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Abstract

A common trend in machine learning and pattern classification research is the exploita-

tion of massive amounts of information in order to achieve an increase in performance. In

particular, learning from huge collections of data obtained from the web, and using multiple

features generated from different sources, have led to significantly boost of performance on

problems that have been considered very hard for several years. In this thesis, we present two

ways of using these information to build learning systems with robust performance and some

degrees of autonomy. These ways are Cue Integration and Cue Exploitation, and constitute

the two building blocks of this thesis.

In the first block, we introduce several algorithms to answer the research question on how

to integrate optimally multiple features. We first present a simple online learning framework

which is a wrapper algorithm based on the high-level integration approach in the cue integra-

tion literature. It can be implemented with existing online learning algorithms, and preserves

the theoretical properties of the algorithms being used. We then extend the Multiple Kernel

Learning (MKL) framework, where each feature is converted into a kernel and the system

learns the cue integration classifier by solving a joint optimization problem. To make the

problem practical, We have designed two new regularization functions making it possible to

optimize the problem efficiently. This results in the first online method for MKL. We also

show two algorithms to solve the batch problem of MKL. Both of them have a guaranteed

convergence rate. These approaches achieve state-of-the-art performance on several standard

benchmark datasets, and are order of magnitude faster than other MKL solvers.

In the second block, We present two examples on how to exploit information between

different sources, in order to reduce the effort of labeling a large amount of training data. The

first example is an algorithm to learn from partially annotated data, where each data point

is tagged with a few possible labels. We show that it is possible to train a face classification

system from data gathered from Internet, without any human labeling, but generating in

an automatic way possible lists of labels from the captions of the images. Another example

is under the transfer learning setting. The system uses existing models from potentially

correlated tasks as experts, and transfers their outputs over the new incoming samples, of a

new learning task where very few labeled data are available, to boost the performance.
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Résumé

Dans les domaines de l’apprentissage automatique et de la classification de formes, une

tendance courante est l’exploitation d’énormes quantités d’informations afin de parvenir à une

amélioration des performances. En particulier, l’apprentissage à partir d’immenses collections

de données collectées sur le Web, ainsi que l’utilisation de plusieurs primitives générées à partir

de différentes sources, ont permis d’améliorer de façon significative les résultats de problèmes

longtemps considérés comme très difficiles. Dans cette thèse, nous présentons deux façons

d’utiliser ces informations pour construire des systèmes d’apprentissage aux performances

robustes et avec un certain degré d’autonomie. Ces moyens sont l’intégration de primitives

et l’exploitation de primitives, et constituent les deux composantes fondamentales de cette

thèse.

Dans la première composante, nous présentons plusieurs algorithmes pour répondre à la

question portant sur la façon optimale d’intégrer plusieurs primitives. Nous présentons tout

d’abord un cadre d’apprentissage en ligne basé sur l’approche d’intégration de haut niveau

dans la littérature d’intégration de primitives. Ce cadre peut être mis en œuvre avec les

algorithmes d’apprentissage en ligne existants, et préserve les propriétés théoriques des algo-

rithmes utilisés. Nous avons ensuite étendu le cadre de l’apprentissage par noyaux multiples

(MKL), où chaque primitive est convertie en un noyau et où le système apprend un classifieur

d’intégration de primitives en résolvant un problème d’optimisation conjointe. Pour rendre le

problème réalisable en pratique, nous avons conçu deux nouvelles fonctions de régularisation

permettant d’optimiser le problème efficacement. Cela conduisit à la première méthode en

ligne pour MKL. Nous montrons également deux algorithmes pour résoudre le problème

séquentiel de MKL. Les deux ont une vitesse de convergence garantie. Ces approches at-

teignent des performances de pointes sur plusieurs jeux de données de référence, et sont un

ordre de grandeur plus rapide que les autres trouveurs de solution MKL.

Dans la seconde composante, nous présentons deux exemples sur la façon d’exploiter

l’information entre différentes sources, afin de réduire l’effort demandé par l’étiquetage

d’une grande quantité de données d’entrâınement. Le premier exemple est un algorithme

d’apprentissage à partir de données partiellement annotées, où chaque donnée est marquée

avec plusieurs étiquettes possibles. Nous montrons qu’il est possible de former un système de
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classification de visages à partir de données recueillies sur Internet, sans aucun étiquetage

humain, mais générant de manière automatique les listes d’étiquettes possibles à partir de la

légende des images. Un autre exemple est décrit dans le cadre du transfert de connaissances.

Le système utilise, en tant qu’experts, des modèles existants de tâches potentiellement

corrélées, et transfert leurs réponses sur les nouveaux échantillons entrants d’une nouvelle

tâche d’apprentissage où très peu de données étiquetées sont disponibles, et ce, en vue

d’améliorer les performances.

Mots-clés : apprentissage automatique, intégration de plusieurs primitives, reconaissance

visuelle, apprentissage en ligne, apprentissage par noyaux multiples, apprentissage faiblement

supervisé, transfert de connaissances
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Sommario

La ricerca in riconoscimento di pattern e apprendimento artificiale negli ultimi anni si é

concentrata su come utilizzare al meglio vaste quantitá di informazione per riuscire a raggiun-

gere migliori risultati di classificazione. In particolare, il problema di come imparare modelli

da enormi raccolte di dati ottenute dal Web, e il problema complementare di come combinare

in maniera efficiente, efficace ed ottimale descrittori calcolati da diverse sorgenti, é stato af-

frontato portando a miglioramenti considerevoli dei risultati in problemi che per anni erano

risultati ostici alla comunitá. In questa tesi, presentiamo due modalitá per usare questo tipo

di informazione per poi costruire sistemi artificiali capaci di imparare ed ottenere risultati

robusti in maniera autonoma. Le due metodologie che consideriamo sono la combinazione di

caratteristiche da modalitá diverse, e il loro reciproco rafforzarsi in vari scenari. Questi due

filoni di ricerca costituiscono le due parti fondamentali di questa tesi.

Nella prima parte, introduciamo vari algoritmi per rispondere alla domanda concettuale

su come combinare in maniera ottimale diverse caratteristiche percettive. Per prima cosa pre-

sentiamo uno schema basilare per l’apprendimento continuo che consiste in un algoritmo a due

livelli, con classificatori a cascata. Lo schema é tale da poter essere implementato combinando

insieme algoritmi di apprendimento continuo giá presentati nella letteratura. Proponiamo una

analisi teorica che mostra come il nostro schema preservi le proprietá degli algoritmi scelti per

la specifica implementazione. Come secondo contributo proponiamo una estensione dello sche-

ma di apprendimento a Kernel multipli, dove ogni caratteristica estratta viene trasformata in

un Kernel, e il sistema risultante impara come combinare le diverse caratteristiche risolvendo

un problema di ottimizzazione congiunto. Per rendere il problema accessibile, abbiamo dise-

gnato due nuove funzioni di regolarizzazione che rendono possibile ottimizzare l’algoritmo in

maniera efficiente. Il risultato é il primo algoritmo online di apprendimento su Kernels multi-

pli. Inoltre introduciamo due algoritmi per risolvere il problema dell’addestramento di questa

famiglia di algoritmi in modalitá classica. Entrambi hanno un tasso di convergenza garantito.

Questi approcci hanno ottenuto risultati competitivi con i migliori presentati nella letteratura

internazionale su diverse collezioni di dati usate per valutazioni comparative pubbliche, e sono

piú rapidi nell’apprendimento di altri algoritmi noti di un ordine di grandezza.

Nella seconda parte della tesi, presentiamo due esempi di come si puó trarre vantaggio
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dall’utilizzare in contemporanea differenti sorgenti di informazione nel apprendere un

modello, con l’obiettivo di ridurre la quantitá di dati annotati necessari per apprendere

modelli. Il primo esempio é un algoritmo capace di apprendere modelli da dati annotati solo

parzialmente, dove ciascun dato é associato a piú di una possibile etichetta. Noi mostriamo

che é possibile addestrare un algoritmo per l’apprendimento di facce usando dati collezionati

dal Web senza nessun tipo di annotazione da parte di umani, generando automaticamente

una lista delle annotazioni possibili usando le didascalie scritte associate a queste foto. Un

altro esempio che proponiamo riguarda il trasferimento automatico di conoscenza pregressa.

Il nostro algoritmo usa modelli esistenti da categorie in qualche modo correlate al nuovo

problema come esperti, e trasferisce le loro confidenze per l’apprendimento di una nuova

classe da dati impoveriti.

parole chiave: apprendimento automatizzato, integrazione di informazioni multiple, ricono-

scimento visivo, apprendimento continuo, apprendimento di Kernels multipli, apprendimento

debolmente supervisionato, trasferimento di conoscenza pregressa.
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Chapter 1

Introduction

This introduction presents an overview of learning from multimodal patterns (Section 1.1) and the con-

tribution of this thesis (Section 1.2). The main motivation presented here is elaborated in more details

in the following chapters. At the end of this chapter, we also introduces the notations and the necessary

mathematical tools used in this thesis (Section 1.3).

1.1 Learning from Multiple Cues: Advantages and Challenges

A common trend in machine learning and pattern classification research is the exploitation of massive

amounts of information to achieve an increase in classification performance. In particular, learning using

multiple discriminative features and multiple source inputs, and from huge collections of data obtained

from the web, have led to significant boost of performance on problems considered very hard for several

years.

In recent years there has been a lot of interest in designing principled classification algorithms over

multiple cues, based on the intuitive notion that using more features should lead to better performance.

There is plenty of evidence showing that integrating multiple cue inputs, especially from different sensory

modalities, can greatly enhance the ability of animals and humans to cope economically and flexibly with

complex and ever-changing environments. For instance, we do recognize people on the basis of their visual

appearance and their voice. Linen can be easily recognized because of its distinctive textual visual and

tactile properties; and so forth. Many researchers started following this route, and used multiple cues and

1
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multiple modalities (e.g., vision, sound and touch) in several applications, such as image categorization

systems, biometric identity verification systems and robots, with success. While research on this topic

is gaining momentum, how to combine cues so to achieve optimal performance is still an open issue.

Furthermore, algorithms are interesting in the real world only if they are scalable. Since multiple cue

features expand the input spaces, computational and memory efficiency become an essential requirement

for multiple cue integration algorithms. Previous cue integration algorithms (Wolpert, 1992; Nilsback

and Caputo, 2004; Lanckriet et al., 2004a; Bach et al., 2004; Bosch et al., 2007; Gehler and Nowozin,

2009b) have not paid much attentions to these aspects during their design.

Another important aspect which boosts performance is due to the enhancement of computer hardware.

As of today, it is possible to process efficiently a huge amount of data that was not even possible to store

a few years ago. With the avalanche of multimedia data on the web, it has become easier and cheaper to

obtain data for the development of statistical learning systems. We can thus expect that the classification

performance to be further boosted with an amount of data approximating even only a small fraction of

what is available on the web. On the other hand, although collecting the data is cheap, due to the noisy

nature of the Web, obtaining clean annotations of these data is still expensive. Therefore, how to reduce

supervision becomes an important question. Ideally, learning should require as little manual supervision

as possible. Multi-cue and multi-modality inputs provide us one possible solution to it, as one cue may

contain useful information for guiding the learning on the other cue.

Our aim is to use a large amount of information from multiple cues to build learning systems with

robust performance and some degrees of autonomy. In this thesis, we will address specifically the following

research questions:

• How to integrate multiple cues optimally, so to achieve robust performance?

• How to learn continuously from experience, so to achieve adaptability?

• How to exploit the relationship between different cues and transfer knowledge across them, so to

achieve autonomy?

We propose to learn the optimal perceptual integration from data using statistical learning techniques.

We will consider learning as an ongoing continuous process trying to exploit different inputs so to obtain

artificial systems able to transfer knowledge from one sensory experience to the others. This would imply

self-supervision across modalities and eventually the emergence of cognitive loops, where a cognitive loop
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is the mutual transfer of higher knowledge between different system components and algorithms, which

overcomes the weaknesses of any single system component and algorithm by combining them.

1.2 Organization and Contribution of this Thesis

According to the proposed research questions, this dissertation can be divided into two building blocks,

Cues Integration, and Cues Exploitation. In the first block, I will present several algorithms to answer

the research question on how to integrate optimally multiple features. In the second block, I will go

beyond cues integration, and discuss about possible ways to do cues exploitation, that is, make use of

informations extracted from certain cue(s) in order to facilitate the learning of the other cues with less

supervision. As opposed to the first block where a general framework exists, cues exploitation problems

are usually task specific. How to make use of the data relies on exploiting the domain knowledge and

the structure of the data. Here I will present two particular examples, one on learning visual recognition

models using images and their accompanying captions; the other is to transfer priors in multiclass visual

categorization tasks, in order to boost performance with few labelled training samples.

The main contribution of this thesis are:

• Chapter 3: A online learning framework which learns one independent classifier for each separate

cue and the weights to combine the outputs of these cue classifiers together in an online fashion.

The proposed framework is a wrapper algorithm based on the high-level integration technique in

the cue integration literature. It can be implemented with existing online learning algorithms,

and it preserves the theoretical properties of the algorithms being used. The algorithms designed

using this framework is very efficient. Experiments conducted on two real-world datasets show the

algorithm developed using our framework outperforms the case when we use each cue alone. This

chapter is partly based on Jie et al. (2009a).

• Chapter 4: Two novel Multiple Kernel Learning (MKL) formulations and several theoretically

motivated online and batch algorithms for solving the proposed formulations. To the best of our

knowledge, our online MKL algorithm, called OM-2, is the first online version of the MKL formula-

tion. All the algorithms use the stochastic gradient descent method and the mirror descent method

to solve the corresponding MKL formulations, which are very efficient and orders of magnitude

faster compare to other state-of-art MKL solvers. We prove theoretical properties of the proposed
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algorithms, including guaranteed convergence rate for the batch algorithms, which is also new in

the literature. The proposed algorithms achieve state-of-art performance on standard benchmark

databases. This chapter is mainly based on Jie et al. (2010); Orabona et al. (2010); Orabona and

Jie (2011).

• Chapter 5: A new type of weakly supervised learning problem where a bag of instances has a set

of several possible labeling vectors associated with it, and among them only one is fully correct.

Each labeling vector consists of labels for each corresponding instance in the bag. We also propose

a discriminative learning algorithm for solving the proposed problem. Our learning formulation

uses a tighter convex relaxation compared to the previous formulation of a similar problem (Cour

et al., 2009), and it also results in a better performance. This new framework allows to incorporate

in a principled way different types of constrains for labeling instances in the bag. The problem of

learning visual classifiers from unlabeled images by exploiting their accompanying captions can be

casted within this setting. Experiments show that our algorithm can learn the concepts effectively

using the weakly supervised information extracted from the caption (Chapter 5). This chapter is

partly based on Jie et al. (2009b); Jie and Orabona (2010); Jie et al. (2011a).

• Chapter 6: A multiclass transfer learning algorithm that allows to take advantage from priors

built over different features and with different learning methods than the one used for learning the

new correlated task. The system uses existing models from potentially correlated tasks as experts,

and transfers their outputs over the new incoming samples, of a new learning task where very

few labelled data are available, as additional information to boost the performance. The learning

process is defined as solving an optimization problem which considers both from where and how

much to transfer using a principled multiclass formulation (Chapter 6). The new transfer learning

algorithm improves over many previous transfer learning algorithms (discussed in Chapter 6) which

make strong assumptions on the way the prior models were constructed and the type of features

used. It is also one of the first few algorithms addressing the transfer learning problem in the

multiclass setting in the computer vision community. This chapter is based on Jie et al. (2011b).

• We have released the MATLAB codes of all the algorithms presented in this thesis, and they can

be downloaded freely from http://dogma.sourceforge.net/ (Orabona, 2009).

In this thesis, our experiments will mainly focus on visual patterns. However, all the algorithms we

http://dogma.sourceforge.net/
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propose are general and could be used in other problems. A brief introduction of the databases as well as

their features descriptors can be founded in Chapter A in the appendix. The proofs of all the theorems

in the thesis are given in Chapter B in the appendix.

1.3 Preliminaries

In this section we introduce formally the notations as well as the necessary mathematical tools and

concepts for the thesis.

Notations. We indicate scalars with lower case letters (e.g., x and λ), vectors and matrices with bold

letters (e.g., x and w), and sets with calligraphic font (e.g., X ). We also introduce two notations that will

help us to synthetize the following formulas. We indicate by [wj ]F1 :=
[
w1, w2, · · · , wF

]
, and with a bar,

e.g. w̄, the vector formed by the concatenation of the F vectorswj , hence w̄ = [wj ]F1 = [w1,w2, · · · ,wF ].

The set of real number is denoted by R, and the set of non-negative number is denoted by R+.

Norms. A generic norm of a vector w ∈ X is indicated by ‖w‖, where X is an Euclidean vector space,

and its dual norm ‖ · ‖∗ is defined as ‖v‖∗ = sup{w · v : ‖w‖ ≤ 1}.

For w ∈ Rd and p ≥ 1, we denote by ‖w‖p the p-norm of w, i.e., ‖w‖p = (
∑d
i=1 |wi|p)1/p. The dual

norm of ‖ · ‖p is ‖ · ‖q, where p and q satisfy 1/p + 1/q = 1. In the following p and q will always satisfy

this relation.

It is possible to define a (2, p) group norm ‖w̄‖22,p on w̄ as

‖w̄‖2,p :=
∥∥[‖w1‖2, ‖w2‖2, · · · , ‖wF ‖2

]∥∥
p
,

that is the p-norm of the vector of F elements, formed by 2-norms of the vectors wj . The dual norm of

‖ · ‖2,p is ‖ · ‖2,q (Kakade et al., 2009).

Convex analysis. Throughout this dissertation, we also make extensive use of some concepts from

convex analysis. Here we summarize some of the notations and concepts that are needed in the following

parts. For a more thorough introduction see for example Boyd and Vandenberghe (2004).

We consider closed convex functions g : S→ R, where in the following S will always denote a proper
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subset of X1. We will indicate the inner product between two vectors of X, w and w′, as w ·w′. Given a

convex function g : S→ R, its Fenchel conjugate g∗ : X→ R is defined as g∗(u) = supv∈S(v ·u−g(v)). A

vector x is a subgradient of a function g at v, if ∀u ∈ S, g(u)− g(v) ≥ (u− v) ·x. The differential set of

g at v, indicated with ∂g(v), is the set of all the subgradients of g at v. If g is convex and differentiable

at v then ∂g(v) consists of a single vector which is the gradient of g at v and is denoted by ∇g(v).

A function g : S → R is said to be λ-strongly convex w.r.t. a norm ‖ · ‖ if for all u,v ∈ S and

α ∈ (0, 1), g (αu+ (1− α)v) ≤ αg(u) + (1−α)g(v)− 1
2λα(1−α)‖u−v‖2. A function g∗ : S→ R is said

to be λ-strongly smooth w.r.t a norm ‖ · ‖∗ if g∗ is everywhere differentiable and if for all u,v ∈ S we

have, g∗ (u+ v) ≤ g∗(u) +∇g∗(u) · v + 1
2λ‖v‖2∗. Note that a closed and convex function g is λ-strongly

convex w.r.t. a norm ‖ · ‖ iff its Fenchel conjugate function g∗ is 1
λ w.r.t. the corresponding dual norm

‖ · ‖∗ (Kakade et al., 2009).

Classifiers. Let {xi, yi}Ni=1, where N is the number of samples, with xi ∈ X and yi ∈ Y, be the

training set drawn from an unknown probability distribution. We want to learn a classification function

f : X→ Y, which best predicts the label for any future samples drawn from the same distribution. This

prediction of the classification function is performed based on a hypothesis, s : X×Y→ R, which is called

a score function. For multiclass classification Y = {1, . . . ,K}, the final predicted class by the prediction

function can be written as:

f(x) = arg max
y∈Y

s(x, y) . (1.1)

In case of the binary classification Y = {−1,+1} , the prediction function could be simplified as

f(x) = sign s(x) . (1.2)

In both cases, the score function s(x, y) could be considered as a confidence measure of predicting sample

x to the class y.

In this thesis, we will constrain our score function to the form of linear model, which is widely used in

the literature, and can extend its description power using kernel mapping (Schölkopf and Smola, 2001).

Consider a joint feature mapping function φ(x, y) : X×Y→ H (Tsochantaridis et al., 2004) that maps the

1We allow the functions to assume infinite values, as a way to restrict their domains to proper subsets of X. However in
the following the convex functions of interest will always be evaluated on vectors that belong to their domains.



1.3. PRELIMINARIES 7

samples into a high, possibly infinite, dimensional space. This will also define kernels K((x, y), (x′, y′))

as φ(x, y) · φ(x, y). We use the standard setting for learning with kernels, the score function is written

as a function of the scalar product between a hyperplane w and the transformed sample φ(x, y) 2:

s(x, y) = w · φ(x, y) .

This definition includes the case of training M different hyperplanes, one for each class. Indeed φj(x, y)

can be defined as

φj(x, y) = [0, · · · ,0, φ′j(x)︸ ︷︷ ︸
y

,0, · · · ,0],

where φ′j(·) is a transformation that depends only on the data. Similarly w will be composed by M

blocks, [w1, · · · ,wK ]. Hence, by construction, w · φj(x, r) = wr · φ′j(x). These definitions allow us to

have a general notation for the binary and multiclass setting. In the binary case, only one hyperplane is

needed. Therefore, the joint feature mapping function is no longer needed, and the score function could

be simplified as s(x) = w ·φ(x). We will mainly focus on multiclass classification tasks across this thesis.

Learning Optimization Problem. Given a set of training samples {xi, yi}Ni=1, the supervised learning

optimization problem, which is the main focus of this thesis, is to find the modeling parameter w̄ that

minimizes the structural risk:

min
w

λh(w) +

N∑

i=1

` (w,xi, yi) , (1.3)

where h(w) is a regularizer which avoids overfitting, λ is the regularization coefficient that controls the

bias-variance tradeoff, and ` is some convex, non-negative Lipschitz loss functions, which asses the quality

of the hypothesis w on the instance and label pair (x, y). Typically, the loss function is a convex upper

bound to the true binary or multiple class misclassification loss, to have a continuous and easier to be

optimized function.

In the thesis, we consider two different loss functions for the binary and multiple classification tasks

respectively. For the binary classification, we will consider the widely used hinge loss (Cristianini and

2For simplicity we will not use the bias here, it can be easily added by modifying the kernel definition.
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Shawe-Taylor, 2000), which can be written as:

`HL (w,x, y) = |1− yw · φ(x)|+, (1.4)

where |t|+ is defined as max(t, 0).

For multiclass classification, we consider the following multiclass loss function (Crammer and Singer,

2002; Tsochantaridis et al., 2004):

`MC (w,x, y) = max
y′ 6=y
|1−w · (φ(x, y)− φ(x, y′))|+ . (1.5)

This loss function is convex and it upper bounds the multiclass misclassification loss.

Online Learning. Online learning is performed in a sequence of T consecutive rounds. On round t,

the online classifier (also known as learner) receives a question, usually casted as a vector xt, and is

required to provide an answer, denoted by ŷt. After predicting an answer, the learner receives the correct

answer, denoted as yt, and suffers a loss `(st(xt), yt). The ultimate goal of the learner is to minimize the

cumulative loss it suffers along the T rounds. To achieve this goal, the learner is allowed to choose a new

hypothesis after each round so to minimize the future loss in later rounds.

In this setting, perhaps Rosenblatt’s Perceptron algorithm (Rosenblatt, 1958) is the earliest and

simplest online learning algorithm. We will start from a brief introduction of it. The Perceptron is

designed for the binary setting. On the t-th round the instance xt is given, and the algorithm makes a

prediction

ŷt = sign(wt · xt) , (1.6)

where wt is the current hypothesis which is a real number vector of the same dimension of the vector xt.

Then the true label is revealed: if there is a prediction mistake, i.e. ŷt 6= yt, it updates the hypothesis

with the rule:

wt+1 = wt + ytxt . (1.7)

The hypothesis space is the same as the linear classification function presented in function (1.2), which
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includes the special case of mapping the sample to a high or even infinite space. In this case, the

parameter wt could not be explicitly written. We assume that the hypothesis space H is a Reproducing

Kernel Hilbert Space (RKHS) with a positive definite kernel function k : X × X → R implementing the

inner product which satisfies the reproducing property. Therefore, the updating rule (1.7) can be written

as:

st+1 = st + ytk(xt, ·) , (1.8)

where yt and xt can be stored in the hypothesis. Given the nature of this update, the hypothesis st can

be written as a kernel expansion (Schölkopf et al., 2000),

st(x) =
∑

(xi,yi)∈St

yik(xi,x) ,

where St is the set of samples stored in the hypothesis up to the current time t, usually called the

support set. The same representation trick can also be used in similar algorithms to update and store the

hypothesis function with high or infinite dimensional feature mapping.

In this thesis, several problems are formulated as an online learning problem. We would like to clarify

in the beginning that, in most of the experimental scenarios from this thesis, the samples are independent

without any sequential relation. Therefore, the online learning algorithms could also be considered as

an online optimization process for the batch problems. However, since we did not make any assumption

on the generation of the samples, all of our algorithms can work under the online information setting in

which unlabeled data comes, a prediction is made, feedback is acquired, and then the model is updated

according to the prediction and feedback. The environment could even be adversarial.

Online Convex Programming (Shalev-Shwartz, 2007). The online learning setting can be cast

as the task of online convex programming, when 1) the hypothesis space are parameterized and belongs

to a convex set denoted as S; 2) the loss function, g(w) = `(w,x, y), is a convex function w.r.t. w. In

online convex programming, the goal of the learner is to minimize the cumulative loss

T∑

t=1

gt(wt) =

T∑

t=1

`t(wt,xt, yt) , (1.9)
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where the loss function may change over time. The performance of an online convex programming

procedure also is usually assessed using the notion of regret. Given any fixed vector u ∈ S, the regret is

defined as the excess loss for not consistently choosing the vector u ∈ S,

r(u, T ) =

T∑

t=1

gt(wt)−
T∑

t=1

gt(u) .

Ideally, in a separable case, the cumulative loss of the best vector u∗ will be zero. In the more realistic case

there is no u that correctly predicts the correct answers for all the samples, and u∗ is the vector within

S which minimizes the equivalent offline convex programming problem of the objective function (1.9).



Part I

Cues Integration

It might be asked why we have more senses than one. Is

it to prevent a failure to apprehend the common sensibles,

e.g. movement, magnitude, and number, which go along

with the special sensibles? Had we no sense but sight,

and that sense no object but white, they would have tended

to escape our notice and everything would have merged

for us into an indistinguishable identity. . .

Aristotle, De Anima (350 B.C.E)

11
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Chapter 2

Background and Related Works

This chapter sets the scene for the remaining chapters of Part I. It first elaborates on our motivation

for studying cue integration (Section 2.1). Then it provides a brief overview of different cue integration

techniques and discusses their connections and differences (Section 2.2). Following that it presents the

framework for cue integration learning algorithms, which is the main focus of this thesis. As we use exten-

sively the concepts of online learning and have online optimization techniques as our main optimization

tools, the chapter also motivates our choice to formulate our algorithms as within the online learning

framework in Section 2.3.

2.1 Motivation for cue integration

In recent years, there has been a lot of interest in designing regression and classification algorithms over

multiple cues, based on the intuitive notion that using more features should lead to better performance.

In machine vision, in order to overcome the high intraclass variability within each image class, different

feature descriptors were designed to be robust to the variations within the classes. However, no single

feature type can cope with the variations from every image classes. For example, color information

could be used by the classifier to distinguish between zebras and horses, whereas the classifier should

be invariant to the shape of both classes (Figure 2.1 (left)). On the other hand, artifacts usually have

similar color and texture, and shape information could be essential for classifying these classes, such as

cars and motorbikes (Figure 2.1 (right)). Hence it has become popular to combine a set of diverse and

13
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Figure 2.1. Example images of a horse, a zebra, a car and a motorbike. (left) Zebras and horses share similar shape, while color
and texture information can be used to distinguish between these two classes. (right) Artifacts, such as cars and motorbikes,
usually have similar color and texture, but shape information can be used to distinguish between them.

complementary features to discriminate each class from all other classes in multiclass image classification

tasks (Bosch et al., 2007; Varma and Ray, 2007; Gehler and Nowozin, 2009b). Compared to unimodal

systems, multimodal systems enjoy even more advantages. Multimodal systems guarantee independent,

diverse and information-rich sensory inputs, which makes it possible to achieve robust performance in

varied unconstrained settings. Evidences from a wide range of psychophysical studies have found that

humans achieve robust perception through the combination and integration of information from multiple

sensory modalities (Ernst and Banks, 2002; Ernst and Bulthoff, 2004). Moreover, besides the purpose of

decreasing the generalization error, practitioners are often interested in more flexible algorithms which can

perform feature selection while training (Chapelle et al., 2002). These motivations have been translated

into various cue integration algorithms. In the next section, we will give a general overview of these

algorithms.

2.2 Review of Cue Integration Techniques

We first formally define cue integration for classification task.

Definition 2.1 (Classification with Multiple Cue Integration). Given a set of N training samples

{xi, yi}Ni=1 drawn from an unknown probability distribution consisting of an instance xi ∈ X and a class

label yi ∈ Y, and given a set of F feature extractors ej : X → RDj , j = 1, · · · , F , where Dj denotes the

dimensionality of the j-th feature. The goal is to learn a classification function f : X → Y from the F

features and the training set, which achieves low generalization error on the new samples.

