










Chapter 4. Ring Design and Implementation

Step R+4b.3b. The replica does not commit the request on behalf of the client, stops

processing new requests, and sends a signed history to the client. (lines 4–7 of Algorithm 4.4

on page 47)

If replica ri does not receive the OBR request with at least 2 f +1 valid signatures from other

replicas, before the expiration of the timer, the replica: (a) stops accepting new RING , ACK ,

and OBR messages, by setting a global flag which forces the current instance of the resilient

mode to stop accepting requests (line 5); (b) sends its signed local history to client req .c using

an 〈ABORT ,LH iσri
,req .tc ,ri 〉µri ,req .c message (line 6); and (c) stops all of the OBR timers. In

addition, the replica sends 〈STOP ,req〉µri ,r j
to every other replica (line 7). Again, to counter

possible message losses, we assume that ri periodically retransmits this STOP message.

Step R+4b.3b.1. The replica receives a STOP message from some other replica, stops

processing new requests, and sends a signed history to the client. (lines 7–9 of Algorithm 4.4

on page 47)

Replica ri aborts all of the requests from clients, similarly as in Step R+4b.3b. Replica: (a) stops

accepting new RING , ACK , and OBR messages, by setting a global flag which forces Ring to

stop accepting requests; (b) sends its signed local history to all of the clients referenced in the

active OBR timers10, using an 〈ABORT ,LH iσri
,req’ .tc ,ri 〉µri ,req’ .c message; and (c) stops all OBR

timers. In addition, the replica sends 〈STOP ,req〉µri ,r j
to every other replica. Again, to counter

possible message losses, we assume that ri periodically retransmits this STOP message.

Step R+4b.3b.2. A client receives 2 f +1 matching ABORT messages, extracts the abort

history, and aborts the request. (lines 16–26 of Algorithm 4.3 on page 45)

A matching ABORT message for a 〈PANIC ,req〉 message is any ABORT message with a match-

ing request identifier req .tc . Once a client has received a matching ABORT message from

2 f +1 different replicas, it extracts the abort history abortH in the following way:

• the client generates the history LH’ , such that LH’ [ j ] equals the value that appears at

position j ≥ 1 of f +1 different histories LHi received in the ABORT messages. If such a

value does not exist for position j , then LH’ does not contain a value at positions j and

higher.

• the longest prefix LH” of LH’ is selected such that no request appears in LH” twice.

• if req = 〈o, tc ,c〉 does not exist in LH” , the request is appended to LH” . The resulting

sequence is an abort history abortH .

10There is a timer for every outstanding OBR request req’ .
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Then, the client c aborts req by returning Abort (req ,abortH ). To prove the validity of abortH ,

the abort history is accompanied by the set of 2 f +1 ABORT messages.

4.5 Correctness

Both operational modes of Ring are, in fact, an implementation of ABSTRACT, each with its

own Non-Triviality property. The Non-Triviality property in an ABSTRACT model defines the

conditions under which a protocol should commit client requests.

Definition (Fast Mode Non-Triviality)

If (a) a correct client c invokes a request m, (b) there are no replica failures, (c) the set of

replicas (Σ) is synchronous, and (d) messages from c to Σ (and back) are synchronous, then

the client c commits m.

Definition (Resilient Mode Non-Triviality)

If (a) a correct client c invokes a request m, (b) the sequencer is not faulty, (c) the set of replicas

(Σ) is synchronous, and (d) messages from c to Σ (and back) are synchronous, then the client

c commits m.

In addition, we say that a correct replica r j executes req at position pos if sn j = pos when r j

executes req .

The list of properties every ABSTRACT instance must satisfy is given in Section 4.2. Before

proving these properties, we first prove a set of auxiliary lemmas.

Definition (Ring order) The ring order defines the total order of replicas on the ring. We say

that this ordering starts at a particular replica r j , and define a total order operation such that:

j < j +1 < ·· · < j +3 f .

Figure 4.11 illustrates the circular topology of Ring. For the ring order which starts at replica

r0, we have the following relation: r0 < r1 < r2 < r3. On the other hand, if the order were to

start at, for instance, r2, we would have: r2 < r3 < r0 < r1.

Note that by protocol design, Switching Monotonicity holds for both Fast mode and Resilient

mode instances, hence we will not prove this property.
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Figure 4.11: The circular topology of Ring

4.5.1 Fast Mode Correctness Proof

In this section, we prove that fast mode implements ABSTRACT with Fast Mode Non-Triviality.

To do so, we need to show that fast mode satisfies the properties listed in Section 4.5. First, we

prove some necessary lemmas.

Lemma 4.5.1. Let r j be a correct replica and let LH req
j be the state of LH j when r j executes req.

Then, LH req
j remains a prefix of LH j forever.

Proof. A correct replica r j modifies its local history LH j only in Step R2 (page 46) or Step R3

(page 49) or Step R4b.2 (page 53) by sequentially appending requests to LH j . Hence, LH req
j

remains a prefix of LH j forever.

Lemma 4.5.2. If a correct replica ri accepts a request req (via the RING message) at time t1,

then all of the correct replicas r j (req .entry ≤ j < i )11 have accepted the request before t1. Note

that we do not discuss execution of the request. If replica accepts a request, it means that it has

previously verified the request, and stored it in some internal structure.

Proof. By contradiction. Assume that the lemma does not hold, and fix r j to be the first correct

replica that accepts req , such that there is a correct replica rx (x < j ) that never accepts req .

We say that r j animates req . Since RING messages are authenticated using RAs, r j accepts

req only if r j receives a RING message with MACs authenticating req from all of the replicas

from ←−r j , that is, only after all of the correct replicas from ←−r j have accepted req . If rx ∈←−r j , rx

must have accepted req — a contradiction. On the other hand, if rx ∉←−r j , then r j is not the first

replica which animates req , since any correct replica (at least one) from ←−r j animates req — a

contradiction.

Lemma 4.5.3. If a correct replica ri accepts a request req, then the request was invoked by a

client.

Proof. By contradiction, assume that some correct replica has accepted a request not invoked

by any client, and let r j be the first correct replica to accept such a request req’ in Step R2

11If not stated otherwise, we presume to use the ring ordering.
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(page 46). In the case in which j ∈ {req’ .entry. . .req’ .entry⊕ ( f +1)}, r j accepts the req’ only if

r j receives a RING message with a signature from the client, that is, only if some client invoked

req , or if req is contained in some valid INIT history. On the other hand, if j is not in that set,

Lemma 4.5.2 yields a contradiction with our assumption that r j is the first correct replica to

accept req’ .

Lemma 4.5.4. If a correct replica receives a non-nil sequence number (sn) for a request req,

either through a RING, an ACK, or an OBR message, that sn was generated by the sequencer.

Proof. By construction. The guard conditions in Step R2, and Step R3 (page 49) prevent such

case, along with the check of Ring Authenticators.

Lemma 4.5.5. If a correct replica ri executes a request req, at position sn, at time t1, then all of

the correct replicas r j (0 ≤ j < i ) have executed the request at position sn before t1. Note that

here, we refer to the ring order.

Proof. By contradiction, assume that the lemma does not hold, and fix r j to be the first correct

replica which executes req (at position sn ), such that there is a correct replica rx (x < j ) which

never executes req . We say that r j is the first replica for which req skips. Since RING (and

ACK) messages are authenticated using RAs, r j executes req at position sn only if replica r j

receives a RING (or an ACK) message with MACs authenticating the pair 〈req ,sn〉12 from all of

the replicas from ←−r j , that is, only after all of the correct replicas from ←−r j have accepted req . If

rx ∈←−r j , then rx must have accepted req — a contradiction. On the other hand, if rx ∉←−r j , then

r j is not the first replica at which req skips, since at any correct replica (at least one) from ←−r j

req skips — a contradiction. Similar reasoning applies to the handling of an OBR request.

Note that the sequence number sn associated by the sequencer is indeed equivalent to the

position at which a replica executes req , since (1) if the replica is the sequencer, sn is incre-

mented by one, and (2) if the replica is not the sequencer, the replica accepts req with the

associated sequence number, only if sn’ = sn +1. These conditions are described in Step R2

(on page 46), Step R3 (on page 49), and Step R4a (on page 50).

Lemma 4.5.6. If a correct replica ri receives an ACK for the request req, at position sn and time

t1, then all of the correct replicas r j (req .entry ≤ j < i ) have executed the request req at position

sn, before t1. Note that we use the ring order, which starts at req .entry.

Proof. If a replica ri receives a valid ACK, that means that all of the correct replicas have

received the request (execution condition in Step R3 from page 49, and Lemma 4.5.2). From

Step R3, and Lemma 4.5.5, we have that all of the correct replicas r j (0 ≤ j < i ) have executed

the request. Let us fix the ring order, so that the sequence starts from 0, and ends at 3 f . We

consider two cases:

12Where sn is not nil.
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1. if 0 ≤ req .entry < i , then the claim follows immediately from Lemma 4.5.5;

2. if 0 ≤ i < req .entry, from Step R2 on page 46 we get that ACK was generated at req .entryª
1. It holds that 0 ≤ i ≤ req .entryª1. From Step R3, by construction, we have that all of the

correct replicas rx (x ∈ req .entryª1. . . i ) have received the ACK. From the previous case,

we have that the request is executed on all of the correct replicas rk (req .entry ≤ k < 0),

and from Lemma 4.5.5 we have that request is executed on all of the correct replicas r j

(0 ≤ j < i ).

Lemma 4.5.7. If a benign (that is, non-Byzantine) client c commits the request req with history

h (at time t1), then all of the correct replicas in Σreq
last execute req (before t1) and the state of their

local history upon executing req is h.

Proof. To prove this lemma, notice that a correct replica r j ∈ Σreq
last generates a MAC for the

client authenticating req and D(h′) for some history h′ (Step R2, or Step R3): (1) only after r j

has executed req and (2) only if the state of LH j upon execution of req equals h′. Moreover,

by Step R2/R3, no correct replica executes the same request twice. By Step R4a on page 50,

a benign client (respectively, a replica) cannot commit req with h unless it receives a MAC

authenticating req and D(h′) from every correct replica in Σlast. Using Lemma 4.5.5, we get

the claim. By Step R4b.3a.1 (page 54), a benign client (respectively, a replica), cannot commit

req with h unless it receives a GET_A_GRIP message with a MAC authenticating req and D(h′)
from every correct replica in Σlast. Again, using Lemma 4.5.5, we get the claim.

Next, we proceed with proving that Ring satisfies every ABSTRACT property.

Well-formed commit indications. By Step R4a (on page 50), in order to commit a request,

the client needs to receive MACs authenticating Digest LH = D(h′) for some history h′ and a

reply digest from all of the replicas from Σ
req
last, including at least one correct replica. By Step R3

from page 49, the digest of the reply sent by a correct replica is D(rep (h′)). Hence, h′ is exactly

the commit history h and is uniquely defined, due to our assumption of collision-free digests.

Moreover, since a correct replica executes an invoked request before sending an ACK message

in Step R3 (or a GET_A_GRIP message in Step R4b.3a on page 54), it is straightforward to see

that if req is committed with a commit history hreq , then req is in hreq .
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Validity. For any request req to appear in an abort (commit) history h, at least f +1 replicas

must have sent h (respectively, a digest of h) in Step R3 on page 49 (or in Step R4b.3a.1 on

page 54), such that req ∈ h. Hence, at least one correct replica has executed req .

Directly from Lemma 4.5.6, we observe that all of the correct replicas execute only requests

invoked by clients.

Moreover, by Step R2 or Step R3 or Step R4b.1, no replica executes the same request twice

(every replica maintains a list of last-seen identifiers — t j [c]). Hence, no request can appear

twice in any local history of a correct process, and consequently, no request appears twice in

any commit history. In the case of abort histories, no request appears twice by construction.

Termination. By assumption of a quorum of 2 f + 1 correct replicas and fair-loss links:

(1) correct replicas eventually receive a PANIC message sent by a correct client c (in Step R4b

on page 51) and (2) c eventually receives 2 f +1 ABORT messages from correct replicas (sent in

Step R4b.3b from page 55). Hence, if the correct client c panics, the client eventually aborts the

invoked request req , in the case in which c did not commit req beforehand.

Moreover, to see that a committed request req must be in its commit history hreq , notice that

the client needs to receive a MAC for the same local history digest D(hreq ) from all of the f +1

replicas from Σ
req
last, including at least one correct replica r j . By Step R2/R3, r j executes req ,

and appends the request to the replica’s local history LH j before authenticating the digest of

LH j . Therefore, req ∈ hreq . By Step R4b.2 on page 53, the replica r j executes req , and appends

the request to its local history LH j . Furthermore, the replica embeds this history in the OBR

message. Only after these steps, and prior to sending the GET_A_GRIP message to the client,

does the replica r j authenticate the digest of LH j . Hence, req ∈ hreq .

Commit Order. Assume, by contradiction, that there are two committed requests req (by a

benign client c) and req ′ 6= req (by a benign client c ′) with different commit histories hreq and

hr eq ′ , such that neither is the prefix of the other. By Lemma 4.5.7, all of the correct replicas in

Σ
req
last (Σr eq ′

last ) have executed the request req (respectively, req’ ), with history hreq (respectively,

hr eq ′). Let r req be the first correct replica in Σreq
last, and let r r eq ′

be the first correct replica in

Σ
r eq ′

last . There are two distinct cases:

• these replicas are the same (r req = r r eq ′
). A contradiction with Lemma 4.5.1.

• one of the replicas precedes the other, in the ring order which starts from the sequencer.

Without loss of generality, we can assume that r req < r r eq ′
. By Lemma 4.5.5, r req has

executed all of the requests that r r eq ′
has executed, at the same positions. A contradic-

tion.
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Abort Order. Let us assume, by contradiction, that there is a committed request reqC (by

some benign client) with commit history hreqC and an aborted request req A (by some benign

client) with commit history hreq A , such that hreqC is not a prefix of hreq A . By Lemma 4.5.7, and

the assumption of at most f faulty replicas, all of the correct replicas (at least one) from Σ
reqC

last
execute reqC , and their state upon executing reqC is hreqC . Let r j ∈ΣreqC

last be a correct replica

with the highest (w.r.t. the ring order which starts at reqC .entry ) index among all of the replicas

in ΣreqC

last . By Lemma 4.5.6, all of the correct replicas rk (reqC .entry ≤ k < j ) execute all of the

requests in hreqC at the same positions that these requests have in hreqC .

In addition, a correct replica executes all of the requests in hreqC before sending any ABORT

message (Step R4b.3b.1, page 55); indeed, before sending any ABORT message, a correct

replica must stop any further execution of requests. Therefore, for every local history LH j that

a correct replica sends in an ABORT message, hreqC is a prefix of LH j .

Finally, by Step R4b.3b.2 (page 56), a client which aborts a request waits for 2 f +1 ABORT

messages, including at least f +1 from correct replicas. By construction of the abort history,

every commit history including hreqC is a prefix of every abort history, including hreq A . A

contradiction.

Init Order. Under the constraint that if a replica’s local history is empty, the first request

to which the sequencer can assign the sequence number and the first request a replica may

execute must be INIT requests, we obtain that replicas initialize their local histories before

sending any RING, ACK or ABORT request.

