX Annual Technical Conference (ATEC). 1998.

[Baskett et al., 1975] Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G.

Palacios. “Open, Closed, and Mixed Networks of Queues with Different Classes of

Customers”. In: Journal of ACM 22 [2 1975].

[Bergan et al., 2010] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. “De-

terministic Process Groups in dOS”. In: Proceedings of the Symposium on Operating

Systems Design and Implementation (OSDI). 2010.

[Birman et al., 2009] Ken Birman, Gregory Chockler, and Robbert van Renesse. “Toward a

cloud computing research agenda”. In: ACM SIGACT News 40.2 [2009].

[Bolch et al., 2005] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor Shridharbhai

Trivedi. Queueing Networks and Markov Chains. Wiley-Interscience, 2005.

135

Bibliography

[Boudec, 2010] Jean-Yves Le Boudec. Performance Evaluation of Computer and Communica-

tion Systems. EPFL Press, 2010.

[Bracha and Toueg, 1985] Gabriel Bracha and Sam Toueg. “Asynchronous consensus and

broadcast protocols”. In: Journal of ACM 32 [1985].

[Cachin, 2000] Christian Cachin. “Distributing Trust on the Internet”. In: Proceedings of the

Conference on Dependable Systems and Networks (DSN). 2000.

[Cachin, 2010] Christian Cachin. “State Machine Replication with Byzantine Faults”. In:

Replication: Theory and Practice. Ed. by Bernadette Charron-Bost, Fernando Pedone,

and André Schiper. Vol. 5959. Lecture Notes in Computer Science. 2010.

[Cachin and Poritz, 2002] Christian Cachin and Jonathan A. Poritz. “Secure Intrusion-tolerant

Replication on the Internet”. In: 2002.

[Castro, 2001] Miguel Castro. “Practical Byzantine Fault Tolerance”. Ph.D. thesis. MIT, 2001.

[Castro and Liskov, 1999] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault

Tolerance”. In: Proceedings of the Symposium on Operating Systems Design and Imple-

mentation (OSDI). Feb. 1999.

[Clement et al., 2009a] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and

Mirco Marchetti. “Making Byzantine Fault Tolerant systems tolerate Byzantine faults”.

In: Proceedings of the Symposium on Networked Systems Design and Implementation

(NSDI). 2009.

[Clement et al., 2009b] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo

Alvisi, Mike Dahlin, and Taylor Riche. “Upright cluster services”. In: Proceedings of the

Symposium on Operating Systems Principles (SOSP). 2009.

[Cowling et al., 2006] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and

Liuba Shrira. “HQ replication: a hybrid quorum protocol for Byzantine Fault Tolerance”.

In: Proceedings of the Symposium on Operating Systems Design and Implementation

(OSDI). 2006.

[Dijk, 1993] Niko M. Dijk. Queueing networks and product forms: A system’s approach. Wiley,

1993.

[Dobrescu et al., 2009] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-gon Chun,

Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.

“RouteBricks: Exploiting Parallelism to Scale Software Routers”. In: Proceedings of the

Symposium on Operating Systems Principles (SOSP). 2009.

[Duda and Czachórski, 1987] Andrzej Duda and Tadeusz Czachórski. “Performance Evalua-

tion of Fork and Join Synchronization Primitives”. In: Acta Informatica 24 [1987].

[Dwork et al., 1988] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in the

presence of partial synchrony”. In: Journal of ACM 35 [2 1988].

[Egi et al., 2008] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe

Huici, and Laurent Mathy. “Towards high performance virtual routers on commodity

hardware”. In: Proceedings of the ACM CoNEXT Conference. 2008.

136

Bibliography

[Gammo et al., 2004] Louay Gammo, Tim Brecht, Amol Shukla, and David Pariag. “Compar-

ing and Evaluating epoll, select, and poll Event Mechanisms”. In: Proceedings of the

Ottawa Linux Symposium. 2004.

[Godard, 2010] Sebastien Godard. SYSSTAT utilities. 2010. URL: http://sebastien.godard.

pagesperso-orange.fr/.

[Gordon and Newell, 1967] William J. Gordon and Gordon F. Newell. “Closed Queuing

Systems with Exponential Servers”. In: Operations Research 15.2 [1967].

[Guerraoui et al., 2010a] Rachid Guerraoui, Nikola Knezevic, Vivien Quema, and Marko

Vukolic. “The Next 700 BFT Protocols”. In: Proceedings of the European conference on

Computer systems (EuroSys). 2010.

[Guerraoui et al., 2010b] Rachid Guerraoui, Ron Levy, Bastian Pochon, and Vivien Quéma.

“Throughput Optimal Total Order Broadcast for Cluster Environments”. In: Transactions

on Computer Systems (TOCS) 28.2 [2010].