For notational convenience, we also define the feature mapping function φj(·) to include the special

case of feature extraction. Hence, it could be considered as two independent steps, where in the first step

a feature vector is computed from the raw input using the feature extractor ej , then ej(x) is mapped into
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a high, possibly infinite, dimensional space. In the case when the identity function is used, the mapped

vector φj(x) equals to the original feature vector ej(x).

For visual patterns, the sample xi can be an image or a video clip. For multimodal patterns, we define

xi as the inputs from all the sensors. In this thesis, we do not consider the dynamic information within

each pattern. The images considered in our experiments are all still images. However, the cue integration

techniques presented here are general, and could be extended to classifiers on time series data. When

integrating inputs from several sensors, synchronization between these inputs is another important issue

for time series data. However, this is out of the scopes of this thesis, and we will assume that all the

inputs are perfectly synchronized. For more through discussion on the synchronization techniques, we

refer to the papers of (Sanderson and Paliwal, 2004; Polikar, 2006).

2.2.1 Fusion Types

This chapter is a review of the most important approaches to information fusion. In information fusion

literature (Sanderson and Paliwal, 2004), cue integration is often divided into three main categories: low-

level integration, middle-level integration, and high-level integration. We do not plan to cover exhaustively

every methods in each category. We will only present the most common approaches, and illustrate them

with the linear classifier as basic hypothesis. For a through review, we refer the interested readers

to (Sanderson and Paliwal, 2004; Polikar, 2006).

Low-level Integration. The low-level integration is also known as feature level fusion. Features ex-

tracted from data are combined. Feature vectors could be concatenated together and form a new feature

vector. Then the parameters of the classifier could be learned using any supervised learning algorithm.

Using the concepts introduced in Section 1.3, the score function using multiple cues could be written as:

S(x, y) = w̄y · φ̄(x) = w̄y · [φ1(x), φ2(x), · · · , φF (x)] , (2.1)

where w̄y is the hyperplane for class y, of dimension
∑
j D

j . If we decompose the hyperplane w̄y into

F blocks, [w1
y,w

2
y, · · · ,wF

y ], with each block wj
y corresponding to a feature, the score function (2.1) can
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then be transformed into:

S(x, y) =

F∑

j=1

wj
yφ

j(x) . (2.2)

Because the new feature vector is created by the concatenation of several feature descriptors, those

feature mapping functions φj(x) which map x into an infinite dimensional space could not be easily

used, particularly if the optimal kernel for each cue comes from different families with different kernel

parameters. However, it is possible to apply these kernels to the cues respectively and sum them together,

because the summation of kernels is still a kernel (Schölkopf and Smola, 2001). This approach can be

categorized as the Middle-level Integration technic.

Middle-level Integration. Combining two cues at a middle level means that the different features

descriptors are processed separated, but they are integrated into a single classifier generating the final

hypothesis. Example of this type of fusion is the linear combination of kernels. We define the new kernel

function as:

k̄(x,x′) =

F∑

j=1

βjkj(x,x′) =

F∑

j=1

βjφj(x) · φj(x′) ,

where kj(·, ·) is a kernel for the j-th feature descriptor defined by the feature mapping function φj(·), and

βj are non-negative weights corresponding to the importance of the j-th feature. Subsequently, the new

combined kernel could be used in a kernel learning algorithm, such as a support vector machine (SVM),

to learn the classifier. When a SVM is used, using the representer’s theorem (Schölkopf et al., 2000), the

resulting score function could be written as

S(x, y) = αy · [k̄(x, x1), k̄(x, x2), · · · , k̄(x, xN )]

=

F∑

j=1

βjαy · [kj(x1, x), · · · , kj(xN , x)]

=

F∑

j=1

βjαy · [φj(x1) · φj(x), · · · , φj(xN ) · φj(x)] , (2.3)
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where αy ∈ RN is the SVM dual multipliers. By substitution, equation (2.3) can be converted into the

form

S(x, y) =

F∑

j=1

wj
y · φj(x) , (2.4)

where wj
y is a weighted summation of φj(·). It can be written as wj

y =
∑N
i=1 β

jαy[i] φj(xi), where αy[i]

is the i-th element of vector αy. In case that φj(·) maps the feature vector into an infinite dimensional

space, where wj could not be stated explicitly, the algorithm can easily store βj and αy instead of wj .

Several different approaches have been used to set the weights βj . Arguably the simplest method is

to make βj = 1
F ,∀j = 1, · · · , F , which is equivalent to average all the kernels. Several learning based

approaches have also been developed, typically by minimizing errors on training data.

High-level Integration. High-level integration is also known as decision or opinion fusion. In high-

level integration, a classifier is trained for each cue, then each classifier provides a decision (hard labels)

or opinions (usually confidence scores) for the new sample. Depending on the type of outputs from

the cue classifiers, these outputs can be combined to make a final decision using approaches such as

majority voting, logic operators such as AND and OR, or weighted summation. Typically, decision

fusions suffer from many constrains. For example, majority voting requires an odd number of classifiers

for binary classification problem, and much more classifiers than the number of classes for a multiclass

problem in order to prevent ties. Weighted summation usually suffers less constrains, and empirically

this approach also obtained good performance on various tasks (Nilsback and Caputo, 2004; Gehler and

Nowozin, 2009b). In this thesis, we will focus on the weighted summation fusion technique. In weighted

summation, the scores regarding class y from F experts are combined using:

S(x, y) =

F∑

j=1

βjys
j(x, y) =

F∑

j=1

βjyw
j
y · φj(x) , (2.5)

where βjy are weights (could possibly be negative), which intuitively define how much the integration

classifier should trust the j-th classifier. Since βjy is a scalar, it can be eliminated by product with wj
y.

High-level integration could also be perceived as a two-layers structure. In the first layer, a classifier is

trained for each cue, where we could use different types of learning algorithms to obtain the classifiers. In
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Name Prediction Function Coefficients Learning

Low-level ŷ = arg maxy∈Y w̄y · φ̄(x) w̄y ∈ R
∑
j D

j

∀j = 1, · · · , F, y = 1, · · · , K
wy , jointly

Middle-level (MKLprimal) ŷ = arg maxy∈Y
∑F
j=1w

j
y · φ

j(x) wjy ∈ RD
j

∀j = 1, · · · , F, y = 1, · · · , K
wjy , jointly

Middle-level (MKLdual)
ŷ = arg maxy∈Y

∑F
j=1 β

jαy·
[kj(x1, x), · · · , kj(xN , x)]

β ∈ RF , αy ∈ RN
∀y = 1, · · · , K

β and αy , jointly

High-level ŷ = arg maxy∈Y
∑F
j=1 β

j
yw

j
y · φ(x) β ∈ RF or RK×F , w ∈ RD

j

∀j = 1, · · · , F, y = 1, · · · , K
1. wjy , independently
2. β, jointly

Table 2.1. Comparison of different cue integration techniques.

the second layer, the outputs of the classifiers are combined with different flavors (Nilsback and Caputo,

2004; Jie et al., 2009a; Gehler and Nowozin, 2009b).

2.2.2 Comparison and Learning

In this chapter we compare the cue integration techniques presented in the previous section, and discuss

the specific learning algorithms. Table 2.2.2 summarizes the cue combination techniques in our unified

setting.

From function (2.2), (2.4) and (2.5), it can be observed that the prediction functions of the three

integration techniques can be expressed in the same form while using a linear combination hypothesis

without considering the bias term. Hence, these three integration formulas are essentially equivalent,

and their difference is given only by the specific training procedures used. Which integration techniques

should be preferred over the others? These techniques will, in general, give different decision boundaries

when trained on the same dataset.

For both low-level and high-level integration algorithms, existing learning algorithms designed for

single cue could be directly applied. For low-level integration, the resulting variation of the algorithm

will enjoy the same theoretical guarantee of the used learning algorithms. However, in practice, vector

concatenation does not work as well as expected, because there is no explicit control over how much each

vector contributes to the final decision. Another downside is the dimensionality of the resulting feature

vector, which can lead to the curse of dimensionality problem (Duda et al., 2001; Bishop, 2006).

The concept of high-level integration has become more popular in recent years and achieved state-

of-art performance in several image recognition benchmark tasks (Gehler and Nowozin, 2009b). This

approach dates back to the seminal work of Wolpert (Wolpert, 1992) in the ’90s. Both papers (Wolpert,

1992; Gehler and Nowozin, 2009b) use cross-validation methods to gather training set for the second
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layer. In general, various types of learning algorithms could be used in both layers. The classifiers of

the first layer are usually considered as “experts” which could also be treated as “black boxes”, and

flavors of the algorithms (Nilsback and Caputo, 2004; Gehler and Nowozin, 2009b) usually come from the

methods used in the second layer to learn the weights for combining the experts’ outputs. For example,

a classifier with regularizer that imposes sparsity (Gehler and Nowozin, 2009b) is used which favors the

selection of only a subset of experts. The theoretical properties of this family of algorithm are usually due

to specifically selected algorithms. In case an algorithm for learning with expert advices is used (Cesa-

Bianchi and Lugosi, 2006), it is possible to prove that the combined classifiers will perform at least as

well as the classifier using the best cue. Another big advantage of this approach is that it allows us to use

the developed learning algorithms without much modification. On the other hand, due to the two-layers

structure which splits the optimization process into two phases, this approach is usually sub-optimal. In

Chapter 3, we will introduce a multi-cue online learning framework using the two-layers structure, and

present its theoretical and empirical results.

Middle-level integration is a relatively new concept. Focusing on the domain of kernel learning, instead

of combining kernel classifiers as in high-level integration, the focus of research is on how to build an

optimal new kernel as a weighted combination of kernels. A conceptually simple approach (Bosch et al.,

2007; Tommasi et al., 2008) is to divide the training data into training and validation set, then find the

best combination of the weights which achieve best performance on the validation set. A disadvantage

of this approach is that it soon becomes intractable when the number of kernels, i.e., the number of

weighting parameters, grows. A different approach with a joint optimization formulation is the Multi

Kernel Learning (MKL) (Lanckriet et al., 2004b; Bach et al., 2004; Sonnenburg et al., 2006; Zien and Ong,

2007; Rakotomamonjy et al., 2008; Xu et al., 2008; Nath et al., 2009; Varma and Babu, 2009; Kloft et al.,

2009), which solves a joint optimization problem while also learning the optimal weights for combing

the kernels. Recent findings seems to indicate that current MKL algorithms do not improve much over

the naive baseline of averaging all the kernels (Gehler and Nowozin, 2009b; Cortes, 2009). We argue

that the negative results for MKL is mainly due to the complexity of its learning process as well their

optimization formulation. The learning usually stops early, before reaching the optimal solution. Again

due to the computational complexity, most MKL algorithms are binary, and could not be extend to other

types of loss easily. It prevents MKL algorithms from using loss functions which are more suitable for the

tasks, such as the multiclass hinge loss (Crammer and Singer, 2002) and structured loss (Tsochantaridis
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et al., 2004). In Chapter 4 we will present a new online optimization framework to solve efficiently the

MKL problem, with a guaranteed convergence rate to the optimal solution. The new MKL algorithms

developed from this framework is independent on the particular convex loss function used and achieve

state-of-the art performance on many classification tasks.

2.3 Motivation for Online Learning

Cognitive systems learn continuously from experience, updating and enriching their internal models of the

environment. This learning mechanism is the main reason why cognitive systems are capable of achieving

a robust, yet flexible capability to react to novel stimuli. Moreover, in realistic setting, many problems

are intrinsically sequential and data will not be available at the same time. Sometimes the learned

concept might change over time. Autonomous robots, for example, need to learn continuously from their

surroundings, to adapt to the ever changing environment and maintain satisfactory performance. Another

example is the human hearing system gradually adapting to a special accent or a very noisy environment.

All these interesting scenarios demand learning algorithms able to update their internal representation

efficiently when new training sample arrives. This is opposed to the traditional batch learning algorithms

which are not designed to be updated often. Most of the time updating the solution is possible only

through a complete re-training, using the training set consisting by the existing samples plus the new

training samples. We may still be far from the ultimate dream of life-long learning (Thrun, 1996), but our

algorithms move one step forward towards this direction. On the other hand, the algorithms developed

in the online learning framework are intrinsically designed to be updated after each sample is received.

We believe that online updating is an essential component for learning algorithms carried by artificial

intelligent systems. Therefore, in this thesis, we look at the same time at the problem from a learning

and optimization point of view, and we design algorithms capable of updating their solutions efficiently

when new samples arrive.

From the computational point of view, the computational complexity per update of most online

learning algorithms is extremely low compared to the batch methods. Thanks to recent theoretical

developments in the machine learning community, several powerful online learning frameworks (Shalev-

Shwartz, 2007; Xiao, 2010; Duchi and Singer, 2009) have been proposed, which allows us to minimize

the structural risk minimization problem with various regularizers and convex loss functions efficiently.
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Using the proposed frameworks, we are able to design efficient online learning algorithms to solve a few

complex batch learning problems efficiently with theoretical guarantees.



22 CHAPTER 2. BACKGROUND AND RELATED WORKS



Chapter 3

Two-Layers Approach: An Online

Learning Framework

In this chapter we propose an online learning framework for learning over multiple cues using the concept

of high-level integration introduced in Section 2.2. We call this framework Online Multi-Cue Learning

(OMCL). After an Introduction of the basic framework, Section 3.2 provides a practical algorithm with

bounded memory requirement designed using the proposed framework. Section 3.3 presents an approach

to transform the solution of the online algorithm to a batch one, which have better generalization perfor-

mance. Section 3.4 reports experiments on two different scenarios: the first is place recognition, simulating

the scenario where a robot is shown an indoor environment composed of several rooms (kitchen, corridor,

etc), and later it is supposed to localize and navigate to perform assigned tasks. The second is object cat-

egorization, simulating the scenario where the autonomous agent is presented a collection of new objects.

For both scenarios, results show that the algorithm learns the new concepts in real time and generalizes

well to new concepts. The chapter concludes with a summary discussion. This chapter is partly based

on the following publication:

Jie, L., Orabona, F., and Caputo, B. (2009). An online framework for learning novel concepts over

multiple cues. In Proceedings of the 9th Asian Conference on Computer Vision.

23
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Algorithm 1 OMCL Framework

Initialize: cue classifier f j , ∀i = 1, 2, ·, F ; integration classifier f ′

for t = 1, 2, . . . , T do
Receive a new instance xt
Classifiers in the first layer output scores sj(xt, y), ∀y ∈ Y, j = 1, · · · , F
Classifier in the second layer predict a label ŷt = f ′(St) = f ′([s1(xt, 1), ·, sj(xt, y), ·, sF (xt,K)])
The true label yt is revealed to the classifiers and they suffer losses
Classifiers f and f ′ update their representations

end for

3.1 Introducing the OMCL Framework

The OMCL framework is a two-layers wrapper algorithm, as illustrate in Algorithm 1. It is designed

using the high-level integration technique. In the first layer, a classifier is trained for each cue, where

each classifier provides a confidence interpretation for the target class. On top of these classifiers, another

online learning algorithm is added to learn the linear combination of different cues. As in the standard

online learning setup, learning takes place at each round, estimating each new hypothesis as a function

of the previous one.

Several works have been proposed to combine advices of multiple experts, such as the weighted

majority algorithm (Littlestone and Warmuth, 1989) and the exponential weights algorithm (Cesa-Bianchi

and Lugosi, 2006, Chapter 2). However, they assume black-box classifiers. Nevertheless, algorithms like

the exponential weights algorithm could still be used in the second layer of our framework to combine the

inputs from the first layer, which will preserve the same kind of performance guarantees and identify the

best cue among the classifiers. Here we want to learn the best combination of classifiers, not just picking

the best one. A theoretically motivated method for online learning over multiple cues has been proposed

in (Cavallanti et al., 2009), however they assume that all the cues live in the same space, meaning that

the same kernel must be used on all the cues. On the other hand, in our framework, we are allowed to

use different kernels for different cues.

The OMCL framework allows us to design interesting online multi-cue learning algorithms satisfying

various design requirements, such as memory bound and performance guarantees, by plugging in specifical

algorithms. Given the regret bounds of the algorithm implemented at the second layer, it is possible to

bound the cumulative loss of the resulting multi-cue algorithm.

Theorem 3.1. Let (x1, y1), · · · , (xT , yT ) be a sequence of examples where xt ∈ X, y ∈ Y. Suppose that

the regret of the linear classifier f ′ which combines the outputs of classifiers in the second layer is r′(u, T )
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for any u ∈ RF∗K , and the same type of loss functions are used for classifiers at both layers. Then, the

cumulative loss of the algorithms under the OMCL framework (Algorithm 1) on this sequence of example

is bounded by

T∑

t=1

g′(wt) ≤ min
j

(

T∑

t=1

gj(vjt )) + r′(u, T ) ,

where g′(wt) = `(wt,St, yt) is the loss of the classifier from the second layer, and gj(vjt ) = `(vjt ,xt, yt)

is the loss of the j-th cue classifier from the first layer.

The theorem suggests that the worst performance of the algorithms developed using OMCL framework

is not much worst than the best performance for using a single cue. Suppose that only one unknown cue

is useful for the classification task at hand while the others F − 1 are irrelevant. Algorithms developed

using the OMCL framework guarantee that we don’t pay much price for not knowing which one is the

useful cue. Although the theorem assumes that all the classifiers use the same type of loss function, it

still covers most of the interesting cases in the classification tasks. For popular loss functions such as

the hinge loss and multiclass loss, similar upper bound also holds for the relative number of mistakes on

the same sequence of samples. How to design concrete algorithms using the proposed framework will the

topic of the next Section.

3.2 OMCL-BM Algorithm

In this section we introduce an online multi-cue learning algorithm with bounded memory (OMCL-BM)

using the proposed framework.

When designing a learning algorithm, we have to keep in mind three properties: performance, memory

and learning time. Most online learning algorithms have very low computational complexity and can

update efficiently, but their performance is usually lower than similar batch algorithms. On the other

hand, multi-cue inputs guarantee diverse and information-rich data, which make it possible to achieve

higher and robust performance in varied, unconstrained settings. However, when using multiple inputs,

the memory requirements as well as the computational time are linearly or even super linearly (e.g.,

computational time) proportional to the number of inputs, for both the training and test phase.

We try to design an algorithm to combine the best of both worlds. In the first layer, we first sacrifice
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Algorithm 2 Multiclass OMCL-BM Algorithm

1: Input: ηj ,∀j = 1, · · · , F ; C
2: Initialize: f j0 : sj0 = 0, ∀j = 1, · · · , F ; f ′0 : W 0 = [w1,0, · · · ,wy,0, · · · ,wK,0] = 0
3: for t = 1, 2, . . . , T do
4: Receive new instance xt
5: Compute sjt(xt, y), ∀y = 1, · · · ,K
6: Predict ŷt = arg maxy∈Ywy,t−1 · St = arg maxy∈Ywy,t−1 · [s1

t (xt, 1), · · · , sjt(xt, y), · · · , sFt (xt,K)]
7: Receive yt
8: for j = 1, 2, · · · , F do
9: Compute y′t = arg maxy 6=yt s

j
t(xt, y)

10: Compute `jt = max(0, 1− sjt(xt, yt) + sjt(xt, y
′
t))

11: if `jt > 0 then
12: Set U j = kj ((xt, yt) , ·)− k ((xt, y

′
t) , ·)

13: Compute projection operator P jt−1 (Orabona et al., 2009, Figure 4)

14: Compute projection error ∆ = ‖U j − P jt−1

(
U j
)
‖

15: if yt = f jt−1(xt) or ∆ ≤ ηj then

16: Compute αjt = min{ `
j
t

‖P jt−1(Uj)‖2
, 2

`
j
t−‖∆‖/η

‖P jt−1(Uj)‖2
, 1}

17: Projection update: sjt = sjt−1 + αjtP
j
t−1

(
U j
)

18: else
19: Normal update: sit = sit−1 + U j

20: end if
21: end if
22: end for
23: Compute y′t = arg maxy 6=yt wy,t−1 · St
24: Compute `t = max(0, 1− (wyt,t−1 −wy′t,t−1) · St)
25: Set τt = min{C, `t

2‖St‖2
}

26: Update wyt,t = wyt,t−1 + τtSt, wy′t,t
= wy′t,t−1 − τtSt

27: end for

performance in favor of bounded memory growth and fast update of the solution for each separate cue,

by using a budget online learning algorithm with bounded memory usage (Orabona et al., 2009). We

then recover the performance by using multiple cues with a linear Passive-Aggressive (Crammer et al.,

2006) algorithm which tries to learn an optimal combination of the outputs of the classifiers in the first

layer. The pseudo code of the multiclass version of the proposed algorithm is shown in Algorithm 2. In

the rest of this section, we briefly introduce the basic online learning algorithms adopted in OMCL-BM.

3.2.1 Projectron++ Algorithm

In the kernel Perceptron, each time an update occurs, a new instance is added to the support set, denoted

by St. This will eventually lead to a memory explosion. As we aim to use the algorithm in applications

where data must be acquired continuously in time, we need an algorithm with slower memory growth or

even bounded memory requirements. The Projectron++ (Orabona et al., 2009) algorithm is a Perceptron-
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like algorithm bounded in space and time complexity. The core idea of the algorithm comes from the work

of Downs et. al. (Downs et al., 2001) on simplifying the Support Vector Machine solutions. Hence, instead

of updating the hypothesis every time a prediction mistake is made, or when the prediction is correct

with low confidence, i.e., when 0 < ytft−1(xt) < 1, the Projectron++ first checks if the update can be

expressed as a linear combination of vectors in the support set. In case of kernels with infinite dimensional

space such as the Gaussian kernel, it is not possible to find a finite number of linearly independent vector

which span the whole space. The algorithm could still approximate the concept of linear independence

with a finite number of vectors. When such linear combination (possibly approximately) is possible, the

kernel transformation of the new instance xt can be written as

k(xt, ·) u Pt−1 (k (xt, ·)) =
∑

xi∈St−1

dik(xi, ·) ,

where Pt−1 is the projection operator, which could be computed efficiently and incrementally at each step

using the method described in (Orabona et al., 2009, Figure 4). Then the coefficients in the old hypothesis

are changed to reflect the addition of the instance during updating. The concept of linear independence

can be approximated and tuned by a parameter η that measures the quality of the approximation. If

the instance can be approximated within an error η, in another word, if ||sN
t − sP

t || ≤ η, where sN
t is

a temporary hypothesis using normal update, and sP
t is a projected hypothesis using the projection,

the projected hypothesis will be used. If the instance and the support set are linearly independent, the

instance is added to the set, as for the Perceptron.

The size of the support set of the Projectron algorithm is bounded (Orabona et al., 2009, Theorem

1). As a result, the support set of the OMCL-BM algorithm is also bounded because in the second layer

the algorithm will only use a linear classifier whose memory requirement is a constant number.

3.2.2 Passive-Aggressive Algorithm

The Passive-Aggressive (PA) algorithm was introduced by Crammer et al. (2006). It is a margin based

online learning algorithm. The main idea of PA is to update classifiers by the smallest width, so that

the currently referred training sample may be classified correctly. In multiclass classification task, we

consider the loss function `MC. On round t, when the learner suffers a loss, PA updates the new weight
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vector wt to be the solution of the following convex optimization problem

W t = arg min
w

1

2
‖W −W t−1‖2 + Cξ , s.t. `MC(W t,St, yt) ≤ ξ and ξ ≥ 0 . (3.1)

It can be verified that the solution to the optimization problem in equation (3.1) has a closed form

solution,

wyt,t = wyt,t−1 + τtSt , and wy′t,t
= wy′t,t−1 − τtSt ,

with,

y′t = arg max
y 6=yt

wy,t · St , and τt = min{C, `MC

2‖St‖2
} .

Here, wy,t is the y-th block of the parameter W t, which corresponds to the hyperplane of the y-th class.

The PA algorithm makes aggressive updates in the sense that even a small loss forces an update of the

hypothesis. Empirically it obtains very good performances on many classification tasks.

3.3 Online to Batch Conversion

Online algorithms are meant to be constantly used in teacher-student scenarios. Hence the update process

will never stop. However it is possible to transform them to batch algorithms, that is to stop the training

and to test the current hypothesis on a separate test set. It is known that when an online algorithm stops

the last hypothesis found can have an extremely high generalization error. This is due to the fact that

the online algorithms are not converging to a fixed solution, but they are constantly trying to “track”

the best solution. If the samples are Independent & Identically Distributed (IID), to obtain a good batch

solution one can use the average of all the solutions found, instead of the last one. This choice gives also

theoretical guarantees on the generalization error (Cesa-Bianchi et al., 2004).

Our system produces F + 1 different hyperplanes at each round. In principle we could simply average

each hyperplane separately, but this would break the IID assumption of the inputs for the second layer.

So we propose an alternative method: given that the entire system is linear, it can be viewed as producing

only one hyperplane at each round, that is the product of the two hyperplanes. Hence we average this
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unique hyperplane and in the testing phase we predict with the formula:

arg max
y∈Y

(
1

T

T∑

t=1

wy,t · [s1
t (xt, 1), · · · , sjt (xt, y), · · · , sFt (xt,K)]

)
.

Note that, as f jt can be written as a kernel expansion, the averaging does not imply any additional

computational cost, but just an update of the coefficients of the expansion. We use this approach as it

guarantees a theoretical bound (Cesa-Bianchi et al., 2004) and it was also found to perform better in

practice.

3.4 Experiments and Results

We present an experimental evaluation of our approach on two different scenarios, supported by two

publicly available databases. The first scenario is place recognition for a mobile robot, and the experiments

were conducted on the IDOL2 dataset. The second scenario consists of learning new object categories,

and the experiments were conducted on the ETH80 dataset. As most of the databases used within this

thesis are popular publicly available databases and feature extraction is not the focus of this thesis,

while explaining the experimental setup here, as well as in the rest part of this thesis, we will omit

the introduction of the datasets and the details of feature extraction. These details can be found in

Appendix A. Both experiments can be considered as a teacher-student scenario, that is when a new concept

(rooms, or objects) is presented to the robot, the system (student) can ask the human teacher to provide

a label. Since the algorithms are intended to be used by a mobile system, where both computational and

memory resources are limited, OMCL-BM algorithm is particularly suitable for these applications.

For all experiments, we compared the performance and the memory requirements to the standard

Perceptron algorithm by replacing the Projectron++ algorithm in our framework (OMCL-PERC). We

also compared our algorithms to two different cues combination algorithms: a low-level integration method

and the majority voting algorithm. For the low-level integration baseline (Flat), we concatenate all the

features of different cues into a long feature vector, then learn the classifier using the Projectron++

classifier. The majority voting algorithm (Vote) predicts the label by choosing the class which receives

the highest number of votes. As for a majority voting algorithm in the multiclass case, the number

of experts (number of cues in our experiments) required by the algorithm which guarantees a unique
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a. OMCL-PERC b. OMCL-BM
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Figure 3.1. Average online training error rate (top) and classification error rate (bottom) on the test set of the IDOL2 dataset
as a function of the number of training samples.

solution will grow exponentially with the number of classes. Although it does not happen very often in

practice, we show that sometimes two or more classes receive an equal number of votes, especially when

the number of cues is relatively small compared to the number of classes. We determined all of our online

learning and kernel parameters via cross-validation.

3.4.1 First Scenario: Place Recognition

We performed the first series of experiments on the IDOL2 database (see Appendix A). For experiments,

we used the same setup described in (Luo et al., 2007, Section V, Part B). We considered the 12 sequences

acquired by the robot Dumbo, and divided them into training (6 sequences) and test sets (6 sequences),
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cue OO CR TO KT PA ALL
Color 28.4 9.5 8.1 9.9 31.4 17.4
CRFH 14.2 4.1 15.4 15.4 11.1 12.0
BOW 21.5 6.9 17.5 11.4 8.4 13.1
Laser 7.6 3.7 8.5 10.7 12.9 8.7

OLMC-BM 7.6 2.5 1.9 6.7 13.3 6.4

Flat 5.7 2.7 7.5 8.5 11.8 7.2

Vote 11.7 3.3 5.3 5.2 9.1 6.9
(6%) (2%) (3%) (3%) (7%) (4%)

Table 3.1. Place recognition error rate using different cues after the last training round. Each room is considered separately
during testing, and it contributes equally to the overall results as an average. It shows that the OMCL algorithm achieves better
performance than that of using each single cue. For Vote, the percentage of the test data which have two or more classes receive
equal number of votes is reported in the bracket below the error rate. Hence the algorithm can not make a definite prediction.
Therefore we consider that the algorithm makes a prediction error.
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Figure 3.2. Average size of support set for different algorithms
on the IDOL2 dataset as a function of the number of training
samples.
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Figure 3.3. Visualization of the average normalized weights
obtained by OMCL-BM on the IDOL2 dataset at the last
training round for combining the confidence outputs of Pro-
jectron++.

where each training sequence has a corresponding one in the test sets, captured under roughly similar

conditions. Similarly, each sequence was divided into 5 subsequences. In total, we considered 12 different

permutations of training and test sets. Learning is done in chronological order, i.e. how the images were

captured during the acquisition of the dataset. During testing, all the sequences in the test set were taken

into account.