Since any common prefix C P of all of the valid init histories is a prefix of any particular init

history I H , C P is a prefix of every local history sent by a correct replica in a RING or ABORT

message. Init Order for commit histories immediately follows. In the case of abort histories,

notice that out of at least 2 f +1 ABORT messages received by a client on aborting a request

in Step R4.3b.2 (page 56), at least f +1 are sent by correct processes and contain local histories

that have C P as a prefix. Hence, by Step R4b.3b.2, C P is a prefix of any abort history.

Non-Triviality. Non-Triviality relies on the fact that the timer of the client, triggered in Step

R1 is set in such a way that it does not expire in the case when the set of replicas, including the

client, is synchronous.

Let us assume, by contradiction, that there is a correct client c which panics and denote the first

such time by tPAN IC . The client c has invoked the request req at t = tPAN IC − (2(3 f +1)+2)∆.

Since no client has panicked by tPAN IC , all of the replicas will have executed all of the requests

they have received by tPAN IC . Then, it is not difficult to see, since there are no link failures,

that: (i) by the time t +∆, the entry replica receives req and takes Step R2, and (ii) by the time
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t+3 f ∆< tPAN IC all of the replicas take Step R2 for req , and (iii) by the time t+(2(3 f +1)−1)∆<
tPAN IC all of the replicas take Step R3. Since the sequencer is correct, then we have that all of

the replicas execute all of the requests received before tPAN IC in the same order (established

by the sequence numbers assigned by the sequencer). Hence, by t + (2(3 f +1)+2)∆= tPAN IC ,

c receives f +1 identical replies (Step R4a), commits the request req , and never panics. A

contradiction.

In addition, a correct replica ri executes Step R4b.3b (on page 55) and stops appending new

requests, only if ri fails to commit an OBR request for a RING message signed by some client.

Since such an OBR request cannot raise a verification failure, ri can fail to commit such a

request only in the case in which there is asynchrony in the set of replicas, or in the case in

which some replica has failed.

4.5.2 Resilient Mode Correctness Proof

In this section, we prove that resilient mode implements ABSTRACT with Resilient Mode Non-

Triviality. First, we prove several auxiliary lemmas.

Lemma 4.5.8. If a correct replica ri receives a request req (via the OBR message) at time t1, then

all of the correct replicas r j (0 ≤ j < i ) have received that request before t1.

Proof. By contradiction. Let us assume that the lemma does not hold, and let us fix r j to be the

first correct replica which receives req , such that there is a correct replica rx (x < j ) that never

receives req . We say that r j is the first replica for which req obr-skips. A correct replica sends a

request to its f +1 successors. Hence, if rx ∈←−r j , rx must have received req — a contradiction.

On the other hand, if rx ∉←−r j , then r j is not the first replica for which req obr-skips, since any

correct replica (at least one) from ←−r j obr-skips req — a contradiction.

Lemma 4.5.9. When processing OBR requests, after at most min( f +1,4) communication steps

from the time the non-malicious sequencer has received an OBR request, all of the replicas will

have received the message.

Proof. By contradiction. Let us assume that it takes more than four steps for all of the replicas

to receive the request. Let R1 be the last replica in the ring order which has received the

request in the first step. Similarly, let R2 (R3, R4, R5) be the last replicas which have received

the request in the second (respectively, third, fourth, fifth) step. Let d0 be the distance between
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the starting replica r0 and R1. Likewise, let d1 be the distance between R1 and R2, d2 be the

distance between R2 and R3, etc. . . We have the following equations:

d0 +d1 +d2 +d3 +d4 < 3 f +1 (4.1)

1 ≤ d0,d1,d2,d3,d4 ≤ f +1 (4.2)

f +1 ≤ d0 +d1 (4.3)

f +1 ≤ d1 +d2 (4.4)

f +1 ≤ d2 +d3 (4.5)

f +1 ≤ d3 +d4 (4.6)

2 f +1 ≤ d0 +d1 +d2 (4.7)

2 f +1 ≤ d1 +d2 +d3 (4.8)

2 f +1 ≤ d2 +d3 +d4 (4.9)

Equation 4.1 states that, after five communication steps, we reach all of the correct nodes on

the ring (at most 3 f +1). Equations 4.3-4.6 state that a replica reached in two steps could not

have been reached in a single step. Similarly, Equations 4.7-4.9 state that a replica reached in

three steps could not have been reached in less than three steps. From Equations 4.7 and 4.6,

we get a contradiction with Equation 4.1:

(d0 +d1 +d2)+ (d3 +d4) ≥ 3 f +2 (4.10)

When f = 1 or f = 2, we take less equations into consideration. In the case in which f = 1,

only d0, d1, and d2 exist. Similarly, when f = 2, only d0–d3 exist.

Lemma 4.5.10. When processing OBR requests, after at most min(2 f +2,8) communication

steps from the time the non-malicious sequencer receives an OBR request, all replicas will receive

the message with 2 f +1 correct signatures.

Proof. Due to Lemma 4.5.9, after min( f +1,4) communication steps, all correct replicas will

have a copy of the message (assuming that the sequencer is correct). All correct replicas will

forward the message further. Thus, if we apply Lemma 4.5.9 once more, treating each replica

as the sequencer, then after additional min( f + 1,4) steps, all replicas will have messages

from all other correct replicas. Since all correct replicas memorize the set of previously seen

signatures for the request (Line 13 of Algorithm 4.7), after min(2 f +2,8) communication steps

all replicas will receive the message with 2 f +1 correct signatures.

Well-formed commit indications. The proof is the same as for the fast mode case.
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Validity. The proof is similar as the proof for the fast mode case.

Init Order. The proof is the same as for the fast mode case.

Termination. The proof is the same as for the fast mode case.

Commit Order. Let us assume, by contradiction, that there are two committed requests req

(by a benign client c) and req’ 6= req (by a benign client c ′) with different commit histories hreq

and hreq’ , such that neither of them is the prefix of the other. The clients commit requests

either as a response to a RING, or to a PANIC message. There are three possible cases:

• Both of the committed requests are direct responses to RING messages. By Lemma 4.5.7,

all of the correct replicas in Σreq
last (Σr eq ′

last ) have executed the request req (respectively, req’ ),

with history hreq (respectively, hr eq ′). Let r req be the first correct replica in Σreq
last, and let

r r eq ′
be the first correct replica in Σr eq ′

last . There are two distinct cases:

– these replicas are the same (r req = r r eq ′
). A contradiction with Lemma 4.5.1.

– one precedes the other, in the ring order which starts from the sequencer. Without

loss of generality, we can assume that r req < r r eq ′
. By Lemma 4.5.5, r req has

executed all of the requests that r r eq ′
has executed, at the same positions. A

contradiction.

• Both of the committed requests are a direct response to OBR messages. From Step

R+4b.3a.1 (on page 61), a client commits a request, if there are f +1 matching GET_A_GRIP

messages. By Step R+4b.3a on page 61, a replica executes a request and sends a GET_A_GRIP

message if there are at least 2 f +1 correct signatures. Thus, each of the clients commits

a request after receiving a message executed by at least f +1 correct replica. These

two sets (carried in GET_A_GRIP messages) of correct replicas intersect on one correct

replica, which has executed both of the requests. A contradiction with Lemma 4.5.1.

• One committed request is a direct response to a RING message, while the other is a

direct response to an OBR message. Without loss of generality, let us assume that client

c has committed req as a direct response to the RING message, while the client c ′ has

committed req’ as a direct response to the OBR message. By Lemma 4.5.7, all of the

correct replicas in Σreq
last have executed req . Let r req be the first correct replica in Σreq

last. By

Lemma 4.5.5, all of the correct replicas in the range {rreq .entry . . .r req } have executed the

request, and there are at least f +1 correct replicas in that range (as r req belongs to the

last f +1 replica in the ring orders starting from req .entry). Similarly to the previous case,
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the client c ′ commits the request after receiving f +1 matching GET_A_GRIP messages.

Every replica which has sent the GET_A_GRIP message had executed the request after

receiving an OBR message with at least 2 f +1 signature. Thus, the set of correct replicas

which has executed req , and the set of replicas which has executed req’ intersect on at

least one correct replica. A contradiction with Lemma 4.5.1.

Abort Order. Let us assume, by contradiction, that there is a committed request reqC (by

some benign client) with a commit history hreqC and an aborted request req A (by some benign

client) with commit history hreq A , such that hreqC is not a prefix of hreq A . There are two different

cases:

• reqC was committed without the client sending a PANIC message. By Lemma 4.5.7,

and the assumption of at most f faulty replicas, all of the correct replicas (at least one)

from Σ
reqC

last execute reqC , and their state upon executing reqC is hreqC . Let r j ∈ΣreqC

last be a

correct replica with the highest (w.r.t. the ring order which starts at reqC .entry) index

i nd among all of the replicas in ΣreqC

last . By Lemma 4.5.6, all of the correct (at least f +1)

replicas rk (reqC .entry ≤ k < j ) execute all of the requests in hreqC at the same positions

that these requests have in hreqC .

• reqC was committed during the handling of the PANIC message sent by the client. By

Lemma 4.5.10, and Step R+4b.3a (on page 61), all of the correct replicas (at least 2 f +1

replicas) execute reqC .

In addition, a correct replica executes all of the requests in hreqC before sending any ABORT

message (Step R+4b.3b.1, listed on page 62); indeed, before sending any ABORT message, a

correct replica must stop any further execution of requests. Therefore, for every local history

LH j that a correct replica sends in an ABORT message, hreqC is a prefix of LH j .

Finally, by Step R+4b.3b.2 from page 62, a client that aborts a request waits for 2 f +1 ABORT

messages, including at least f +1 from correct replicas. By construction of the abort history,

every commit history, including hreqC , is a prefix of every abort history, including hreq A . A

contradiction.

Non-Triviality. Non-Triviality relies on the fact that the timer of the replica, triggered in

Step R+4b.1 (on page 58) is set in such a way that it does not expire in the case when the set of

replicas, including the client, is synchronous.

Let us assume, by contradiction that there is a correct replica r which stops, and denote the

first such time by tST OP . Replica r has sent the OBR message m at t = tST OP − ((2 f +1)+1)∆.

Since no client has panicked by tPAN IC , all of the replicas will have executed all of the requests

they have received by tPAN IC . Then, it is not difficult to see, since there are no link failures,
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that: (i) by the time t +∆, the sequencer receives m and takes Step R+4b.2 (page 60), and (ii) by

the time t + ( f +1+1)∆< tST OP , all of the correct replicas take Step R+4b.2 for m, and (iii) by

the time t + ((2 f +1)+1)∆< tST OP , all of the correct replicas take Step R+4b.3a (page 61). Since

the sequencer is correct, then we have that all of the correct replicas execute of the all requests

they have received before tST OP in the same order (established by the sequence numbers

assigned by the sequencer). Hence, by t + ((2 f +1)+1)∆= tST OP , r receives a message with at

least 2 f +1 signatures (Step R+4b.3a), commits the request req (associated with m) and does

not abort. A contradiction.

In addition, a correct replica ri executes Step R+4b.3b (on page 62), and stops appending

new requests, only if ri fails to commit the OBR request for a RING message signed by some

client. Since such an OBR request cannot raise a verification failure, ri can fail to commit such

request only in the case there is an asynchrony in the set of replicas, as, per Lemma 4.5.10, if

the sequencer is correct, a malicious replica cannot prevent correct replicas from receiving

the OBR message.
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5 Optimizations and Extensions

We have designed several techniques which improve the efficiency of BFT implementations,

and have implemented some of them in Ring. This chapter addresses these techniques, which

range from protocol optimizations to protocol extensions which enable the detection of low-

performance operations. In Section 5.1, we have described protocol optimizations, while the

methods of handling authentication are described in Section 5.2. The last section elaborates

on the methods of detecting and defending against slow replicas.

5.1 Optimizations

We have implemented a set of optimizations to further improve the performance of Ring.

These optimizations mostly aim at reducing the number of performed MAC operations per

request, and the number of sent messages. These optimization are suitable for the fast mode

of operation, although they may also be applicable to the resilient mode.

The tasks of optimizing for the reduction of the number of performed MAC operations, and

lowering the overall number of sent messages have been challenging, as Ring Authenticators

carry dependencies on the content of the request during the next f +1 communication steps,

and each of these fields in the message is serially processed by a different replica. Let us

consider, for instance, a request entering the system at replica 1. At some later point in

time, replica 1 receives the acknowledgement from the sequencer (replica 0), and needs to

authenticate the request using a MAC from both replica 3 and replica 0. Replica 3 has created

the MAC for the request, without a sequence number being set. Replica 0 created the MAC

for the acknowledgement, with the sequence number being set (replica 0 had updated this

sequence number). Replica 1 needs to take both of these conditions into account during the

verification of MACs. The next section explains the encountered challenges in detail, along

with our approach to solving them.
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5.1.1 Piggybacking

The goal of this optimization is to reduce the number of messages which are sent over the

network. The optimization works as follows: when a replica generates an ACK message (the

acknowledgement message), it takes one (or more) client request(s), and piggybacks the

acknowledgement onto the request. Next, the replica generates Ring Authenticators for the

union of the requests and the acknowledgement. Lastly, the replica forwards the piggybacked

request. When such a message reaches the last replica for the request, acknowledged by the

piggybacked acknowledgement, this last replica needs to take special care in order to generate

a proper MAC for the client, and also to generate proper MACs for the request(s) onto which

the acknowledgement was piggybacked.

Figure 5.1 illustrates the process of the piggybacking of acknowledgements, when two clients

send requests. Replica 1 receives a forwarded request from replica 0, and detects an out-

standing request from client b. First, replica 1 creates an acknowledgement for the request

forwarded by replica 0 (from client a), and then attaches that acknowledgement to the request

from client b. The subsequent replicas process both the acknowledgement and the request.

Later, replica 1 receives back the acknowledgement it has created for the request from client a,

and the acknowledgement of the request from client b1. Then, replica 1 performs the following

steps: (1) splits the message, (2) takes the acknowledgement of the request from client a,

(3) replies to the client a, and (4) forwards the rest of the message to replica 2.
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Figure 5.1: An illustration of piggybacking (f=1). Solid lines represent the request from the
client a, while dashed lines represent the request from the client b. Thick lines denote requests,
thin lines denote corresponding acknowledgements. Piggybacked requests are represented as
a line parallel to the line of the carrying request.

Note that this optimization can be considered fragile, as malicious clients could disrupt the

performance of Ring by sending malformed messages, which would be dropped at later

replicas. Indeed, when an acknowledgement is piggybacked onto a new request, and the

request authentication fails, both the acknowledgement and the request will be dropped. For

that purpose, we have decided to disable this optimization when the number of committed

requests between two switchings to the resilient mode is below a configurable threshold.

1Replica 0 has created the acknowledgement for the request of client b in the previous step
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5.1.2 Batching

The goal of this optimization is twofold. First, it aims at the decrease of the number of messages

sent over the network, and to reduce the number of MAC operations which are performed

per request. Upon receiving a request from a client, a replica checks whether there are other

pending requests from other clients. If there are such requests, the replica batches them

together, and generates RAs for the union of requests. Lastly, the replica forwards the batch.

Note that the first f +1 replicas need to verify client MACs, for each single request of the batch,

and a joint MAC for the whole batch. Moreover, the last f +1 replicas need to generate MACs

for the whole batch for their successors in the Ring, and a MAC for every client separately.

Finally, note that when generating the acknowledgement for the batch, the replica creates a

batch of acknowledgements, to allow for message fragmentation. Request batching is shown

in Figure 5.2.
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Figure 5.2: An illustration of batching (f=1). Thick line represents a batch of requests, while
a thin line between replicas represents a batch of acknowledgements. The difference in
thickness of the lines symbolizes the fact that the acknowledgements are smaller in size than
the requests.