[Intel Corporation, 2007] Intel Corporation. Intel 5400 Chipset Memory Controller Hub (MCH).

2007. URL: http://www.intel.com/Assets/PDF/datasheet/318610.pdf.

[Jackson, 1963] James R. Jackson. “Jobshop-Like Queueing Systems”. In: Management

Science 50.12 [1963].

[Jalili Marandi et al., 2010] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando

Pedone. “Ring Paxos: A High-Throughput Atomic Broadcast Protocol”. In: Proceedings

of the Conference on Dependable Systems and Networks (DSN). 2010.

[Kapritsos and Junqueira, 2010] Manos Kapritsos and Flavio P. Junqueira. “Scalable Agree-

ment: Toward Ordering as a Service”. In: Proceedings of the Workshop on Hot Topics in

System Dependability (HotDep). 2010.

[Kegel, 2006] Dan Kegel. C10K Problem. 2006. URL: http://www.kegel.com/c10k.html.

[Kelly, 1979] Frank P. Kelly. Reversibility and Stochastic Networks. Willey, 1979.

[Kleinrock, 1975] Leonard Kleinrock. Queueing Systems. Vol. I: Theory. Wiley Interscience,

1975.

[Knežević et al., 2010] Nikola Knežević, Simon Schubert, and Dejan Kostić. “Towards a cost-

effective networking testbed”. In: ACM SIGOPS Operating Systems Review 43 [2010].

[Kohler et al., 2000] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans

Kaashoek. “The Click Modular Router”. In: ACM Transactions on Computer Systems 18.3

[2000].

[Kotla et al., 2007] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and

Edmund Wong. “Zyzzyva: speculative Byzantine Fault Tolerance”. In: Proceedings of

the Symposium on Operating Systems Principles (SOSP). 2007.

[Lamport, 1978] Leslie Lamport. “Time clocks, and the ordering of events in a distributed

system”. In: Communications of ACM 21 [7 1978].

[Lamport, 2004] Leslie Lamport. Lower Bounds for Asynchronous Consensus. 2004.

137

http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
http://www.intel.com/Assets/PDF/datasheet/318610.pdf
http://www.kegel.com/c10k.html

Bibliography

[Lamport et al., 1982] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine

generals problem”. In: ACM Transactions on Programming Languages and Systems 4 [3

1982].

[Libenzi, 2002] Davide Libenzi. Improving (network) I/O performance. 2002. URL: http:

//www.xmailserver.org/linux-patches/nio-improve.html.

[Lynch, 1996] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc.,

1996.

[Malkhi and Reiter, 1997] Dahlia Malkhi and Michael Reiter. “Byzantine quorum systems”.

In: Proceedings of the ACM Symposium on Theory of Computing (STOC). 1997.

[Menon et al., 2006] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel. “Optimizing

Network Virtualization in Xen”. In: USENIX Annual Technical Conference. 2006.

[Pease et al., 1980] Marshall Pease, Robert Shostak, and Leslie Lamport. “Reaching agreement

in the presence of faults”. In: Journal of the ACM 2 [27 1980].

[Provos et al., 2000] Niels Provos, Chuck Lever, and Sun-Netscape Alliance. “Scalable Network

I/O in Linux”. In: Proceedings of the USENIX Annual Technical Conference, FREENIX

Track. 2000.

[Reiser and Lavenberg, 1980] Martin Reiser and Stephen S. Lavenberg. “Mean-Value Analysis

of Closed Multichain Queuing Networks”. In: Journal of ACM 27 [2 1980].

[Rompel, 1990] John Rompel. “One-Way Functions are Necessary and Sufficient for Se-

cure Signatures”. In: Proceedings of the 22nd Annual ACM Symposium on Theory of

Computing. 1990.

[Schneider, 1990] Fred B. Schneider. “Implementing fault-tolerant services using the state

machine approach: a tutorial”. In: ACM Computer Survey 22 [4 1990].

[Serafini et al., 2010] Marco Serafini, Peter Bokor, Dan Dobre, Matthias Majuntke, and Neeraj

Suri. “Scrooge: Reducing the Costs of Fast Byzantine Replication in Presence of Un-

responsive Replicas”. In: Proceedings of the Conference on Dependable Systems and

Networks (DSN). 2010.

[Shenker and Wroclawski, 1997] Scott Shenker and John Wroclawski. RFC 2215: General

Characterization Parameters for Integrated Service Network Elements. 1997.

[Singh et al., 2008] Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timothy

Roscoe. “BFT protocols under fire”. In: Proceedings of the Symposium on Networked

Systems Design and Implementation (NSDI). 2008.

[Tirumala et al., 2010] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs.