Figure 3.1 reports the average online training and recognition error rate on the test set, where the

average online training error rate is the number of prediction mistakes the algorithm makes on a given

input sequence normalized by the length of the sequence. Figure 3.2 shows the size of the support sets as

a function of the number of training samples. Here, the size of the support set of OMCL-BM is close to
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that of OMCL-PERC. This is because the support set of OMCL-PERC is already very compact. Since

the online training error rate is low, both algorithms do not update very frequently. In Table 3.1 we

summarize the results using each cue after finishing the last training round. We see that our algorithm

outperforms both the low-level integration techniques and the majority vote algorithm. The majority

vote algorithm could not make a definite prediction on approximately 4% of the test data, because there

are two or more classes which received an equal number of votes. Moreover, we also visualize the weights

obtained by our algorithm at the last learning round in Figure 3.3. We can see that the weights on the

diagonal of the matrix, which corresponds to the multiclass classifiers’ confidence interpretations on the

same target category, have the highest values.

3.4.2 Second Scenario: Object Categorization

a. OMCL-PERC b. OMCL-BM c. OMCL-BM (sparser)
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Figure 3.4. Average online training error rate (top) and classification error rate (bottom) for classifying never seen objects on the
ETH-80 dataset as a function of the number of training samples. We see that all algorithms achieve roughly similar performance
(OMCL-BM is slightly better), OMCL-PERC converges earlier than OMCL-BM.

We tested the algorithm on the ETH-80 objects dataset. We randomly selected 7 out of the 10 objects

for each category as training set, and the rest of them as test set. All the experiments were performed

over 20 different permutations of the training set.
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Cues apple car cow cup dog horse pear tomato all
LxLy 24.0 3.41 53.4 29.4 29.6 49.1 7.11 9.4 25.6
DirC 22.4 21.9 57.0 40.4 63.9 56.4 31.0 3.6 37.1
Color 37.8 20.1 13.7 19.2 46.5 63.5 32.6 0.6 29.2
Shape 30.9 1.5 28.5 2.3 32.2 28.1 3.6 35.9 20.3

OLMC-BM 4.1 5.2 25.3 1.7 33.1 39.5 6.6 6.5 15.2

Flat 29.3 1.5 28.2 2.0 32.1 28.0 3.3 35.1 20.0

Vote 24.2 1.3 30.1 11.3 34.0 41.2 3.6 6.1 19.0
(19%) (1%) (15%) (9%) (18%) (20%) (3%) (5%) (11%)

Table 3.2. Categorization error rate for different objects using different cues after finishing the last training round. We could see
that our algorithm outperforms the Flat baseline, the Vote algorithm and the cases when using each cue alone. It also shows that
some cues are very descriptive of certain objects, but not of the others. For example, the color feature achieves almost perfect
performance on tomato, but its performance on other objects is low. It also supports our motivation on designing multi-cues
algorithms. For the Vote algorithm, the percentage of test data which have two or more classes receives equal number of votes
is reported in the bracket.
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Figure 3.5. Average size of support set for different algorithms
on the ETH80 dataset as a function of the number of training
samples.
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Figure 3.6. Visualization of the average normalized weights
obtained by OMCL-BM at the last training round for combin-
ing the confidence outputs of Projectron++.

We first show the behavior of the algorithms over time. In Figure 3.4, we show average online training

error rate (top) as well as the average classification error rate (bottom) on never seen objects as a function

of the number of learned samples. In the experiments, we used two different settings of the η parameters,

labeled as OMCL-BM and OMCL-BM (sparser). The growth of the support set as a function of the

number of samples is depicted in Figure 3.5. We see that the Projectron++ algorithm obtains similar

performance as the Perceptron algorithm with less than 3/4 (OMCL-BM) and 1/2 (OMCL-BM (sparser))

of the size of the support set. It is also interesting to observe that although the color feature achieve very

low online training error rate (see Figure 3.4, top), it has high test error rate because the color feature

is less discriminative in categorization tasks. However, our cue integration algorithm still achieve robust
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performance using other features.

Finally, in Table 3.2 we summarize the error rate using different cues for each category after finishing

the last training round (Projectron++). In this table we can see that our algorithm outperforms its

competitors. Figure 3.6 shows the normalized average learned weights for the linear Passive-Aggressive

classifiers. From the figures, we could see that the weights on the diagonal of the matrix, which cor-

responds to a multiclass classifier’s confidence interpretation on the same target category, have highest

values. As opposed to this, confidence output corresponding to the most confusing category usually

have lowest weights: for instance, when predicting apple using shape cue, the weight for the confidence

corresponding to tomato have smallest value (bottom left value in the matrix).

3.5 Summary

In this chapter, we presented an online framework using a two-layers structure for learning from multiple

cues. This high-level cue integration algorithm does not require using cross-validation techniques to

collect training data in order to learn optimal combination of different cues. In our algorithm, both the

cue classifiers and the combination classifier are trained in an online fashion and update their models

when a new sample arrives. Therefore, the algorithm is very efficient and easy to implement, and can be

used in real time on mobile platforms with limited computational resources. Using the proposed online

framework, we designed the OMCL-BM algorithm with bounded memory. Experiments on two datasets

showed that the developed algorithm is able to learn a linear weighted combination of the marginal

output of classifiers on each source. This method outperforms the case when we use each cue alone.

Moreover, it achieves a performance comparable to the batch performance (Leibe and Schiele, 2003; Luo

et al., 2007) with a much lower memory and computational cost. More specifically, using the budget

Projectron++ algorithm, the new multi-cue algorithm can reduce the problem of the expansion of the

input space and memory requirement. Thanks to the robustness gained by using multiple cues, the

algorithm can reduce more the support set without any significant loss in performance. This trade-off

would be a potentially useful function for applications working in a highly dynamic environment and

with limited memory resources, particularly for systems equipped with multiple sensors.

However, since the classifier for each cue is learned independently and the two-layers structure splits

the optimization process into two phases, this type of approach is usually sub-optimal. In the next
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chapter, we will present a different approach which solves a joint optimization problem while also learns

the optimal weights to combine the cues. This approach is theoretically found, and empirically it also

consistently achieves better performance on several different tasks.
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Chapter 4

One-Layer Approach: MKL with

Online-Batch Optimization

In this chapter we present several Multi Kernel Learning (MKL) algorithms which can be categorized

as a type of middle-level feature integration algorithm. Section 4.1 introduces briefly the original MKL

formulation and reviews the related works. In Section 4.2, we introduce the lp norm MKL formulation

which is strongly convex. This opens the possibility to design efficient online (OM-2, Section 4.3) and

batch (OBSCURE, Section 4.4) algorithms for solving the proposed formulation efficiently. Then a sparse

MKL formulation using an elastic net form of regularization and its optimization procedure are presented

in Section 4.5, that achieves better performance on problems which are sparse. For all the algorithms we

show their theoretical guarantees and conduct experiments to support our claims. It can be found that

our algorithms achieve state-of-the-art performance on many classification tasks. This chapter is mainly

based on the following publications:

Jie, L., Orabona, F., Fornoni, M., Caputo, B., and Cesa-Bianchi, N. (2010). OM-2: An online

multiclass multi-kernel learning algorithm. In Proceeding of the 4th IEEE Online Learning for

Computer Vision Workshop.

Orabona, F., Jie, L., and Caputo, B. (2010). Online-Batch Strongly Convex Multi Kernel Learning.

In Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition.

Orabona, F., and Jie, L., (2011). Ultra-Fast Optimization Algorithm for Sparse Multi Kernel

37
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Learning. In Proceedings of the 28th International Conference on Machine Learning.

4.1 Introduction

In the MKL framework (Lanckriet et al., 2004a; Bach et al., 2004; Sonnenburg et al., 2006; Zien and Ong,

2007; Rakotomamonjy et al., 2008; Varma and Babu, 2009), different feature descriptors are transformed

into kernels, where each feature corresponds to one or several kernels (computed using various families

of kernels, or the same type of kernel with different kernel hyper-parameters). The integration is done

through a weighted linear combination of kernels, where the importance of each kernel is reflected through

the weight assigned to it. Rather than taking a brute-force approach to set the weights through cross-

validation, the MKL algorithms solve a joint optimization problem which learns the classifier while

also learning the optimal weights for combining the kernels. MKL methods are theoretically founded,

because they are based on the minimization of an upper bound of the generalization error (Kakade et al.,

2009; Cortes et al., 2010), like in standard SVM. The MKL optimization problem was first proposed

in Bach et al. (2004) and extended to multiclass in Zien and Ong (2007). Using the group norm notation

introduced before (Section 1.3), the classic MKL optimization problem can be written as

min
w̄

λ

2
‖w̄‖22,1 +

1

N

T∑

t=1

` (w̄,xt, yt) , (4.1)

where w̄ is the concatenation of F vector wj as defined in Section 1.3, with each each wj corresponds to

a kernel. The l1 norm constraint is used by most MKL approaches to impose sparsity on the weights of

the combination. Hence the l1 group norm favors a solution in which only few hyperplanes have a norm

different from zero. An equivalent formulation can be derived from the above one through a variational

argument (Bach et al., 2004):

min
wj ,βj≥0

λ

2




F∑

j=1

‖wj‖2
αj




2

+
1

N

N∑

i=1

` (w̄,xt, yt) , s.t. ‖β‖21 ≤ 1 , (4.2)

where βj is a positive weight for the linear summation of the F kernels. This formulation has been

used in Bach et al. (2004); Sonnenburg et al. (2006), while in Rakotomamonjy et al. (2008) the proposed

formulation is slightly different, although it can be proved to be equivalent. The reason to introduce
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this variational formulation is to use alternating optimization strategy to efficiently solve the constrained

minimization problem. However, due to the fact that the l1 norm is not smooth, its optimization algorithm

is rather complex and its rate of convergence is usually slow.

Studies in the past few years focused on how to solve the MKL optimization problem efficiently. The

original MKL problem by Lanckriet et al. (2004a) was cast as a semidefinite programming (SDP). SDP

are known to have poor scalability, hence much of the subsequent research focused on devising more

efficient optimization procedures. The first step towards practical MKL algorithms was to restrict the

weights coefficients to be non-negative. In this way, it was possible to recast the problem as a much more

efficient semi-infinite linear programming (SILP) (Sonnenburg et al., 2006). This has allowed to solve the

MKL problem with alternating optimization approaches (Sonnenburg et al., 2006; Rakotomamonjy et al.,

2008; Xu et al., 2008; Nath et al., 2009), first optimizing over the kernel combination weights, with the

current SVM solution fixed, then finding the SVM solution, given the current weights. One advantage

of the alternating optimization approach is that it is possible to use existing efficient SVM solvers, such

as (Joachims, 1998; Chang and Lin, 2001), for the SVM optimization step.

For algorithms using the alternating optimization approach, it is usually not possible to prove a bound

on the maximum number of iterations needed, even if they are known to converge. They need to solve

the inner SVM problem till optimality. In fact, to guarantee convergence, the solution needs to be of a

high enough precision so that the kernel weight gradient computation is accurate. On the other hand,

due to it computational complexity, the learning process is usually stopped early, before reaching the

optimal solution, based on the common assumption that it is enough to have an approximate solution of

the optimization function. Considering the fact that these MKL algorithms are solved based on their dual

representation, this might mean being stopped far from the optimal solution (Hush et al., 2006; Chapelle,

2007), with unknown effects on the convergence. Another important issue is that almost all the previous

approaches focus on binary classification, and could not be extended to other types of loss easily due to

their optimization process. To the best of our knowledge, before our papers were published (Jie et al.,

2010; Orabona et al., 2010), the only multiclass MKL solver was proposed by Zien and Ong (2007). It

solves the problem using SILP, which does not scale very well and is infeasible for problems with hundreds

of classes and a few thousand examples. In the following we show that it is possible to efficiently minimize

directly the formulation in (4.1), or at least one variation of it. Since the algorithms directly solve the

optimization in the primal formulation, it allows us to use any complex convex loss function, such as the
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multiclass hinge loss (Crammer and Singer, 2002) and the structured loss (Tsochantaridis et al., 2004),

with minimal changes to the algorithm. Moreover, we are able to prove theoretical guarantees on the

convergence rate, which is new in the MKL algorithms.

4.2 The lp Norm MKL Formulation

In the original MKL formulation (4.1), the l1 norm is used to induce sparsity in the domain of the kernels.

This means that the solution of the optimization problem will select a subset of the F kernels. However,

even if sparsity can be desirable for specific applications, it could bring to a decrease in performance.

Moreover the problem in (4.1) is not strongly convex (Kakade et al., 2009), so its optimization algorithm

is rather complex and its rate of convergence is usually slow.

We generalize the original optimization problem using a generic group norm

min
w̄

λ

2
‖w̄‖22,p +

1

N

N∑

i=1

` (w̄,xi, yi) , (4.3)

where 1 < p ≤ 2. We define g(w̄) = λ
2 ‖w̄‖22,p+ 1

N

∑N
i=1 ` (w̄,xi, yi) and w̄∗ equals to the optimal solution

of (4.3), that is w̄∗ = arg minw̄ g(w̄).

The additional parameter p allows us to decide the level of sparsity of the solution. Moreover this

formulation has the advantage of being λ/q-strongly convex (Kakade et al., 2009). Strongly convexity is

a key property to design fast batch and online algorithms: the more a problem is strongly convex the

easier it is to optimize it (Shalev-Shwartz and Singer, 2007; Kakade et al., 2009). Many optimization

problems are strongly convex, as the SVM objective function. When p tends to 1, the solution gets close

to the sparse solution obtained by solving (4.1), but the strong convexity vanishes. Setting p equals to

2 corresponds to using the unweighted sum of the kernels. In the following we will show how to take

advantage of the strong convexity to design a fast algorithm to solve (4.3), and how to have a good

convergence rate even when the strong convexity is close to zero. Another similar lp norm formulation

has been proposed independently from ours (Orabona et al., 2010) in Kloft et al. (2009). As for (4.1)

and (4.2), using (Micchelli and Pontil, 2005, Lemma 26) it is possible to prove that they are equivalent

through a variational argument. Based on the formulation of (Kloft et al., 2009), Vishwanathan et al.

(2010) derived the dual of a variation of the lp MKL problem, suited to be optimized with the popular
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Algorithm 3 Follow the Regularized Leader

1: Initialize: w1 = 0
2: for t = 1, 2, . . . , T do
3: Receive new instance xt and predict using wt

4: Receive label yt
5: wt+1 = ∇h∗(−∑t

i=1 ηt∂l(wi, (xi, yi)))
6: end for

Sequential Minimal Optimization algorithm (Platt, 1999). However, their algorithm is limited to the

hinge loss function. This limitation on the use of a particular loss functions is common to all the recent

MKL optimization algorithms.

We have chosen to weight the regularization term by λ and divide the loss term by N , instead of

the more common formulation with only the loss term weighted by a parameter C. This choice greatly

simplifies the math of our algorithm. However the two formulations are fully equivalent when setting

λ = 1
CN . Hence a big value of C will correspond to a small value of λ.

4.3 Online MKL: the OM-2 algorithm

In this section, we propose a theoretically motivated online learning algorithm, which we call OM-2 for

Online Multi-loss Multi-kernel learning. This algorithm was originally proposed by Jie et al. (2010)

for multiclass classification task using a multiclass loss function, but it can be extended to any con-

vex loss. In the rest of this section, we first introduce the “Follow The Regularized Leader” (FTRL)

framework (Shalev-Shwartz, 2007; Kakade et al., 2009) which we used to solve the online lp norm MKL

problem (Section 4.3.1). Then we describe the algorithm and analyze its performance on any arbitrary se-

quence of observations (Section 4.3.2). Finally, we conduct experiments on standard benchmark datasets

(Section 4.3.4).

4.3.1 FTRL Framework

An approach to solve the online learning problem is to use the FTRL framework. This corresponds

to using at each step the solution of the optimization problem

w̄t+1 = arg min
w̄

h(w̄) + w̄ ·
t∑

i=1

ηi∂`(w̄i,xi, yi)
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where h(w̄) is the regularizer and ηi > 0 are a set of parameters. Intuitively, this amounts to solving

at each step a problem similar to (4.3), the difference being that the loss function has been replaced

by its subgradient. The linearization of the loss function through the subgradient provides an efficient

closed formula update and allows to prove regret bounds (Shalev-Shwartz, 2007; Kakade et al., 2009).

The solution of the above minimization problem gives an update of the form

w̄t+1 = ∇h∗
(
−

t∑

i=1

ηi∂`(w̄i,xi, yi)

)

where h∗ is the Fenchel conjugate of h. The pseudo code of the FTRL framework is illustrated in

Algorithm 3.

Next, we use the FTRL framework and propose an online algorithm for solving the lp norm MKL

problem. We prove that the cumulative number of mistakes made on any sequence of T observations is

roughly equal to the optimum value of the MKL problem (4.3).

4.3.2 Algorithm and Analysis

The design and analysis of the OM-2 algorithm is based on the framework and machinery developed

in (Kakade et al., 2009). It is similar to the lp norm matrix Perceptron of (Cavallanti et al., 2008), but it

overcomes the disadvantage of using the same kernel on each feature. The regularizer of our online MKL

problem is defined by h(w̄) = q
2‖w̄‖22,p. It can be verified that

h∗(θ̄) =
1

2q
‖θ̄‖22,q

∇h∗(θj) =
1

q

(
‖θj‖2
‖θ̄‖2,q

)q−2

θj , ∀j = 1, . . . , F , (4.4)

where θ̄ is the dual weight of w̄, and p and q are dual coefficients, which satisfy 1/p + 1/q = 1. Hence,

using the equation (4.4) within the FTRL framework, we obtain the designed algorithm. The pseudocode

of the OM-2 algorithm is given in Algorithm 4). As in the mirror descent algorithm, two sets of weights

are maintained, a primal one w̄t and a dual one θ̄t.

In the following, we will first state the following theorem which bounds the number of updates of the

OM-2 algorithm.
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Algorithm 4 OM-2

1: Input: q
2: Initialize: θ̄1 = 0, w̄1 = 0
3: for t = 1, 2, . . . , T do
4: Receive new instance xt
5: Predict ŷt
6: Receive label yt
7: z̄t = ∂` (w̄t,xt, yt)
8: θ̄t+1 = θ̄t − ηtz̄t

9: wj
t+1 = 1

q

(
‖θjt+1‖2
‖θ̄t+1‖2,q

)q−2

θjt+1, ∀j = 1, · · · , F

10: end for

Lemma 4.1. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ X, yt ∈ Y. Suppose that

the loss function ` satisfies the following properties

• ‖∂` (w̄,x, y) ‖2,q ≤ L, ∀ w̄ ∈ S, xt ∈ X, yt ∈ Y, L ∈ R;

• `(ū,x, y) ≥ 1 + ū · ∂`(w̄,x, y), ∀ ū ∈ S, w̄ ∈ S : `(w̄,x, y) > 0, x ∈ X, y ∈ Y;

• w̄ · ∂`(w̄,x, y) ≥ −1, ∀ w̄ ∈ S, x ∈ X, y ∈ Y.

Then, for any ηt > 0 and any ū, Algorithm 4 satisfies

T∑

t=1

ηt ≤
T∑

t=1

ηt`(ū,xt, yt) + ‖ū‖2,p

√√√√q

T∑

t=1

(
η2
t ‖z̄t‖22,q − 2ηtw̄t · z̄t

)

≤
T∑

t=1

ηt`(ū,xt, yt) + ‖ū‖2,p

√√√√q

T∑

t=1

(
η2
tL

2 + 2ηt
)
,

where z̄t = ∂` (w̄t,xt, yt).

This Lemma can appear difficult to interpret, but it gives us some intuitions about the total amount

of updates that Algorithm 4 will perform on any sequence of examples. It is straightforward to use the

lemma to get mistake bounds for the OM-2 algorithm with different loss functions. This lemma and the

pseudocode in Algorithm 4 allows us to design fast and efficient online MKL algorithms for a while range

of convex loss.

The hinge loss `HL and multiclass loss `MC satisfy the conditions of the lemma. If we consider a

normalized kernel, i.e. ‖φj(xt, yt)‖2 ≤ 1,∀j = 1, · · · , F, t = 1, · · · , N , we have that L ≤ F 1
q for `HL and

L ≤
√

2F
1
q for `MC.
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For multiclass classification with `MC, we first propose to set ηt using the following update rules

ηt =





min
{

1 + 2w̄t·z̄t
‖z̄t‖22,q

, 1
}

if `(w̄t,xt, yt) > 0

0 otherwise

. (4.5)

Algorithm 4 updates the weights w̄t each time the loss is greater zero. This aggressive update strategy

improves the theoretical performance of the algorithm. With this update rule, it is possible to prove a

mistake bound for the multiclass classification version of the Algorithm 4. We say that the algorithm

makes a “mistake” each time the prediction ŷ is different from the true class yt.

Theorem 4.1. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ X, y ∈ Y. If the update

rule of (4.5) is used to set ηt, and assume the multiclass loss function `MC satisfies ‖∂`MC (w̄,x, y) ‖2,q ≤ L.

Denote separately by M and I the set of rounds in which there is a mistake and the set of rounds in

which there is no mistake but there is an update, and by M and I its cardinality. Then, for any ū,

Algorithm 4 has the following bound on the maximum number of mistakes M,

M ≤ C + S +
√
SC −

∑

t∈I
ηt

where C = qL2‖ū‖22,p and S =
∑T
t=1 `

MC(ū,xt, yt).

Apart from the negative term −∑t∈I ηt, the bound has the standard form of mistake bounds for online

learning multiclass algorithms that only update on mistakes (Fink et al., 2006). The presence of this

negative term theoretically motivates the use of updates in margin error rounds. Note also that when

the problem is linearly separable, the algorithm converges to a solution that has training error equal to

zero. Moreover, when p goes to 1, the term C in the bound has a strongly sublinear dependence on the

number of kernels, but unfortunately q goes to infinity. Similarly to (Gentile, 2003), we trade-off these

two terms to obtain a logarithmic dependence on the number of kernels. In particular, we obtain the

following corollary.

Corollary 4.1. Under the hypotheses of Theorem 4.1 and consider a normalized kernel such that

‖φj(xt, yt)‖2 ≤ 1, if p = 2 ln(F )
2 ln(F )−1 and the problem is linear separable, then for any ū, the number
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of mistakes M of Algorithm 4 is less than,

M ≤ C + S +
√
SC −

∑

t∈I
ηt ,

where C = 4e ln(F )‖ū‖22,1, and e is the Euler’s number.

This corollary tells us that, under the hypothesis that only one kernel is useful for the classification task

at hand while the other F − 1 kernels are irrelevant, with the optimal tuning of p the price we pay in the

bound for not knowing which kernel is the right one is just logarithmic in their number F .

4.3.3 Implementation

The training time of OM-2 depends on the complexity of each step. This in turn is dominated by the

calculation of the the prediction (line 5) and gradient of the loss (line 7). For example, for the multiclass

hinge loss `MC , the time required to execute line 5 has complexity O(StFM), where St is the number of

updates made before the t-th iteration.

Following (Shalev-Shwartz et al., 2007, Section 4), it is possible to use Mercer kernels without in-

troducing explicitly the dual formulation of the optimization problem. In both algorithms, θ̄t+1 can be

written as a weighted linear summation of φ̄(xt, ·). For example, when using the multiclass loss function

`MC , we have that θ̄t+1 = −∑t ηtz̄t =
∑
t ηt(φ̄(xt, yt)− φ̄(xt, ŷt)). Therefore, the algorithm can easily

store ηt, yt, ŷt, and xt instead of storing θ̄t. Observing line 9 in Algorithm 4, we have that at each round,

wj
t+1 is proportional to θjt+1, which can be written as wj

t+1 = αjtθ
j
t+1, with αjt ∈ R. Hence w̄t+1 can

also be represented using αjtηt, yt, ŷt and xt. In prediction the dot product between w̄t and φ̄(xt, ·) can

be expressed as a sum of terms w̄j
t · φj(xt, ·), that can be calculated using the definition of kernel.

The l2 norms of θjt+1 can be calculated in an efficient incremental way as

‖θjt+1‖22 = ‖θjt‖22 − 2ηtθ
j
t · zjt + η2

t ‖zjt‖22 .

4.3.4 Experiments

In this section we present an experimental evaluation of our algorithm on two publicly available databases:

the Caltech-101 dataset and the IDOL2 dataset. Since both dataset are multiclass, we use the multiclass

loss `MC . Notice that it is much harder to be optimized than the binary hinge loss `HL, especially in the
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MKL setting. We first carry out two toy experiments: one on a synthetic data which shows that it is more

appropriate to use a multiclass loss instead of dividing the multiclass classification problem into several

binary subproblems, another on subsets from Caltech-101 and IDOL2 to study the behavior of the OM-2

algorithm w.r.t. different values of p. Then we conduct experiments on the same two datasets using the

full dataset. In the later experiments, we compared the performance of OM-2 to the OMCL algorithm, to

the Passive-Aggressive algorithm (PA-I) (Crammer et al., 2006) using the average kernel and the single

best feature, and to a batch MKL algorithm, SILP (Sonnenburg et al., 2006) 1. For the experiment

on Caltech-101, we also compare against the LP-β algorithm (Gehler and Nowozin, 2009b) which is a

batch algorithm and achieves the highest performance on the dataset under the same step. Since SILP

is binary, we use the 1-vs-All strategy for their multiple classes extension (1vA-MKL). We determined

all of our online learning parameters via cross-validation. In all of our experiments, the parameter p is

chosen from the set {1.01, 1.05, 1.10, 1.25, 1.50, 1.75, 2}.

To evaluate the performance, we reported the average online training error and the generalization

performance on a separate test set. However, it is known that the generalization performance of an

online algorithm trained with only one pass (epoch) is typically inferior to batch algorithms, especially

when the number of training instances is small. Hence we cycled through the training samples several

times (epochs), and we reported the performance on a separate test set as a function of the number

of epochs. Experiments show that OM-2 achieves better performance than the other online learning

methods, and comparable performance as the batch MKL method at much lower computational cost.

Multiclass synthetic data

Multiclass problems are often decomposed into several binary sub-problems using methods like 1-vs-All.

However, solving the multiclass learning problem jointly using a multiclass loss can yield much sparser

solutions. Intuitively, when a l1-norm is used to impose sparsity in the domain of kernels, different subsets

of kernels can be selected for the different binary classification sub-problems. Therefore, the combined

multiclass classifier might not obtain the desired properties of sparsity. Moreover, the confidence outputs

of the binary classifiers may not lie in the same range, so it is not clear if the winner-takes-all hypothesis

1The SHOGUN-0.9.2 toolbox is available at http://www.shogun-toolbox.org, which is implemented in C++. To the
best of our knowledge, SILP is the most efficient MKL implementation publicly available. Although SimpleMKL (Rako-
tomamonjy et al., 2008) is found to be more efficient, a good implementation for large problems is not available. Despite that
the SHOGUN-0.9.2 toolbox also includes the implementation of MC-MKL (Zien and Ong, 2007) using the same multiclass
loss as we do, this approach is computationally infeasible for the experiments presented here due to performance issues.

http://www.shogun-toolbox.org
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Figure 4.1. (top) Kernel matrices of the 3-classes synthetic experiments correspond to 4 different features. Sample 1–100,
101–200 and 201–300 are from class 1, 2 and 3 respectively. (bottom) Corresponding kernel combination weights, normalized to
have sum equal to 1, obtained by SILP (binary) and by OM-2 (last figure).

is the correct approach for combing them.

To prove our points, we have generated a 3-classes classification problem consisting of 300 samples,

with 100 samples for each class. There are in total 4 different features, the kernel matrices corresponding

to them are shown in Figure 4.1 (top). These features are generated in a way that Kernels 1–3 are useful

only for distinguishing one class (class 3, class 1 and class 2, respectively) from the other two, while

Kernel 4 can separate all the 3 classes. The corresponding kernel combination weights obtained by the

SILP algorithm using the 1-vs-All extension and our multiclass OM-2 are shown in Figure 4.1 (bottom).

We set the parameter p of OM-2 algorithm to 1.01 in order to get a sparse solution. It can be observed

that each of the binary SILP classifiers pick two kernels. OM-2 selects only the 4th kernel, achieving a

much sparser solution.

Behavior w.r.t the value of p

This experiment aims at showing the behavior of OM-2 for varying values of p. We consider p ∈ (1, 2],

and train OM-2 on the KTH-IDOL2 and Caltech-101. The results for the two datasets are shown in

Figure 4.2. For the IDOL2 dataset (Figure 4.2 (left)), the best performance is achieved when p is large,

which corresponds to give all the kernels similar weights in the decision. On the contrary, a sparse

solution achieves lower accuracy. It indicates that all the kernels carry discriminative information, and
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Figure 4.2. Behaviors of OM-2 w.r.t. different values of p: (left) the effect of p on the IDOL2 dataset and (middle) the
Caltech-101 dataset using 4 PHOG (Bosch et al., 2007) kernels; (right) running time for different values of p on the Caltech-101
dataset.

excluding some of them can decrease the performance. For the Caltech-101 dataset (Figure 4.2 (middle,

right)), following (Gehler and Nowozin, 2009b), we consider four PHOG kernels computed at different

spatial pyramid level. It can be observed that by adjusting p it is possible to improve the performance

– sparser solutions (i.e. when p tends to 1) achieve higher accuracy compared to non-sparse solutions

(when p tends to 2). However, the optimal p here is 1.10. In other words the optimal performance is

achieved for a setting of p different from 1 or 2, fully justifying the presence of this parameter. It could be

explained as although some of the kernels may contain redundant information, since they were generated

using the same type of feature descriptor, all of them may be informative for classification. Therefore,

imposing full sparsity does not help to increase the performance. Furthermore, Figure 4.2 (right) shows

the running time of OM-2 using the same four kernels, with varying values of p. It can be observed that

OM-2 converges faster when p is large.