Similarly to piggybacking, this is a fragile optimization that we choose to disable when the

number of committed requests between two switches to the resilient mode is below a config-

urable threshold.

5.1.3 Read Optimization

The goal of the read optimization is to reduce the latency of read requests. In general case,

read requests do not need to be totally ordered, because they do not affect the state of replicas.

However, if different replicas have a different state, then read operation will return mismatch-

ing replies. In such cases, clients submit read requests so that these read operations are totally

ordered by the protocol.

Similar approach is taken in Ring. Having to totally order read requests would get them to

circulate twice around the ring, which would unnecessarily add to the latency, and increase
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the processing time per request on each replica. Thus, we first submit read requests so they

exit the ring after being processed by f +1 consecutive replicas, as shown in Figure 5.3. Once

a client has received the reply to its read request, it compares the f +1 MACs contained in the

reply. If they match, the client commits the reply. Otherwise, it is a signal to the client that the

replicas had been in different states. Thus, the client sends the read request as a write request,

in order for it to be totally ordered.

Note that read requests can be batched with write requests. However, that would complicate

the authentication and verification of requests (generation of MACs). Therefore, in order to

keep the protocol implementation simple, read requests are only batched with other read

requests.
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Figure 5.3: Illustration of a read-only operation (f=1).

Note that we have also tested the read optimization used in state-of-the-art BFT proto-

cols [Amir et al., 2008; Castro and Liskov, 1999; Clement et al., 2009a; Kotla et al., 2007],

in which clients multicast their read requests to f +1 replicas and wait for f +1 matching

replies. We have observed that this approach does not yield good performance. With such

a read optimization, we heve observed a high number of request retransmissions, due to

mismatching replies (as different replicas on the ring were in different states). The reason for

this behaviour is that the pipelining approach used for request propagation interferes with the

parallel approach used to send read requests.

5.1.4 Out-of-Order Caching

The protocol description (Section 4.3.3 and Section 4.4.1) dictates that replicas should process

requests in ascending order of their sequence numbers. In practice, this is hard to achieve

in Ring, because the requests arrive in different order, due to the fact that request obtain

their sequence number at different stages of processing. Thus, to increase performance,

Ring caches all messages, processes them out-of-order (of arrival), but according to their

appropriate sequence numbers.

5.1.5 Checkpointing

As the execution proceeds, message logs of all of the executed requests may grow without

bound. Thus, the replicas must truncate the log containing the messages that have been

executed on all of the replicas. The replicas have to be careful not to delete requests which
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have been seen or executed by less than 2 f +1 replicas, as safety would be violated otherwise.

To truncate the execution history, Ring uses the Lightweight Checkpointing Subprotocol (LCS)

of the ABSTRACT framework, which we briefly outline in the this section.

LCS truncates the history by a predefined number of messages, a number which is the same

for every replica. LCS consists of the following steps, which are executed by every replica,

independently of the main request processing:

• Every replica keeps a checkpointing counter, and increments it for every executed

request;

• Whenever that counter reaches a predefined threshold value, every replica sends a

checkpoint message to all of the other replicas, containing the signed digest of the

history and the value of the counter;

• Whenever a replica sends the checkpoint, it triggers a checkpoint timer. If the timer

expires, the replica stops and aborts all future requests;

• When a replica receives the same checkpoint from all of the other replicas, it collapses

its history. The replica truncates the history up to the checkpointing counter referenced

in the checkpoint message.

5.2 Authentication Challenges in Ring

As mentioned in Section 4.3.1, MAC authenticators are an important overall optimization, due

to their good performance characteristics over digital-signatures. Another difference between

the two is that digital signatures are written only once per message, per sender, while the

authenticators are usually a vector of MACs, each for one designated recipient. Thus, handling

MAC authenticators is not as straightforward as handling digital signatures, especially with the

optimizations described in the previous section. In this section, we outline several challenges

of using MACs over complex message interactions. Also, we describe an attack [Clement et al.,

2009a], which causes a crash in all state-of-the-art BFT protocols, while reducing performance

in Ring. We also describe our counter-measures for this attack.

5.2.1 Optimizations and Authenticators

In this section, we describe the effect of each of the optimizations on MAC handling.

When creating a batch of requests, a replica will create an authenticator for all of the messages

in the batch. All successive replicas will verify the whole batch, create a batch of acknowl-

edgements, and process each acknowledgement in the batch. However, there are some issues

which need to be taken into consideration during the handling of batched messages. The

first f +1 replicas will need to read a MAC per client, for a single message, and for each of
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the replicas. Similarly, the last f +1 replica will need to write, for each of the messages in the

batch, a single MAC for the client who created the request. Clearly, the process of handling

MACs for batched messages becomes a complex task, as there are many conditions that need

to be taken into account.

When handling piggybacked requests, authenticator processing becomes more complicated.

The reason is as follows — when a replica receives a piggybacked request, and if the replica

is one of the f successors of the entry replica of the request, it needs to do the following

tasks: (1) check the MAC written by the client for the carrier request; (2) check the MACs,

written by the predecessors of the entry replica, of the carrier request, for the piggybacked

acknowledgement; (3) check the MACs written by its predecessors, for the joint, piggybacked

request (both for the request, and the acknowledgement). Furthermore, the f predecessors of

the exit replica for the piggybacked acknowledgement need to write the MACs for the carrier

request and the acknowledgement separately.

Therefore, writing MAC authenticators for a combination of batched and piggybacked requests

becomes quite a complex operation, one which requires careful design and implementation.

Our evaluation shows that batching and piggybacking do indeed improve performance. How-

ever, the trade-off lies between the performance of the code, and its maintainability.

5.2.2 Attacks On MACs

Clement et al. [2009a] described a well-known attack against all state-of-the-art BFT protocols

which use MAC authenticators. The crux of the attack is in the independence of MACs in

the authenticator — there is one MAC per receiver, stored in the authenticator. For example,

Zyzzyva’s communication pattern is such that the primary first receives the request, sequences

it after authentication, and then multicasts it to other replicas. These other replicas receive

the request, authenticate it, and execute it. When a client writes MAC authenticators in such a

way that the primary can only correctly verify the MAC for itself, while other replicas fail the

authentication, it will create a discrepancy in the state of the replicas. Thus, the system will

need to go through an expensive phase of re-consolidation, in order to correctly continue its

operation. In theory, this attack should affect performance, while, in practice, it causes of the

all replicas to crash, leaving the system in an unusable state. A similar behaviour occurs with

Chain, as well.

As Ring’s fast mode aims toward high performance in the best case (in which there are no

errors), any additional processing may negatively affect the performance. Thus, we are faced

with a trade-off between high-performance and increased robustness. In the general case,

one solution would be to use digital signatures instead of Ring Authenticators. However, this

approach severely reduces performance. Thus, in the general case, we leave the task of fighting

off such attacks to either blacklists, or by forcing the system to go through the resilient mode.
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Nevertheless, in a configuration for tolerating at most one fault ( f = 1)2, Ring’s topology allows

for a simple protection against such an attack. The attack poses a problem only if a replica,

other than the primary (respectively, the head, the sequencer) receives the request to which it

assigns a sequence number, but that request still contains a MAC from the client, intended

for other replicas. In Ring, we solve this problem by prohibiting the sequencer to sequence

any requests for which it is the entry replica. This forces the sequencer to assign the sequence

number to the the acknowledgement of the request. This approach does not violate the safety,

nor the correctness of the algorithm, because all of the other replicas in the system will receive

the acknowledgement with the sequence number.

5.3 Low Performance Detection

Ring has a highly symmetrical topology but, on the other hand, it exhibits a linear communica-

tion pattern: a replica receives a request from its predecessor, and forwards it to its successor.

These two factors make Ring sensitive to performance disruptions. If there is at least one

replica being slower then the rest, the performance of the whole system will be affected. To

this regard, Ring is similar to quorum-based systems, where any single member is capable

of affecting the performance of the whole system. Essentially, Ring is as fast as the slowest

replica, entailing that malicious or faulty replicas can significantly hurt its performance.

To remedy this situation, Ring runs its slowness detection algorithm, which detects if there

are any slowdowns in the system. If the algorithm returns a positive answer, the replicas can

signal the operator about the observed fault, or switch to another instance, possibly using a

different set of replicas.

5.3.1 Collected Metrics

Each replica ri in Ring collects the following statistics, in last 1, and 5 s:

• throughput of requests processed from the predecessors, per entry replica (bi
q [ j ], j ∈

(0,3 f +1))

• throughput of requests sent to the successor (B i
q )

• throughput of requests processed from clients (bi
c )

• throughput of requests sent to clients (B i
c )

• average round trip time (RT T ) for requests for which the replica is the entry replica

(RT T i )

• ping time (denoted T i
hop), which represents the time it takes the request to reach replica

i +1.
2Which should be the most prevalent configuration.
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5.3.2 Slowness Detection Algorithm

This algorithm relies on the symmetry of Ring. The intuition here is that if all of the replicas

were to share the information on their working conditions, then the majority of them will

report what the good working conditions are.

Another insight comes from the manner in which the replicas in Ring process the requests.

Each of the replicas keeps two queues of incoming requests — one queue accepts requests

from clients, while the other queue holds requests from the predecessor. The replica processes

requests from both of the queues, one-by-one, so that the ratio between the throughputs

from both queues is around 3 f + 1, in the favour of the predecessor queue, because that

is the number of flows (from different replicas) that the predecessor queue holds. We use

the well-known token bucket algorithm Shenker and Wroclawski, 1997 for keeping the ratio

between the flows at 3 f +1.

In our approach to detecting the slowness in the system, we rely on the fact that if a request

were to leave from one replica to another, and immediately return, the whole round trip would

capture the propagation time and the queueing time on both replicas. The queueing time

accounts for the processing of all of the previous requests, giving an insight into the working

conditions.

In brief, the outline of the slowness detection algorithm is:

• each of the replicas measures the average time it takes a request to go once over the ring

(RTT_avg - Round trip time).

• each of the replicas measures the time it takes the successor to accept and process a

message.

• each of the replicas exchanges its previous two values with other replicas.

• based on the gathered data, if the round trip time and the handling time at the successor

do not match, the replica can suspect the presence of slow replicas in the system.

The intuition behind Algorithm 5.1 is quite simple. A replica sends a ping (or piggybacks it

to another message) to another replica, and measures how long it takes for it to receive an

answer. Since both replicas operate in the same conditions, half of that time is the propagation

of the message to the processing site at the next replica.

Algorithm 5.2 describes a part of the slowness detection algorithm, in charge of exchanging

data received in Algorithm 5.1, and deciding if there exists a slow replica in the system or not.

A replica sends a signed message with its own time, and each other replica appends (after

signing) its own time to the message. Once the message has returned to its originating replica,

it will contain times measured by all of the other replicas. At that moment, the originating

replica can decide if there are any slow replicas in the system. Also, it forwards this message
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Algorithm 5.1 Ring: calculating propagation time between neighbours

procedure send_ping() is
1: {this procedure is executed periodically}
2: Tping ← current_time()
3: nonce ← new nonce
4: send 〈PING, nonce〉 to ri+1

upon event 〈PING, nonce〉 from ri−1 do
5: send 〈PONG, nonce〉 to ri−1

upon event 〈PONG, nonce’〉 from ri+1 do
6: if nonce’ = nonce then
7: Tpong ← current_time()

8: Thop ← Tpong−Tping

2

along the ring once more, so all of other replicas can obtain all of the data values, and make a

decision for themselves.

Algorithm 5.2 Exchange of propagation times

procedure exchange_ping_times() is
1: {this procedure is executed periodically}
2: nonce ← new nonce
3: HOPSET ←;∪〈Thop, nonce〉σ
4: send 〈RT_CHECK, nonce, i, HOPSET〉 to ri+1

upon event 〈RT_CHECK, nonce, entry_replica, HOPSET〉 from ri−1 do
5: if entry_replica = i

then
6: if ∀ i ∈ HOPSET: signature(i) is correct then
7: send 〈RT_REPORT, nonce, i, HOPSET〉 to ri+1

8: decide_slowness(HOPSET)
9: else

10: HOPSET ← HOPSET ∪ 〈Thop, nonce〉σ
11: send 〈RT_CHECK, nonce, entry_replica, HOPSET〉 to ri+1

upon event 〈RT_REPORT, nonce, entry_replica, HOPSET〉 from ri−1 do
12: if i 6= entry_replica then
13: if ∀ i ∈ HOPSET: signature(i) is correct then
14: decide_slowness(HOPSET)

The slowness detection algorithm (Algorithm 5.3) is used to detect the presence of slow replicas.

Calculations in this algorithm rely on Klat, a known network-specific constant which accounts

for latency variability. After receiving all ping times, a replica sorts these times, picks the

f +1-th time from the top of the list, and uses this value to estimate the message propagation

time around the ring. If the calculated time (with latency variability taken into account) is less

than the measured time, we have a signal that there is a slow replica in the system. The replica
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broadcasts its finding (in the form of a yes or no decision). Then, the replica waits to receive

findings from 2 f other replicas. If the majority ( f +1) of decisions is yes, the replicas need to

either switch to a new instance of ABSTRACT, or try to detect which replicas are slow.

When performing the comparison between the calculated and the measured time, the replicas

in Ring take into the account a constant ε. ε is set by the operator, and describes the allowed

extent of variance in the performance.

Algorithm 5.3 Slowness detection algorithm

Initialization:
1: certificate ←;

Implementation:
procedure decide_slowness(HOPSET) is

2: times ← []
3: for all H ∈ HOPSET do
4: {get all times in a list}
5: times ← times || H.Thop

6: sort_ascending(times)
7: Tcand ← times[f+1]
8: TATexp ← (3 f +1)∗Tcand ∗Klat

9: nonce ← new nonce
10: if TATexp ∗ (1+ε) <TATmeasured then
11: send 〈RT_DECIDE, i, nonce, 〈YES, nonce〉σ 〉 to all
12: certificate ← certificate 〈YES, nonce〉σ
13: else
14: send 〈RT_DECIDE, i, nonce, 〈NO, nonce〉σ 〉 to all
15: certificate ← certificate 〈NO, nonce〉σ
upon event 〈RT_DECIDE, id, nonce 〈ANSWER, nonce〉σ(i d) 〉 from ri−1 do
16: if 〈ANSWER, nonce〉σ(i d) is correctly signed then
17: certificate ← certificate ∪〈ANSWER, nonce〉σ(i d)

18: if size(certificate) ≥ 2 f +1 then
19: DECIDE ← majority(certificate)

Attacks

The attacker can mount numerous attacks against the aforementioned algorithms. We assume

that the attacker cannot drop messages, since that will be a signal that the system is not

synchronous, and will cause Ring to switch to another instance of ABSTRACT. A malicious

replica can:

• respond to the ping message immediately upon receipt. This way, Thop will be shorter

than the actual time.
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• wait longer to respond to the ping message.

• report a large time for the RT_CHECK message.

• report NO during the RT_DECIDE phase.

Clearly, for a malicious replica, the goal of which is to slow down the traffic, sending premature

responses to ping message is ill-advised. Such an action will cause that its predecessor gets a

lower Thop, and will increase the chance that other replicas will pick a small ping time in the

decide_slowness method, increasing the chance that the malicious activity will be detected.

Correctness of the Algorithm

Proposition 1. Malicious replicas can not insert wrong times in the RT_CHECK message.