Iperf – The TCP/UDP Bandwidth Measurement Tool. 2010. URL: http://iperf.sourceforge.

net.

[Veronese et al., 2009] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,

and Lau Cheuk Lung. “Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning

Primary”. In: Proceedings of International Symposium on Reliable Distributed Systems

(SRDS). 2009.

138

http://www.xmailserver.org/linux-patches/nio-improve.html
http://www.xmailserver.org/linux-patches/nio-improve.html
http://iperf.sourceforge.net
http://iperf.sourceforge.net

Bibliography

[Vigfusson et al., 2010] Ymir Vigfusson, Hussam Abu-Libdeh, Mahesh Balakrishnan, Ken Bir-

man, Robert Burgess, Gregory Chockler, Haoyuan Li, and Yoav Tock. “Dr. multicast: Rx

for data center communication scalability”. In: Proceedings of the European conference

on Computer systems (EuroSys). 2010.

[Vukolic, 2008] Marko Vukolic. “Abstractions for asynchronous distributed computing with

malicious players”. Ph.D. thesis. EPFL, 2008.

[Walrand, 1988] Jean Walrand. An Introduction to Queueing Networks. Englewood Cliffs, NJ:

Prentice Hall, 1988.

[White et al., 2002] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,

Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. “An Integrated Exper-

imental Environment for Distributed Systems and Networks”. In: Proceedings of the

Symposium on Operating Systems Design and Implementation (OSDI). 2002.

[Zhou et al., 2002] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. “COCA: A

Secure Distributed On-line Certification Authority”. In: Transactions on Computer

Systems (TOCS) 20 [2002].

139

About the Author

Nikola Knežević was born in Belgrade, Serbia on January 17th, 1981. He completed Mathemat-

ical High School in Belgrade in the year 2000.

In the same year, he enrolled and began his studies at the Faculty of Electrical Engineering

(ETF), University of Belgrade. In 2006, he obtained his graduated engineer (dipl.ing.) degree

in Computer Engineering and Informatics, at the Department of Computer Engineering and

Informatics, as the best student of his class.

During his undergraduate studies at ETF, he spent three months as an intern in the Networked

Systems Laboratory at the School of Computer and Information Sciences of the École Poly-

technique Fédérale de Lausanne (EPFL IC), in Switzerland, where he continued his education,

by enrolling, also in 2006, into a doctoral programme, immediately after graduating from

ETF. In 2009, he joined the Distributed Programming Laboratory at EPFL IC, to continue his

doctoral studies under the supervision of Prof. Rachid Guerraoui.

141

	Title
	Abstract (English/Français/Deutsch)
	Acknowledgements
	Preface
	Table of contents
	List of figures
	List of tables
	Introduction
	Contributions
	Roadmap

	Concepts and Related Work
	Byzantine Fault Tolerant Protocols
	Byzantine Fault Tolerance
	BFT State Machine Replication
	Overview of State-of-the-Art Protocols

	Related Work
	System Model

	Analysis of High-Throughput Working Conditions
	Asymmetry in Resource Utilization
	CPU Asymmetry
	Network Asymmetry

	Protocol Inefficiencies
	Implementation Inefficiencies
	Connection Handling
	Message Handling On Multicore Architectures

	Summary

	Ring Design and Implementation
	Protocol Overview
	Switching Between Instances

	The Abstract framework
	Overview
	Formal Specification of Abstract
	Abstract Initialization and Composition

	Fast Mode
	Ring Authenticators
	General Notation
	Implementation

	Resilient Mode
	Implementation

	Correctness
	Fast Mode Correctness Proof
	Resilient Mode Correctness Proof

	Optimizations and Extensions
	Optimizations
	Piggybacking
	Batching
	Read Optimization
	Out-of-Order Caching
	Checkpointing

	Authentication Challenges in Ring
	Optimizations and Authenticators
	Attacks On MACs

	Low Performance Detection
	Collected Metrics
	Slowness Detection Algorithm
	Preventing Replicas From Discriminating Clients

	Performance Model
	Queueing Theory Overview
	Model
	Modelling Ring
	Calculating the Maximal Throughput

	Performance Models of Other BFT Protocols
	Chain
	Zyzzyva
	PBFT

	Summary

	Performance Evaluation
	Experimental Setup
	System Parameters

	CPU Utilization
	MAC Operations

	Network Utilization
	Microbenchmarks
	4/0 Microbenchmark
	0/4 Microbenchmark
	4/4 Microbenchmark
	0/0 Microbenchmark
	Mixed Workload Microbenchmark

	The Impact of the Request Size
	The Impact of the Number of Clients
	Fault Scalability
	Accuracy of the Performance Model
	The Impact of the Request Size
	The Impact of the Execution Time

	Summary

	Concluding Remarks
	Bibliography
	About the Author