Object categorization: Caltech-101

In this experiment, we use all the 102 classes with 30 training images per category and all the 39 kernels as

described in Appendix A. The results are averaged over 5 different splits. For each split, the experiments

are performed over 10 different permutations of the training images. Figure 4.3 (left) shows the average

online training error rate using different online learning algorithms as a function of the number of training

examples. OM-2 converges faster compared to the other online learning baselines. The OMCL algorithm

suffers from the hardness of the task, and has a larger training error compared to the other online

algorithms. Figure 4.3 (Right) reports the generalization performance obtained using different online

learning algorithms, and 1vA-MKL and LP-β algorithm. It can be observed from the plots that the OM-



4.3. ONLINE MKL: THE OM-2 ALGORITHM 49

500 1000 1500 2000 2500 3000 3500
70

75

80

85

90

95

100

number of training samples

O
n
lin

e
 a

v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
tr

a
in

in
g
 e

rr
o
r 

ra
te

Caltech−101 (39 cues, 30 training example per category)

 

 

 OM−2 (p=1.01)

 OMCL−BM

 PA−I (average kernel)

 PA−I (best kernel)

20 40 60 80 100 120 140
50

55

60

65

70

75

80

number of epochs

C
la

s
s
if
ic

a
ti
o

n
 r

a
te

 o
n

 t
e

s
t 

d
a

ta

Caltech−101 (39 cues, 30 training example per category)

 

 

 OM−2 (p=1.01)

 OMCL−BM

 PA−I (average kernel)

 PA−I (best kernel)

 1vA−MKL

 LP−β

Figure 4.3. Performance of different learning algorithms on the Caltech-101 dataset: (left) average online training error rate as
a function of the number of training examples; (right) classification rate on the test set.

2 algorithm achieves better performance on both training and test phase compared to the other online

learning algorithms. The best results are obtained when p is small (1.01 in our setup). This is probably

because among these 39 kernels (computed from eight different image descriptors) many of them were

redundant. Thus a sparse solution is favored. After about 80 epochs, the OM-2 achieves comparable

results as the batch MKL algorithm at a relatively low computational time. Although our MATLAB

implementation is not optimized for speed, training on the Caltech-101 dataset using 30 examples per

class and 39 kernels takes about 15 mins2 (150 epochs, 3060×150 iterations). For both 1vA-MKL and LP-

β the training time is more than 2 hours. The performance advantage of OM-2 over 1vA-MKL is due to

the fact that OM-2 is based on a native multiclass formulation (also used by LP-β), while SILP solves the

multiclass problem by decomposing it into multiple independent binary classification tasks. The results

support our claim that multiclass loss function is more suitable for this type of problem. As the sparse

MKL algorithm may choose different subset of kernels in different independent binary classification tasks,

this may cause the outputs of different 1-vs-All binary classifiers to lie in a different range and introduces

a bias on some classes during the final decision process. Thanks to the online learning framework, we can

solve the new MKL formulation using the multiclass loss function efficiently. The performance difference

between OM-2 and LP-β could due to the fact that LP-β is a batch algorithm.

2Notice that this time is measured using precomputed kernel matrix as inputs. In practice, if not all the data points are
available from the beginning, the kernel value could be computed “on the fly” and the total computation time of several
epochs could be reduced using methods like kernel caching.
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Figure 4.4. Performance of different learning algorithms on the IDOL2 dataset: (left) average online training error rate as a
function of the number of training examples; (right) classification rate on the test set.

Place recognition: IDOL-2

For these experiments, we used the same setup described in Section 3.4, with 4 different kind of features

which results in 4 kernels in total. We repeated the experiments with 12 different permutations of training

and test sets. Figure 4.4 reports the average online training and recognition error rate on the test set. In

contrast to the previous experiments, here the best performance is obtained at p = 2, which means that

there are no redundant features and all of them are discriminative for the given task. OM-2 and PA-I using

average kernel achieve better performance compared to the other online learning algorithms. Surprisingly,

the performance of batch MKL is worse than all the other online feature combination method, including

the performance of the single best feature. Hence, in agreement with recent findings (Cortes et al., 2009b),

promoting sparsity hurts performance when the problem is not sparse at all.

4.4 Batch MKL: the OBSCURE algorithm

Although Algorithm OM-2 solves an online variant of the lp norm of the MKL problem (4.3), obtaining a

solution close to the optimum value of the original problem, an algorithm which can find the exact optimal

solution with theoretical guarantee is still desirable. In this section, we introduce a new optimization

algorithm to solve efficiently the MKL problem (4.3), with a guaranteed convergence rate to the optimal

solution. We show that the presence of a large number of kernels helps the optimization process instead

of hindering it, obtaining, theoretically and practically, a faster convergence rate with more kernels.
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Moreover, the new algorithm has a training time that depends linearly on the number of training examples.

Like the OM-2 algorithm, it has a convergence rate sub-linear in the number of features/kernels used,

when a sparse solution is favored.

The new algorithm is composed of two stages. The first one is an (online) initialization procedure that

determines quickly the region of the space where the optimal solution lives, using the OM-2 algorithm

proposed in the previous section. The second stage refines the solution found by the first stage and

obtains the batch optimal solution, using a stochastic gradient descent algorithm. We call this algorithm

OBSCURE, Online-Batch Strongly Convex mUlti keRnel lEarning.

In the rest of this section, Section 4.4.1 presents the algorithm and Section 4.4.2 discusses the imple-

mentation details, while Section 4.4.3 and Section 4.4.4 show our theoretical guarantees. Section 4.4.5

describes our experimental findings.

4.4.1 Algorithm

Our basic optimization tool is the framework developed in Shalev-Shwartz and Singer (2007); Shalev-

Shwartz et al. (2007). It is a general framework to design and analyze stochastic sub-gradient descent

algorithms for any strongly convex function. At each step the algorithm takes a random sample of

the training set and calculates a sub-gradient of the objective function evaluated on the sample. Then it

performs a sub-gradient descent step with decreasing learning rate, followed by a projection of the solution

inside the space where the solution lives. The algorithm Pegasos, based on this framework, is among

the state-of-art solvers for linear SVM (Shalev-Shwartz et al., 2007; Shalev-Shwartz and Srebro, 2008).

Given that the lp norm is 1/q-strongly convex, we could use this framework to design an efficient MKL

algorithm. It would inherit all the properties of Pegasos (Shalev-Shwartz et al., 2007; Shalev-Shwartz and

Srebro, 2008). In particular the convergence rate, and hence the training time, would be proportional

to q
λ .

Although in general this convergence rate can be quite good, it becomes slow when λ is small and/or

p is close to 1. Moreover it is common knowledge that in many real-world problems (e.g., visual learning

tasks) the best setting for λ is very small, or equivalently C is very big (the order of 102 − 103). Notice

that this is a general problem. The same problem also exists in the other SVM optimization algorithms

such as SMO and similar approaches, as their training time also depends on the value of the parameter

C (Hush et al., 2006). Do et al. (2009) proposed a variation of the Pegasos algorithm called proximal
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projected sub-gradient descent. This formulation has a better convergence rate for small values of λ, while

retaining the fast convergence rate for big values of λ. A drawback is that the algorithm needs to know in

advance an upper bound on the norm of the optimal solution. In Do et al. (2009) the authors proposed

an algorithm that estimates this bound while training, but it gives a speed-up only when the norm of the

optimal solution w̄∗ is small. This is not the case in most of the MKL problems for categorization tasks.

Our OBSCURE algorithm takes the best of the two solutions. We first extend the framework of Do

et al. (2009) to the generic non-Euclidean norms, to use it with the lp norm. Then we solve the problem

of the upper bound of the norm of the optimal solution using a new online algorithm. This is designed

to take advantage of the characteristics of the MKL task and to quickly converge to a solution close to

the optimal one. Hence OBSCURE is composed by two stages: the online step and the batch step.

In the online stage, we used the OM-2 algorithm to quickly estimate the region of the space where

the optimal solution lives. Since the goal for this step is only to roughly estimate the optimal region, we

define a simple updating rule

ηt =





η0 if `(w̄t,xt, yt) > 0

0 otherwise

, (4.6)

where η0 > 0 is a predefined learning rate. We show that this update rule not only simplifies the

computational complexity, but also makes the analysis of the algorithm easy. We could stop the online

stage after a fixed number of iteration, or until it converges to a solution which has null loss on each

training sample (if the examples are linear separable), then pass the founded solution, denoted by θ̄O

and w̄O, to the second stage.

The batch stage (Algorithm 5), starts from the approximated solution found by the online stage, and

by exploiting the information on the estimated region, it uses a stochastic proximal projected sub-gradient

descent algorithm.

4.4.2 Efficient Implementation

The training time of OBSCURE is proportional to the number of steps required to converge to the optimal

solution, that will be bounded in Theorem 4.2, multiplied by the complexity of each step. This in turn

is dominated by the calculation of the gradient of the loss (line 5 in Algorithms 5), that, for example, for
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Algorithm 5 OBSCURE Batch

1: Input: q, λ, θ̄1 = θ̄O, w̄1 = w̄O,

2: Initialize: s0 = 0, R =
√
‖w̄O‖22,p + 2

λN

∑N
i=1 ` (w̄O,xi, yi)

3: for t = 1, 2, . . . , T do
4: Sample at random (xt, yt)
5: z̄t = ∂` (w̄t,xt, yt)
6: dt = λt+ st−1

7: st = st−1 + 0.5

(√
d2
t + q

(λ
q
‖θ̄t‖2,q+‖z̄t‖2,q)2

R2 − dt

)
8: ηt = q

λt+st

9: θ̄t+ 1
2

= (1− ληt
q

)θ̄t − ηtz̄t

10: θ̄t+1 = min

(
1, qR
‖θ̄
t+1

2
‖2,q

)
θ̄t+ 1

2

11: wj
t+1 = 1

q

(
‖θjt+1‖2
‖θ̄t+1‖2,q

)q−2

θjt+1, ∀j = 1, · · · , F

12: end for

the multiclass hinge loss `MC has complexity O(NFM). Note that this complexity is common to any

other similar algorithm, and it can be reduced using methods like kernel caching (Chang and Lin, 2001).

We could use the same technique described in Section 4.3.3 to represent Mercer kernels in our primal

optimization process.

Another important speed-up can be obtained by considering the nature of the updates of the batch

stage. If the optimal solution has a loss equal to zero or close to it, when the algorithm is close to

convergence most of the updates will consist just of a scaling. Hence it is possible to cumulate the

scalings in a variable, to perform the scaling of the coefficients just before an additive update must be

performed, and to take it into account for each prediction. Moreover, when using the multiclass loss `MC,

each update touches only two classes at a time, so to minimize the number of scalings we can keep a

vector of scaling coefficients, one for each class, instead of a single number.

4.4.3 Analysis of the OBSCURE Batch Stage

We now show the theorems that give a theoretical guarantee on the convergence rate of OBSCURE

to the optimal solution of (4.3).

The following lemma contains useful properties to prove the performance guarantees of Algorithm 5

and 6.

Lemma 4.2. Let B ∈ IR+, define S = {w̄ : ‖w̄‖2,p ≤ B}. Let h(w̄) : S → IR defined as q
2‖w̄‖22,p, define

also Proj(w̄, B) = min
(

1, B
‖w̄‖2,p

)
w̄, then
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Algorithm 6 Proximal projected sub-gradient descent

1: Input: R, σ, w1 ∈ S
2: Initialize: s0 = 0
3: for t = 1, 2, . . . , T do
4: Receive gt
5: zt = ∂gt(wt)

6: st = st−1 +

√
(ασt+st−1)2+

αLt
R2 −ασt−st−1

2

7: ηt = 1
σt+

st
α

8: wt+1 = ∇h∗(∇h(wt)− ηtzt)
9: end for

1. B = +∞ ⇒ h∗(θ̄) = 1
2q‖θ̄‖22,q

2. ∇h(w̄) = q

[(
‖wj‖2
‖w̄‖2,p

)p−2

wj

]F

1

, ∀w̄ ∈ S

3. ∇h∗(θ̄) = Proj

(
1
q

[(
‖θj‖2
‖θ̄‖2,q

)q−2

θj
]F

1

, B

)

4. ‖w̄‖2,p = 1
q‖∇h(w̄)‖2,q, ∀w̄ ∈ S

We first introduce Algorithm 6, that forms the basis for Algorithm 5, and a lemma that bounds its

performance, that is a generalization of (Do et al., 2009, Theorem 1) to general norms, using the framework

in Shalev-Shwartz and Singer (2007).

Lemma 4.3. Let h(·) = α
2 ‖ · ‖2 be a 1-strongly convex function w.r.t. a norm ‖ · ‖ over S. Assume that

for all t, gt(·) is a σ-strongly convex function w.r.t. h(·), and ‖zt‖∗ ≤ Lt. Then for any u : ‖u−wt‖ ≤ 2R,

and for any sequence of non-negative ξ1, . . . , ξT , Algorithm 6 achieves the following bound for all T ≥ 1,

T∑

t=1

(gt(wt)− gt(u)) ≤
T∑

t=1

[
4ξtR

2 +
L2
t

σt+
∑t
i=1 ξi
α

]
.

With this Lemma we can now design stochastic sub-gradient algorithms. In particular, setting ‖ · ‖2,p
as norm, h(w̄) = q

2‖w̄‖22,p, and gt(w̄) = λ
q h(w̄) + ` (w̄,xt, yt), we obtain Algorithm 5 that solves the

lp-norm MKL problem (4.3).

In Algorithm 5, the updates are done on the dual variables θ̄t, in lines 9-10, and transformed into w̄t

in line 11, through a simple scaling. We can now prove the following bound on the convergence rate for

Algorithm 5.
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Theorem 4.2. Suppose that ‖∂` (w̄,xt, yt) ‖2,q ≤ L and ‖w̄∗‖2,p ≤ R, where w̄∗ is the optimal solution

of (4.3), that is w̄∗ = arg minw̄ f(w̄). Let 1 < p ≤ 2, δ ∈ (0, 1), and c = λR + L. Then with probability

at least 1− δ over the choices of the random samples we have that, after T iterations of the 2nd stage of

the OBSCURE algorithm, the difference between f(w̄T ) and f(w̄∗), is less than

c
√
q
√

1 + log T

δ
min

(
c
√
q
√

1 + log T

λT
,

4R√
T

)
.

The most important thing to note is that the converge rate is independent from the number of samples,

as in Pegasos (Shalev-Shwartz et al., 2007), and the relevant quantities on which it depends are λ and

q. Given that for most of the losses, each iteration has a linear complexity in the number of samples, as

stated in Section 4.4.2, the training time will be linearly proportional to the number of samples.

The parameter R is basically an upper bound on the norm of the optimal solution. In Section 4.4.4 we

show how to have a good estimate of R in an efficient way. The theorem first shows that a good estimate

of R can speed-up the convergence of the algorithm. In particular if the first term is dominant, the

convergence rate is O( q log T
λT ). If the second term is predominant, the convergence rate is O(R

√
q log T√
T

),

so it becomes independent from λ. The algorithm will always optimally interpolate between these two

different rates of convergence. Note that R can also be set to the trivial upper bound of ∞. Another

important point is that Algorithm 5 can start from any vector, while this is not possible in the Pegasos

algorithm, where at the very first iteration the starting vector is multiplied by 0 (Shalev-Shwartz et al.,

2007).

As said before, the rate of convergence depends on p, through q. A p close to 1 will result in a sparse

solution, with a rate of at most O(R
√
q log T√
T

). However in the experimental section we show that the best

performance is not always given by the most sparse solution.

This theorem and the pseudocode in Algorithm 5 allows us to design fast and efficient MKL algorithms

for a wide range of convex losses. Hence, in binary and multiclass classification cases where `HL and `MC,

if p < 2, the convergence rate has a sublinear dependency on the number of kernels, F , and if the problem

is linearly separable it can have a faster convergence rate using more kernels. We will explain this formally

in the next section.
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4.4.4 Analysis of the OBSCURE Online Stage

In Theorem 4.2 we saw that if we have a good estimate of R, the convergence rate of the algorithm can

be much faster. Moreover starting from a good solution could speed-up the algorithm even more.

We propose to initialize Algorithm 5 with Algorithm 4 using the update rule defined in (4.6). We can

run it just for few iterations and then evaluate its norm and its loss. In Algorithm 5, R is then defined as

R :=

√√√√‖w̄O‖22,p +
2

λN

N∑

i=1

` (w̄O,xi, yi) ≥

√√√√‖w̄∗‖22,p +
2

λN

N∑

i=1

` (w̄∗,xi, yi) ≥ ‖w̄∗‖2,p .

So at any moment we can stop the algorithm and obtain an upper bound on ‖w̄∗‖2,p. However if

the problem is linearly separable we can prove that the online stages will converge in a finite number

of updates. The proof technique is based on the well-known “difference of norms” method, see for

example (Gentile, 2003), that we have generalized to take into account algorithms with aggressive updates

too.

Theorem 4.3. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ X, y ∈ Y. Denote by

U the set of rounds in which there is an update, and by U its cardinality. Under the hypothesis of

Lemma 4.1, for any ū, the number of updates U of the online stage of OBSCURE satisfies

U ≤ q(2/η0 + L2)‖ū‖22,p +
∑

t∈U
`(ū,xt, yt) + ‖ū‖2,p

√
q(2/η0 + L2)

√∑

t∈U
`(ū,xt, yt) .

In particular, if the problem (4.3) is linearly separable by a hyperplane ū, then the algorithm will converge

to a solution in a finite number of steps less than q(2/η0 + L2)‖ū‖22,p. In this case the returned value of

R will be less than (2 + η0L
2)‖ū‖2,p.

From the theorem it is clear the role of η0: a bigger value will speed up the convergence, but it will

decrease the quality of the estimate of R. So η0 governs the trade-off between speed and precision of the

first stage.

As noted for Theorem 4.2 when p is close to 1, the dependency on the number of kernels in this

theorem is strongly sublinear. Moreover, under the separability assumption, if we increase the number

of kernels, we have that ‖ū‖22,p cannot increase, and in most of the cases it will decrease. This means

that, under the separability assumption, we expect Algorithm 4 to converge to a solution which has null
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loss on each training sample, in a finite number of steps that is almost independent on F and in some

cases even decreasing while increasing F . The same consideration holds for the value of R returned by

the algorithm, that can decrease when we increase the number of kernels. A smaller value of R will mean

a faster convergence of the second stage.

4.4.5 Experiments

In this section, we study the behavior of OBSCURE in terms of classification accuracy, computational

efficiency and scalability. We again focus on the multiclass loss `MC . Although our MATLAB imple-

mentation is not optimized for speed, it is already possible to observe the advantage of the low runtime

complexity. This is particularly evident when training on datasets containing large numbers of categories

and lots of training samples. Similar to setup used in the previous section, in all the experiments the

parameter p is chosen from the set {1.01, 1.05, 1.10, 1.25, 1.50, 1.75, 2}. The regularization parameter λ is

set through CV, as 1
CN , where C ∈ {0.1, 1, 10, 100, 1000}.

We compare our algorithm with 1vA-MKL, the multiclass MKL (MC-MKL) algorithm (Zien and Ong,

2007), LP-β, and SVM with the unweighted sum of the kernels (Average Kernel). To train the Average

Kernel baseline, we use LIBSVM (Chang and Lin, 2001). The cost parameter is selected from the range

C ∈ {0.1, 1, 10, 100, 1000} for all the baseline methods. For all the binary classification algorithm, we use

the 1-vs-All strategy for their multiple classes extension.

In the following we start by studying the convergence rate of OBSCURE and compare it with the

original Pegasos algorithm (Shalev-Shwartz et al., 2007; Shalev-Shwartz and Srebro, 2008). Then we

study the behaviors of OBSCURE w.r.t different number of input kernels, as its behavior w.r.t different

value of p is analogous to the OM-2 algorithm. Following that we show that OBSCURE achieves state-

of-art performance on a challenging image classification task with 102 different classes. Finally we show

its scalability w.r.t. the number of training samples.

Comparison of convergence rate with Pegasos algorithm

We have implemented an extended version of the original Pegasos algorithm for the MKL problem of

(4.3). We first compare the running time performance between OBSCURE and Pegasos on the Oxford

flowers dataset. Their generalization performance on the testing data (Figure 4.5(left)) as well as the

value of the objective function (Figure 4.5(right)) are reported. In the same Figure, we also present the
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Figure 4.5. Comparison of running time performance on the Oxford flowers dataset
between OBSCURE, Pegasos and SILP.
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Figure 4.6. Behaviors of OBSCURE on the
Caltech-101 w.r.t. different number of ker-
nels randomly sampled from the 39 kernels.

results obtained using SILP. We see that OBSCURE converges much faster compared to Pegasos. This

proves that, as stated in Theorem 4.2, OBSCURE has a better convergence rate than Pegasos, as well

as faster running time than SILP. All the feature combination methods achieve similar results on this

dataset.

Behavior w.r.t. the number of kernels

Figure 4.6 reports the behavior of OBSCURE on Caltech-101 for different numbers of input kernels. The

dashed line in the figure corresponds to the results obtained by the first online stage of the OBSCURE

algorithm. It shows that OBSCURE has a better converges rate when there are more kernels, as stated in

Theorem 4.3. In other words, the algorithm achieves a given accuracy in less iterations when more kernels

are given. It can also be observed that the online step of OBSCURE (OM-2) achieves a performance

close to the optimal solution in a training time that is order of magnitudes faster (101 to 103), even if

theoretically we cannot guarantee the online stage to reach the global optimum.

Multiclass Image Classification: Caltech-101

In this experiment, we use the Caltech-101 dataset with all the 39 kernels, and the results are shown in

Figure 4.7. Figure 4.7 (left) reports the training time for different algorithms. Figure 4.7(right) reports

the results obtained using different combination methods for varying size of training samples. The best

results for OBSCURE were obtained when p is at the smallest value (1.01). This is probably because

among these 39 kernels many were redundant or not discriminative enough. For example, the worst single

kernel achieves only an accuracy of 13.5%±0.6 when trained using 30 images per category, while the best
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Figure 4.7. Performance comparison on the Caltech-101 dataset using different cue integration methods.

single kernel achieves 69.4%±0.4. Thus, sparser solutions are to be favored. The results again support our

claim in Section 4.3.4 that the multiclass loss function is more suitable for this type of problem, as all the

methods that use the multiclass loss outperform 1vA-MKL. OBSCURE achieve comparable performance

as the state-of-art LP-β algorithm, especially when the number of training example is large (e.g., 30

per class). Note that although our algorithm obtains a solution close to the sparse one, it will never

reach a completely sparse solution. This may be one of the reasons for the gap in performance between

OBSCURE and LP-β on this dataset. It can also be observed from Figure 4.7 (left) that OBSCURE

reaches optimal solution much faster than the other cue combination algorithms which are implemented

in C++. MC-MKL is computationally infeasible for 30 samples per category. Its significant gap from

OBSCURE seems to indicate that it stops before converging to the optimal solution.

Scalability w.r.t. the number of training samples

In this section, we report the experiments on the MNIST dataset using varying sizes of training samples.

Figure 4.8 shows the generalization performance on the test set achieved by OBSCURE over time, for

various training size. We see that OBSCURE quickly converges to the best performance, moreover the

convergence is faster when more training samples are used, as in Shalev-Shwartz and Srebro (2008). It

also shows that the time to reach the optimum is approximately linear in the number of training samples.

The performance of the SVM trained using the unweighted sum of the kernels and the best kernel are

also plotted. Notice that in the figure we only show the results of up to 20,000 training samples for the
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Figure 4.8. The generalization performance of OBSCURE on the MNIST dataset over different sizes of training samples.

sake of comparison, otherwise we could not cache all the 12 kernels in memory. However, by computing

the kernel “on the fly” we are able to solve the MKL problem using the full 60,000 examples: OBSCURE

obtains 1.95% error rate after 10 epochs, which is 0.45% lower compared to the results obtained by

OBSCURE with 20,000 training samples after 500 epochs.

4.5 Sparse MKL: the UFO algorithm

The lp norm MKL formulation allows to decide the level of sparsity of the solution through tuning p.

Still this formulation never induces coefficients that are mathematically zero for any p 6= 1. It is also

interesting to note that the convergence rate of the lp MKL becomes slower when p→ 1. When p tends

to 1, q goes to infinity and the strong convexity is lost, resulting in a slower convergence. In other words,

it is more difficult and slower to find a sparse solution to the MKL problem. Under some circumstances,

e.g., when a large number of kernels are given and only few are informative, sparsity is still desired.

In this section, we first propose a novel sparse MKL formulation which still preserve strong convexity

property, then an efficient optimization algorithm to solve it.

While designing the algorithm, we look at the same time at the MKL problem from a learning and

optimization points of view. Therefore, instead of designing a regularizer and then try to find an efficient

method to minimize it, we design the regularizer while keeping the optimization process in mind. In

other words, a perfect regularizer is useless if it is impractical to be used. We call this algorithm Ultra

Fast Online Multi Kernel Learning, UFO-MKL. The UFO-MKL algorithm gives exact sparse solutions
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with a tunable level of sparsity, and a convergence rate bound that depends only logarithmically on the

number of kernels used, and is independent of the sparsity required. Like the OM-2 algorithm and the

OBSCURE algorithm, it is also independent on the particular convex loss function used.

In the rest of this section, we first present the sparse MKL formulation in Section 4.5.1. Then

Section 4.5.2 and Section 4.5.3 present the theory and algorithm of UFO-MKL. Finally, Section 4.5.4

reports experiments on several different classification tasks.

4.5.1 Sparse MKL Formulation

Tomioka and Suzuki (2010) have proposed to use an elastic net form of regularization for MKL, that can

be written as

h(w̄) := C(
λ

2
‖w̄‖22,2 + (1− λ)‖w̄‖2,1). (4.7)

They have justified this form of regularization as a mean to control the degree of sparsity of the solution.

In this way the solution has exact mathematical zeros, and the number of zeros can be tuned by changing

λ. However, note that there is no particular reason to use the (2, 2) group norm, apart from having an

easier optimization problem and a way to tune the level of sparsity. Similar considerations hold for the

(2, p) group norm used in the lp norm MKL formulation. In fact, with the lp norm MKL formulation,

we have shown that in Section 4.3 and 4.4 it is possible to obtain a convergence bound of the order of

qF 2/q, when a normalized kernel, i.e., ‖φj(xt, yt)‖2 ≤ 1, is considered. If F ≥ 3 and p = 2 logF
2 logF−1 , qF 2/q

becomes equal to 2e logF , and the rate of convergence will depend logarithmically on the number of

kernels (see Corollary 4.1). Therefore, we propose the following regularizer

h(w̄) := λ/2 ‖w̄‖2
2, 2 log F

2 log F−1

+ α‖w̄‖2,1 , (4.8)

with the precise aim of having the optimal convergence rate and an exact mathematical sparsity, tunable

through a parameter. The first term of h gives us an easy to optimize problem, while the second one

induces different levels of sparsity depending on α.

More in details, with this choice of p the regularization becomes similar to the entropic regularization.

A similar method has been used in the context of sparse linear optimization in Shalev-Shwartz and Tewari



62 CHAPTER 4. ONE-LAYER APPROACH: MKL WITH ONLINE-BATCH OPTIMIZATION

Algorithm 7 The UFO-MKL algorithm.

1: Input: α, λ, T
2: Initialize: w̄1 = 0, θ̄1 = 0, q = 2 logF
3: for t = 1, 2, . . . , T do
4: Sample at random (xt, yt)
5: z̄t = ∂` (w̄t,xt, yt)
6: θ̄t+1 = θ̄t − z̄t
7: vj =

∣∣‖θjt+1‖2 − αt
∣∣
+
,∀j = 1, · · · , F

8: wj
t+1 =

vjθ
j
t+1

tλ‖θjt+1‖2

(
vj
‖v‖q

)q−2

, ∀j = 1, · · · , F
9: end for

(2009). This motivates the choice of the first term in h. On the other hand, using only this term would

result in a fixed regularization function, losing the possibility to adapt it to the problem. Hence we mix

the (2, 2 logF/(2 logF − 1)) squared group norm with a (2, 1) group norm, to be able to tune the level of

sparsity.

Hence the optimization problem becomes

min
w̄

λ/2 ‖w̄‖2
2, 2 log F

2 log F−1

+ α‖w̄‖2,1 +
1

N

N∑

i=1

` (w̄,xi, yi) . (4.9)

Since the new regularizer (4.8) is 1/2 logF -strongly convex for any value of α, to minimize (4.9) we could

use stochastic gradient and mirror descent methods as the previous sections. Here we use the primal-dual

framework for minimization of regularized loss functions (Shalev-Shwartz and Kakade, 2008), which is

different from the Pegasos framework Shalev-Shwartz et al. (2007) used by the OBSCURE algorithm. In

the primal-dual framework there is no rescaling of the hyperplane at each step, so each single iteration

will be faster. Our method is also close to the dual averaging framework propose by Xiao (2010).

4.5.2 Algorithm

The pseudo code of the algorithm is illustrated in Algorithm 7. As the OM-2 algorithm and the

OBSCURE algorithm, the algorithm maintains two set of weights, a primal one w̄t and a dual one θ̄t.