Proof. This is guaranteed by the properties of digital signatures. If a malicious replica alters

any signature, this discrepancy will be detected at subsequent replicas, and a switch will be

made to the next (more robust) instance of ABSTRACT.

Definition A correct Thop is the Thop value measured between two correct replicas.

Proposition 2. A minimum number of correct Thop values in the RT_REPORT message is f +1.

Proof. Every malicious replica could affect Thop value measurements at two replicas. The first

one is its predecessor, while the second one is the malicious replica itself. Hence, for the f

malicious replicas in the system, there will be at most 2 f affected values. Since RT_REPORT

message carries values from 3 f + 1 different replicas, it leaves at least f + 1 correct Thop

values.

Proposition 3. Malicious replicas can not force correct replicas to choose a Thop which is greater

than all of the correct Thop values.

Proof. The proof comes directly from Proposition 2 and the fact that in the decide_slowness

method, a replica chooses the f +1st value.

Definition There is an attack if and only if the system is acting slower than a system com-

prised of the slowest of all correct replicas.

Proposition 4. Malicious replicas can not cause a misdetection of a performance attack. The

performance attack causes a degradation of throughput.
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Proof. If there is an attack which causes slower traffic, all of the replicas will see a higher RTT

(higher than in the case without an attack). Based on Proposition 3, all of the correct replicas

will obtain a Thop which is less than or equal to the maximal correct Thop. By definition, the

chosen value is at most Klat times smaller than the maximal correct Thop. Next, if there is

an attack, (3 f +1)∗max(Thop) would be less than the measured RTT (by the definition of an

attack). Hence, by transitivity, we have that (3 f +1)∗Klat ∗Tchosen will be higher than the

measured RTT, as Klat ∗Tchosen ≤ max(Thop).

5.3.3 Preventing Replicas From Discriminating Clients

One attack which malicious replicas may try to perform in Ring is to discriminate clients. A

malicious replica, acting as the exit replica for a client’s request, may reply to the client slowly,

or with a delay. This attack reduces the overall throughput. To combat such a behaviour, the

clients in Ring perform similar actions as replicas in Amir et al. [2008]:

• Before sending a request, the client starts a timer set to some value Tc .

• Upon receiving the response, the client stops the timer.

• If the timer expires, the client reissues the same request to another replica.

• Periodically, the client sends a special message with instructions for replicas to send

back the statistics. This message traverses the system as a regular request (over the ring).

• When a replica receives such a message, it appends its ∆i times to the message.

• When the client receives the reply to its special message, it takes all of the listed ∆ times,

sorts them in ascending order, and picks a value greater than the 2 f +1th value in the

list. The client then sets this value as its next Tc .
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Even extensive experimentation before the deployment of a protocol is often not enough to

assess all of the benefits (and, more importantly, drawbacks) of the protocol, nor to predict

its performance in the deployment environment. Therefore, we turn to analytic models,

which can provide invaluable assistance in explaining experimental results and in predicting

performance in situations for which experimental data does not exist. However, an analytic

model is only useful if it matches reality.

In this chapter, we present an analytic model for the performance of BFT protocols, developed

using queueing theory. To the best of our knowledge, this is the first application of queueing

theory to modelling performance of BFT protocols. We start the chapter by explaining the

assumptions which we take, followed by the presentation of the analytic model itself. Finally,

we show how Ring is represented in our model, along with the representations of other

protocols.

6.1 Queueing Theory Overview

The term “queueing theory” refers to the mathematical theory of queues (waiting lines) [Klein-

rock, 1975]. More generally, queueing theory is concerned with mathematical modelling and

analysis of systems which provide service to random demands, in a stationary regime 1. Queue-

ing theory is used for performance analysis of different processes in various technical systems,

such as telephone and computer networks, production systems, hospitals, etc.

The main element in queueing theory analysis is a queue. Here, a queue may hold either a

finite or an infinite number of requests, which arrive according to some distribution of arrival

times. The queueing discipline of a queue denotes how, when and which requests are taken

1A stationary regime is a regime in which the mean and the variance of the observed property do not change
over time.
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out from the queue and passed to an associated processing element. The most usual queueing

discipline is FIFO (First-In-First-Out), while the other disciplines include prioritization, LCFS

(Last-Come-First-Served), processor sharing, or pre-emption [Boudec, 2010]. Each queue

may have one (or more) associated processing elements, called servers2. The most important

characteristic of a server is its type of service process, and this process denotes the distribution

of servicing times. A queue with its associated server(s) forms a simple station. A station is a

general term in queueing theory, denoting a collection of queues (along with their associated

servers) which perform the same, high-level, work.

Clearly, a simple station in isolation cannot be used to represent many real-world systems. As

realistic models of information and communication systems involve interconnected systems,

many queues may represent such a system through a queueing network [Boudec, 2010; Wal-

rand, 1988]. In queueing networks, as the name implies, queues (or, more precisely, stations)

are interconnected. One such simple network, modelling users submitting jobs to a batch

processing system is shown in Figure 6.1.

In Figure 6.1 we observe a station representing 3 users, which submit jobs to a service station

consisting of a single CPU and two disks. Users submit only one outstanding request (per user)

that goes to the CPU. After a request is serviced on the CPU, it can either return to the user,

or go to either of the disks. In general, the path the request takes is probabilistic — there is a

certain probability associated with each of the paths. These probabilities influence the mean

number of visits to each queue, which, in turn, affects the total response time (we discuss the

actual mechanisms later in the chapter). Note that there is no queue in front of the station

denoted “users”. The reason for this is that each of the users submits only one request, and so

the requests do not wait for service upon returning to users.

!"#

$%&'()

$%&'(*!"#$"

"#$%&'#(")*)&+,

Figure 6.1: Example of a queueing network

As Figure 6.1 illustrates, queueing networks may consist of many different queues, with various

interconnections among the queues. As such, queueing networks are not solvable in general.

However, there is a broad class of queueing networks, the so-called multiclass product-form

queueing networks [Baskett et al., 1975; Gordon and Newell, 1967; Jackson, 1963; Kelly, 1979]

for which exhaustive results exist. Requests visit stations, where they either queue or receive

2“Server” is a well-established term in queueing theory. Consequently, we use the term “replica” to denote the
participants in the BFT system.
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service according to a particular servicing disciple of that station. Upon service, requests move

to another station, or leave the system (if this the case, the network is called an open network3).

Each of the request has an attribute (taken from a finite set of possible values), called the class.

Requests change their class in transit between stations4, according to Markov routing [Walrand,

1988]. Markov routing defines routing over different queues in the network, and is, essentially,

represented by a matrix (a routing matrix) which defines the probabilities of moving a request

from the pair (queue ,class ) to another pair (queue’ ,class’ ). Routing probabilities are denoted

as q s′,c ′
s,c , where s is the current queue, c is the current class, s′ is the next queue, and c ′ is the

next class. Thus, the concept of classes helps in determining the next queue for a request to

take. The purpose of the routing matrix is to allow for the calculation of visiting rates.

The visiting rate of a station is a per-class quantity which represents the rate with which a

request of a particular class visits the station. It could be either calculated (for example, by

using the routing matrix), inferred from the system description, or measured from the real-

world system. Given the visiting rate and the mean servicing time, one may calculate some

important statistics related to a particular system, such as: the average number of requests

in a queue, the average waiting time, the average servicing time (or a response time), and the

average throughput.

The modelling process. When modelling any real system, the modeller first builds a model

in which he is evaluating the performance of the system. In our case, the model is built using

queues and stations (elements of queueing theory models). The model describes how given

elements in the real system are mapped onto elements in the mathematical representation of

the system. The entire modelling process consists of several phases:

1. Building the representation. In the first phase, the modeller (in our case, the protocol

designer/evaluator) builds a queueing network which represents the modelled protocol.

The queueing network must contain queueing stations, representing all of the parts of

the real system (in our case, the replicas) which are accessed by a request, during its

lifetime. Moreover, the routing matrix must be such that the path the request takes in

the queueing network (visited resources) matches the resources visited in the actual

system.

2. Visit rate calculation. Next, using the queueing network from the previous phase, the

protocol designer/evaluator calculates the visiting rates — the statistical mean of times

a request has visited each of the resources, during its lifetime.

3. Parametrization of servers. Unlike the previous two phases, this phase depends on

the environment in which the protocol will run (or currently runs). In this phase, the

protocol designer/evaluator measures various properties of the system, such as the

3In an open networks, customers can join and leave the system. Conversely, in a closed networks the total
number of customers within the system remains fixed.

4Transits are instantaneous.
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latencies or processing times for various operations. Using these measurements, the

protocol designer/evaluator then calculates the total processing time for each of the

requests, for each of the server resources in the queueing network.

4. Application. Finally, the protocol designer/evaluator uses the results from the previous

three phases as an input to some analytic or numerical method (algorithm) for comput-

ing the metrics of interest for the given multiclass product-form queueing network. In

our approach, we use the Mean Value Analysis (MVA) algorithm [Reiser and Lavenberg,

1980]. The output of the MVA algorithm is some metric of interest — the throughput,

the response time, or the average queue length.

The first two phases usually occur only once during the entire evaluation process. The

parametrization phase has to be re-assessed every time the conditions change — a change

in hardware, a change in network settings, or a change in system parameters (for example,

using requests of different size). On the other hand, the second phase does not depend on the

hardware, and only depends on the associated routing probabilities of the queueing network.

The modeller goes through the last phase any time he needs to query the model and obtain

the metrics of interest.

MVA algorithm. The Mean Value Analysis algorithm [Reiser and Lavenberg, 1980], outlined

in Algorithm 6.1, is an efficient method of calculating the metrics of interest in multiclass

product-form queueing networks, and it has extensions for a broad class of queueing networks.

The MVA could be applied to both the open and closed types of queueing networks.

Algorithm 6.1 Mean Value Analysis algorithm

Input: θs
c , visit rates for all stations, such that θ1 = 1

Input: S
s
, average processing time of each of the stations

Output: λs , throughput for all of the stations
1: K ← population size
2: λ← 0 {throughput}

3: Qs ← 0 for all station s ∈ FIFO {total number of customers at station s}

{Qs =∑
c N

s
c }

4: θs =∑
c θ

s
c for every s ∈ FIFO

5: h =∑
s∈IS

∑
c θ

s
c S

s +∑
s∈FIFOθ

sS
s

{a constant term}

6: for k = 1 : K do
7: λ= k

h+∑
s∈FIFO θ

sQ s S
s

8: Q s =λθsS
s
(1+Q s) for all s ∈ FIFO

9: return λs =λθs

The MVA algorithm aims at the computation of expected queue lengths (denoted Q in Algo-

rithm 6.1) in the equilibrium state. The essence of this iterative algorithm lies in the Arrival

theorem [Boudec, 2010]: in a system with k clients, an arriving client observes the rest of

the system to be in an equilibrium state for a system with k −1 clients. The MVA starts by
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initializing the waiting times for all of the queues in the system, and then iteratively adds

clients one by one, adjusting these waiting times. Using Little’s Law, which relates throughput

(denoted λ) with the waiting time:

λ= k∑
w

where k is the total number of requests, and
∑

w is the total waiting time on all of the queues,

one obtains the overall throughput of the system. The additional output of the MVA are the

mean response times, as the algorithm calculates the waiting time at each of the queues [Bolch

et al., 2005].

6.2 Model

In this section, we first describe the assumptions that we make in order to build our model.

Next, we describe the model itself — how the elements from a real system (such as replicas,

clients, network links, requests, . . . ) are mapped onto the elements of our queueing theory

model. Afterwards, we outline how different queues in our model are parametrized. Finally,

we describe the effects of various optimizations on the parametrization process.

Assumptions. We assume a closed system, i.e., that there is a fixed, finite, total number of

clients accessing a finite number of replicas. This is a reasonable assumption for existing BFT

systems, which require all of participants to exchange their cryptographic keys, thus limiting

the number of clients which can participate in the system.

In a traditional BFT system, the clients submit their requests to the service over links which

have a certain communication delay. The replicas enqueue requests from clients if they are

currently processing another request. Consequently, every request spends some time in

transit, and some time being processed (and also executed in the replicated service) by the

replicas.

The model. To model both the networking and computational effects, we represent each

of the replicas as a station containing several substations. The substations represent each

of the incoming and outgoing network links, and one substation represents the CPU. The

representation of a replica in our model is shown in Figure 6.2. Note that, as we use 2 network

interface cards in the actual deployment, we have to represent that in the model by having

multiple substations for each of the network interface cards. Next, the incoming and outgoing

network links are represented as separate substations, as all of the links are full-duplex. Indeed,

all of the modern network cards indeed have different hardware queues. A substation which

represents a network link consists of single-server FIFO queues and a delay station5 (denoted

5A delay station does not incur any queueing, and only adds a delay (called thinking time Z ) to any of the
requests that it receives.
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Figure 6.2: Queueing model for a replica: IS denotes a delay station, while all of the other
queues adhere to the FIFO discipline.

IS), in a chain. The FIFO queues adhere to the First-In-First-Out processing discipline, match-

ing the behaviour of the network links. In the context of network link related substations,

the FIFO queues model the use of bandwidth, while delay stations model the latency. The

CPU is modelled as a single-server 6 FIFO queue, with the processing time independent of the

processing times of other FIFO queues in the replica station. The output of the incoming link

substations is connected to the input of the CPU queue, while the output of the CPU queue

is connected to the inputs of the outgoing link substations. This arrangement matches the

fact that in all of the implementations, a separate thread fetches incoming requests to the

main memory, where requests are processed by the CPU, and then propagated further over

the network.

The clients in the system are represented only by their requests, as we assume that clients

have only one outstanding request. The delays on the client links, and the client processing,

are represented by a single delay station [Boudec, 2010], which is shown later in the chapter.

Although we can analyse different execution scenarios (as long as there exists a stationary

working regime7), we focus only on the best case execution, for two reasons:

• arguably, the best-case execution is the predominant working mode, and, as such, has a

stationary working regime.

• practitioners are usually interested in improving the best performance [Guerraoui et al.,

2010a; Kotla et al., 2007; Serafini et al., 2010].

6Although any other representation of a CPU would also be valid. Our model aims at simplicity, and so we have
chosen to use just a single queue.

7This is a shortcoming of queueing theory.
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In each of the protocols, the clients issue requests, which then get processed by replicas. The

clients commit the requests upon receiving a response or a quorum of responses. Thus, in the

best execution scenario, the commit rate at the client is determined by the slowest response it

receives. In order to capture this observation, we focus only on the longest, single path (the

critical path) taken by a request during its lifetime. We do not try to model multicast, where

one request spawns multiple other requests. The longest path is protocol-dependent, and

using the longest path is a trade-off between the simplicity of the model and its accuracy.

Indeed, relying on the longest path removes some interactions (e.g., waiting for the client to

collect a quorum of responses). A special type of queueing stations, called fork-join [Duda

and Czachórski, 1987] queues, allow for the representation of previously stated interactions,

at the expense of added complexity of the calculation, as well as convoluted modelling. Our

experiences and the results we report in Chapter 7 show that considering only the longest

path yields very satisfactory results.

Model parameters. In order to have an accurate model, we need to accurately parametrize

each of the server in our model, by conducting several measurements. One of our goals is to

make our model simple to use and versatile, while retaining accuracy. The main difficulty lies in

capturing all of the important behaviour through measurements (as these factors directly affect

the accuracy), while keeping the number of measurements as small as possible. We achieve

the balance by requiring only a few, protocol-agnostic parameters from the environment.