At each step it takes a sample at random from the training set and update the dual vector θ̄t with a

subgradient descent step, where ∂` (w̄t,xt, yt) is the subgradient w.r.t. w̄t. Then the primal weight

w̄t is calculated with lines 7-8. These two lines correspond to the gradient of the Fenchel dual of the

elastic regularizer h. Line 7 has the effect to put to zeros the kernels that have a norm smaller than αt.
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Therefore, it induces exact sparsity in the domain of the kernels.

4.5.3 Analysis

In this section we prove a theoretical guarantee for the converge rate of UFO-MKL to the optimal solution

of (4.9). To prove the convergence, we could directly apply Theorem 2 in (Shalev-Shwartz and Kakade,

2008), that for completeness we restate here in a simpler form and with our notation.

Theorem 4.4. (Shalev-Shwartz and Kakade, 2008) Let g be a β-strongly convex function w.r.t. the

norm ‖ · ‖ over a set S and let ‖ · ‖∗ be its dual norm. Let `1, . . . , `T be an arbitrary sequence of convex

loss functions, and R such that maxi ‖∂`i(wi)‖∗ ≤ R. Define wt = ∇g∗(−ηt
∑t−1
i=1 ∂`i(wi)) then, for any

u ∈ S, and any η > 0 we have

1

T

T∑

t=1

(
g(wt)

η
+ `t(wt)

)
− 1

T

T∑

t=1

(
g(u)

η
+ `t(u)

)
≤ ηR

2(1 + log T )

2βT
.

This theorem introduces another way to minimize strongly convex regularized objective functions

through stochastic gradient descent. It could be applied for example to minimize the standard SVM

objective function. Note that the resulting convergence bound would be equal to the Pegasos’ one. Also,

there is no rescaling of the hyperplane at each step of Algorithm 7. This lack of rescaling makes each

iteration of UFO-MKL faster than each iteration of OBSCURE (Algorithm 5), so that the total time

needed to converge can be smaller. We will verify this experimentally in Section 4.5.4.

Theorem 4.5. Denote by f(w̄) = h(w̄) + 1
N

∑N
i=1 ` (w̄,xi, yi) and by w̄∗ the solution that minimizes

it. Suppose that the kernel are normalized ‖φj(xt, ·)‖2 ≤ 1, and the subgradient of the loss function `

satisfies ‖zj‖2 ≤ L‖φj(x, y′)‖2, ∀j = 1, . . . , F, y′ ∈ Y. Let δ ∈ (0, 1), then with probability at least 1− δ

over the choices of the random samples we have that after T iterations of the UFO-MKL algorithm

f(w̄T+1)− f(w̄∗) ≤ eL2(1 + log T ) logF

λδT
,

where e is the Euler’s number.

To derive the UFO-MKL algorithm the only thing that is missing is to calculate ∇h∗(θ̄).
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Figure 4.9. (left) Comparison of UFO-MKL to OBSCURE on convergence rate with the same value of p, and α = 0 for UFO-MKL.
(right) Performance comparison on Caltech-101 using different MKL algorithms.

Theorem 4.6. Let

v =
[∣∣‖θ1‖2 − α

∣∣
+
, · · · ,

∣∣‖θF ‖2 − α
∣∣
+

]
,

then the component j of ∇h∗(θ̄) is equal to

θj

λ‖θj‖2
vq−1
j

‖v‖q−2
q

4.5.4 Experiments

In this section, we compare UFO-MKL against the SILP algorithm and the Multiclass MKL (MC-MKL),

as well as the OBSCURE algorithm, using the implementation in DOGMA. We consider the parameter

α ∈ {0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.02}, and use p=1.01 for the OBSCURE algorithm when

sparsity is desired in the solution. The λ parameter has been chosen by cross validation as 1/(CN), where

N is the number of training points, and C is from the set {1, 10, 102, 103}, and C=1000 yields the best

results for all the algorithms. As the previous algorithms, we also use multiclass loss `MC. For multiple

classes extension of the binary SILP algorithm, we use the 1-vs-All scheme.

Multiclass Image Classification: Caltech-101

In the experiments we use the same setup as described in the previous section 4.4.5. We start by comparing

the convergence rates of UFO-MKL and OBSCURE. The training time of the OBSCURE algorithm is

proportional to q/λ, where 1/p + 1/q = 1. Therefore, when a sparse solution is needed, the algorithm
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becomes slow because q becomes big. For a fair comparison, we first set q = 2 logF in OBSCURE, and

α = 0 in UFO-MKL, so that their regularizers become exactly the same. Figure 4.9 (left) shows the value

of the objective function as a function of the training time. OBSCURE is faster in the beginning because

its first stage is an online algorithm, which quickly determines the region of the space where the optimal

solution lives. UFO-MKL, after ≈ 1min of computation, converges faster than OBSCURE. We think

that this is due to the simpler algorithm that does not require a scaling after each update, hence each

iteration in UFO-MKL is faster. In practice, when the data is sparse, in another words, p is set to close

to 1 for OBSCURE algorithm, the efficiency of UFO-MKL becomes more significant (see for example

Figure 4.10).

The test results are reported in Figure 4.9 (right). The results support our claim that the multiclass

loss function is more suitable for this type of problem, as all the methods that use the multiclass loss

outperform SILP. MC-MKL is computationally infeasible for 30 samples per category, and its significant

performance gap from OBSCURE and UFO-MKL seems to indicate that it stops before converging to

the optimal solution. UFO-MKL also outperforms OBSCURE, probably because OBSCURE does not

get a real sparse solution although it tends to be sparse. More importantly, the accuracy is comparable

or better than the best results obtained in the literature by the LP-β algorithm.

Scalability w.r.t. the number of kernels

To test the scalability of UFO-MKL we tested it on the Oxford Flower data set, generating 1400 kernels.

The task of the dataset is to classify 17 different flower categories. Each class has 80 images with

predefined train and test splits. Precomputed distance matrices for 7 different features are available.

For each precomputed matrix, we generate 200 kernels using exp(−γ−1 · d) with 200 different γ values

in the range between 0.01 and 100. Figure 4.10 (left) reports the results for varying number of kernels.

Our algorithm outperforms all the other baseline in term of both accuracy and efficiency. UFO-MKL is

3-5 times faster compared to OBSCURE, which is again due to the fact that OBSCURE does not get

a real sparse solution. It suggests that UFO-MKL is more suitable for feature selection tasks when a

lot of kernels are available. Figure 4.10 (middle) shows the number of selected kernels and the accuracy

obtained by varying values of α, using the same number of epochs. We see that a larger value of α,

which corresponds to a sparser solution, leads to a slower running time. Figure 4.10 (right) reports the

accuracy and the number of non-zero kernel weights of the last solution when the algorithm stops. It can
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be seen that when the model becomes over sparse (larger α) the performance starts dropping. However

small values of α, which result in a denser model, do not correspond to higher accuracy, in fact many

less discriminative kernels are included in the solution.
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Figure 4.10. Running time performance of UFO-MKL and other baseline approaches w.r.t. different number of kernels and
varying values of α.

4.6 Conclusion

In this chapter, we introduce several theoretically motivated algorithm for solving the MKL problem.

The OM-2 algorithm and the OBSCURE algorithm use a new p-norm formulation of the MKL problem

that allows us to tune the level of sparsity in order to obtain always nearly optimal performance. The

UFO-MKL algorithm uses an elastic-net kind of regularization function which preserve strong convexity

and have exact mathematical sparsity, tunable through a parameter. All the algorithms use stochastic

gradient descent method and mirror descent method to solve the corresponding MKL formulations,

which are very efficient and an order of magnitude faster compared to the other cue combination baseline

approaches. Our approaches are general, so they can be used with any kind of convex losses, from

binary losses to structured output prediction (Tsochantaridis et al., 2004), and even to regression losses.

Through experiments, we found that the negative results on the MKL algorithms, which do not improve

their performance over simple averaging kernel baseline (Gehler and Nowozin, 2009b), are mainly due

to their computational bottle neck which prevent them from using loss functions such as the multiclass

loss which are more suitable for the tasks at hand. By using our method, MKL can still be an efficient

machine learning tool for cue combination tasks.

This chapter concludes the first part of this thesis. We presented several efficient cue integration
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algorithms. All the algorithms presented in this thesis use the linear model as hypothesis class, and they

achieve state-of-art performance and outperform other baselines using single or multiple cues, particularly

the MKL algorithms. Our algorithms converge to the optimal solution of the MKL formulation efficiently.

The MKL formulation employs similar objective function used in SVM. However, the large margin prin-

ciple used in this method causes the scaling problem and initialization problem, which can strongly affect

final solutions of learned kernels as well as performance (Chapelle et al., 2002; Gai et al., 2010). More-

over, only linear and non-negative combination of kernels were studied, while more powerful non-linear

combinations which has not been studied much except in few papers (e.g., Cortes et al. (2009a)) might

lead to better results. Possible directions in the future are to develop new learning objective function

which can lead to performance improvement, and to study the non-linear combinations of kernels.



68 CHAPTER 4. ONE-LAYER APPROACH: MKL WITH ONLINE-BATCH OPTIMIZATION



Part II

From Cues Integration to Cues

Exploitation

Differences in the world are only detectable because

different senses perceive the same world events differently.

Aristotle, De Anima (350 B.C.E)
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Chapter 5

Weakly Supervised Learning using

Co-Occurring Cue(s)

In this chapter, we present a general learning framework to address the problem of training visual clas-

sifiers from images using natural accompanying captions without any explicit manual intervention. It is

motivated by the fact that the captions (textual cue) weakly label the images, as they usually describe

the images, but the words in the captions are not aligned with regions in the images. Moreover the

captions usually contain many unrelated words, and many sentences in the captions may not describe the

image. Under our new framework, each training image is represented as a bag of regions, associated with

a set of candidate labeling vectors. Each labeling vector encodes the possible labels for the regions of

the image. The set of all possible labeling vectors can be generated automatically from the caption using

natural language processing techniques (Section 5.3). The use of labeling vectors provides a principled

way to include diverse information from the captions, such as multiple types of words corresponding to

different attributes of the same image region, labeling constraints derived from grammatical connections

between words, uniqueness constraints, and spatial position indicators. Moreover, it can also be used

to incorporate high-level domain knowledge useful for improving learning performance. We show that

learning is possible under this weakly supervised setup (Section 5.4.1 and 5.4.2). Exploiting this prop-

erty of the problem, we again use a large margin discriminative formulation to model the problem, and

propose an efficient algorithm to solve it (Section 5.4.3 to 5.4.5). We apply the resulted framework and

71
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algorithm to artificial datasets (Section 5.5) as well as two real-world images and captions datasets, one

on learning face classifiers using news images with captions (Section 5.6), another on modeling two type

of words (name and verb) jointly to improve learning performance (Section 5.7). Contents presented in

this Chapter is based on the following publication:

Jie, L., Caputo, B., and Ferrari, V. (2009). Who’s Doing What: Joint Modeling of Names and

Verbs for Simultaneous Face and Pose Annotation. In Advances in Neural Information Processing

Systems 22.

Jie, L., and Orabona, F. (2010). Learning from Candidate Labeling Sets. In Advances in Neural

Information Processing Systems 23.

Jie, L., Orabona, F., Caputo, B., and Ferrari, V. (2011). Learning from Images with Captions

Using the Maximum Margin Set Algorithm. Idiap-RR-30-2011.

5.1 Introduction

A huge amount of images with accompanying text captions are available on the Internet. Websites selling

various items such as houses and clothing provide photographs of their products along with concise

descriptions. Online newspapers (e.g., news.yahoo.com) have pictures illustrating events and comment

them in the caption. These news websites are very popular because people are interested in other people,

especially if they are famous (Figure 5.1). This motivates the recent interest in using captioned images

for training visual classifiers. Exploiting the latent associations between images and the text cues can

lead to a virtually infinite source of training annotations, without any explicit manual intervention. The

learned model can then be used in a variety of Computer Vision applications, including face recognition,

image search engines, and to annotate new images for which no caption is available.

There have been several works that study this problem on different applications and from different

perspectives. Previous works have focused on associating names (Berg et al., 2004b; Guillaumin et al.,

2010) in the captions to the faces of people in news images, on learning character naming systems from

TV series using scripts (Everingham et al., 2006) and screenplays (Cour et al., 2009), on learning scene

classification models from tagged photos (Barnard et al., 2003; Grangier and Bengio, 2008; Wang and

Mori, 2010), and on learning object recognition models from an online nature encyclopedia (Wang et al.,

news.yahoo.com
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2009). All these can be considered as weakly supervised learning problems, because each segment, face,

or object in the image is only indirectly, ambiguously labeled by the words in the captions.

The above tasks are more challenging than standard supervised learning tasks due to the correspon-

dence ambiguity problem: it is not known beforehand which part of the image corresponds to which part

of the caption. Moreover, not everything mentioned in a natural text caption appears in the image, and,

vice-versa, not everything in the image is mentioned by the caption. This is different from using tags

which are guaranteed to describe the image, as in the Corel database (Barnard et al., 2003). On the

other hand, natural language descriptions contain rich semantic information about the relations between

different image regions and labels. For example, in Figure 5.1 (left), knowing what “waves” (verb) means

would reveal who of the two imaged persons is “Barak Obama” (subject). The other way around, knowing

who is “Barak Obama” would deliver a visual example for the “waving” pose. This connection between

the name and the verb can be exploited to constrain the labeling: if a region is labeled by the name

Barak, then it must also be labeled by “waving”. A labeling like “Barack-standing” is not valid given the

caption. The caption sometimes enables to impose also other constraints. For instance, we know that

Federer cannot appear twice in an image, so no two image regions can take the same label “Federer”. As

another example, captions sometimes contain spatial position indicators. In the example of Figure 5.2,

“Chervynsky” cannot be a valid label for the person in the middle. Such constraints can be used to prune

the space of possible labelings, which facilitates learning (Berg et al., 2004b; Guillaumin et al., 2010).

To the best of our knowledge, all existing algorithms are designed to explicitly incorporate a particular

type of constraint. This means the algorithm has to be redesigned in order to integrate a new type of

constraint.

In this chapter, we propose a general, weakly supervised learning framework to model the problem

of learning from images with captions. In this framework, each training image is represented as a bag

of regions, and is associated with a set of candidate labeling vectors. Each candidate labeling vector

encodes a possible labeling of all regions, with only one candidate labeling being fully correct. The set

of candidate labeling vectors can be generated automatically from the captions using natural language

processing (NLP) tools. This framework provides a unified way to include many types of constraints.
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B. Obama - Wave / 
M. Obama - Stand ?
B. Obama - Wave

B. Obama - Wave / 
M. Obama - Stand ?
M. Obama - Stand

R. Federer - Backhand /  
A. Roddick - Null ?

R. Federer - Backhand

US Democratic presidential candidate

Senator Barack Obama waves to sup-

porters together with his wife Michelle

Obama standing beside him at his

North Carolina and Indiana primary

election night rally in Raleigh.

Four sets ... Roger Fed-

erer prepares to hit a

backhand in a quarter-

final match with Andy

Roddick at the US Open.
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Figure 5.1. (Left, Middle) Two examples of image-caption pairs for the “who is doing what” task. The face and upper body of
the persons in the image are marked by bounding-boxes. We stress that a caption might contain names and/or verbs not visible
in the image, and vice-versa. (Right) our candidate labeling set notation for the example in the middle. The image X contains
one region x, which has two attributes: the person name and the verb describing the action he is performing. The candidate
labeling set Z contains two candidate labeling vectors z1 and z2. Each labeling vector encodes one label for every attribute
of the region. Importantly, note how [Roddick, Backhand] is not a candidate, as Roddick is not the subject of the verb “hit a
backhand” in the caption. The true labeling vector Y is unknown and must be recovered by the algorithm.

5.2 Related Work

Images and Captions/Tags. Learning visual classifiers from images with tags has been a very active

line of research in recent years (Barnard et al., 2003; Grangier and Bengio, 2008; Wang and Mori, 2010).

These approaches must resolve the correspondence between image segments and tags, which are typically

nouns (e.g., tiger, grass, car). Because the tags are manually annotated to be descriptive for the image,

algorithms can safely assume that nearly all tags should correspond to one or more image regions.

The problem of naming faces in images and videos using natural text sources has been particularly

well studied (Berg et al., 2004b; Cour et al., 2009; Everingham et al., 2006; Guillaumin et al., 2010).

These works exploit the fact that often the names of the persons in the image are mentioned in the

caption. Therefore, a caption contains possible labels for the faces in the corresponding image. However,

an imaged person might not be mentioned in the caption and vice-versa. Hence, the level of noise and

ambiguity in natural captions is typically higher compared to image tags. Various kinds of task-specific

knowledge has also been integrated to improve learning performance, such as that two faces in one image

can not be associated with the same name (Berg et al., 2004b), or exploiting the motion of the mouth

and the gender of a person (Cour et al., 2009).

Recently, a few works went beyond modeling a single type of word, and start to exploit the structure

of sentences in the caption. Gupta and David (Gupta and Davis, 2008) model prepositions in addition

to nouns (e.g., ‘bear in water’, ‘car on street’). This prunes down the space of possible labelings.
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Related learning frameworks. Our problem is different from semi-supervised learning (Zhu, 2005),

where the learner has access to a set of labeled examples as well as a set of unlabeled examples. Instead,

it is closer to the ambiguously labeled learning or partially labeled learning setting (Cour et al., 2009;

Grandvalet, 2002; Hüllermeier and Beringe, 2006; Jin and Ghahramani, 2002), where each training ex-

ample is associated with multiple labels, only one of which is correct. Many approaches to such problems

use the EM algorithm to estimate model parameters and the correct labels (Grandvalet, 2002; Jin and

Ghahramani, 2002). The recent work of Cour et al. (2009) is the most related to this chapter, as it

proposes a convex learning formulation based on minimizing an ambiguous loss function. In this chap-

ter, we generalize the ambiguous function to the multiple instances case, and use a non-convex learning

formulation which achieves better performance than the convex learning formulation (sec. 5.4.4).

Our work is also related to multi-label learning (MLL) (Boutell et al., 2004), where each example is

assigned multiple labels, any subset of which can be correct. Other related lines of research are multi-

instance learning (MIL) (Andrews et al., 2003; Dietterich et al., 1997), and multi-instance multi-label

learning (MIML) (Zhang and Zhou, 2008; Zhou and Zhang, 2006). MIML extends the two-label MIL

setup to multiple labels. In both setups, instances are grouped into bags. The labels of the individual

instances are not given. Instead, labels are given to the bags. However, contrary to our framework, in

MIML noisy labels are not allowed: all the given labels for a bag are correct. Moreover, current MIL and

MIML algorithms usually rely on a ‘key’ instance in the bag (Andrews et al., 2003) or they transform

each bag into a single-instance representation (Zhou and Zhang, 2006). Instead, our algorithm makes an

explicit effort to label every instance in a bag and to consider all of them during learning.

Latent Structure SVMs. Our algorithm is also related to Latent Structural SVMs (Felzenszwalb

et al., 2010; Yu and Joachims, 2009), where the correct labels are considered as latent variables. Wang

and Mori (Wang and Mori, 2010) recently proposed a discriminative latent model for annotating scene

images given object nouns as tags (e.g., tiger, grass). They model the ground-truth region-to-annotation

mapping and the overall scene label as latent variables.

5.3 Problem Definition

In this section, we define the problem of learning from images with captions, and establish the notation

that will be used in the rest of the chapter. Figure 5.1 (right) gives an example of our setup. In Section 5.6
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Australia’s gold medalist Grant Hackett (C), Ukraine’s

silver medalist Igor Chervynsky and USA’s bronze

medalist Erik Vendt show their medals following the 1500

metres freestyle race at the 10th World Swimming Cham-

pionships in Barcelona July 27, 2003. Hackett clocked

fourteen minutes 43.14 seconds.

Figure 5.2. Example of an image-caption pair containing spatial indicators. The spatial indicator (C) indicates Hackett is the
person in the middle, reducing the ambiguity in labels assignment.

and Section 5.7 we will give several examples on how to cast existing problems into our framework.

Input data. The input is a collection of N image and caption pairs {Xi, Ci}Ni=1. An image Xi con-

sists of Mi regions Xi = {xi,m}Mi
m=1, and xi,m ∈ X. Each image has an associated caption Ci, which

implicitly provides partial labels for the image. Many real-world objects can belong to multiple concepts

simultaneously. For example, an image region can bear several attributes: red (color), metal (texture)

and car (object category). Quite often these attributes are correlated, so we argue that it is useful to

model them together, using a label for each attribute. Without loss of generality, we assume that labels

Y i = {yi,m}Mi
m=1 exist for every image region, but they are unknown during training. We consider them

as latent variables. The latent variables {yi,m}Mi
m=1 encode the labels for each region in the images. Each

yi,m is either a set of labels {y(p)
i,m}Pp=1 or a single label yi,m (i.e., P = 1), where P is the total number

of attributes we model simultaneously. Each label y
(p)
i,m ∈ Y(p) := {1, 2, · · · ,K(p)} indicates a specific

attribute of a region, and K(p) denotes the number of possible different labels for the attribute p.

Candidate Labeling Sets. Our goal is to learn from the input image-caption pairs a classification

function f : x→ y to classify regions of a new test image. The caption for the test image, when available,

could still be used as an extra source of information to guide the prediction, but it is not required.

Although the true labels of a training image are unknown, the accompanying caption usually describes

the image. We assume that the labels of the regions only come from the caption. The learning algorithm

should label with null any region whose true label is not mentioned in the caption. A label corresponds to

a word, or to a few words with the same meaning (e.g., “Barack Obama” and “President of the USA”).

In the rest of the chapter we will only use the term “word”. Based on these assumptions, we generate the

set of all possible assignments of the words in a caption to the regions in the corresponding image i, which

we call Candidate Labeling Set (CLS) Zi. We use Li to denote the number of candidate assignments in
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Zi = {Zi,l}Lil=1, with each Zi,l ∈ RP×Mi . In other words, there are Li different possible combinations

of labels for the regions in the image i. Only one of these candidate assignments is the true labeling,

while the others are only partially correct or even completely wrong. Note that this is not equivalent

to simply associating Li candidate labels independently to each region. Instead, our definition explicitly

encodes the constrains between multiple regions and labels. To clarify this point, consider a simple

example where we have two regions {xi,1,xi,2} with two attributes each (color and object category). If

it is known that they can only come from classes “red-car” or “blue-motor”, and that no two regions can

have the same label, then zi,1 = [red-car,blue-motor], zi,2 = [blue-motor, red-car] will be the Candidate

Labeling Vectors (CLVs) for this bag. Other possibilities such as [blue-car, red-motor], [red-car, red-car]

are excluded. Another example could be an image with three regions, each of which could be labeled

either “chair” or “elephant”. However, we know there cannot be both chairs and elephants in the same

image. Such a structure can be encoded in our CLSs, but not in simple independent label sets for each

region.

Constraints between words. As the size of the regions and the number of words grow, the number

of admissible labelings becomes intractable. To keep the problem tractable, we could first filter out

uninteresting words such as interjections and conjunctions, and maintain a dictionary with only the

words we want to model. Each of these words will correspond to a different label. However, the number

of admissible labelings can still be very large after the filtering. Let Wi be the number of modeled words in

the caption of an image i with Mi regions. In the most general case, this image has Li = WMi
i admissible

labelings even when only one label can be assigned to each region. In this unconstrained scenario, the

supervision information from the caption is very low for large Wi. Fortunately, captions frequently

contain valuable context cues which we can extract using NLP tools (OpenNLP, 2010; Deschacht and

Moens, 2009). These context cues can be translated into constraints to remove assignments from Zi. In

addition, we can also reduce the size of Zi by incorporating high-level domain knowledge. As Li decreases

when more constraints are added, the CLS Zi becomes less ambiguous. This scenario allows us to design

interesting learning algorithms, which we present in the next Section.

Our CLSs framework supports several types of useful constraints:

• [C1] Word type matches region type. For example, a name can only be associated with a face

region, and/or a verb can only be associated with a person body region (where such regions are
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detected beforehand, e.g., by an off-the-shelf face detector (Viola and Jones, 2004; Rodriguez, 2006)

or an upper-body detector (Ferrari et al., 2008b)). This type of constraint has been used in several

works (Berg et al., 2004b; Guillaumin et al., 2008) (see Figure 5.1 for example).

• [C2] Sentence structure. Multiple words grammatically connected in the caption must be assigned

to spatially related image regions or even to the same region. Several kinds of connections in the

caption can be used to eliminate labelings from Zi which violate the resulting constraints: (a) noun-

adjective (Wang and Forsyth, 2009), e.g., a “red car”, where both “red” and “car” are attributes

of the same region; (b) noun-preposition-noun (Gupta and Davis, 2008), e.g., “sun in the sky”

indicates that the two regions are close to each other, and the “sun” region is surrounded by the

“sky” region. In general, this kind of connection conveys information about the spatial relationship

between two regions. (c) name-verb, e.g., “Roger Federer hits a backhand”, “Roger Federer” is the

subject of “hits backhand” and therefore point to the same person in the image. Therefore, any

labeling that assigns “Roger Federer” to a certain face region, must assign “hits backhand” to the

body region of the same person;

• [C3] Uniqueness. Some words can only appear once in the image. Two face regions in the same

image cannot be associated to the same name (Berg et al., 2004b; Guillaumin et al., 2008).

• [C4] Spatial indicators. Captions sometimes contain spatial position indicators (Berg et al., 2004b)

such as “(L)” and “left”. These suggest the relative spatial position of an image region w.r.t. the

others. An example of this kind of connection is shown in Figure 5.2. The noun-preposition-noun

structure discussed in [C2] can also be considered as a spatial indicator.

Based on these constraints, we can explicitly enumerate the set of admissible assignments Zi from the

caption Ci in several interesting problems. Hence, we replace the captions by the CLSs {Zi}Ni=1. In a few

other cases, memory limitations prevents us from explicitly storing all assignments Zi. In such a case

we store the words and the constraints, which we can use to generate subsets of Zi “on the fly” during

learning.

In this setting, the training data are provided in the form {Xi,Zi}Ni=1. Each image Xi is associated

with a set of CLVs Zi (including one which is fully correct). Thus, our goal is to design a learning

algorithm which learns classifiers from input data in this special form. Along the way to learning these
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classifiers, our algorithm also selects one CLV for each image, thus resolving the correspondence between

image regions and words in the caption.

5.4 Learning from the Candidate Labeling Sets and the MMS

Algorithm

In Section 5.3 we have discussed how to transform the problem of learning from image-caption pairs into

the CLS problem. In this section, we first propose a large margin formulation of the CLS problem (Sec-

tion 5.4.1 to 5.4.3), then we present an efficient algorithm to optimize the proposed formulation (Sec-

tion 5.4.4 and 5.4.5).

Let X be the generic bag with M instances {x1, . . . ,xm, . . . ,xM}, Z = {Z1, . . . ,Zl, . . . ,ZL} the

generic set of CLVs. Under this representation, X can be an image with M regions, and an instance

xm is a vector of appearance features describing the m-th region. An image region can either be a

rectangular bounding box (e.g., a face) found by an object detector (Viola and Jones, 2004), or an

arbitrarily shaped segment found by an unsupervised segmentation algorithm (Felzenszwalb and Hut-

tenlocher, 2004). Furthermore, let Y = {y1, . . . ,yM},Z = {z1, . . . ,zM} be two labeling vectors, where

each element z,y ∈ YP is a label, with P denoting the number of attributes we model for each instance.

We also assume a uniform prior over the CLVs in the CLSs, i.e., p(Zi) = p(Zj), ∀ Zi,Zj ∈ Z. Later,

we will discuss the possibility to extend these probabilities when the priors for each Zi are known.

5.4.1 Prediction functions

Given the training data {Xi,Zi}Ni=1, we want to learn a linear score function sw(x, y(p)) = w · φ(x, y(p))

which can work on individual instance and attribute as defined in Section 1.3. We also define the linear

prediction function for an image region x as

fw(x) = arg max
y(p)∈Y(p)

P∑

p=1

sw(x, y(p)) = arg max
y∈Y

w · ψ(x,y) ,

where ψ(x,y) =
∑P
p=1 φ(x, y(p)) is a joint feature mapping vector between the region x and the labeling

vector y. This definition includes the special case of training different hyperplanes, one for each class.
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Indeed ψ(x,y) can be defined as

ψ(x,y) = [

K(1)

︷ ︸︸ ︷
0, · · · , 0, φ(1)(x)︸ ︷︷ ︸

y(1)-th

, 0, · · · , 0, · · · ,
K(p)

︷ ︸︸ ︷
0, · · · , 0, φ(p)(x)︸ ︷︷ ︸

y(p)-th

, 0, · · · , 0, · · · ] ,

where φ(p)(·) is a transformation that depends only on the data and the attribute p. In this case the

classifier w is parameterized by
∑P
p=1K

(p) hyperplanes wy(p) .

We can now define the score function for the image as Sw(X ,Y ), which intuitively is gathering from

each region in X the confidence on the labels encoded in Y . With the definitions above, we define the

function S as

Sw(X ,Y ) =

M∑

m=1

sw(xm,ym) =

M∑

m=1

w · ψ(xm,ym) = w · Φ(X ,Y ) , (5.1)

where we have Φ(X ,Y ) =
∑M
m=1 ψ(xm,ym). Given the CLS Z, the predictions of the classifier are

computed as Fw(X ,Z) = arg maxZ∈Z Sw(X ,Z).