These protocol-agnostic parameters are easy to obtain from every system, and in order to

ease the process of obtaining the set of system parameters, we have developed a set of simple

benchmarks to measure them, requiring no operator involvement.

Our model includes the representation of both CPU and network elements, and, therefore, the

parametrization process has to capture the parameters of both of them. In the following text,

we list the system parameters that our benchmarks measure:

• Parametrization of servers representing replicas: we parametrize the server associated

with computational aspects (the central, CPU queue in Figure 6.2) by measuring the

speeds of different operations on a given platform: cryptographic operations (authenti-

cation and verification of messages that are sent/received by the replicas), the execution

time in the application layer, and kernel level operations (such as the send() system

call). The processing time of the server (the inverse of the processing speed) is rep-

resented as a linear combination of the costs of these operations. Note that we do

not measure the involved data structures handling speed, as it highly depends on the

particularities of the implementation, and is not quantifiable in a generic manner. Nev-

ertheless, the protocol designer can measure (or estimate) the data structure handling

time and add it to the model if he wants to make more accurate predictions.

• Parametrization of servers representing network links: we parametrize the servers for

the networking queues by measuring the latency between any two of the replicas in
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the system, for all (or a subset of) possible message sizes. For each message size, the

processing speed of the servers representing the network links is equal to the inverse of

the measured latency8. Also, to parametrize the bandwidth related queues, we measure

the maximum bandwidth on a link.

The exhaustive list of parameters which we use to parametrize the servers associated to both

the replicas and the network links is given in Table 6.1.

Variable Purpose

Texec application execution time
Tdigest the time needed to compute a digest of a message
Tmacg the time needed to generate a MAC for a message
Tmacv the time needed to verify a MAC for a message

Th the time needed to handle the necessary data structures
Tsend the time needed to issue a send() system call

Tproc (i ) the time needed to process a message at replica i ; Tproc (i ) is a linear
combination of all of the times listed so far

Tn one-hop delay (latency)
B maximum throughput of a network link
M average message size
Z the thinking time of a client

Table 6.1: Parameters used for modelling; all of the parameters depend on the average message
size, and denote a value-per-message.

The effect of batching and optimizations. Protocol designers often use different optimiza-

tions, such as batching, to improve the performance [Castro and Liskov, 1999]. Such optimiza-

tions reduce the cost-per-request of an operation. We need to capture such behaviour, and in

our model we do so by appropriately changing the affected parameters. For example, a with

batching factor b, the cost of MAC generation at the primary in Zyzzyva reduces by b, along

with the same factor improvement (per request) for the cost of sending.

Assessing the throughput of BFT protocol. As explained in the previous paragraph, we

focus on the critical path of a request when modelling performance. Based on resources

involved in the processing of a request on the critical path, we obtain the total processing time.

Request handling encompasses different operations, making the total processing time a linear

combination of values presented in Table 6.1, and this linear combination depends on the

protocol. Additionally, for each of the requests we calculate the visiting rates (denoted θ) —

the number of times a request has visited each of the servers on the critical path.

8To be more precise, this is the inverse of half of the latency, because between any two replicas in one direction,
there are two queues representing the network links: one outgoing and one incoming.
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6.3 Modelling Ring

In the previous section, we have given a detailed description of our model, followed by a

description of the modelling process. In this section, we give an example of the modelling

process applied onto Ring. Ring relies on batching and piggybacking optimizations, and we

include this knowledge in the parametrization phase.

Modelling Ring is a complex task, due to the following two design features of Ring: (1) the

clients may contact any of the replicas, and (2) each of the requests makes two rounds around

the ring. Since replicas in Ring handle requests in a complex manner, using two round of

communication, we resort to modelling Ring using a multi-class queueing network [Bolch et

al., 2005; Dijk, 1993]. As we cannot represent all of the possible interactions with a multi-class

queueing network, we model only an approximate behaviour of Ring. For example, requests in

queueing theory model are invariant, in the sense that there is no accurate way of modelling

piggybacking of an acknowledgement. Nevertheless, we still achieve good accuracy despite

resorting to approximations, as the results in Chapter 7 show.

Classes and the routing matrix. When representing Ring in our model, we use the concept

of classes to handle the aforementioned design features of Ring. First, the routing probability

from the IS station, representing all clients, to any replica is set to q x,1
1,1 = 1

n = 1
3 f +1 . By this

we represent the fact that any client can access any of the replicas, under the assumption of

uniform load. Second, to track the progress of a request, the request changes its class in transit

between each replica. Thus, a class contains information on the “count” of the number of steps

that each request took through its lifetime. We use deterministic routing: the probabilities of a

request going from one replica to another9 is either 1 or 0. Once the request reaches the last

step of processing, the probability of moving to the queue of another replica is 0, while the

probability of moving to the IS station, representing all of the clients, is 1. After forming the

routing matrix, we determine the visit rates at each of the queues, and use them as the input

to the MVA algorithm, in order to compute the mean occupancy times.

In order to model piggybacking, we resort to an approximation of this behaviour. The role of

piggybacking is to reduce the used bandwidth. Hence, piggybacked data is negligible, and,

as the name implies, this data is piggybacked onto another request. Thus, we can think of

piggybacked requests as requests that do not use any bandwidth, but spend some time in

transit over links. Consequently, we form the routing matrix such that an acknowledgement

goes around any FIFO queue of stations representing the network links. However, an acknowl-

edgement will still go through the IS station, as that station models link delays. As evaluation

in Chapter 7 suggests that this approximation adds only a small error to the final calculation.

We use 9 classes to denote each of the processing stages of Ring in our queueing model. The

replica are represented as in Figure 6.2. Figure 6.3 shows the interconnections among replicas,

9Or, more precisely, to their corresponding queues.

95



Chapter 6. Performance Model

!" !"

!" !"

#$$ #$%

#$& #$'

#$(

#$) #$*

#$+ #$,

!" !"

!" !"

#%$ #%%

#%& #%'

#%(

#%) #%*

#%+ #%,

!" !"

!" !"

#&$ #&%

#&& #&'

#&(

#&) #&*

#&+ #&,

!" !"

!" !"

#'$ #'%

#'& #''

#'(

#') #'*

#'+ #',

!"

#$

Figure 6.3: Representation of Ring in our model.
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for f = 1. There are in total 20 FIFO queues (16 for modelling network links bandwidths, 4

for modelling processing at each replica), and 17 IS stations. The routing matrix (or, more

precisely, the routing probabilities) are presented in Figure 6.4.

q13,14
1,2 = q23,24

1,2 = q33,34
1,2 = q43,44

1,2 = 1
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2,2 = 1
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Figure 6.4: Routing probabilities for the representation of Ring. The station numbers corre-
spond to stations in Figure 6.3.

Visiting rates. The next step in modelling Ring is the calculation of the visiting rates. The

per-resource, per-class visiting rates for closed queueing networks, based on the routing matrix,

up to a multiplicative constant, are defined, by the Equation (6.1), as:

θs
c =

∑
s′,c ′ θ

s′
c ′q

s′,s
c ′,c (6.1)
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Similarly, Equation (6.2) defines the per-resource, per-chain visiting rates:

θs
C =∑

c∈C
θs

c (6.2)

If there is only a single chain in the network, we can omit the subscript from Equation (6.2).

Being a chain is an equivalence relation between classes, and two classes are chain-equivalent

if they are the same, or a customer of one class may become a customer of the other class. As

such, chains simplify calculations related to visiting rates, and, consequently, the metrics of

interest. In Ring, all of the classes belong to the same chain, since each of the requests starts

with class “0” and finishes in the client substation with class “8”.

Hence, the routing probabilities from Figure 6.4 yield the following, per-chain, visiting rates

(when n = 4 since n = 3 f +1, f = 1):

θ1 = 1 client station visiting rate, arbitrarily set

θ11 = θ21 = θ31 = θ41 = n −1

n
= 3

4
client-to-replica NICs, inbound bandwidth station

θ12 = θ22 = θ32 = θ42 = 2n −2

n
= 6

4
client-to-replica NICs, inbound delay station

θ13 = θ23 = θ33 = θ43 = 1 replica-to-replica NICs, inbound bandwidth station

θ14 = θ24 = θ34 = θ44 = 1 replica-to-replica NICs, inbound delay station

θ15 = θ25 = θ35 = θ45 = 2n −1

n
= 7

4
CPU

θ16 = θ26 = θ36 = θ46 = 1 client-to-replica NICs, outbound bandwidth station

θ17 = θ27 = θ37 = θ47 = 1 client-to-replica NICs, outbound delay station

θ18 = θ28 = θ38 = θ48 = n −1

n
= 3

4
replica-to-replica NICs, outbound bandwidth station

θ19 = θ29 = θ39 = θ49 = 2n −2

n
= 6

4
replica-to-replica NICs, outbound delay station

Parametrization. Finally, we calculate the processing times for all of the servers, as required

by the MVA algorithm. In order to obtain the total processing time of a request, we must:

(1) measure the parameters of the system for the network related stations, and (2) account

for all of the processing for each class of requests at the CPU stations. Both of the steps are

platform-dependent, and we present the corresponding measurements in Section 7.1.1. For

the second step, we first make a breakdown of operations involved, by taking into account

that:

• a replica computes the digest of the request 2 times (when receiving the request for the

first time, and then again to compare the associated acknowledgement);
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• the replica also computes a digest of a reply, when generating a reply to the client;

• the replica generates and verifies the MACs the same number of times per request;

• the replica executes the request exactly once;

• the replica sends the request twice, but we account for only one, to represent the fact

that the requests are piggybacked. Moreover, the sending factor is reduced b times, as

we assume that Ring batches b messages together;

• the replica sends the reply exactly once, and the batching does not have any effect on

this operation;

• the replica allocates the memory for the request, the acknowledgement and the reply.

Also, the replica allocates the memory once again, during the send operation.

Due to the symmetry of Ring, all of the processing times are equal across all of the replicas.

Thus, we obtain the following formulas for the processing times, per request, given a batching

factor b:

T ring
proc = 2T req

digest +T reply
digest +

1

2
Mavg Tmacv + 1

2
Mavg Tmacg +Texec + 1

b
T req

send +T reply
send +T ring

h

In this equation, the term Mavg is calculated in Section 7.2.1, and represents the number

of MAC operation per replica, per request. In Ring, MAC operations are symmetric, and

any replica reads and writes the same number of MACs. All of the parameters (variables) are

described in Table 6.1. In our model, we use the cost of memory allocation as an approximation

for the cost of data structure handling. For each of the messages, the system allocates memory,

and performs operations on a memory copy of the content of the messages. Hence, memory

allocation correlates with the use of necessary data structures. The actual values for the lengths

of these operations depend on the environment and we measure them in Section 7.1.1.

6.3.1 Calculating the Maximal Throughput

Next, we demonstrate how our analytic model could be used to obtain various properties of

the system, even without resorting to measurements. Namely, we use our analytic model to

calculate the maximal throughput that Ring can achieve. We validate our initial claim that the

maximal throughput Ring could achieve is n
n−1B, where B is the maximum throughput of the

network (we assume that all of the links are equal).

If we denote by λs
c the flow of requests of class c at station s, and we denote by λC the

throughput of chain C , the relation between these flows is [Boudec, 2010]:

λs
c (
−→
K ) =λC (

−→
K )θs

c (6.3)

The Equation (6.3) states that for any population of requests (
−→
K ) the flow of requests of class c ,

through some station s is equal to the product of the per-chain flow and the visit rate of class c
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to resource s. The total throughput through a single station is equal to the sums of all of the

per-class throughputs going through that station (given that there is only a single chain C )) is:

λs(
−→
K ) =∑

c∈C
λs

c (
−→
K )

=∑
c∈C

λC (
−→
K )θs

c (6.4)

Due to Equation (6.2), we finally obtain:

λs(
−→
K ) =λC (

−→
K )θs (6.5)

where we drop the per-chain index on the visit rate.

Now, consider the throughput through the station representing clients: λ1. This is the through-

put of requests which enter the system, and protocol designers optimize in order to increase

λ1. Due to Equation (6.5), we have that:

λ1 =λC θ
1 where θ1 = 1

Similarly, from Equation (6.5), we obtain the relation between the flow to a replica and the

per-chain flow:

λ11 =λC θ
11 where θ11 = n −1

n
(6.6)

which leads to:

λ11 =λ1 n −1

n
(6.7)

If we consider the constraint that no flow to a replica exceeds the line rate B:

λ11 =λ21 =λ31 =λ41 ≤B (6.8)

then, by using Equation (6.7), we obtain the following inequality for the maximal throughput

through the ring:

λ11 =λ1 n −1

n

=⇒ λ1 n −1

n
≤B substituting from Equation (6.8)

=⇒ λ1 ≤ n

n −1
B (6.9)
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The calculation in Equation (6.9) gives the maximum throughput in Ring, where we consider

the throughput of requests going into replicas over the client-to-replica network. We prove

that, indeed, the maximum throughput in Ring is n
n−1B.

6.4 Performance Models of Other BFT Protocols

Now, we present the representations of other BFT protocols (which we use in the evaluation)

in our performance model. Similarly to the previous presentation of Ring, we limit the analysis

to the throughput.

We consider the following three state-of-the-art protocols: Chain, Zyzzyva, and PBFT. Although

we have applied our performance modeling framework on Quorum-like protocols (such as

Q/U [Abd-El-Malek et al., 2005], and HQ [Cowling et al., 2006]), we do not present them here,

since quorum-like protocols only run in contention-free environments — a requirement which

is in stark contrast to achieving high-throughput [Singh et al., 2008]. Chain, Zyzzyva, and PBFT

rely on a dedicated replica, which receives requests, to order them and to forward them to

other replicas. Again, it is important to note that all of these protocols require 3 f +1 replicas

in order to be able to tolerate f faults (which is optimal, according to [Lamport, 2004]). For the

simplicity of the presentation, here we will consider only the best-case execution scenarios.

6.4.1 Chain

As stated in Section 2.1.3, Chain relies on two distinct replicas: the head and the tail. All

replicas are arranged in a chain (from which the protocol derives its name). A client sends a

request to the head, which assigns a sequence number to the request. The head then forwards

the request to the next replica in the chain. Each replica executes the request, appends it to

its local history, and forwards the request until the request reaches the tail. Finally, the tail

replies to the client. The last f +1 replicas include the digest of their history in the forwarded

request, which the tail sends to the client. If these digests match, the client commits the

request. Otherwise, the client resorts to a backup protocol to commit the request. We do not

describe this backup protocol as it is not used in the standard case (synchronous network, no

faults).

Contrary to the complex representation of Ring, the representation of Chain in our perfor-

mance model is simple, as depicted on Figure 6.5. In Chain, all 3 f +1 replicas are on the

critical path, and some of the links remain unused. Visiting times to any visited resource are

exactly 1. There is no complex, probabilistic routing, and there is just one class. To simplify

our presentation, we assume that f = 1. All replicas send exactly one message. The head reads

one MAC, and writes 2 MACs. All of the other (except the last) replicas read 2 MACs and write

2 MACs, while the last replica writes only one MAC.
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Figure 6.5: Queueing model representation of Chain. Each node box represents one instance
of queues from Figure 6.2. The IS cloud represents a single delay station, modeling processing
at the clients. Note that the replicas use one set of network links, while the clients connect to
another set of network links, at the head and the tail.