Remark 5.1. If the prior probabilities of the CLVs zl ∈ Z are also available, they can be incorporated

into the score function by slightly modifying the feature mapping function in eq. (5.1) to p(Zi) ·Φ(X ,Zi),

where each p(Zi) is the prior probability for Zi ∈ Z.

5.4.2 Ambiguous loss functions

In the supervised learning setup, many loss functions have been proposed based on minimization of a

convex upper bound of an arbitrary risk measurement function ∆ : Y × Y → R, which quantifies how

much a predicted label differs from the true label. A classic loss function is the 0/1 loss:

∆01(Z,Y ) =

M∑

m=1

P∑

p=1

∆01(z(p)
m , y(p)

m ) =

M∑

m=1

P∑

p=1

1(z(p)
m 6= y(p)

m ) ,

where 1(·) is the indicator function, Y = {y1, . . . ,yM} are the true labels of regions xm, and Z are the

predicted labels. Hence, ∆01(Z,Y ) simply counts the number of mislabeled attributes over all regions.

However, in our setup the true labeling is unknown, and we only have access to the CLS Z, knowing

that the true labeling vector is in it. So we propose to use an ambiguous version of the loss ∆01, as a
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proxy for it:

∆A(Z,Z) = min
Z′∈Z

∆01(Z,Z ′) .

This loss function underestimates the true loss, while our goal is to minimize the true loss. Nevertheless,

we can prove a strong connection between the ambiguous loss ∆A(Z,Z) and the true loss ∆01(Z,Y ).

The following proposition shows that, in expectation, the ambiguous loss upper bounds the true 0/1

loss up to a constant multiplicative factor. To prove this, we use the theorems (Proposition 3.1 to 3.3)

stated in Cour et al. (2009) (for completeness we restate here the main proposition (Cour et al., 2009,

Proposition 3.1) with our notation), and define an ambiguity degree factor η for a region xm. The value of

η corresponds to the maximum probability of a noise label (i.e., ∀y ∈ Y(p) \y(p)
m ) co-occurring with a true

label y
(p)
m in the CLS Z, over all labels and examples generated by an unknown distribution P . We also

define the ambiguous loss for a single instance x and an attribute y as ∆A(z,Z) = minz′∈Z ∆01(z, z′) =

1(z /∈ Z), with Z being the set of candidate labels for this instance.

Proposition 5.1. (Cour et al., 2009, Proposition 3.1) For any classifier f and distribution P with the

ambiguity degree factor η < 1, we have

EP [∆A (f(x),Z)] ≤ EP [∆01 (f(x), y)] ≤ 1

1− ηEP [∆A (f(x),Z)] .

Proposition 5.2. EP [∆01(Z,Y )] ≤ 1
1−ηEP [∆A(Z,Z)] .

Remark 5.2. The tightness of the above bound directly relates to the ambiguity degree η. When η = 0,

we have only one labeling vector in every labeling set, i.e., Li = 1. In this case, the problem becomes

standard supervised learning, and the bound is tight. On the other extreme, when η = 1, which means

a certain noise label always co-occurs with a true label y(p), it is impossible to distinguish them. One

weakness of the stated bound is that it becomes very loose when there is a noise label that makes η

very large, because that η equals the maximum probability of co-occurring among all the possible noise

labels, although it only affects a few true labels. Nevertheless, using the extensions of Proposition 3.2

and Proposition 3.3 in Cour et al. (2009), it is possible to obtain label-specific bounds, which enable to

retain good learning performance on the subset of labels with low label-specific ambiguity degrees.

Hence, by minimizing the ambiguous loss we are actually minimizing an upper bound of the expected
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true loss. It is known that direct minimization of this loss is hard (Cristianini and Shawe-Taylor, 2000).

Therefore, in the following we introduce another loss that upper bounds ∆A which can be minimized

efficiently:

`A (X ,Z;w) = |max
Z̄ /∈Z

(
∆A(Z̄,Z) + Sw(X , Z̄)

)
−max
Z∈Z

Sw(X ,Z)|+ . (5.2)

The following proposition shows that `A upper bounds ∆A.

Proposition 5.3. `A (X ,Z;w) ≥∆A (X ,Z;w) .

5.4.3 Maximum Margin Set (MMS)

Using the square norm regularizer as in the SVM and the loss function (5.2), we have the following

optimization problem:

min
w

λ

2
‖w‖22 +

1

N

N∑

i=1

`A (Xi,Zi;w) . (5.3)

This optimization problem is non-convex due to the second max(·) inside the loss (5.2). To convexify

this problem, one could approximate the second max(·) with the average over all labeling vectors in Zi.

Similar strategies have been used in analogous problems (Cour et al., 2009; Zhang and Zhou, 2008).

However, the approximation could be very loose if the number of labeling vectors is large. Fortunately,

although the loss function is not convex, a good local minimum can be found using the constrained

concave-convex procedure (CCCP) (Smola et al., 2005; Yuille and Rangarajan, 2003).

5.4.4 Optimizing the MMS problem with CCCP

To optimize (5.2) using CCCP, we first rewrite it as

min
w

λ

2
‖w‖22 +

1

N

N∑

i=1

ξi

s.t. max
Z̄ /∈Zi

(
∆A(Z̄,Zi) + Sw(Xi, Z̄)

)
− max
Z∈Zi

Sw(Xi,Z) ≤ ξi, ξi ≥ 0, i = 1, . . . , N .

In this formulation, the objective function is convex, while the first set of constraints can be written as

the difference of a convex function and a concave function. The CCCP solves the optimization problem
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using an iterative minimization process. At each round r, given an initial w(r), the CCCP replaces the

concave part of the constraints with its first-order Taylor expansion at w(r), and then sets w(r+1) to

the solution of the relaxed constrained optimization problem. When this function is non-smooth, such

as maxz∈Zi Sw(Xi,Z) in our formulation, the gradient in the Taylor expansion must be replaced by the

subgradient1. Thus, at the r-th round, the CCCP replaces maxZ∈Zi Sw(Xi,Z) by

max
Z∈Zi

Sw(r)(Xi,Z) + (w −w(r)) · ∂
(

max
Z∈Zi

Sw(Xi,Z)

)
. (5.4)

The subgradient of a point-wise maximum function g(x) = maxi gi(x) is the convex hull of the union of

subdifferentials of the subset of the functions gi(x) which equal g(x) (Bertsekas, 2003). Defining by C(r)
i =

{Z ∈ Zi : Sw(r)(Xi,Z) = maxz′∈Zi Sw(r)(Xi,Z)}, the subgradient of the function maxZ∈Zi Sw(Xi,Z)

equals to
∑
l α

(r)
i,l ∂Sw(Xi,Zi,l) =

∑
l α

(r)
i,l Φ(Xi,Zi,l), with

∑
l α

(r)
i,l = 1, and α

(r)
i,l ≥ 0 if Zi,l ∈ C(r)

i and

α
(r)
i,l = 0 otherwise. Hence we have

∑

l

α
(r)
i,l w

(r) · Φ(Xi,Zi,l) = max
Z∈Zi

(
w(r) · Φ(Xi,Z)

) ∑

l:Zi,l∈C(r)i

α
(r)
i,l = max

Z∈Zi

(
w(r) · Φ(Xi,Z)

)
.

Combining this with (5.4), the constraints become

max
Z̄ /∈Zi

(
∆A(Z̄,Zi) +w · Φ(Xi, Z̄)

)
−w ·

∑

Zi,l∈C(r)i

α
(r)
i,l Φ(Xi,Zi,l) ≤ ξi .

Hence the relaxed convex optimization program at the r-th round of the CCCP is equivalent to the

problem

min
w

λ

2
‖w‖22 +

1

N

N∑

i=1

`(r)cccp (Xi,Zi;w) , (5.5)

where

`(r)cccp (Xi,Zi;w) =
∣∣ max
Z̄ /∈Zi

(
∆A(Z̄,Zi) +w · Φ(Xi, Z̄)

)
−w ·

∑

Zi,l∈C(r)i

α
(r)
i,l Φ(Xi,Zi,l)

∣∣
+
.

1Given a function g, its subgradient ∂g(x) at x satisfies: ∀u, g(u)− g(x) ≥ ∂g(x) · (u− x). The set of all subgradients
of g at x is called the subdifferential of g at x.
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Algorithm 8 The CCCP algorithm for solving MMS

1: initialize: w(1) = 0
2: repeat
3: Set C(r)

i = {Z ∈ Zi : Sw(r)(Xi,Z) = maxZ′∈Zi Sw(r)(Xi,Z′)}
4: Set w(r+1) as the solution of the convex optimization problem (5.5) (Algorithm 9)
5: until convergence to a local minimum

6: output:w(r+1)

The procedure of the CCCP algorithm is outlined in Algorithm 8. It is guaranteed to decrease the

objective function and it converges to a local minimum solution of problem (5.3) (Smola et al., 2005;

Yuille and Rangarajan, 2003).

We are free to choose the values of the α
(r)
i,l in the convex hull. Since the algorithm is susceptible

to a local minima, its performance could possibly be sensitive to initialization. Here we choose to set

α
(r)
i,l = 1/|C(r)

i | for ∀zi,l ∈ C(r)
i . With our choice of α

(r)
i,l , in the first round of the CCCP when w is

initialized at 0, the second max(·) in (5.2) is approximated by the average over all the labeling vectors.

In this way, the first round of the algorithm is similar to the convex relaxation methods in Cour et al.

(2009); Zhang and Zhou (2008), but here the later iterations will improve the solution.

5.4.5 Solving the relaxed MMS optimization problem using the Pegasos

framework

In order to solve the relaxed convex optimization problem (5.5) efficiently at each round of the CCCP, we

have designed a stochastic subgradient descent algorithm, using the Pegasos framework (Shalev-Shwartz

et al., 2007). At each step the algorithm takes K random samples from the training set and calculates an

estimate of the subgradient of the objective function using these samples. Then it performs a subgradient

descent step with decreasing learning rate, followed by a projection of the solution into the space where

the optimal solution lives (line 7). An upper bound on the radius of the ball in which the optimal

hyperplane lives can be calculated by considering that

λ

2
‖w∗‖22 ≤ min

w

λ

2
‖w‖22 +

1

N

N∑

i=1

`(r)cccp (Xi,Zi;w) ≤ B ,

where w∗ is the optimal solution of problem (5.5), with B = maxi(`
(r)
cccp(Xi, Zi; 0)), which equals the

maximum number of regions in the image multiplied by the number of attributes P we model. The
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Algorithm 9 Pegasos algorithm for solving the relaxed MMS problem

1: input: w0, {Xi,Zi, C(r)
i }

N
i=1, λ, T , K, B

2: for t = 1, 2, . . . , T do
3: Draw at random At ⊆ {1, . . . , N}, with |At| = K
4: Compute Ẑk = arg maxZ̄ /∈Zk

(
∆A(Z̄,Zk) +wt · Φ(Xk, Z̄)

)
∀k ∈ At

5: Set A+
t = {k ∈ At : `

(r)
cccp(Xk,Zk;wt) > 0}

6: Set wt+ 1
2

= (1− 1
t
)wt + 1

λKt

∑
k∈A+

t

(∑
Z∈C(r)i

Φ(Xk,Z)/|C(r)
i | − Φ(Xk, Ẑk)

)
7: wt+1 = min

(
1,
√

2B/λ/‖wt+ 1
2
‖
)
wt+ 1

2

8: end for

9: output: wT+1

details of the Pegasos algorithm for solving problem (5.5) are given in Algorithm 9. Using the theorems

in Shalev-Shwartz et al. (2007) it is easy to show that after Õ
(
1/(λε)) iterations Algorithm 9 converges

in expectation to a solution of accuracy ε.

Efficient implementation. At each iteration of Algorithm 9, step 4 searches for the most violating

labeling vector Ẑk, which is typically computationally expensive. Dynamic programming can be carried

out to reduce the computational cost since the contribution of each instance is additive over different

labels. In the general situation, the worst case complexity of a naive implementation which enumerates

all the possible permutations is O(
∏Mi

m=1Ki,m), where Ki,m is the number of unique possible labels for

xi,m in Zi (usually Ki,m � Li). However, the computation time can be further reduced by exploiting

the structure of Zi. This complexity can be greatly reduced when there are special structures such as

graphs and trees in the CLSs. See for example (Tsochantaridis et al., 2005, Section 4) for a discussion on

some specific problems and special cases. In Section 5.6.2, we will present an efficient inference algorithm

specialized for solving the name association problem. In cases when computing an exact solution is too

expensive, it is often possible to calculate an approximate solution of the same problem, and obtain good

empirical results (Wang and Mori, 2010) with theoretical guarantees (Finley and Joachims, 2008).

5.5 Experiments on artificial data

In order to evaluate the proposed algorithm, we first perform experiments on several artificial datasets

created from four widely used multiclass datasets taken from the LIBSVM (Chang and Lin, 2001) website

(usps, letter, news20 and covtype).

The artificial training sets are created as follows: we first set at random pairs of classes as “correlated
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classes”, and as “ambiguous classes”, where the ambiguous classes can be different from the correlated

classes. Following that, instances are grouped randomly into bags of fixed size B with probability at least

Pc that two instances from correlated classes will appear in the same bag. Then L ambiguous labeling

vectors are created for each bag, by modifying a few elements of the correct labeling vector. First, the

number of elements to modify b is randomly chosen from {1, . . . , B}. Then b instances are randomly

chosen from the bag, and new labels are randomly chosen among a predefined ambiguous set. The

ambiguous set contains the other correct labels from the same bag (except the true one) and a subset of

the ambiguous pairs of all the correct labels from the bag. The probability of whether the ambiguous pair

of a label is present equals Pa. For testing, we use the original test set, and each instance is considered

separately.

Varying Pc, Pa, and L we generate datasets with different difficulty levels to evaluate the behaviour

of the algorithms. For example, when Pa > 0, noisy labels are likely to be present in the labeling set.

Meanwhile, Pc controls the ambiguity within a bag. If Pc is large, instances from two correlated classes

are likely to be grouped into the same bag, thus it becomes more difficult to distinguish between them.

The parameters Pc and Pa are chosen from {0, 0.25, 0.5}. For each difficulty level, we use 3 random

training/test splits.

For our algorithm, we set the regularization parameter λ to 1/N in all of our experiments. We

benchmark MMS against the following baselines:

SVM: we train a fully-supervised SVM classifier using the ground-truth labels by considering every

instance separately. Its performance is an upper bound of the performance using candidate labeling sets.

In all experiments, we use the LIBLINEAR (Fan et al., 2008) package and test two different multiclass

extensions, the 1-vs-All method with the hinge loss `HL (1vA-SVM) and the method by Crammer and

Singer (Crammer and Singer, 2002) (MC-SVM) using the multiclass loss `MC.

CL-SVM: the Candidate Labeling SVM (CL-SVM) is a naive approach which transforms the ambigu-

ously labeled data into a standard supervised representation by treating all possible labels of each instance

as true labels. CL-SVM then learns K separate 1-vs-All SVM classifiers from the resulting dataset, where

the negative examples for the y-th classifier are instances which do not have the corresponding label y in

their candidate labeling set, in other words, it is not possible for these instances to come from class y. A

similar baseline has been used in the two-class MIL literature (Bunescu and Mooney, 2007).
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MIML: we also compared with two SVM-based MIML algorithms2: MIMLSVM (Zhou and Zhang, 2006)

and M3MIML (Zhang and Zhou, 2008). We trained the MIML algorithms by treating the labels in Zi as

a label for the bag. During the test phase, we consider each instance separately and predict the labels as:

y = arg maxy∈Y Fmiml(x, y), where Fmiml is the classifier learned during training, and Fmiml(x, y) can be

interpreted as the confidence of the classifier in assigning label y to instance x. For a fair comparison, we

use the linear kernel in all methods. The cost parameter for SVM algorithms is selected from the range

C ∈ {0.1, 1, 10, 100, 1000}, and the best results are reported. The bias term is used in all algorithms.

In fig. 5.3, we plot the average classification accuracy. Several observations can be made. First,

MMS achieves results close to the supervised SVM methods, and better than all other baselines. As

MMS uses a similar multiclass loss as MC-SVM, it even outperforms 1vA-SVM when the loss has its

advantage (e.g., on the ‘letter’ dataset). For the ‘covtype’ dataset, the performance gap between MMS

and SVM is more visible. It may be due to the fact that ‘covtype’ is a class unbalanced dataset, where

the two largest classes (among seven) dominate the whole dataset (more than 85% of the total number

of samples). Second, the change in performance of MMS is small when the size of the candidate labeling

set grows. Moreover, when correlated instances and extra noisy labels are present in the dataset, the

baseline methods’ performance drops significantly, whereas MMS is less affected.

The CCCP algorithm usually converges in 3 – 5 rounds, and the final performance is about 5% – 40%

higher compared to the results obtained after the first round, especially when L is large. This behavior

also proves that approximating the second max(·) function in the loss function (5.2) with the average

over all the possible labeling vectors can lead to poor performance.

5.6 Real case 1: Who is in the picture?

The first real-world problem we tackle is naming faces in news images accompanied by captions written by

journalists (Berg et al., 2004b; Guillaumin et al., 2010). Thanks to recent developments in the computer

vision and natural language processing fields, generic faces can be localized in the images using a face

detector (Viola and Jones, 2004) and generic names can be localized in the captions using a named entity

2We used the original implementation at http://lamda.nju.edu.cn/data.ashx#code. We did not compare against
MIMLBOOST (Zhou and Zhang, 2006), because it does not scale to all the experiments we conducted. Besides,
MIMLSVM (Zhou and Zhang, 2006) does not scale to data with high dimensional feature vectors (e.g., , news20 which has
a 62,061-dimensions features). Running the MATLAB implementation of M3MIML (Zhang and Zhou, 2008) on problems
with more than a few thousand samples is computational infeasible. Thus, we will only report results using this two baseline
methods on small size problems, where they can be finished in a reasonable amount of time.

http://lamda.nju.edu.cn/data.ashx#code
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Figure 5.3. Classification performance of different weakly supervised learning and supervised learning algorithms on four artificial
datasets.

detector (OpenNLP, 2010). Because the names of the most important persons in the image typically

appear in the caption, we can attempt to automatically label the detected faces with their correct names.

This enables to gather a large and realistic face dataset as well as learning face classifiers directly from

news items, saving the effort of manually labeling the faces. The main challenge of this task is the

correspondence ambiguity: there could be multiple faces in the image and/or multiple names in the

caption, and not all the names in the caption appear in the image, and vice versa. Some of the face

detections can be false positives, which adds to the ambiguity. The task of an algorithm is to resolve the

correspondence ambiguity, i.e., assign a name from the caption to each face in the image (or the null

label if a person is not mentioned in the caption, or for false positive detections).

5.6.1 Modeling

Since in this problem we are only interested in learning face classifiers, the model will associate at most

one label (a name) to each detected face region (no other attributes). In practice, there can be thousands

of different names in real world datasets (e.g., the whole of Yahoo! News Dataset). However, users are

typically only interested in the top K most frequent names, or only in a limited number of celebrities.

Moreover, because of the ambiguities mentioned above, we add a label called null (this also covers for

those infrequent names we do not model). In total, there are K + 1 classes, including K face classifiers

to be learned.

For each detected face in an image we want to assign a name from the caption to it, or null. To

format this problem into our framework, we use the following constraints to generate the CLSs:

• [A] a face can be assigned to exactly one name or to null;
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• [B] a name can be assigned to at most one face;

• [C] a face can be assigned only to a name appearing in the caption of the corresponding image;

• [D] if spatial indicators, such as “left” and “(L)”, exist, the labeling vectors in the CLSs should

respect them.

In our setup, constraints [A], [B] and [C] apply to all news items, whereas constraint [D] applies only

to a few items. When including constraints [A]-[C], the number of admissible candidate labeling vectors

for an image-caption pair with Mi faces and Wi names is Li =
∑min(Mi,Wi)
j=0

(
Mi

j

)
·
(
W i

j

)
(see Figure 5.4 for

an example with Mi = Wi = 2). In addition, when a spatial indicator is available, we remove the labeling

vectors which do not comply with it. Take Figure 5.2 for example: we decide the relative position of

faces by the horizontal coordinate of their center. With the spatial indicators, we know that the face in

the middle can only be Grant Hackett. Then the face on the left can either be Igor Chervynsky or Erik

Vendt (and the same for the face or the right). Their CLS can be generated as the two persons and two

faces case. Different from previous methods, we do not allow the labeling vector which assigns all faces

to null, because classifying every face as null would lead to the trivial solution with 0 loss.

5.6.2 Inference

As stated above, searching for Ẑ in line 4 of Algorithm 9 is the most expensive step of the training

procedure. Here we propose an algorithm which can find Ẑ efficiently. We first compute the classification

scores sw(xm, y) for every instances in the bag and every possible label y ∈ Y. After the scores are

computed, we use Algorithm 10 to find Ẑ in polynomial time with a bounded number of iterations.

The design of Algorithm 10 is motivated by the A∗ search algorithm (Cormen et al., 2003). The

algorithm first ranks the possible predictions ym for each face xm according to their scores sw(xm, ym) +

∆A(y,Z(m)), where Z(m) is the m-th row of Z. Lines 9-14 of the algorithm guarantee that all elements in

the heap H have a higher score S than any S(X ,Z) =
∑
xm∈X ,zm∈Z sw(xm, zm) for any other arbitrary

compositions of Z with zm ∈ Y, which not have been added into H. It is easy to verify that the algorithm

terminates in at most L + 1 iterations, where L is the number of candidate labeling vectors in Z. The

worst case scenario is when the first L Z̄s returned by the heap (line 8) all belong to Z. As typically

L � K, the worst case complexity of searching for Ẑ using Algorithm 10 is O(L ∗M), where M is the
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Algorithm 10 Efficient Algorithm for Searching for Ẑ

1: input: Z, s(xm, y) + ∆A(y,Z(m)), ∀ m = 1, . . . ,M, y ∈ Y
2: initialize: H = new heap, index variable jm = 1, ∀m
3: Set Xm as a sorted array of y in descending order, according to s(xm, y) + ∆A(y,Zm) , ∀y ∈ Y
4: Set Z =

[
X1(j1), . . . ,XM (jm)

]
5: Set S =

∑
m s(xm,Z(m))

6: Push A = {j =
[
j1, . . . , jM

]
, Z, S} into H

7: repeat
8: Pop A = {j, Z̄, S} with the highest score S out of H
9: for m = 1, 2, . . . ,M do

10: Set j′ = j, then j′(m)++
11: Set Z′ =

[
X1(j′(1)), . . . , XM (j′(M))

]
12: Set S =

∑
m′ s(xm′ ,Z

′(m′))}
13: Push A′ = {j′, Z′, S} into H
14: end for
15: until Z̄ /∈ Z
16: output: Ẑ = Z̄

number of regions in an image. Hence, Algorithm 10 can be used to obtain Ẑ efficiently when the value

of L and B is not very large (L ≤ 104 and M ≤ 10), which is the case in this task.

In general, Algorithm 10 can not guarantee to find an exact solution Ẑ to the problem

arg maxZ̄ /∈Z U(Z̄) = arg maxZ̄ /∈Z
(
∆A(Z̄,Z +wt · Φ(Xk, Z̄))

)
, denoted by Ẑ

∗
, at every round. This is

because the algorithm only considers ∆A(y,Z(m)) = 1 for those labels that do not appear in the Z(m).

Let us consider a more concrete example: assume a bag {x1,x2} with two labeling vectors z1 = [1, 2]

and z2 = [2, 1]. We also know that s(x1, 1) = 3, s(x1, 2) = 2, s(x1, 3) = 1, s(x2, 1) = s(x2, 2) = 1

and s(x2, 3) = 0.99. In this case, the solution obtained by Algorithm 10 is Ẑ = [1, 3], but Ẑ
∗

= [1, 1].

Despite that, the algorithm will still obtain a Ẑ whose value of U(Ẑ) is very close to U(Ẑ
∗
). However, in

practice, the algorithm works very well, and the above special case rarely happens. Experiments on the

same dataset show that Algorithm 10 almost always find Ẑ
∗
, and that MMS executed with Algorithm 10

achieves the same performance as using an exponential time exact inference algorithm.

5.6.3 Experiments

We conducted experiments on the Labeled Yahoo! News dataset (see Appendix A for more details).

We compare our results to the same baselines proposed in Section 5.5. In MIMLSVM, null faces are

automatically considered as negative instances. In addition, we also compare with a baseline which does

not consider the appearance of the faces:

RANDOM: randomly assign a name (or null) from the caption to each face in the corresponding image.
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Table 5.1. Protocol I -Overall name assignment accuracy on the training set

Method RANDOM CL-SVM MIMLSVM MMS

Accuracy 73.1%± 0.0 86.3%± 0.1 89.62%± 0.2 91.86%± 0.3

Table 5.2. Protocol I - Overall face recognition accuracy on the test set
Supervised Learning Weakly supervised Learning

Method RANDOM 1vA-SVM MC-SVM MC-SVM[50%] CL-SVM MIMLSVM MMS
Accuracy 66.0%± 0.0 81.6%± 0.6 87.2%± 0.3 83.3%± 0.2% 76.9%± 0.2 74.7%± 0.9 85.7%± 0.5

Although there are more than 10000 different names in the captions, we will only consider those names

which appear frequently enough. We consider two different protocols, detailed in the following sections:

Protocol I

In the first set of experiments, we use only constraints [A]-[C] to generate the CLS Zi of each image-

caption pair. We retain the 214 names occurring at least 20 times, and treat the other names as null.

The experiments are performed over 5 different random train/test splits, sampling 80% of the items as

training set and using the rest for testing. During splitting we also maintain the ratio between the number

of samples from each class in the training and test set. Performance is measured by how many faces in

the test set are correctly labeled with their name (or null). Moreover, we also compute name assignment

performance on the training set by testing the final model on it.

Table 5.1 reports the name assignment performance on the training set. All the weakly super-

vised learning algorithms which consider face appearance outperform the RANDOM baseline, and MMS

achieves the best result among all approaches. Table 5.2 summarizes the generalization performance on

the test set. Several observations can be made. First, MMS achieves performance comparable to the

fully-supervised SVM algorithms (1vA-SVM, MC-SVM), and it outperforms the other methods which

train from ambiguously labeled data (i.e., the captions). MMS even achieves an accuracy 4% higher than

1vA-SVM. This gain may be due to the fact that MMS uses a similar multiclass loss as MC-SVM, whose

formulation is advantageous on this dataset. Moreover, we also present the result of MC-SVM trained on

only half of the training data (MC-SVM[50%]), while evaluating on the same test set. The result shows

that when MMS has more training data, it even outperforms the best fully supervised learning method

we consider. This illustrates the promise of our method, as large amounts of image-caption pairs can be

easily obtained from the internet, without manual labeling efforts.
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Table 5.3. Protocol II -Overall name assignment accuracy on the training set

Without POS With POS

Method RANDOM MMS RANDOM MMS

Accuracy 37.0%± 0.0 85.3%± 0.7 70.8%± 0.0 89.1%± 0.7

Table 5.4. Protocol II - Overall face recognition accuracy on the test set

Method RANDOM 1vA-SVM MC-SVM MMS (Without POS) MMS (With POS)

Accuracy 39.5%± 0.0 82.2%± 0.2 87.3%± 0.1 83.5%± 0.4 84.9%± 0.5

Protocol II

Here we consider all four constraints including the spatial indicators [D] (Section 5.6.1). Only 3105 image-

caption pairs contain any spatial indicator. We use all of them as part of the training set. In addition,

we also randomly sample 6895 image-caption pairs from the dataset, resulting in a training set of 10000

image-caption pairs. All other image-caption pairs form the test set. We retain the 460 names occurring

at least 3 times, and treat the other names as null.

The results are reported in table 5.3 and 5.4. Our MMS algorithm can take advantage of the spatial

indicators, and improve performance for both name association on the training set (+3.8%) and face

recognition on the test set (+1.4%).

5.7 Real case 2: Who is doing what?

The second real-world problem we tackle is finding out “who’s doing what”, i.e., associating names and

action verbs in the captions to the faces and body poses of the persons in the images. In addition, the

algorithm should also learn visual appearance models for the face and pose classes jointly. This task

generalizes the work described in the previous section by considering the subject-verb language construct

and by modeling names and verbs jointly. In our previous work (Jie et al., 2009b), we have shown that

the correspondence ambiguity is reduced by jointly modeling face and pose together using a generative

model. In this section, we show that our MMS technique can be used to model the same problem, and

achieves better performance than (Jie et al., 2009b).

5.7.1 Modeling

In this task, the corpus of news items contains still images of persons performing actions. Each image

is annotated with a caption describing “who’s doing what” in the image (Figure 5.1). The interesting
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President Barack Obama and

first lady Michelle Obama

wave from the steps of Air

Force One as they arrive in

Prague, Czech Republic.