T chain
proc (1) = Tdigest (1) +Tmacv +2Tmacg +Texec +Tsend +T chain

h (6.10)

T chain
proc (2) = Tdigest (2) +2Tmacv +2Tmacg +Texec +Tsend +T chain

h (6.11)

T chain
proc (3) = Tdigest (3) +2Tmacv +2Tmacg +Texec +Tsend +T chain

h (6.12)

T chain
proc (4) = Tdigest (4) +2Tmacv +Tmacg +Texec +Tsend +T chain

h (6.13)

6.4.2 Zyzzyva

In Zyzzyva, a client sends its request to the primary (a special, dedicated replica). The primary

assigns a sequence number to the received request, and multicasts the request, along with its

sequence number to other replicas (backup replicas). Each replica (including the primary)

executes the request, appends the result to its local history, and sends the response to the

client. Whenever faults occur, the replicas execute certain recovery mechanisms. Due to its

speculative nature (replicas execute the request as soon as they receive it, without making

sure that the sequence number is correct), Zyzzyva exhibits high performance when there are

no faults.

Similarly to Chain, the representation of Zyzzyva is simple in our model, as there are only two

replicas on the critical path, and the visiting times are exactly 1. Additionally, there is only just

one class, and there is no complex routing. The first replica on the path is the primary. The

primary performs several cryptographic operations: it verifies one MAC from the client, and

generates 3 f +1 MACs (one for each backup replica and one for the client). Moreover, the

primary sends two messages: the request that it multicasts to other replicas, and the reply to

the client. The primary does, thus, issue two send() calls. Consequently, the processing time

of the primary is the following:
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T zyzzyva
proc (1) = Tdigest (1) +Tmacv + (3 f +1)Tmacg +Texec +2Tsend +T zyzzyva

h

T zyzzyva
proc (2) = Tdigest (2) +2Tmacv +Tmacg +Texec +Tsend +T zyzzyva

h
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Figure 6.6: Queueing model representation of Zyzzyva.

As the load increases, one of the queues becomes the bottleneck, and we observe the queueing

effects. The utilization of the queue (precisely, of its associated server) is equal to 1, and the

throughput is limited by the inverse of the servicing time [Bolch et al., 2005]. The servicing

time includes both the processing and the queueing time. Since every request visits each

queue exactly once, we can obtain an upper bound on the throughput under contention, as

follows:

λ≤ min{
1

Tproc (1)
,

1

T incoming
n(1)

,
1

T outgoing
n(1)

,
1

Tproc (2)
,

1

T incoming
n(2)

,
1

T outgoing
n(2)

} (6.14)

Naturally, this upper bound depends on the request size.

6.4.3 PBFT

Similarly to Zyzzyva, PBFT relies on a dedicated replica, called the primary to order the

requests. To issue a request, a client has to send it to the primary, which appends a sequence

number to the request and broadcasts a PRE-PREPARE message to all of the other replicas

containing the ordered request. When a backup replica receives the PRE-PREPARE message, it

acknowledges the message by broadcasting a PREPARE message to all of the replicas. As soon

as a replica receives a quorum of 2 f +1 PREPARE messages, it promises to commit the request

(at the sequence number appended to the request by the primary) by broadcasting a COMMIT

message. Lastly, when any replica receives a quorum of 2 f +1 COMMIT messages, it executes

the request and replies to the client.

PBFT uses an optimization regarding COMMIT messages, called tentative execution — if all of

the requests which have a lower sequence number have been executed, replicas reply to the
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client before sending the commit message. Since this is the case in best-case execution, we

include that behaviour in our representation of PBFT.

The client commits the request upon receiving f +1 matching replies. Otherwise, the client

retransmits the request. If the request does not commit after a certain time, the protocol

executes a leader election protocol, in order to change the primary. This part of the protocol is

not executed in the common case (synchronous network, no faults), and for this reason we do

not describe such a protocol in this section.

All protocols employ different kinds of optimization, with the predominant one being batching,

where multiple requests from different clients are batched in order to reduce the overall

processing time. Although the batching is, in general, configurable, in PBFT one can only

control the batching of the requests. For all of the other stages, PBFT aggressively batches the

messages itself, out of user control.
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Figure 6.7: Queueing network representation of PBFT.

PBFT has 4 different message-exchange stages, with each stage having a different processing

time on the same replica. Thus, we have resorted to modeling an approximate behaviour.

Our approximation matches the performance of PBFT well, as shown in Chapter 7. Our

approximation of the behaviour of PBFT takes into consideration only two replicas in the

system, and is as follows: 1) the client sends a request; 2) the primary processes the request,

and sends it to a backup replica; 3) the backup receives the request, and forwards it back to
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the primary; 4) the primary receives the request, and sends a reply to the client. Each of these

steps corresponds to one of the communication steps depicted in Figure 2.2. In every step,

the request changes its class, similarly to the case of Ring. Using this approach, we are able to

emulate multicast communication which occurs at every stage.

If we denote the station representing the clients as station 1, the primary as station 2, and the

backup replica as station 3, the routing probabilities are:

q1,11
1,1 = q11,12

1,1 = q12,15
1,1 = q15,16

1,1 = q16,17
1,1 =

= q17,23
1,2 = q23,24

2,2 = q24,25
1,1 = q25,26

2,2 = q26,27
2,2 =

= q27,13
2,3 = q13,14

3,3 = q14,15
3,3 = q15,18

3,3 = q18,19
3,3 =

= q19,1
3,1 = 1

q s′,c ′
s,c = 0 otherwise

From the given routing matrix, we obtain that each of the requests visits the CPU on the

primary 2 times, and visits any other resource exactly once:

θ1 = 1 arbitrarily set

θ15 = 2

θ11 = θ12 = θ13 = θ14 = 1

θ16 = θ17 = θ18 = θ19 = 1

θ21 = θ22 = θ28 = θ29 = 1

θ23 = θ24 = θ26 = θ27 = 0 these stations are not used

Finally, by simply accounting for all of the the processing for each of the classes of requests

arriving at a particular server, we obtain:

T pbft
proc (2) = Tdigest (2) +7Tmacv + (2+ 6 f

b
)Tmacg +Texec + (1+ 2

b
)Tsend +T pbft

h (6.15)

T pbft
proc (3) = Tdigest (3) +Tmacv + (1+ 2 f

b
)Tmacg +Texec + (1+ 1

b
)Tsend +T pbft

h (6.16)

6.5 Summary

In this chapter, we have given an overview of queueing theory, necessary for the building of

our performance model. Next, we have outlined the assumptions that we take, the modelling

process and our performance model. Further, we demonstrated the use of our model, and built

a representation of Ring. Using this representation, we have analytically shown that, indeed,
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the maximum throughput of Ring is n
n−1B. Finally, we presented how our performance model

applies to other, state-of-the-art BFT protocols.

We will present the evaluation of our performance model, along with an analytic comparison

of different BFT protocols in Chapter 7.
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In this section, we report on the results of both the practical and the analytic performance

evaluation of Ring, in comparison with the three state-of-the-art protocols: PBFT, Chain, and

Zyzzyva (described in Section 2.1.3).

PBFT is taken from http://www.pmg.lcs.mit.edu/bft/bft.tar.gz, and slightly modified to run

our version of benchmarks. Zyzzyva was taken from http://research.microsoft.com/en-us/

people/kotla/. However, we had problems running Zyzzyva on our platform, and thus we used

our implementation of Zyzzyva, called Zlight. Zlight has the same communication pattern as

Zyzzyva, but achieves higher performance [Guerraoui et al., 2010a]. We implemented Chain in

the context of the ABSTRACT framework [Guerraoui et al., 2010a].

Similarly to these protocols, Ring is also implemented in C++. The replicas and the clients

communicate over a TCP connections. In order to be able to handle a large number of client

connections, we use the epoll event-notification mechanism. We observe that epoll is more

efficient than the select mechanism, as claimed by Gammo et al. [2004]. Moreover, in order

to prevent malicious participants from exhausting all of the network resources, Ring uses a

token bucket [Shenker and Wroclawski, 1997] mechanism for establishing fairness among

TCP flows. In our implementation, the token bucket splits the incoming throughput between

the predecessor and (all) client traffic, using the ratio 3 f : 1.

We begin this section by giving a description of the experimental setup we have used, along

with the discovery of the system parameters, needed for our analytic model. Next, we show

that, unlike existing protocols, Ring equally balances both the CPU utilization on the various

replicas, and the network utilization on the various network links. Afterwards, we present an

exhaustive performance comparison of Ring and the state-of-the-art protocols. More precisely,

we show that Ring significantly outperforms other protocols in terms of throughput (+27%)

when the network is the bottleneck, and that it achieves up to 14% lower response time than

state-of-the-art protocols when a large number of clients issue requests. Finally, the last part
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of the evaluation is reserved for the assessment of the accuracy of our performance model.

The experimental comparison shows that, for the most cases, the relative error is below 5%.

7.1 Experimental Setup

We have performed all of the experiments on the Emulab [White et al., 2002] testbed. In each of

the experiments, we have used pc3000 machines – Dell PowerEdge 2850s systems, with a single

3GHz Xeon processor, 2GiB of RAM, and 2 NICs. The replicas are systematically running on

their own, separate machine, while the clients are collocated on a total of 40 machines. Finally,

we use a topology in which the replicas belong to one LAN, and clients communicate with

replicas over a second LAN.

We use the benchmarks described in PBFT [Castro and Liskov, 1999], where the clients per-

form requests in a closed-loop manner. In closed-loop benchmarks, clients issue only one

outstanding request and wait until they have received the response. Such a behaviour models

the synchronous, blocking model of programming, present in nearly all of the POSIX systems.

Benchmarks have the option to vary the size of the request issued by the clients and the size

of the replies produced by the replicas. The request and reply size could be set to any of the

values from the range 8 to 16’000B. We use 8B replies, unless stated otherwise. Each of the

experiments was repeated three times, and we report the average of these three executions.

7.1.1 System Parameters

Our model, based on queueing theory, requires some measurements for different data sizes

of the underlying system, such as link latencies, throughput, processing speeds for different

request-handling operations, and the time required to actually send the message from the

application.

Network parameters In order to parametrize network-related substations in our model,

we measure the propagation time for different protocols (TCP, UDP, and IP multicast) of the

underlying Fast Ethernet network, while varying the message size. In this experiment, we set

two machines, a server and a client, to exchange messages. The client issues 100 batches of

100’000 messages, and reports the response time for each of the batches. We also measure the

time of local delivery (i.e., the time it takes to send the same message on the same machine), in

order to exclude the effects of the underlying operating system. We report the link propagation

time as one quarter of the difference between the total propagation time and the local delivery

time. Figure 7.1 illustrates the link propagation time for all of the three used protocols (TCP,

UDP, and IP multicast).
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Figure 7.1: Link propagation times for different message sizes, for different protocols.

As Figure 7.1 suggests, Emulab has a sub-millisecond latency for small requests. For large

requests1, the latency is between 1ms and 1.5ms.

We use the iperf tool [Tirumala et al., 2010] to measure the throughput. Table 7.1 contains

our findings. Expectedly, UDP achieves higher throughput due to less protocol overhead.

However, the difference is less than 1.5%.

Throughput (Mbps)

UDP 93.704
TCP 90.947

Table 7.1: The maximum observed throughput on the testbed.

CPU parameters Next, we measure the speed of various operations generally involved

in request processing (such as the generation and verification of digests and MACs, the

time needed to send a message, and memory allocation). To obtain these protocol-agnostic

measurements, we wrote a set of simple benchmarks which mimic the common behaviour of

many BFT protocols. Our benchmark ensures that the caches are invalidated before processing

each of the requests, since we attempt to replicate conditions of running under a high load,

where caches are often evicted. We use the rdtsc syscall to measure the time needed to

perform each of the operations. The benchmark executes each of the operations 100’000 times,

for a set of different message sizes, and reports the average number of ticks per operation. We

repeat each experiment 100 times, to obtain statistically significant means.

1In context of BFT replicated protocols.
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Figure 7.2: Processing times for different operations.

Figure 7.2 summarizes the processing times for different operations. The figure plots all

of the data points produced by the benchmark. We also plot the linear regression model

which fits the data, per operation. The list of parameters we use to parametrize the servers

associated with the replicas is given in Table 7.2. This table contains a single-dimension linear

regression model of all of the parameters, dependent on the request size. Lengths of all of the

operations are linearly dependent on the request size, although an extension to the model

where operation lengths depend on multiple parameters is straightforward. The reported

values are presented in seconds.

Parameter fit

T digest 4.750579×10−7 + 12.47527 ×10−10 ×M
T macg 8.293719×10−7 + 8.536017×10−10 ×M
T macv 7.362421×10−7 + 8.617151×10−10 ×M
T mem 10.63922 ×10−7 + 3.079504×10−10 ×M

T send-mcast 31.09838 ×10−7 + 18.59765 ×10−10 ×M
T send-tcp 57.15264 ×10−7 + 3.717047×10−10 ×M

T send-udp 33.80395 ×10−7 + 18.20803 ×10−10 ×M

Table 7.2: The parameters used for parametrization of different CPU operations; We use a
linear model, where lengths of all of the operations depend only on the request size (denoted
by M). The reported values are based on the linear fit of the data from Figure 7.2. The unit
which was used is the second.

Interestingly, we note that, for a wide range of message sizes, it is more expensive to issue a

send() system call, then to perform any of the computational operations. The only exception

are TCP messages larger than 6KiB, for which computing digests is more costly than the

sending operation. Thus, in this case, batching should improve performance to an extent.
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Moreover, Figure 7.2 suggests that a single MAC operation is less expensive than performing

a digest. However, performing three or more MAC operations (which is the case for all of

the protocols, for f ≥ 1), is more expensive than performing the digest operation. Finally,

Figure 7.2 shows that sending a TCP packet is less expensive than sending an UDP message,

but only for large messages. With small messages, UDP performs more than 50% better, at the

protocol level.

7.2 CPU Utilization

Figure 7.3 illustrates CPU utilization for Ring, alongside the values of CPU utilization for other

protocols (previously shown in Figure 3.1, in Section 3). We observe that all of the replicas in

Ring are equally loaded. This balance is a consequence of the fact that there is no asymmetry

in replica processing: all of the replicas perform virtually the same computations, and each of

the replicas receives the same amount of client requests2. Consequently, all of the replicas in

Ring become the bottleneck at the same time.
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Figure 7.3: CPU utilization of Ring (and other protocols).

7.2.1 MAC Operations

Since message authentication/verification is a CPU-intensive task, the number of MAC opera-

tions represents a good indicator of the likely bottlenecks in the system — the replicas which

execute the most operations will become bottlenecks first. In Ring, all of the replicas are equal,

given the balanced load. Nevertheless, we calculate the average number of MAC operations

per request in a steady, balanced state, as a comparison to other protocols.

2Provided that clients uniformly balance their requests across different replicas, which is trivially achieved by
having clients choose the entry replica in a round-robin manner.
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As described in Chapter 4, each of the request in Ring takes two rounds. In the first round, the

replicas forward the request. In the second round, the replicas forward the corresponding

acknowledgement. Each of the replicas first verifies (reads) a set of MACs before processing

the requests. If these MACs match the request, the request is executed (or just processed, if the

sequence number is still not known), and forwarded later along the ring. Before forwarding

the request, the replica authenticates (writes) the request, by writing a set of MACs. If Rr
i (W r

i )

denotes the number of MAC read (respectively, write) operations at replica i within Ring, the

account of performed MAC operations throughout the lifetime of the request on all n = 3 f +1

replicas is3:

Rr
0 = (1)+ ( f +1) W r

0 = ( f +1)+ ( f +1)

Rr
1 = (2)+ ( f +1) W r

1 = ( f +1)+ ( f +1)

. . . . . .

Rr
f −1 = ( f )+ ( f +1) W r

f −1 = ( f +1)+ ( f +1)

Rr
f = ( f +1)+ ( f +1) W r

f = ( f +1)+ ( f +1)

. . . . . .

Rr
2 f = ( f +1)+ ( f +1) W r

2 f = ( f +1)+ ( f +1)

Rr
2 f +1 = ( f +1)+ ( f +1) W r

2 f +1 = ( f +1)+ ( f )

. . . . . .

Rr
3 f −1 = ( f +1)+ ( f +1) W r

3 f −1 = ( f +1)+ (2)

Rr
3 f = ( f +1)+ ( f +1) W r

3 f = ( f +1)+ (1)

In Ring, every replica takes every role for the same amount of time, on average (i.e., is an entry

replica, a sending replica, or a replica in the middle of processing chain). Thus, the per-replica

average number of MAC operations (presented separately for reads and writes), per request,

is:

Rr
avg-req = 1

3 f +1

∑3 f
0 Rr

i = 1

3 f +1

(
(3 f +1)( f +1)+ (2 f +1)( f +1)+ f ( f +1)

2

)

= ( f +1)( 11 f
2 +1)

3 f +1

= 1

2
( f +1)

(
4− f +2

3 f +1

)
W r

avg-req = 1

3 f +1

∑3 f
0 W r

i

= 1

2
( f +1)

(
4− f +2

3 f +1

)

3A term in the first (second) parenthesis represents the number of performed MAC operations in the first
(respectively, second) round.
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Hence, the average number of MAC operations (denoted M r ) per request is:

M r
avg-req = Rr

avg-req +W r
avg-req = ( f +1)

(
4− f +2

3 f +1

)
(7.1)

Ring uses piggybacking to improve performance. Hence, we extend Equation (7.1) to account

for the MACs introduced by this optimization. The piggybacked acknowledgement introduces

f +1 additional read MAC operations, and f +1 write MAC operations. In addition, there are

two requests in the same flow (the carrier and the piggybacked acknowledgement):

M r
avg-pb = 1

2

(
M r

avg +
( f +1)+ ( f +1)

3 f +1

)
= 1

2

(
( f +1)

(
4− f +2

3 f +1

)
+2

f +1

3 f +1

)
= ( f +1)

(
4− f

3 f +1

)
= 11

3
f + 34

9
+ 2

9(3 f +1)
(7.2)

Ring also uses batching as another form of optimization. Apart from reducing the number of

sent messages, batching b messages together reduces the total number of MAC operations.

A replica needs to read a MAC written by a client for each of the requests in the batch, and

it needs to write a MAC for the client for each of the requests in the batch. Otherwise, when

there are no MACs written by a client, the replicas generate a MAC for the whole batch, as if it

were a single request. Thus, the average number of MACs operations, for a batch of b requests,

is:

M r
avg-b = 1

b

1

3 f +1
(Rr

avg-b +W r
avg-b)

= 1

b

f +1

3 f +1

(
(10+b) f +2

)
(7.3)

where

Rr
avg-b =W r

avg-b = b
f ( f +1)

2
+ (2 f +1)( f +1)+ (3 f +1)( f +1)

Finally, we obtain the average number of operations, when both piggybacking and batching

are used. To do so, we apply the same process as in obtaining Equation (7.2) on Equation (7.3)

and Equation (7.2), and make use of the fact that we also piggyback a batch of b requests:

M r
avg =

1

2b

(
bM r

avg-b +b
( f +1)+ ( f +1)

3 f +1

)
= 1

2b

f +1

3 f +1

(
(10+b) f +2+2b

)
(7.4)
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Table 7.3 reports the number of per-request MAC operations performed at different replicas for

PBFT, Zyzzyva, Chain and Ring. Additionally, the table also reports the number of per-request

MAC operations when batching is used, assuming that the batch size is b. Table 7.3 shows

that PBFT and Ring do not differentiate replicas, in terms of the number of MAC operations.

Zyzzyva exhibits a highly asymmetric behaviour, but compensates this CPU-bound asymmetry

with a small number of MAC operations.

Number of MAC operations
No batching Batching

Protocol Primary Other Primary Other

PBFT 12 f +2 12 f +2 2+ 8 f +1
b 2+ 5 f +1

b

Zyzzyva 3 f +2 2 2+ 3 f
b

2
b

Chain f +2 2 f +2 1+ f +1
b 2 f +1

b

Ring 11
3 f + 34

9 + 2
9(3 f +1)

1
2b

f +1
3 f +1

(
(10+b) f +2+2b

)
Table 7.3: Comparison of the number of MAC operations on different replicas for different
protocols. For the row marked “Chain”, the column Primary contains the number of MAC
operations at the sequencer, while the column Other contains the number of MAC operations
at the bottleneck (middle) replica. The number of MAC operations for Ring represents an
average, since replicas in Ring can take any role, with regard to request processing.

7.3 Network Utilization

In Figure 7.4, we show the number of bytes which are sent/received by Ring replicas during

replica-to-replica communication (let us recall that each of the replicas has two network

interfaces: one for client-to-replica communications, and one for replica-to-replica communi-

cations). The clients issue 1KiB requests. Similarly to Figures 3.2, 3.3, and 3.4, in Figure 7.4

we present the number of bytes which are sent (or received) for each byte received from a

client. The bars in (out) denote the normalized amount of data on the incoming (respectively,

outgoing) links to the replica.

The first observation that we can make is that network utilization is perfectly balanced across

the different links: each of the replicas equally uses its incoming and outgoing links. The

reason for such a balance stems from the fact that each of the replicas sends/receives, on

average, the same number of messages. This is a consequence of the fact that each of the

replicas acts, on average, the same number of times as an “entry replica”, and, also, as an “exit

replica”. Consequently, when considering network utilization in Ring, each of the replicas has

the same (indistinguishable) “role” in the protocol.

The second observation that we can make is that for every 1B transmitted by a client, a replica

only transmits (receives) 0.78B on its outgoing (respectively, incoming) link. This is explained

by the fact that there are 4 replicas-to-replicas links, and only 3 of them are used to disseminate

request payloads (the link from the exit replica to the entry replica is not used). As any replica
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Figure 7.4: Network link utilization in the Ring protocol.

can have the role of the “entry replica” for each of the requests, then each of the replicas has

the same probability to have one of its links not used. Consequently, the average number of

bytes which is transmitted on each of the links should be 3
4 = 0.75B, which is very close to the

0.78B, that we observe. The slight difference comes from the fact that messages have headers

and that an acknowledgement is produced for every message, thus increasing the number of

bytes that are transmitted over the network links.

7.4 Microbenchmarks

The previous two sections show that all of the replicas in Ring perform similar processing and

send/receive similar number of bytes. In this Section, we evaluate the impact of this balanced

CPU and network utilization on the overall performance of the protocol.

First, we evaluate Ring using a standard set of microbenchmarks [Castro and Liskov, 1999],

when f = 1. These microbenchmarks resemble various workloads, and each of them stresses

different parts of the system. Then, using the same set of microbenchmarks, we assess the

peak throughput that each of the protocols attains, as a function of the message size. Next, we

evaluate the effects of the client load on the protocol throughput, for 1KiB requests. Finally,

we evaluate the fault scalability of Ring.

7.4.1 4/0 Microbenchmark

We first evaluate the throughput of the different protocols in the so-called 4/0 microbenchmark.

In this benchmark, the clients issue large requests (4KiB), while the expected responses are

small (8B). This benchmark exactly emulates the network-bottleneck conditions which Ring

was designed for. Moreover, the 4/0 microbenchmark models write-intensive applications,
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similar to a networked storage, or a networked syslog facility. Figure 7.5 shows the results for

throughput, while Figure 7.6 shows a response time vs. throughput curve for this particular

benchmark.
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Figure 7.5: Throughput in the 4/0 microbenchmark.
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Figure 7.6: Response time–throughput curve for the 4/0 microbenchmark. Some points are
annotated with the number of clients for which the given parameters were measured.

The main observation is that Ring, indeed, outperforms all of the other protocols, with as few

as 60 clients. Other protocols reach a plateau of 93Mbps, with only as few as 10 clients, with

up to 7% difference in maximum throughput. On the other hand, Ring surpasses 100Mbps

with 90 clients, and reaches 114.6Mbps with 200 clients.

The difference between Chain and Zyzzyva rises from the fact that Chain has larger message

headers, which take up the bandwidth. With more than 20 clients, the performance of PBFT
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starts to degrade slightly, due to its multiple communication rounds. Additionally, we observe

the ill-effect of IP multicast, which congests the inter-replica LAN.

Despite having a lengthy communication pattern, Figure 7.6 shows that Ring actually achieves

a lower response time than the other protocols, once it has reached its maximal throughput.

With 200 clients, Ring’s response time is 60ms, while the other fastest protocol, Zyzzyva,

is 20% slower. The reason for this low response time in Ring is the fact that the queueing

(waiting) time at a replica is inversely proportional to the throughput. Hence, the requests in

Ring wait for less time before being processed, than in other protocols. Due to the reduced

queueing time, Ring achieves an lower overall response time, even though messages take more

communication steps.

7.4.2 0/4 Microbenchmark

The 0/4 microbenchmark models read-intensive applications, such as networked data-indexes

and storage. The clients issue small requests, while the replicas generate large replies. Due

to its format, this benchmark evaluates the efficiency of replica-to-client communication.

Although the 0/4 microbenchmark resembles a read-intensive workload, we turn off read-

optimizations in all of the protocols, and measure the performance of a more costly write

operation.
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Figure 7.7: Throughput in the 0/4 microbenchmark.

Figure 7.7 (Figure 7.8) presents the throughput (respectively, the response time vs. throughput

curve) for this benchmark. In Ring, different replicas reply to different clients4, thus reducing

the stress on the replica-to-client communication. Figure 7.7 supports this fact, as Ring out-

performs other protocols, and reaches around 11kops (kilo-operations per second). Moreover,

Ring surpasses the other protocols with as few as 27 clients.

4Only one replica replies to one client.
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Figure 7.8: Response time–throughput curve for the 0/4 microbenchmark. Some points are
annotated with the number of clients for which the given parameters were measured.

We note that, in this microbenchmark, Chain exhibits low performance. In this respect,

the performance of Chain in the 0/4 microbenchmark is similar to its behaviour in the 4/0

microbenchmark, where the head was the bottleneck, due to large requests. Here, however,

the tail is the bottleneck, due to large replies, which saturate the replica-to-client link. Zyzzyva

and PBFT achieve a higher throughput than Chain, because different replicas may send the full

reply to the client5. However, both Zyzzyva and PBFT perform worse than Ring. As is shown

in Figure 7.7, Ring effectively utilizes all of the outgoing links, having 4 times the throughput

of Chain. Zyzzyva (and PBFT) reach 8kops (respectively, 10kops) due to the fact that every

replica replies to every client. Moreover, PBFT reaches a congestion collapse with more than

100 clients.

Similarly to the 4/0 microbenchmark, we observe a lower response times in Ring, too. Chain

immediately enters saturation, as Figure 7.8 shows — with only a few clients, the response

time vs. throughput curve becomes a vertical line on the figure. PBFT experiences a sharp

increase in response times after the congestion collapse, due to frequent retransmissions,

which we observe on the same figure, as the line going from the lower right corner to the upper

left corner.

7.4.3 4/4 Microbenchmark

The 4/4 microbenchmark stresses all of the network links, as both the clients send large

messages and the replicas issue large replies. This benchmark resembles a high-throughput

P2P file-sharing service, for instance, a video on demand service. Figure 7.9 shows the results

5Some protocols use this optimization, in which only a certain, random replica sends the full reply, while other
replicas send only a digest of the reply.
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obtained for throughput, while Figure 7.10 shows a response time vs. throughput curve for

this particular benchmark.
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Figure 7.9: Throughput in the 4/4 microbenchmark.
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Figure 7.10: Response time–throughput curve in the 4/4 microbenchmark. Some points are
annotated with the number of clients for which the given parameters were measured.

Similarly to the 4/0 microbenchmark, Ring outperforms other protocols as soon as there are

more than 40 clients. We also observe that even with 80 clients, Ring has a notably lower

response time.

Due to large replies, PBFT reaches a congestion collapse after 20 clients. We could not obtain

measurements for PBFT with more than 40 clients, due to constant crashes. However, even

without crashes, PBFT would not achieve better performance than Zyzzyva [Kotla et al., 2007].
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Other protocols (except Ring) also crash with more than 100 clients. Therefore, we report

results for up to 100 clients.

7.4.4 0/0 Microbenchmark

The 0/0 microbenchmark models a CPU-intensive workload, as it uses small messages and

small requests. Thus, context switching when processing a network message, request handling,

and cryptographic operations dominate the total cost of operations. Due to the small request

size, this microbenchmark favours protocols with short communication paths (because it

takes less to propagate a short message), and a small number of cryptographic operations.
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Figure 7.11: Throughput in the 0/0 microbenchmark.

Figures 7.11 and 7.12 summarize the results of the 0/0 microbenchmark. As expected, Zyzzyva

dominates when there is a small number of clients, as the system is not in the bottleneck

condition, and throughput depends mainly on the response times. The response time of

Zyzzyva is less than that of Chain (shown in Figure 7.11), as the requests in Zyzzyva take

3 communication steps, while the communication in Chain spans over 5 separate steps.

Once the CPU becomes the bottleneck, Chain achieves the highest throughput, although the

number of MAC operations is the same as with Zyzzyva (2 f +2 vs. 3 f +1). The reason for this

is that the primary in Zyzzyva spends more time processing requests, as it needs to answer

to the client, while handling many client requests. The response time of Ring is quite high,

as each of the requests takes 9 communication steps, and the number of MAC operations is

higher than in other protocols. However, we note that with over 200 clients, Ring overtakes

PBFT, as the latter enters saturation, as shown in Figure 7.12. Moreover, all of the protocols,

except for Ring, reach saturation with less than 200 clients. The reason for this is the inherent

symmetry of Ring, as each of the replicas takes one fourth of clients. Thus, Ring stays away

from the CPU bottleneck zone, even with a large number of clients present.
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Figure 7.12: Response time–Throughput curve in the 0/0 microbenchmark. Some points are
annotated with the number of clients for which the given parameters were measured.

7.4.5 Mixed Workload Microbenchmark

So far, all microbenchmarks used the constant request size. However, real applications issue

request of various sizes. In order to assess the impact of variable request size, we modified the

clients to issue requests of sizes: 8B, 512B, 2048B, 256B and 4096B, in that order6.
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Figure 7.13: Throughput in the mixed workload microbenchmark.

Figures 7.13 and 7.14 summarize the results of the mixed workload microbenchmark. Note

that we express the throughput as kilo ops, since requests are not of an uniform size. Due to

6We require deterministic order, to ensure repeatability
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Figure 7.14: Response time–Throughput curve in the mixed workload microbenchmark. Some
points are annotated with the number of clients for which the given parameters were mea-
sured.

a bug in the implementation of PBFT, we could not obtain measurements for more than 40

clients.