Z1 Z2 Z3 Z4 Z5 Z6

Z :

[
na na ◦ nb ◦ nb
nb ◦ nb na na ◦

]
← face1

← face2

Figure 5.4. (Left): An example image with its associated caption. There are two detected faces face1 and face2 and two names
Barack Obama (na) and Michelle Obama (nb) from the caption. (Right): The CLS for this image-captions pair. The labeling
vectors are generated using the constrain [A], [B] and [C], where the null class is denoted as ◦.

regions in the images are persons. A person corresponds to a face and upper-body (including false positive

detections), which can be detected with available software. A face and an upper-body are considered to

belong to the same person if the face lies near the center of the upper-body bounding-box. One could

use a named entity detector (OpenNLP, 2010) and a language parser (Deschacht and Moens, 2009) to

extract a list of name-verb pairs from each caption, to represent the connection between a subject and its

verb in a sentence. If a name is not connected to any verb, the pair is name-null. Our system models two

types of words jointly, and the goals are to: (i) associate the persons in the images to the name-verb pairs

in the captions, and (ii) learn a visual appearance model for each name and each verb, corresponding to

face and pose classes. These can be used for recognition on new images with or without caption.

The candidate labels for a detected person are the name-verb pairs in the caption. One label assigns

a name to a face, and its connected verb from the caption to the body pose of the same person in the

image. Hence, name and verb are seen as two attributes of the same image region (a person). Therefore,

during learning, to find the best possible Z ∈ Z for the image, the names and the verbs are considered

jointly in making decisions. The chosen name-verb pair is the one which has the highest confidence score

over both attributes. For generating constraints, we assume again the uniqueness of each person and

her name and apply constraints analog to Section 5.6.1 for generating the CLVs (except [D], as spatial

indicators are not available in the dataset we perform experiments on). More precisely, the face and

name in constraints [A]-[C] are replaced by person and name-verb. In this way, each person region is

associated with two attributes: name and verb, which must come from the same pair detected from the

caption. Figure 5.5 illustrates how the CLVs are generated on an example with two persons in the image

and two name-verb pairs in the caption (news item in Figure 5.1 (left)).

5.7.2 Inference

We use Algorithm 10 to compute Ẑ.
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Z1 Z2 Z3 Z4 Z5 Z6

Z :




na na ◦ nb ◦ nb
va va ◦ vb ◦ vb
nb ◦ nb na na ◦
vb ◦ vb va va ◦




← person1-face
← person1-pose
← person2-face
← person2-pose

Figure 5.5. CLVs generation for the new item in Figure 5.1 (left). There are two detected persons, person1 and person2, and
two name-verb pairs, Barack Obama-Waving (na-va) and Michelle Obama-Standing (nb-vb). The CLVs are generated using
constraints [A]-[C] as in Section 5.6.1. Labels such as Barack Obama-Standing is not allowed, as Barack is not the subject of the
verb “standing” in the caption.

5.7.3 Experiments

We conducted experiments on the Idiap/ETHZ Faces and Poses dataset which contains images of per-

son(s) performing certain actions. For each person in the image, we extract a face descriptor and three

types of body pose descriptor. We describe the face with the method of Everingham et al. (2006), which

detects nine distinctive feature points within the face bounding box. Each point is represented by the

pixels in an elliptical region around it, normalized for local photometric invariance. For describing the

body poses, we use the features of Ferrari et al. (2008a). A pose E consists of a distribution over the

position (spatial and orientation) for each of 6 body parts (head, torso, upper/lower left/right arms)

output by the estimator of Eichner and Ferrari (2009). Three low-dimensional descriptors are derived

from E (e.g., the relative position between pairs of body parts). We use non-linear kernels for both

face and pose descriptors, in the form k(x,x′) = exp
(
−γ−1d(x,x′)

)
, with d the distance between two

descriptors, and γ selected by cross-validation. We measure the distance between two face descriptors

x,x′ using dface(x,x′) = 1−xTx′/(‖x‖‖x′‖). In (Ferrari et al., 2008a), different similarity measures are

proposed for each type of descriptor. We normalize the range of each similarity to [0, 1], and denote their

average as spose(x,x′). The final distance between two poses is dpose(x,x′) = 1− spose(x,x′). The face

and pose kernel matrices are computed in advance to speed up the learning. It is easy to verify that they

are all Mercer kernels. In this experiment, we use the available ground-truth name-verb pairs from the

captions directly (instead of running an NLP tool) for generating the CLSs.

We compare the results of MMS against (i) a simplified version of the constrained mixture model

“GMM” (Berg et al., 2004b, Section 2.3) which does not incorporate a language model of the caption;

(ii) the distance-based generative model “DIST” (Jie et al., 2009b); (iii) a “RANDOM” baseline which

randomly assigns a name-verb pair from the captions to each region in the corresponding image. We did
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 DIST (single)
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 DIST (jointly)
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 RANDOM (from caption)
 MMS+Caption (jointly)

Figure 5.6. (Left) Name and verb assignment accuracy on 1600 training images from the Idiap/ETHZ face+pose database.
‘Single’ stands for modeling one attribute in its corresponding task. ‘Jointly’ stands for models using two attributes jointly.
(Right) Name and verb recognition accuracy on the test images. All methods but ‘MMS+Caption’ and ‘RANDOM (from
caption)’ only input the images without captions. The ’caption” methods input a test image-caption pair.

not compare to the other weakly-supervised learning baselines used in Section 5.5 & 5.6 because they do

not support multiple attributes. As in the protocol of Jie et al. (2009b), we use 1600 items for training

and 103 for testing.

Figure 5.7.3 (left) reports the name and verb assignment performance on the training set, while

Figure 5.7.3 (right) reports the recognition results on the test images. We observe that: (i) DIST using

only face information outperforms GMM for name-to-face assignment on the training set. This validates

the quality of the distance-based appearance model of Jie et al. (2009b). We reuse it also in our MMS

framework. (ii) MMS outperforms DIST on both the training and the set set. (iii) the joint “face and

pose” model outperforms models using face or pose information alone, demonstrating that modeling

both attributes jointly reduces the correspondence ambiguity on the training set and leads to appearance

models which perform better on the test set. This phenomenon holds for both DIST and MMS. (iv) on

the test set, MMS gets further performance gains when given captions. In this case the problem is easier

because the correct label for a person is one of the few appearing in the caption.

5.8 Conclusion

In this chapter, we present an example on using text cue which accompanies the images to supervise the

learning of visual classifiers without manual intervention. We show that such type of learning problem can

be casted into a new weakly supervised learning framework. Compared to the weakly supervised learning

algorithm proposed by Cour et al. (2009), our framework provides a principled way to encode different

constraints widely used in many tasks, as a list of possible labelings which can be generated automatically
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from the image-caption pair. We also propose a large margin discriminative learning formulation and an

efficient optimization algorithm to train the classifier effectively. We solve the non-convex objective func-

tion using the CCCP algorithm, which results in a tighter convex relaxation compared to the relaxation

technique used in Cour et al. (2009); Zhang and Zhou (2008). We demonstrate on two real-world tasks

that the proposed method can learn face classifiers from images with captions, and can learn multiple

attributes jointly (names and verbs).

The MMS algorithm can be extended to solve other related problem. For example, in the multiple an-

notators scenario, where each data is associated with the labels given by independently hired annotators.

The annotators can disagree on the data and the aim is to recover the true label of each sample. The

use of this algorithm does not have to be limited to data which is naturally grouped in multi-instance

bags. It could be also possible to group separate instances into bags and solve the learning problem

using MMS, when there are labeling constraints between these instances (e.g., a clustering problem with

linkage constraints (Shental et al., 2003)).



Chapter 6

Knowledge Transfer Across Different

Cues

In this chapter, we present a multiclass transfer learning algorithm that allows to take advantage of priors

built over different features and with different learning methods than the one used for learning the new

task. The algorithm exploits learned models from potentially correlated tasks. These prior models are

considered as experts, and the system transfers their outputs to the new incoming samples as additional

information (Section 6.2). We cast the learning problem within the Multi Kernel Learning framework.

The resulting formulation solves efficiently a joint optimization problem that determines from where

and how much to transfer, with a principled multiclass formulation (Section 6.3). We call the proposed

method Multi Kernel Transfer Learning (MKTL). Experiments show that the proposed approach can

boost the performance when very few labeled data are available, while it still improves the performance

when the algorithm has seen a reasonable amount of samples (Section 6.5). The content presented in this

Chapter is based on the following publication:

Jie, L., Tommasi, T., and Caputo, B., (2011). Multiclass Transfer Learning from Unconstrained

Priors. In Proceedings of the 13th International Conference on Computer Vision.

97
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6.1 Introduction

The artificial intelligent and machine learning community has shown a growing interest in transfer learning

algorithms in the last few years. Indeed, this type of algorithms allows to exploit prior knowledge when

learning a new class, which reduces the need for annotated training data. As the frontiers in object

categorization move from systems able to categorize 102 objects (e.g., Caltech-101 (Fei-Fei et al., 2004)

and Caltech-256 (Griffin et al., 2007)) to systems aiming to recognize 104 categories (e.g., ImageNet (Deng

et al., 2009)), there is a growing demand for techniques able to learn robust categorization models from

few labeled samples.

Transfer learning has been studied in multiple domains and under various perspectives. Many works

address the issue of what to transfer (samples (Bickel et al., 2007), feature representation (Chang and

Sridhar, 2008; Quattoni et al., 2008), model parameters (Fei-Fei et al., 2004; Stark et al., 2009; Tommasi

et al., 2010)), some focus on how to transfer (generative approaches (Fei-Fei et al., 2004; Stark et al., 2009),

boosting (Yao and Doretto, 2010), KNN (Saenko et al., 2010) and SVM (Duan et al., 2009; Tommasi

et al., 2010)), while others concentrate on how to avoid negative transfer, evaluating when and how much

to transfer (different source selection approaches (Tommasi et al., 2010) or methods to measure the task

relatedness (Eaton et al., 2008)). Some knowledge transfer strategies propose to exploit sets of unlabeled

target samples (Quattoni et al., 2008; Raina et al., 2007) or alternative sources of extra information as

attributes (Farhadi et al., 2009; Lampert et al., 2009).

As diverse as these approaches are, they all assume a strong control over the priors, whether in

the form of constraining how the prior models are built (Fei-Fei et al., 2004; Tommasi et al., 2010),

or in the way of preserving the priors training samples (Dai et al., 2009; Daumé III, 2007), or in the

form of imposing the same feature representation for all priors and for the new target class (Daumé III,

2007; Tommasi et al., 2010). These constraints become particularly strict when the target problem is

multiclass (Rohrbach et al., 2010; Tang et al., 2010).

Our contribution is a multiclass transfer learning algorithm from unconstrained priors. We assume to

have no control on the features from which prior models are learned, nor on the learning methods used to

build the corresponding classifiers. This is achieved by using the prior knowledge as experts evaluating

the new incoming data and transferring their confidence outputs. These outputs are used to augment the

feature space of the new target data. The learning process is defined solving an optimization problem
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Figure 6.1. A graphical representation of how to use the outputs from the prior models as auxiliary features when computing the
score of a new class.

which considers both from where and how much to transfer using a principled multiclass formulation.

We model our learning algorithm using the structural risk minimization principle, with a group norm

regularization term which allows to tune the level of sparsity in the domain of the prior models. We

show that it is possible to cast the problem within the Multi Kernel Learning framework, and to solve it

efficiently with off-the-shelf MKL solvers. We use the OBSCURE algorithm in Section 4.4 to solve the

problem in the primal, resulting in a computationally efficient method that scales well w.r.t. the number

of priors.

6.2 Problem Definition

This section introduces formally the transfer learning framework used in this chapter.

Prior Knowledge. Consider the scenario where we have already known K(K ≥ 2) classes, modeled via

a classification function fp of the form: fp(x) = arg maxz∈Z sp(x, z) , where Z = {1, . . . ,K}, and sp(x, z)

is the score function of predicting the instance x as the z-th prior class. In the case of binary classification,

the classification function can be further simplified as f(x) = sign (s(x)), with Z = {−1,+1}. In the rest

of the chapter, we only describe our model for the multiclass situation, as its modification to the binary

case is straightforward.
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The Transfer Learning Framework. We are interested in the task of learning a classifier for K ′

categories, different from the K categories already known. Given the new training set {xi, yi}Ni=1, tra-

ditional supervised learning methods, e.g., SVM, minimize an upper bound of the generalization error,

without taking advantage of the existing models fp. However, when the number of training samples is

small, this upper bound may become very loose and the learned model becomes unreliable. One way to

improve performance is to exploit existing priors. Here, we propose to incorporate the predictions of prior

knowledge models with the training samples as auxiliary features. In addition to the training sample xi,

we also gather the scores sp(xi, z), z = 1, . . . ,K, predicted by the prior models. In this thesis, we focus

on the standard linear model. Therefore, when learning a new category the score function is:

s(x, y) = w̄ · φ̄(x, y) = w(0) · φ(0)(x, y) +
z=K∑

z=1

w(y,z) · φ(y,z) (sp (x, z) , y) (6.1)

where w(·) is a hyperplane, φ(·)(·, ·) is the joint feature mapping function. We use the index 0 to indicate

the feature mapping function φ(0)(x, y) for the original input features x and their corresponding model

parameters w(0). The indices (y, z) correspond to the feature mapping of sp (x, z) to the y-th new class,

where y = 1, . . . ,K ′. In other words, given the score sp(x, z) produced by the prior model, w(y,z)

represents the contribution of the z-th prior model in predicting that x belongs to class y. Intuitively,

if prior knowledge of a bicycle gives a high score to images of a motorbike, this information may also

be useful in the score function of motorbikes, since the two classes share common visual properties.

Therefore, we might expect that the model will give to this prior knowledge a higher weight. On the

contrary, we expect lower weights for classes which are not very relevant, such as dogs. Figure 6.1

illustrates the approach when computing the score for one class. Again, the predicted label is the class

achieving the highest score.

Ideally, we would like to build the auxiliary feature representation using all the prior knowledge

we have, and let the learning algorithm decide automatically from where to transfer and how much to

transfer. Nevertheless, from a machine learning point of view, the more priors are considered, the higher

is the risk for overfitting, especially when the number of training samples is limited. Moreover, among

the K prior models, we expect only few of them to be relevant w.r.t. a specific new class, while the

rest can even add noise to the problem producing negative transfer. Both factors need to be taken in

consideration when designing the learning algorithm.



6.3. MULTIPLE KERNEL TRANSFER LEARNING 101

Learning the Objective Function. The supervised learning optimization problem here is to find the

modeling parameter w̄ that minimizes the structural risk introduced in Section 1.3:

min
w̄

λh(w̄) +

N∑

i=1

` (w̄,xi, yi) . (6.2)

As stated above, we would like to encourage sparsity on the level of prior models, such that out of all the

models, only a few of them are actually taking part in the scoring function. For this purpose we select

the squared (2, p) group norm as our regularizer,

h(w̄) =
1

2
‖w̄‖22,p =

1

2

∥∥∥
[
‖w(0)‖2, ‖w(1,1)‖2, · · · , ‖w(y,z)‖2 · · · , ‖w(K′,K)‖2

]∥∥∥
2

p
,

with p ∈ (1, 2]. Each w(y,z) forms its own group, and minimizing h(w̄) corresponds to minimize the norm

of each w(·) jointly.

The learning formulation is flexible, and we can use any convex Lipschitz loss function. In this chapter

we will again consider only the hinge loss `HL and the multiclass loss `MC.

6.3 Multiple Kernel Transfer Learning

The original learning problem (6.2) can be converted into an lp-norm MKL (problem (4.3), Section 4.2),

which can be solved with an lp-norm MKL algorithm such as OM-2 (Section 4.3), OBSCURE (Section 4.4)

or the SHOGUN library (Sonnenburg et al., 2006).

To transform problem (6.2), we first set

w̄ = [ w(0), w(1,1), · · · , w(y,z), · · · , w(K′,K) ] ,

and

φ̄(x, y) = [ φ(0), φ(1,1)(sp(x, 1), y), · · · , φ(y,z)((sp(x, z), y), · · · , φ(K′,K)(sp(x,K), y) ] .

Therefore, in total, we will have (K ×K ′ + 1) feature mapping functions φ(·)(·, ·), and the same number

of kernels Kj((x, y), (x′, y′)) = φj(x, y) ·φj(x′, y′). This definition includes the particular case of training
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K ′ different hyperplanes, one for each new class. In fact, we have that φ(0)(x, y) is equal to

φ(0)(x, y) = [0, · · · ,0, ψ(0)(x)︸ ︷︷ ︸
y

,0, · · · ,0],

where ψ(0)(·) is a transformation that depends only on the data. Similarly, w(0) will be composed by K ′

blocks, with each block corresponding to the hyperplane for each class. The feature mapping function

for the z-th prior model output can now be written as:

φ(y′,z)(x, y) =





[0, · · · , ψ(sp(x, z))︸ ︷︷ ︸
y

, · · · ,0] , if y = y′

0 , otherwise

.

Again, w(y′,z) will be composed by K ′ blocks. However, with this construction, all the blocks of w(y′,z)

are 0 except for the y′-th block. Hence, w(y′,z) only appears in the score functions s(x, y′) predicting if

x belongs to the class y′.

We solve the MKTL problem using our OBSCURE framework. Since OBSCURE has a faster conver-

gence rate as the number of kernels grows, it somehow mitigates the problem that the number of kernels

grows linearly with the number of priors. Moreover, since OBSCURE minimizes the primal objective

function directly, it makes the learning algorithm more memory and computationally efficient, when we

can write the explicit form of feature mapping ψ(x) (e.g., a linear kernel or polynomial kernel with a low

degree).

In our experiments, we will only consider the identity function ψ(x) = x (i.e. linear kernel) for

the scores of prior models. Therefore, the algorithm does not need to use kernel caching for the extra

(K × K ′) kernels coming from the prior knowledge. Similarly, the algorithm could also store w(y,z)

directly in its primal representation. Hence, compared to the original supervised learning problem without

prior knowledge, the algorithm will use O(K ×K ′) extra memory space, and additional computational

complexity at each iteration is also O(K×K ′). In the experiments we modified our OBSCURE algorithm

to incorporate the auxiliary prior features and learn them efficiently, using both a binary and a multiclass

loss function. For the binary version, we also modified the algorithm to obtain a weighted version for

unbalance data (Chang and Lin, 2001), which considers a different value of C for positive and negative
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examples.

The value of the parameter p is usually defined through cross-validation, and its optimal value depends

on the sparseness of the data. According to the Theorem 4.2 , it is also possible to set p equal to 2 logF
2 logF−1

to get a convergence rate that depends logarithmically on the total number of kernels, which is denoted

by F . With this setup of p, we have only one free parameter λ.

6.4 Comparison with Existing Methods

In this section we briefly discuss other related existing approaches, emphasizing the connections and

differences between them and our method.

Using model outputs as auxiliary features. The idea of using the output of other classifiers as

basic feature representation has been well-explored in various AI domains. It recently gained popularity

in the computer vision community, thanks to a large amount of annotated object image datasets that

become available on the web. Several papers demonstrated that the outputs of object detectors (Li et al.,

2010), visual attributes (Farhadi et al., 2009; Lampert et al., 2009) and semantic visual concept (Torresani

et al., 2010; Vogel and Schiele, 2008) can be used to define a good feature representation and to improve

recognition performance. Our transfer learning approach follows this line of thoughts. The novelty lies

in using the outputs of object classifiers as additional feature representations combined with sample

features from the new target class. This makes it possible to exploit these ideas within the transfer

learning framework. Moreover, we differ from these methods, as we use prediction outputs from models

of similar object categories (e.g., , when transfers from bicycle to motorbike). This is in contrast with,

for instance Object Bank (Li et al., 2010) where the output of semantic part detectors (e.g., , sky, tree)

are used.

Most works (Farhadi et al., 2009; Lampert et al., 2009; Torresani et al., 2010; Vogel and Schiele, 2008)

use features computed from the entire image. Notably different, Object Bank (Li et al., 2010) uses a

localized representation where features are extracted at different spatial pyramid levels. This is more

suited for representing cluttered images composed of many objects, such as natural scenes. Although in

our experiments we also use outputs computed from the entire images, the algorithm we propose can

handle various multi-dimensional representations, e.g., representations like Object Bank. Furthermore,

MKTL takes advantage of the MKL machinery, which allows to group freely information from different
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unconstrained sources including the new training data into different kernels.

Finally, MKTL has a principled multiclass formulation. Each class learns from which auxiliary features

to transfer in a joint optimization problem. This multiclass formulation could be generalized to other

similar problems, such as those described above. It also allows to define different kernels for the new and

the prior knowledge.

Multi Model Knowledge Transfer (Multi-KT) (Tommasi et al., 2010). A transfer learning

algorithm close to ours is Multi-KT, which modified the l2 square norm regularizer in the classical Least-

Square-SVM objective function, constraining the new hyperplanew to be close to some of the hyperplanes

uj of the F prior models. Its regularization term can be written as ‖w −∑F
j=1 β

juj‖2, where βj is a

parameter to be learned which defines the reliability of known models for the new learning problem,

subject to the constraint that ‖β‖2 ≤ 1. The algorithm is binary, and its final decision function for a

given sample x can be written as:

s(x) = w · φ(x) +

F∑

j=1

βjuj · φ(x).

This is very similar to the binary version of the score function defined in (6.1). However, Multi-KT is

solved based on two separate optimization problems, while our algorithm finds both the best hyperplane’s

parameter and the weights to be assigned to each prior knowledge model in a joint optimization process.

Moreover, Multi-KT requires that each prior model u is constructed using the same type of classifier

of the new model. All the models (priors and new) must also use the same type of feature descriptors.

On the other hand, MKTL has neither of these constrains. It is capable of heterogeneous transfer from

unconstrained priors: we can freely combine different learning methods and different features to boost

performance. Finally, Multi-KT can not be extended to principle multiclass formulation using the multiple

class loss function `MC,

6.5 Experiments

We present here three sets of experiments designed for studying the behavior of MKTL: (a) in the object

category detection scenario, with priors and new model learned using the same features and learning

methods (Section 6.5.1); (b) in the multiclass object categorization scenario, with limited priors and few
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annotated samples for the target class, where priors and new model are learned using different algorithms

and features (Section 6.5.2), and (c) where the problem is again multiclass, but scaling w.r.t. the number

of available priors and w.r.t. the number of labelled samples for the new classes. In all our experiments,

the regularization parameter is set as λ = 1
CN , with C selected from the set {0.1, 1, 10, 100, 1000}, and

the parameter p is chosen from the set {1.01, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.40, 1.50}.

We compare MKTL against the following baselines:

• [No-Transfer] It corresponds to the standard supervised learning task without considering prior

knowledge. We train SVM classifiers using the 1-vs-All scheme for the multiclass extension. Ideally,

the performance of a transfer learning algorithm should not be worse than this baseline, to avoid

negative transfer that might hurt performance.

• [Prior-Features] We also test the performance when using only the outputs of prior models as

feature descriptors. We concatenated the outputs of the prior models into a vector representation,

then use a linear SVM classifier to test their performance. This idea is similar to the classemes

feature proposed in (Torresani et al., 2010). This baseline will help us understand the role of the

prior models in the performance. For example, if the performance of all the prior models is very low

compared to No-Transfer, we may expect to see an improvement in performance relatively small

compared to standard supervised learning, and vice versa. This kind of baseline has often been

ignored in previous transfer learning literature. Here we argue that it should be considered as an

obligatory competitor, since sometimes using the prior models alone could lead to higher accuracy.

• [Multi-KT] We also compared against the Multi-KT transfer learning algorithm. This method

assumes that all the prior models and the new model use the same type of feature descriptors and

learning method. Thus, for Multi-KT, we did train all our prior models with the same feature

descriptors and kernel parameters using SVM classifier. Since this algorithm has been presented

only in a binary version, we implemented the multiclass extension using the 1-vs-All scheme.

• [Average-TL] MKTL learns the weights to combine the outputs of each prior models with the

new knowledge representation. Thus, a natural baseline is to consider the information coming from

the priors and the new knowledge as equally relevant. This is equivalent to train a SVM classifier

using the average of all the available kernels. This method often performs as good as many MKL

algorithms (Gehler and Nowozin, 2009b).
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For all the baseline methods, we use the LIBSVM (Chang and Lin, 2001) package for training and

testing the SVM classifier. The regularization parameter C is selected from the same range as MKTL,

and the best results are reported. For No-Transfer and Average-TL, we use the RBF kernel.

6.5.1 Binary Transfer Learning

We consider the same binary experimental setup proposed in (Tommasi et al., 2010)[Section 5.3] on a

subset of 30 classes plus the background class extracted from the Caltech-256 database (Griffin et al.,

2007). Here we just repeat briefly the experimental procedure, for a detailed description of the setup

we refer the readers to the original paper. The task is to recognize if a test image belongs to the target

object class or not (i.e., belonging to a pre-defined background class). In turns, a small number of

labelled training examples are available for a target object class and all the 29 remaining classes are

used for training the prior models. We use the same four image descriptors as (Tommasi et al., 2010)

and combine the features through concatenation. In the experiments, the number of negative examples

are far larger than the number of positive examples in the training data, leading to an unbalanced data

problem. This is very common in the object category detection scenario, and a popular solution to it is

to give different importance weights to the positive and negative examples (Tommasi et al., 2010). We

modified our algorithm for this purpose. Here the weights are defined to be w+ = N−/N+ and w− = 1,

where N+ and N− are the number of positive and negative samples. Both the normal (w+ = w− = 1)

and weighted MKTL are considered in our experiments.

The average results of all the 30 categories as well as the average results for each class are shown in

Figure 6.2. It can be observed that all the transfer learning methods outperform the No-Transfer approach

for different numbers of training samples. Weighted MKTL achieves better performance compared to

Multi-KT except for the cases with only 3 positive sample. MKTL without weights is slightly worse at

the beginning, but it beats Multi-KT when the number of positive training sample reaches 15. We expect

prior models to achieve high accuracy on the target task as both the prior and the target problem consist

in distinguishing different objects from a common background class. It is surprising to find that using

Prior-Features alone outperforms Multi-KT when the number of positive samples grows, which seems to

suggest that Multi-KT is not able to combine the prior models and the new knowledge as desired (in oder

to minimize the error) when the prior models are very strong. On the other hand MKTL guarantees a

performance at least as good as what has been transferred. It is also interesting to look into the results



6.5. EXPERIMENTS 107

5 10 15 20 25 30

66

68

70

72

74

76

78

80

82

84

86

#. of positive samples

R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 [
%

]

Average over 30 classes

 

 

 NO−Transfer

 Prior−Features

 Multi−KT

 Average−TL

 MKTL (w
+
 = 1)

 MKTL (w
+
 = N

−
/N

+
)

5 10 15 20 25 30
76

78

80

82

84

86

88

90

92

94

airplanes

5 10 15 20 25 30
60

65

70

75

80

85

90

beer−mug

5 10 15 20 25 30
70

75

80

85

90

95

bonsai

5 10 15 20 25 30
55

60

65

70

75

80

85

cactus

5 10 15 20 25 30
55

60

65

70

75

80

85

canoe

5 10 15 20 25 30
88

90

92

94

96

98

100

car−side

5 10 15 20 25 30
65

70

75

80

85

90

95

coffee−mug

5 10 15 20 25 30
55

60

65

70

75

80

85

dog

5 10 15 20 25 30
55

60

65

70

75

80

85

90

dolphin

5 10 15 20 25 30
60

65

70

75

80

85

duck

5 10 15 20 25 30
60

65

70

75

80

85

90

electric−guitar

5 10 15 20 25 30
68

70

72

74

76

78

80

82

84

86

fern

5 10 15 20 25 30
70

75

80

85

90

95

fighter−jet

5 10 15 20 25 30
60

65

70

75

80

85

90

95

fire−truck

5 10 15 20 25 30
60

65

70

75

80

85

90

goldfish

5 10 15 20 25 30
60

65

70

75

80

85

goose

5 10 15 20 25 30
68

70

72

74

76

78

80

82

84

86

88

harp

5 10 15 20 25 30
72

74

76

78

80

82

84

86

88

90

helicopter

5 10 15 20 25 30
55

60

65

70

75

80

85

horse

5 10 15 20 25 30
60

65

70

75

80

85

90

kayak

5 10 15 20 25 30
60

65

70

75

80

85

90

killer−whale

5 10 15 20 25 30
72

74

76

78

80

82

84

86

88

90

light−house

5 10 15 20 25 30
70

75

80

85

90

95

mandolin

5 10 15 20 25 30
80

82

84

86

88

90

92

94

96

98

motorbikes

5 10 15 20 25 30
65

70

75

80

85

90

95

smokestack

5 10 15 20 25 30
60

65

70

75

80

85

90

speed−boat

5 10 15 20 25 30
55

60

65

70

75

80

85

swan

5 10 15 20 25 30
60

65

70

75

80

85

90

teapot

5 10 15 20 25 30
70

72

74

76

78

80

82

84

86

88

90

windmill

5 10 15 20 25 30
65

70

75

80

85

90

95

zebra

Figure 6.2. Results obtained on the object category detection scenario, when learning 1 out of 30 categories with the rest
categories as prior models. Classification performance is shown as a function of the number of object training images. For each
class, we repeat the experiment 5 times using different random permutations. Class by class results are shown on the right. For
the sake of clarity, we only plot the results of “No-Transfer”, “Prior-Feature”, “Multi-KT” and “MKTL (w+ = N−/N+)” on
these figures.

obtained from each single class. Killer-whale and duck seem to exploit at the best the priors, while fern

is the only case where all the transfer learning methods fail to avoid negative transfer. In most of the

classes we observe that MKTL is better (or at least equal) than using Prior-Features alone.

6.5.2 Multiclass Transfer Learning

We perform multiclass classification experiments on two different datasets: subsets of the Caltech-256 and

the Animals with Attributes (AwA) dataset. Precomputed features are available for both the databases.