We observe that with a low load, Zyzzyva has the best performance, since it behaves the best

with small requests. However, with more than 150 clients, Ring begins to dominate, and

improves by 6% upon Zyzzyva. Moreover, the trend shows that, unlike other protocols, Ring

does not reach saturation. The reason is the same as for the 4/0 microbenchmark: Ring

can utilize more links to accept incoming requests, thus enabling higher total throughput.

Similarly to 4/0 microbenchmark, we observe that, with 200 clients, Ring again has lower

response time than other protocols with much shorter communication path.

7.5 The Impact of the Request Size

Next, we study how the throughput of different protocols is affected by the size of the requests

issued by the clients. In Figure 7.15, we show the peak throughput per protocol. We have

varied the size of the requests and the number of clients, while measuring the throughput. For

every considered request size, we report the maximal throughput that we have observed. Note

that the x-axis on the figure uses a logarithmic scale.

The first observation that we make from Figure 7.15 is that the behavior of protocols is similar

to the simulated behaviour reported by Singh et al. [2008]: PBFT and Zyzzyva perform very

similarly. The network setting that we use for these experiments influences the behaviour

of Chain and Zyzzyva, as observations differ from those reported by Guerraoui et al. [2010a]:

Zyzzyva and Chain exhibit negligible differences with large messages. The difference is due
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Figure 7.15: Peak throughput as a function of the size of the request.

to the fact that clients communicate with replicas using a separate, dedicated LAN. This

setup reduces the number of IP multicast packet drops in Zyzzyva, effectively increasing its

performance.

It can further be seen from Figure 7.15 that, with small requests (below 1000B), all of the

protocols perform similarly, which we later confirm with our performance model. With

larger requests, Ring significantly outperforms other protocols. More precisely, state-of-the-

art protocols have a peak throughput ranging between 90Mbps for PBFT and 93Mbps for

Zyzzyva and Chain. Ring, on the other hand, has a peak throughput of about 118Mbps, which

represents a 27% performance improvement over the most efficient state-of-the-art BFT

protocols. Ring achieves a throughput of 118Mbps on a Fast Ethernet network because the

replicas in Ring only send/receive 0.78B for every 1B of a client request. To conclude, we

are safe to say that, with large messages, the throughput of Ring is very close to the optimal

replication throughput that can be achieved on a Fast Ethernet: 124Mbps.

7.6 The Impact of the Number of Clients

Network bottleneck conditions may be reached when either a certain number of clients issues

large requests, or when a large number of clients issues requests of modest size. Either way, it

is important for BFT protocols to be able to graciously handle traffic from all of the clients, and,

furthermore, a robust7 protocol should be able to retain good performance as the number of

clients increases.

Similarly to the microbenchmarks in Section 7.4, Figures 7.16 and 7.17 illustrate the perfor-

mance of different protocols, as the number of clients varies from 1 to 2000. Figure 7.16

7In terms of client scalability.
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shows the throughput as the number of clients varies, while Figure 7.17 shows the dependency

between the response time and the throughput. In this experiment, the clients issue 4KiB

requests, while the replicas send 8B replies.

Note that we do not issue 16KiB requests (which yields the best results for all protocols, as

illustrated in Figure 7.15) because both Zyzzyva and PBFT were crashing when being stressed

with a large number of clients (> 120) issuing 16KiB requests. Moreover, even with 4KiB

requests, PBFT crashes with more than 200 clients, while Chain and Zyzzyva crash with more

than 1000, and 1200 clients, respectively. Ring does not crash, even with 2000 clients present.
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Figure 7.16: Throughput, as the number of client increases toward 2000, for 4KiB requests and
small replies.
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We note that all of the protocols reach saturation after 20 clients have started using the

system. Also, as the number of clients increases, all of the protocols exhibit slight performance

variations, due to the high load. However, we do not observe any significant performance

drops, except in the case of PBFT. One reason for such a steady performance of Ring stems

from its design — the clients connect to different replicas, thus reducing the overall load.

7.7 Fault Scalability
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Figure 7.18: Throughput as a function of the resilience ( f ), with 4KiB requests and small
replies.

An important characteristic of BFT protocols is the level of their performance, as the number of

tolerated faults increases. Figure 7.18 illustrates the throughput of Ring in the 4/0 microbench-

mark, when f varies between 1 and 3. Kotla et al. [2007] reports that the peak throughput

of PBFT and Zyzzyva slightly drops with the increase of f . Similarly, Guerraoui et al. [2010a]

reports the same finding for Chain. We, too, observe a noticeable drop in performance in

Ring. The reason is that the peak throughput in Ring is dependent on f , and amounts to

bmax = 3 f +1
3 f B. As is suggested in Figure 7.18, with the increase of f , the peak throughput in

Ring approaches the link limit, which is, incidentally, the peak throughput of other protocols.

Note that the maximum reported throughput of Ring in this experiment is 115Mbps, as we

use 4KiB requests.

7.8 Accuracy of the Performance Model

This section discusses the accuracy of the performance model presented in Chapter 6.

Figures 7.19, and 7.20 compare the modeled versus the observed throughput for small and

large requests, respectively. We obtain the modeled throughput using the MVA algorithm.
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All of the models are parametrized with the values obtained in Section 7.1.1. The observed

throughput represents the throughput of a nil service — a service with no execution time. The

same service is also used in the presented microbenchmarks in Section 7.4.
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Figure 7.19: Comparison of the modeled and the measured (Section 7.4.4) throughput, as the
number of load changes, with small requests and small replies.
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Figure 7.20: Comparison of the modeled and the measured (Section 7.4.1) throughput, as the
number of load changes, with 4KiB requests and small replies.

As Figure 7.19 suggests, the difference between the modeled and the measured data may

sometimes be as much as 30%. The reason for such a discrepency is twofold: (1) our model is

quite simple, and (2) we can not capture all of the possible behaviours of the system, especially

memory interactions, which matter in cases of CPU-constrained workload. Nevertheless, we

note that the modeled data allows for reaching the same conclusions as the measured data.

Namely:
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• Chain achieves the highest throughput;

• Zyzzyva achieves a higher throughput than Chain, when the number of clients is small;

and

• Ring overtakes PBFT with higher loads, by a small margin.

On the other hand, in Figure 7.20, the difference between the maximum throughputs is shown

to be lower than 3%. Under a low client load, there are some discrepancies. For example,

the “knee” of the performance curve in the modeled data is reached with a higher number

of clients, when compared to the measured data. This difference in behaviour is due to the

fact that our model assumes a uniform operation cost over all of the possible loads. However,

under a low client load, all of the operations take less time to execute. We chose not to take

this dependency into account, as it would complicate the model. Nevertheless, including

load-dependent processing into the model remains a possibility [Bolch et al., 2005].

7.8.1 The Impact of the Request Size

The next step in the evaluation of our performance model is the analysis of the impact of the

request size on the model’s accuracy.

Figure 7.21 illustrates the relative difference between the predicted and the observed maximum

throughput, as the request size varies. In this experiment, we replicate the nil service — a

service which does not incur any overhead.
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Figure 7.21: Relative difference between the predicted and the measured maximum through-
put, as the request size changes.

We observe that the relative difference between the predicted and the observed maximum

throughput declines, as the request size increases. The reason is that, with larger requests,
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processing times are greater, hence the errors in measuring the overall process time have a

small effect on the total processing time.

However, for some of the values of the request size, we can see an increase in the relative

difference, especially for 512B requests. The reason for such an increase is a consequence of

the inaccuracy in calculated costs per operation. As Figure 7.2 shows, we use a simple linear fit

for all of the system parameters, and yet, network-related system parameters are not linearly

dependent on the request size, for some values of the request size. That is exactly what we

observe for 512B requests, where the send operation incurs 40% more overhead than the fitted

model predicts. Such a large difference affects the subsequent calculations, as Figure 7.21

suggests.

The error in predicting the maximum throughput is generally8 below 10%, except in the case of

PBFT. PBFT is presented through a simplified model that does not take all of the interactions

(and optimizations) into account. Therefore, we observe an around 20% difference when

predicting the performance of PBFT.

7.8.2 The Impact of the Execution Time

In this section, we address how varying the execution time affects the accuracy of the model.

So far, we have conducted all of the measurements using the nil service — a service which

takes 0s to process a request. However, in real deployments, the service time is significant,

probably higher than the total agreement time [Clement et al., 2009b]. In this experiment, we

instruct clients to issue small requests, while replicas issue small replies. We focus on small

requests and small replies, because such a workload is CPU-intensive. An increase in the

execution time also affects the CPU load. Moreover, as the previous section implies, our model

contains the highest error in this setting. Thus, we can observe the effect of the increase in the

execution time more clearly.

In Figure 7.22, we show the mean relative difference as the execution time changes, with

a 95% confidence interval. The mean relative difference (MRD) represents an average of

magnitudes of relative differences between the modeled and the measured throughput, for all

of the measured points:

MRD = 1

n

∑n
1

∣∣xi
measured −xi

model

∣∣
xi

measured

where n is the sample size and xi is the ith sample. In our experiments, the sample size is 6 —

we sample the throughput when the load is 20, 40, 80, 120, 160 and 200 clients.

Besides the fitted mean relative difference, in Figure 7.22 are also displayed the individual per-

protocol relative differences, for the sake of reference. We observe that with short execution

8For a large range of values.
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Figure 7.22: The mean relative difference as the execution time changes.
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Figure 7.23: The relative difference between the predicted and the measured maximum
throughput, as the execution time changes.

times, an individual relative difference could be as high as 30% for some client load. However,

as the execution time grows, the mean relative difference rapidly drops, and drops below 5%

for a large range of the values.

Similarly to the previous section, in Figure 7.23 we report the relative difference in the modeled

and the observed maximum throughput, as the execution time of the replicated service varies.

Both Figure 7.22 and 7.23 illustrate the same global trend — as the execution time increases,

the error in prediction rapidly drops. For example, as soon as the execution time grows over

10µs, the error in prediction is less than 5%, for all of the protocols. Moreover, for execution
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times longer than 100µs, the prediction error is less than 1% for most of the protocols, and

only 2% for Ring.
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Figure 7.24: Comparison of the modeled and the observed performance, for all of the protocols,
as the load and the execution time change, for small requests and small replies. The solid lines
represent modeled performance, while the dotted lines represent observed performance. The
greyed area at the bottom of each of the facets denotes the absolute difference between the
model and the observed measurement.

In addition, Figure 7.24 displays, side-by-side, the differences for all protocols, as the exe-

cution time varies. This figure gives a visual overview of how well the model and the actual

measurements match. Figure 7.24 supports the observation that the accuracy improves as

the execution time increases. The reason is that the execution time becomes the dominant

factor in the overall processing time. In turn, the total error in assessing the overall processing

time decreases, increasing the accuracy of the model. Finally, we can conclude that our simple

model achieves good accuracy, as we have rarely observe differences higher than 10%.
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7.9 Summary

The results in this chapter show that, under the network-bottleneck conditions, Ring outper-

forms the state-of-the-art protocols (Chain and Zyzzyva).

The results obtained from microbenchmarks show that Ring has up to 27% higher throughput

than other protocols, in the majority of the experiments. In these microbenchmarks, some-

what surprisingly, Ring achieves the best response time, although each of the requests takes 9

communications steps. The reason for such a good performance lies in the fact that, in the

bottleneck conditions, the response time is inversely proportional to the throughput.

Ring achieves lower throughput (22% less than that of Zyzzyva, and 30% less than that of

Chain), only in microbenchmarks in which operations have small arguments and result sizes.

In those particular microbenchmarks, Ring generates more CPU load (on average) than other

protocols, although the load is well balanced among the replicas. Ring achieves slightly higher

performance than PBFT, even though (as shown in Section 7.2) Ring operates at a higher load,

because with this higher load, the IP multicast incurs high message drops, and we observe

lower performance in PBFT. The main reason for the lower performance of Ring in the 0/0

microbenchmark, conversely, stems from the long communication path of Ring — with small

requests, transporting a request takes more time than its actual processing, which directly

affects the throughput. As opposed to other protocols, Ring does not reach saturation with

even 200 clients, precisely due to this long communication pattern.

The experimental results show that our analytic performance model is accurate: the absolute

value of the relative prediction error for the throughput was below 10% of the experimental

results, in almost all of the experiments. Our analytic model achieves good accuracy although

it requires only a small number of (protocol-agnostic) measurements.
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As our society relies deeply on computers, and as faults are still more the norm than the

exception, highly-available fault-tolerant systems are a necessity. In the recent years, we have

witnessed the emergence of Byzantine fault tolerant systems, aimed at the improvement of

throughput under CPU-constrained workloads.

This thesis has focused on exploring a different design space — one in which throughput is

scarce. The thesis has offered an analysis of scaling impediments in current, state-of-the-

art protocols, for such throughput-constrained conditions. These impediments range from

imbalances in resource utilization (e.g., when not all of the links are equally loaded), over

protocol inefficiencies (e.g., the fact that IP multicast is fragile under high-load), to various

implementation deficiencies, such as problems with handling large number of connections,

and processing requests on multicore platforms.

Given the aforementioned analysis, we have proposed a design and an implementation of

Ring — a BFT protocol which utilizes ring topology to achieve high-throughput. Ring is an

agreement-based BFT protocol, with a specific replica in charge of imposing order on all of

the requests. However, in Ring, that task is negligible to the extent that all of the replicas in

Ring can safely be considered identical — a feature which shares a significant similarity with

quorum-based BFT protocols. Furthermore, all of the replicas accept and reply to requests

from clients, and it is this inherent symmetry that allows for a balanced usage of resources in

Ring, thus overcoming one of the major highlighted impediments to performance scaling.

Such symmetrical processing, paired with a ring topology, allows a maximum theoretical

throughput of n
n−1B, where n is the number of replicas, and B is the link bandwidth. The

throughput of all of the other protocols is limited to B . The evaluation, among other interesting

properties, shows that our implementation of Ring approaches this limit, and that Ring

outperforms all other, state-of-the-art protocols by 27%.
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In the last chapter of the thesis, we have presented a performance analysis framework, based

on queueing theory. To the best of our knowledge, this is the first use of queueing theory in

modelling the performance of BFT protocols. Our model uses protocol-agnostic measure-

ments of the environment for parametrizing various parts of the system. Furthermore, the

model is simple, and requires building the network of queues representing each processing

stage only once, for each of the protocols. Given its simplicity, this performance model predicts

the performance with, somewhat surprisingly, a below 5% error for realistic execution times,

and below 20% for short (sub 10ms) execution times.

The research on deterministic execution on multicore systems, along with the points raised in

this thesis, opens a path toward efficient, scalable, and polymorphic BFT systems. Guerraoui

et al., 2010a has laid out the foundation for moving correctly in-flight from one instance

of a BFT protocol to another. In this thesis, we have described a protocol implemented in

this framework, suitable for specific working conditions, in which it outperforms all state-of-

the-art protocols. Thus, one could easily envision a system (implemented using guidelines

presented in this thesis), which would monitor environment conditions, use our performance

model to detect a better protocol to run, and switch to it by using the ABSTRACT framework.

Ultimately, we would be able to achieve best performance for any given workload.

Finally, the main insight this thesis offers is that the advantage of symmetric systems is

that all components become bottlenecks at the same time. In a non-symmetric system,

some component will become the bottleneck with a much lower utilization (compared to

a symmetric system), thus limiting the total utilization of the system. Thus, the power of

symmetry lies in postponing the bottleneck condition to a much higher utilization, that in

turn enables a higher total utilization.
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