For the experiments on the Caltech-256 dataset, we consider 9 new classes (bonsai, sunflower, mush-

room, horse, skunk, gorilla, motorbikes, snowmobile, segway), and we randomly extract a maximum

of 30 samples per class for training and 50 samples for testing. Twenty-three classes are considered

as possible prior knowledge sources, which can be divided into four groups, plants (palm-tree, cactus,

fern, hibiscus), animals (bat, bear, leopards, zebra, dolphin, killer-whale), vehicles (mountain-bike, fire-

truck, car-side, bulldozer) and mix (grapes, tomato, camel, dog, raccoon, chimp, school-bus, touring-bike,

covered-wagon), and we use different feature descriptors 1 for each group. For the first two groups, we con-

catenate the feature descriptors together, and train the prior models with Multiclass AdaBoost (Schapire

and Singer, 1999). Then, for vehicles and mix group, we compute RBF kernels for each feature de-

scriptor, and train SVM using the average of the RBF kernels with 1-vs-All extension. In the end we

1Plants & Mix: SIFT (Lowe, 2004) and LBP (Ojala et al., 2002); Vehicles: SIFT; Animals: REGCOV (Tuzel et al.,
2007), SIFT and V1S+ (Pinto et al., 2008). Since Multi-KT is limited to use only one type of feature descriptor, we use
PHOG (Bosch et al., 2007) features for all the groups.
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Figure 6.3. Results obtained on the multiclass object categorization scenario. Classification performance is shown as a function of
the number of object training images. (left) average results obtained using subset of the the Caltech-256 dataset; (right) average
results obtained using the AwA dataset. For both datasets, each experimental setup is repeated for 10 times, and their standard
deviations are also reported.

use a RBF kernel for the new training images described with PHOG (Bosch et al., 2007) features. The

γ parameters of the RBF kernels were fixed to the mean of the pairwise distances among the samples

as done in (Gehler and Nowozin, 2009b; Lampert et al., 2009). Our choice of features descriptors and

prior models are arbitrary, as we want to show that the prior models could be constructed using various

features descriptors and learning algorithms. For comparison, we first consider transfer learning from

the first 14 classes (from palm-tree to bulldozer). Then we progressively add the remaining 9 classes

(from grapes to covered-wagon) to the prior models. Meanwhile, we also experiment with p = 2 logK
2 logK−1

to test if it is possible to set the parameter p automatically (MKTL-pauto). These results are reported in

Figure 6.3(left).

We performed similar experiments on the AwA dataset. We consider the same 10 test classes in (Lam-

pert et al., 2009) as new classes to learn, randomly extracting a maximum of 100 samples from each class

for training and 50 samples for test. The remaining 40 classes are used to build prior knowledge sources.

We use the average of two RBF kernels computed using color histogram and SURF features (Bay et al.,

2008) for describing all the prior classes, and train these models using SVM with 1-vs-All extension.

Again, we use PHOG (Bosch et al., 2007) feature with a RBF kernel for describing the new training

images, and the γ parameters are computed using the same method discussed above. These results are

reported in Figure 6.3(right).

MKTL clearly shows a gain in performance. It can be observed that MKTL achieves better results
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compared to No-Transfer, and other baseline methods, especially when the number of training samples

grows (Figure 6.3(left & right), after receiving 5-10 training examples per class), and more prior models are

used (Figure 6.3 (left), 23 priors compared to 14 priors). Here the expected higher start effect (Rosenstein

et al., 2005) with few training samples is not as significant as in the binary case. It suggests that the

multiclass problem is substantially more difficult compared to the binary object categorization task. Thus,

we could expect that we need more samples for each class in order to learn the tasks. Moreover, although

the performance of Prior-Features alone is relatively low, MKTL still achieves significant improvement in

performance by combining the prior outputs with the new knowledge. We also see that the improvement

is consistent even after receiving 100 training samples per class (Figure 6.3 (right)). This demonstrates

the higher asymptote advantage for knowledge transfer (Rosenstein et al., 2005). This advantage is

theoretically guaranteed by the fact that the knowledge transfer problem is solved in a higher dimensional

feature space than the original No-Transfer. The same performance can not be expected for Multi-KT:

when the number of training samples grows, the regularization term ‖w−∑F
j=1 β

juj‖2 looses its relevance

and the problem reduces to learning from scratch.

The results for MKTL using the automatic setup of the p parameter is comparable to the results we

obtained with cross validation on p. This suggests a possible way to eliminate one free parameter in

practice when validation data are not available. We also tested Multi-KT on both datasets using the

1-vs-All extension. In this case, Multi-KT does not improve over the No-Transfer baseline. One possible

explanation may be that the 1-vs-All scheme may induce confusion when combining the binary results

over multiple classes, as the special optimization scheme used in Multi-KT does not guarantee that the

output for each binary classification problem will be in a similar range. It is also worth mentioning that

our learning algorithm is very efficient and takes less than 1 minute to finish, on the AwA dataset with

100 training sample per categories and 40 prior models.

6.6 Conclusions

In this chapter, we present a multiclass transfer learning algorithm for learning object categories from

few examples. The algorithm uses the output of pre-trained models as auxiliary feature inputs, and uses

a learning based approach to automatically decide from which prior models to transfer and how much

to transfer. The proposed approach has no constraint on the pre-trained prior models and their features
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representation, as they can be built from different types of learning methods and using different types of

feature representations. Furthermore, our algorithm uses a principled multiclass formulation and solves

the multiclass problem in a joint optimization process. The optimization algorithm is modified from the

lp-norm MKL framework which solves the optimization problem in the primal. It thus scales well w.r.t.

the number of prior models. Experiments show that our algorithm outperforms all the baseline methods,

and is able to boost the performance when more relevant priors are given. Thanks to the principled

multiclass formulation, the performance gain is more significant for multiclass scenarios, where the tasks

are substantially more difficult than the more studied binary case.

This chapter concludes the second part of this thesis. We presented two examples on exploiting cue(s)

which occurs together with the target to facilitate the learning. As discussed in Chapter 1, unlike the

cue integration problem where a general framework exists, the cues exploitation problem is usually task

specifical. It usually requires to have domain knowledge and understand the structure of the data. On the

other hand, this type of accompanying information usually exists in many problems, therefore it could

be an interesting and challenging problem to investigate how these methods generalize over different

practical applications in the future.



Chapter 7

Summary and Future Direction

In this chapter we are going to summarize what we have presented in this thesis, and sketches possible

future direction of research.

7.1 Discussion

In this thesis we studied the problem of learning from multiple cue inputs, under two different contexts:

Cues Integration and Cues Exploitation. In the first part, we showed that integrating multiple cues

can improve the classification accuracy significantly, especially when cues are independent and come

from multiple sensory inputs. Our algorithms are efficient, and are capable of online updating of their

internal representations when new examples arrive. We elaborated some theories for these algorithms,

which provide performance guarantees for the online algorithms, and convergence bounds for the batch

algorithms. In the second part, we showed that it is possible to exploit information from some cues,

and improve the performance of learning other cues under a less supervised setting. To illustrate the

ideas, we presented two different examples, where we learn image classifiers from images using textual

cue co-occurring with the images, and transfer trained models of correlated tasks to the new tasks to

boost the performance.

111



112 CHAPTER 7. SUMMARY AND FUTURE DIRECTION

7.2 Future Directions

We would like to explore the following possibilities in the future.

7.2.1 Multiple Kernel Active & Semi-supervised Learning

MKL has shown its promise by achieving state-of-art performance in multiclass image classification task

under standard supervised learning setup. For learning problems, apart from training efficiency and

scalability, another important issue is the lack of labeled training data. Active learning (see Dasgupta

and Langford (2009) for a review) is defined by contrast to the passive model of supervised learning

where all the labels for examples are obtained without reference to the learning algorithm. In active

learning, unlabeled examples are provided to the learner, and the learner can choose interactively which

data points to label. The idea is that interaction can substantially reduce the number of required labels.

In semi-supervised learning (see Zhu (2005) for a complete review) for classification, the system try to

incorporate unlabeled examples to improve the performance of models trained with labeled data alone.

Previous studies in both directions were mainly conducted for single cue. It is thus quite natural to ask if

we could take advantage of using multiple cue inputs in the active learning and semi-supervised learning

framework to improve the performance as well as reduce further the number of required labels.

7.2.2 Approximate Inference for Training MMS

As mentioned in Chapter 5, the most expensive step in training MMS is solving the arg max in step

4 of Algorithm 9 for the stochastic subgradient descent method. For complex problems with a large

number of instances and exponential size candidate labeling vectors, the inference is usually intractable.

It is possible to extend our framework using approximate inference to solve other related tasks. For

example, a popular task (Barnard et al., 2003; Wang and Mori, 2010), which is to learn a scene classifier

for image annotation from segmented images with unaligned object-level textual annotations (tags), can

also be casted into our framework. In the image annotation task, the size of candidate labeling set of

an image depends exponentially on the size of image segmentations and their tags. Therefore, it can be

very memory and computational expensive to enumerate all the possible assignments as well as to infer

Ẑ. In this case, we could use some approximate approaches to speed up the learning. One interesting

recent study on image annotation by Wang and Mori (2010) models the problem using the latent SVM
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framework, and formulates its inference step as a Linear Programming (LP) problem with constraints on

tags assignment. It is possible to use a similar LP formulation in our algorithm to perform the inference

step approximately without enumerating all the possible assignments in a large set.
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Appendix A

Datasets and Features

Here we briefly introduce the datasets used in this thesis, and we also describe the used feature descriptors

as well as how their kernel matrices are computed when using kernel approaches.

The KTH-IDOL2 dataset (Pronobis et al., 2010) contains 24 image sequences acquired using

a perspective camera mounted on two mobile robot platforms. The sequences were captured with two

robots (Dumbo and Minni) moving in an indoor laboratory environment consisting of five different rooms;

they were acquired under various weather and illumination conditions (sunny, cloudy, and night) and

across a time span of six months. This dataset is ideal for testing online learning algorithms: the

algorithm has to incrementally update the model, so to adapt to the variations captured in the dataset.

During the acquisition, three types of inputs were recorded: images, laser scans data and odometry

data. From the images, we extract three types of image descriptors, namely, Composed Receptive Field

Histogram (CRFH) (Linde and Lindeberg, 2005) (Gaussian derivative along x & y direction), Bag-of-

Words (BOW) (Sivic and Zisserman, 2003) using SIFT descriptor (Lowe, 2004) with 300 visual words,

and RGB color histogram. We also use a simple geometric feature from the Laser Scan sensor (Mozos

et al., 2005). In total, we have four different types of features, which correspond to four kernels (the χ2

kernel is used for the image features, and the RBF kernel for the laser feature).

The ETH-80 dataset (Leibe and Schiele, 2003) consists of 80 objects from eight different cate-

gories (apple, tomato, pear, toy-cows, toy-horses, toy-dogs, toy-cars and cups). Each category contains
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10 objects with 41 views per object, spaced equally over the viewing hemisphere, for a total of 3,280

images. We use four image descriptors: one color feature – RGB color histogram, two texture descriptors

– CRFH (Linde and Lindeberg, 2005) with two different kinds of filters (Gaussian derivative LxLy and

gradient direction (DirC), and a global shape feature – centered masks (Leibe and Schiele, 2003).

The Oxford Flower dataset (Nilsback and Zisserman, 2006) contains 17 different categories of

flowers (available at www.robots.ox.ac.uk/~vgg/research/flowers/). Each class has 80 images with

three predefined splits (train, validation and test). The authors also provide 7 precomputed distance

matrices. These distance matrices are transformed into kernel using exp(−γ−1d), where γ is the average

pairwise distance and d is the distance between two examples. It results in 7 different kernels.

The Pendigits dataset (Gönen and Alpaydin, 2010) is on pen-based digit recognition (multiclass

classification with 10 classes) and contains four different feature representations (available at http:

//mkl.ucsd.edu/dataset/pendigits). The dataset is splitted into independent training and test sets

with 7,494 samples for training and 3,498 samples for testing. We have generated 4 kernel matrices, one

matrix for each feature, using an RBF kernel, exp(−γ−1‖xi − xj‖2). For each feature, γ is equal to the

average of the squared pairwise distances between the examples.

The Caltech-101 dataset (Fei-Fei et al., 2004) is a standard benchmark dataset for object cat-

egorization. It contains 101 different object classes plus one background class. For each class, it has

at least 31 images. In our experiments, we used the pre-computed features and kernels of Gehler and

Nowozin (2009b) which the authors made available on their website: http://www.vision.ee.ethz.ch/

~pgehler/projects/iccv09/, with the same training and test splits. This allows us to compare against

them directly. Following that, we report results using all 102 classes of the Caltech-101 dataset using

five splits. There are five different image descriptors, namely, PHOG Shape Descriptors (PHOG) (Bosch

et al., 2007), Appearance Descriptors (App) (Lowe, 2004), Region Covariance (RECOV) (Tuzel et al.,

2007), Local Binary Patterns (LBP) (Ojala et al., 2002) and V1S+ (Pinto et al., 2008). All of them

but the V1S+ feature were computed in a spatial pyramid as proposed in Lazebnik et al. (2006), using

several different setups of parameters. This generates several kernels (PHOG, 8 kernels; App, 16 kernels;

RECOV, 3 kernels; LBP 3 kernels; V1S+, 1 kernels). We also consider a subwindow kernel, as proposed

in Gehler and Nowozin (2009a). In addition to the 32 kernels, the products of the pyramid levels for each

www.robots.ox.ac.uk/~vgg/research/flowers/
http://mkl.ucsd.edu/dataset/pendigits
http://mkl.ucsd.edu/dataset/pendigits
http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/
http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/
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feature results in other 7 kernels, for a total of 39 different kernels.

The Caltech-256 dataset (Griffin et al., 2007) is an extension of Caltech-101, which is collected in

a similar manner with several improvements. It contains 256 different object classes plus one background

class. The minimum number of images in any category is increased to 80. Precompute features have

been made available by Gehler and Nowozin (2009b) on their website http://www.vision.ee.ethz.ch/

~pgehler/projects/iccv09/. They are PHOG, App, RECOV, LBP and V1S+, which have also been

used for representing Caltech-101 in the same work.

The Animals with Attributes (AwA) Dataset (Lampert et al., 2009) consists of 30,475 images

of 50 animals classes with six pre-extracted feature representations (Color Histogram, PHOG, Local

Self-Similarity Histograms (Shechtman and Irani, 2007), SIFT, rgSIFT (van de Sande et al., 2008) and

SUFR (Bay et al., 2008)) for each image. The dataset was originally provided as a platform to benchmark

transfer-learning algorithms, in particular attribute based classification (Lampert et al., 2009). However,

it can also be used to study image categorization algorithms.

The MNIST dataset (LeCun et al., 1998) is a handwritten digits dataset. It has a training set of

60,000 gray-scale 28x28 pixel digit images for training and 10,000 images for testing. We cut the original

digit image into four square blocks (14×14) and obtained an input vector from each block. We used three

kernels on each block: a linear kernel, a polynomial kernel and a RBF kernel, resulting in 12 kernels.

The Labelled Yahoo! New Database (Berg et al., 2004a; Guillaumin et al., 2010) was

collected by Berg et al. (2004a) from the Yahoo! News website (http://news.yahoo.com/) in a span

of two years. It consists of news images and their captions describing the events appearing in the

images. Guillaumin et al. (Guillaumin et al., 2010) provide ground-truth annotations of the dataset

and precomputed feature descriptors of the faced detected by (Viola and Jones, 2004) (available at

http://lear.inrialpes.fr/data/). The resulted dataset contains 20,071 images and 31,147 detected

faces. Among them, 3,105 image-caption pairs contain at least one spatial indicator, such as “(L)”, “(R)”

or “(C)”, which suggests the relative position of the face in the image. There are more than 10,000

different names in the captions. The maximum number of detected faces in an image is 15, and the

maximum number of names in a caption is 9. The descriptors are 128-D SIFT (Lowe, 2004) at 3 scales

http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/
http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/
http://news.yahoo.com/
http://lear.inrialpes.fr/data/
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extracted at 13 landmark points localized by (Everingham et al., 2006), resulting in a 4,992-D descriptor.

In our experiments, we only use the first 1664-D of the descriptor at scale 1.

The Idiap/ETHZ Faces and Poses dataset (Jie et al., 2009b) was created by us for the pur-

pose of studying automatic face and pose annotation (available at http://www.vision.ee.ethz.ch/

~calvin/faces+poses/). It contains 1,703 image-caption pairs collected by querying Google Images us-

ing keywords generated by combining different names (sport stars and politicians) and verbs (from sports

and social interactions). An example query is “Barack Obama” + “shake hands”. A caption contain

the names of some of the persons in the corresponding image, and verbs indicating what they are doing.

The captions are derived from the snippet of text returned by Google Images and typically mention the

action of at least one person in the image, but also contain names/verbs not appearing in the image. In

addition to the image-caption pairs, ground-truth associations between names and verbs in the captions,

ground-truth lists of which names from the caption appear in the images, ground-truth locations of the

persons in the images, name-verb pairs extracted automatically from the captions using (OpenNLP, 2010;

Deschacht and Moens, 2009), as well as face and upper-body bounding-boxes detected by the methods

of Ferrari et al. (2008b); Rodriguez (2006) were also released with the dataset, which can be used directly

in the experiments.

http://www.vision.ee.ethz.ch/~calvin/faces+poses/
http://www.vision.ee.ethz.ch/~calvin/faces+poses/
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Miscellaneous Proofs

Proof of Theorem 3.1

Proof: First we have that the cumulative loss of the learner at the second layer, for any sequence of scores,

[s1(x1, 1), · · · , sj(x1, y), · · · , sF (x1,K)], · · · , [s1(xT , 1), · · · , sj(xT , y), · · · , sF (xT ,K)], generated by the

classifiers f j from the first layer, are bounded by

T∑

t=1

g′(wt) ≤
T∑

t=1

g′(u) + r′(u, T ) , (B.1)

where g′(u) = `(u, [s1(xt, 1), · · · , sj(xt, y), · · · , sF (xt,K)], yt). Suppose that the j-th classifier have the

minimum loss in the first layer. Since the above bound holds for any u′ ∈ RF∗K , we could simply set

u′ to be the a full zero vector, except for the outputs from the j-th classifier, sj(xt, y),∀y = 1, · · · ,K,

which we set their value to one. In this case, since the first layer and the second layer use the same type

of loss function, we will have

T∑

t=1

g′(u) =

T∑

t=1

gj(vjt ) (B.2)

Plug (B.2) into (B.1) we proof the theorem. �
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Proof of Lemma 4.1

Proof: The proof is based on an adaptation of a result from Kakade et al. (2009) for the FTRL algorithm.

We proceed by bounding the quantity θ̄T+1 · ū from below and from above. From (Kakade et al., 2009,

Corollary 19), we know that h∗(θ̄) = 1
2q‖θ̄‖22,q is 1-smooth w.r.t. ‖·‖2,q. Moreover, line 9 in the algorithm’s

pseudo-code implies that w̄t = ∇h∗(θ̄t) = ∇h∗
(
−∑t−1

i=1 ηiz̄i
)
. Hence, we obtain

‖θ̄T+1‖22,q ≤ ‖θ̄T ‖22,q − 2qηT w̄T · z̄T + qη2
T ‖z̄T ‖22,q ≤ q

T∑

t=1

(
η2
t ‖z̄t‖22,q − 2ηtw̄t · z̄t

)
. (B.3)

Using the convex inequality for norms we then get

θ̄T+1 · ū ≤ ‖θ̄T+1‖2,q ‖ū‖2,p ≤ ‖ū‖2,p

√√√√q

T∑

t=1

(
η2
t ‖z̄t‖22,q − 2ηtw̄t · z̄t

)
. (B.4)

We can further bound the last term by considering that −w̄t · z̄t is less than 1. Using that ‖z̄t‖22,q ≤ L

we can further upper bound θ̄T+1 · ū as follows

θ̄T+1 · ū ≤ ‖ū‖2,p

√√√√q

T∑

t=1

(
η2
tL

2 + 2ηt
)
. (B.5)

For the lower bound we have that

θ̄T+1 · ū =

T∑

t=1

−ηtū · z̄t ≥
T∑

t=1

ηt
(
1− `(ū,xt, yt)

)
≥

T∑

t=1

ηt −
T∑

t=1

ηt`(ū,xt, yt) (B.6)

Combining this last inequality with (B.5), we obtain the stated inequality. �

Proof of Theorem 4.1

Proof: We know that at steps when a mistake occurs, w̄t · z̄t ≥ 0; and the steps when a margin error

occurs, −1 ≤ w̄t · z̄t ≤ 0. Hence we have that ηt = 1 at mistakes, and ηt ≤ 1 at margin errors. So

separating the two type of steps in the inequality from Lemma 4.1, we could obtain that

M +
∑

t∈I
ηt ≤

∑

t∈M∪I
`(ū,xt, yt) + ‖ū‖2,p

√
qML2 + q

∑

t∈I

(
η2
t ‖z̄t‖22,q − 2ηtw̄t · z̄t

)
. (B.7)
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Solving the inequality for M, and using the definition of C and S, we obtain

M ≤ C

2
+ S +

C

2

√
1 +

4

C
(A+ S)−

∑

t∈I
ηt

where

A =
∑

t∈I

η2
t ‖z̄t‖22,q − 2ηtw̄t · z̄t − ηtL2

L2
.

Now, observing that ηt has been chosen so that A ≤ 0 and overapproximating we obtain the stated

bound. �

Proof of Lemma 4.2

Proof: The first relation can be found in the proof of Theorem 20 in Kakade et al. (2009). The second

one can be obtained differentiating h. The third relation is obtained using Lemma 2 in Shalev-Shwartz

and Singer (2007). The last one is obtained from the second one. �

Proof of Lemma 4.3

Proof: Define g′t(w) = gt(w) + ξt
2 ‖w −wt‖2. Using the assumptions of this Lemma, we have that g′t is

(σ + ξt
α )-strongly convex w.r.t. to h. Moreover we have that ∂g′t(wt) = ∂gt(wt), because the gradient

of the proximal regularization term is zero when evaluated at wt (Do et al., 2009). Hence we can apply

Theorem 1 from Shalev-Shwartz and Singer (2007) to have

T∑

t=1

gt(wt)−
T∑

t=1

(
gt(u) +

ξt
2
‖u−wt‖2

)
=

T∑

t=1

g′t(wt)−
T∑

t=1

g′t(u) ≤ 1

2

T∑

t=1

L2
t

σt+
∑t
i=1 ξi
α

. (B.8)

Using the hypothesis of this Lemma we obtain

T∑

t=1

gt(wt)−
T∑

t=1

gt(u) ≤ 1

2

T∑

t=1

(
ξt‖u−wt‖2 +

αL2
t

ασt+
∑t
i=1 ξi

)
(B.9)

≤ 1

2

T∑

t=1

(
4ξtR

2 +
αL2

t

ασt+
∑t
i=1 ξi

)
. (B.10)
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Using the definition of ξt in the algorithm and Lemma 3.1 in Bartlett et al. (2008), we obtain the stated

bound. �

Proof of Theorem 4.2

Proof: Define h(w̄) : S → IR = q
2‖w̄‖22,p, where S = {w̄ : ‖w̄‖2,p ≤ R}. Define also gt(w̄) = λ

2 ‖w̄‖22,p +

`(w̄,xt, yt) = λ
q h(w̄) + `(w̄,xt, yt). Using Lemma 1 in Shalev-Shwartz and Singer (2007), we can see

that these two functions satisfy the hypothesis of Lemma 1, with α = q, σ = λ
q . It is easy to verify that

w̄t+1 is equal to ∇h∗(∇h(w̄t) − ηtzt). In fact, taking into account Properties 2-4 in Lemma 4.2 with

with B = R, lines 9-11 in Algorithm 5 are equivalent to

w̄t+1 = ∇h∗(θt − ηtzt) , (B.11)

θ̄t+1 = ∇h(w̄t+1) . (B.12)

We also have that

‖∂gt(w̄)‖2,q ≤
λ

q
‖∇h(w̄t)‖2,q + ‖z̄t‖2,q = λ‖w̄t‖2,p + ‖z̄t‖2,q ≤ c, (B.13)

where the equality is due to Properties 2 and 4 in Lemma 4.2. So we have

T∑

t=1

(gt(w̄t)− gt(w̄∗)) ≤ min
ξ1,··· ,ξT

T∑

t=1

[
4ξtR

2 +
qc2

λt+
∑t
i=1 ξi

]
. (B.14)

Reasoning as in Shalev-Shwartz et al. (2007), we divide by T , take the expection on both side and use

the Markov’s inequality. So we obtain that with probability at least 1− δ

f(w̄T )− f(w̄∗) ≤ min
ξ1,··· ,ξT

1

δT

T∑

t=1

[
4ξtR

2 +
qc2

λt+
∑t
i=1 ξi

]
. (B.15)

Setting all the ξi to the same value ξ, the last term in the last equation can be upper bounded by

AT = min
ξ

1

δ

[
4ξR2 +

1

T

T∑

t=1

qc2

t(λ+ ξ)

]
(B.16)

This term is smaller than any specific setting of ξ, in particular if we set ξ to 0, we have that AT ≤
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qc2(1+log T )
δλT . On the other hand setting optimally the expression over ξ and over-approximating we have

that AT ≤ 4cR
√
q
√

1+log T

δ
√
T

. Taking the minimum of these two quantities we obtain the stated bound. �

Proof of Theorem 4.3

Proof: Using Lemma 4.1, with simplified update rule (4.6) at fixed learning rate η0, we have that

η0U ≤
∑

t∈U
η0`(ū,xt, yt) + ‖ū‖2,p

√
qU
(
η2

0L
2 + 2η0

)
. (B.17)

Solving for U and overapproximating we obtain the stated bound.

For the second part of the theorem, from inequality (B.3), we have

‖θ̄T+1‖22,q ≤ qU
(
η2

0L
2 + 2ηt

)
. (B.18)

So we can write

‖θ̄T+1‖2,q ≤ η0

√
qU(2/η0 + L2), (B.19)

and using the bound of U and the hypothesis of linear separability, we have

‖θ̄T+1‖2,q ≤η
√
q2‖ū‖22,p(2/η + L2)2 = q‖ū‖2,p

(
2 + ηL2

)
. (B.20)

Using the relation ‖w̄t‖2,p = 1
q‖θ̄t‖2,q, that holds for the 4-th Property in Lemma 4.2, we have the stated

bound on R. �

Proof of Theorem 4.5

Proof: (Sketch) Using the hypothesis of this theorem, we have

‖∂`
(
w̄t, φ̄(xt, ·), yt

)
‖2,q ≤ LF 1/q max

j=1,...,F
‖φj(xt, ·)‖2 ≤ LF 1/q

The function h(w̄) in (4.9) is λ/q-strongly convex w.r.t. the norm ‖ · ‖2,q, for any α ≥ 0. Hence, using

Theorem 4.4, with η = 1 and g = h, and using Markov inequality as in Shalev-Shwartz et al. (2007) we
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prove the stated result. �

Proof of Theorem 4.6

Proof: (Sketch) From standard Legendre-Fenchel duality, we have that∇h∗(θ̄) = arg maxw̄ w̄·θ̄−h(w̄).

Setting to zero the derivative of this argmax we have that wj must must be proportional to θj , that is

wj = cjθ
j/‖θj‖, where cj are real numbers. So we can focus on the coefficients cj , rewriting the argmax:

arg max
c

c · a− α‖c‖1 − λ/2 ‖c‖2p,

where a = [‖θ1‖, · · · , ‖θF ‖], c = [c1, · · · , cF ]. This problem is analyzed in Section 7.2 of Xiao (2010),

and using that theorems we have the stated result. �

Proof of Proposition 5.2

Proof: (Sketch) Define

∆A(z(p)
m ,Z(p)

m ) = min
z′∈Z(p)

m

∆01(z(p)
m , z′) = 1(z(p)

m /∈ Z(p)
m )

the ambiguous loss for a single region xm and an attribute p, with Z(p)
m being the corresponding CLS for

the region. So we can use Proposition 5.1 to obtain

E[∆01(z(p)
m , y(p)

m )] ≤ 1

1− ηE[∆A(z(p)
m ,Z(p)

m )] .

Using the definition of the true 0/1 loss and the linearity of expectation, and summing over m and p, we

have

E [∆01(Z,Y )] ≤ 1

1− ηE
[
M∑

m=1

P∑

p=1

1(z(p)
m /∈ Z(p)

m )

]
,

while using the relationship that
⋃
m,pZ

(p)
m ⊇ Z, we obtain

E

[
M∑

m=1

P∑

p=1

1(z(p)
m /∈ Z(p)

m )

]
≤ E [∆A(Z,Z)] .
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Combining them results in the proposed proposition. �

Proof of Proposition 5.3

Proof: Define ẑ = arg maxz∈YM S(X , z;w). If Ẑ ∈ Z then `A (X ,Z;w) ≥∆A (X ,Z;w) = 0. We now

consider the case in which Ẑ /∈ Z. We have that

∆A (X ,Z;w) ≤∆A(Ẑ,Z) + Sw(X , Ẑ)−max
z∈Z

Sw(X ,Z)

≤ max
Z̄ /∈Z

(
∆A(Z̄,Z) + Sw(X , Z̄)

)
−max
Z∈Z

Sw(X ,Z) ≤ `A (X ,Z;w) .

�
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