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Abstract

Improving the energy efficiency of cooling systems can contribute to reduce the emission of
greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching
to two-phase cooling systems would decrease power consumption and allow for the reuse
of the extracted heat. For this type of application, multi-microchannel evaporators are
thought to be well adapted. However, such devices have not been tested for a wide range
of operating conditions, such that their thermal response to the high non-uniform power
map typically generated by microelectronics has not been studied.

This research project aims at clarifying these gray areas by investigating the behavior
of the two-phase flow of different refrigerants in silicon and copper multi-microchannel
evaporators under uniform, non-uniform and transient heat fluxes operating conditions.
The test elements use as a heat source a pseudo-chip able to mimic the behavior of a CPU.
It is formed by 35 independent sub-heaters, each having its own temperature sensor, such
that 35 temperature and 35 heat flux measurements can be made simultaneously. Careful
measurements of each pressure drop component (inlet, microchannels and outlet) found in
the micro-evaporators showed the importance of the inlet and outlet restriction pressure
losses. The overall pressure drop levels found in the copper test section were low enough
to possibly be driven by a thermosyphon system.

The heat transfer coefficients measured for uniform heat flux conditions were very high
and typically followed a V-shape curve. The first branch was associated to the slug flow
regime and the second to the annular flow regime. By tracking the minimum level of
heat transfer, a transition criteria between the regimes was established, which included
the effect of heat flux on the transition. Then for each branch, a different prediction
method was used to form the first flow pattern-based prediction method for two-phase
heat transfer in microchannels.

A non-uniform heat flux creates important temperature gradients in the evaporator, such
that the data reduction procedure needs to be adapted to include heat spreading within
the evaporator. To do so, a robust multi-dimensional thermal conduction scheme was
developed. Once these effects were taken into consideration, the local heat transfer coeffi-
cients provided by two-phase flow were found to be the same for uniform and non-uniform
heat fluxes, allowing the flow pattern-based method to be extended to non-uniform heat
flux conditions. Lastly, with proper control of the mass flow, transient heat flux situations
were well handled by the micro-evaporators.

KEYWORDS: Hot-spots, non-uniform heat flux, refrigerants, two-phase flow cooling,
thermal management, micro-cooling
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Résumé

Améliorer l’efficacité énergétique des systèmes de refroidissement peut contribuer à réduire
les émission de gas à effet de serres. Aujourd’hui la majorité des applications microélectro-
niques sont refroidies avec l’air. En utilisant un système de refroidissement biphasique,
la consommation énergétique serait réduite et la réutilisation de l’énergie thermique de-
viendrait possible. Pour ce type d’applications, les micro-évaporateurs à multi-canaux
semblent être particulièrement bien adaptés. Cependant, ces systèmes n’ont pas en-
core été testés pour une large gamme de conditions d’opérationelles, de sorte que leur
réponses thermiques à des profils de puissances non-uniformes typiques aux systèmes
microélectroniques n’ont pas été étudiées.

Ce projet de recherche cherche à clarifier ces zones grises en étudiant la réaction de
l’écoulement diphasique de différents réfrigérants dans des micro-évaporateurs faits en
silicium et en cuivre pour des conditions opérationelles de flux thermiques uniformes, non-
uniformes et transients. Pour ce, une source de chaleur simulant les propriétés d’un micro-
processeur est utilisée. Elle est divisée en 35 sous-unités, chacune ayant sa propre sonde
thermique. Ainsi sont faites simultanément 35 mesures de température et 35 mesures de
flux thermique. Des mesures précises de chaque composant (entré, micro-canaux et sortie)
formant la perte de pression totale dans un micro-évaporateur ont montré l’importance des
pertes de pressions d’entrées et de sorties. Les pertes de pression totales dans l’évaporateur
de cuivre étaient suffisamment basses pour envisager utiliser un système de thermosyphon
pour générer l’écoulement.

Les coefficients de transferts thermiques mesurés pour des condition de flux thermique
uniformes sont très élevés et suivent une forme caractéristique en V. La première branche
est associée à un écoulement intermittent et la seconde, à un écoulement annulaire. En
suivant le déplacement du minimum sur les courbes de transfert thermique, un critère de
transition entre les deux écoulements a été établi et inclu l’effet du flux thermique sur la
transition. Ensuite, une méthode de prédiction a été sélectionnée pour chaque branche
pour former la première méthode de prediction basée sur les régimes d’écoulement pour
les écoulements diphasiques en micro-canaux.

Un flux thermique non-uniforme crée d’important gradient thermique dans l’évaporateur,
de sorte que la réduction des données doit inclure les effects de conductions thermiques
dans l’évaporateur. À cette fin, un modèle robuste calculant la conduction thermique
multi-dimensionelles a été développé. Lorsque que ces effects sont pris en considération,
les coefficients locaux de transfert thermique sont les mêmes pour un flux thermique
uniforme et non-uniforme. Dans cette situation, la méthode de prédiction basée sur les
régimes d’écoulement est utilisée pour des flux thermiques non-uniformes. Finalement,
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avec un système de contrôle du débit, les flux thermiques transitoires ne présentent pas
de difficulté particulière pour les micro-évaporateurs.

MOTS-CLÉS: Flux thermique non uniforme, réfriérants, refroidissement biphasique, micro-
refroidissement
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Chapter 1

Introduction

Germany, France and California have set 75–80% reduction targets for carbon dioxide
emissions for 2050 (Weaver et al. (2007)). This ambitious goal requires an annual drop of
4% over 40 years. While switching electricity generation towards renewable energy sources
and using hydrid engines or electrical motors in vehicles are well-advertised methods for
potentially reducing such emissions, improving energy efficiency is a less discussed, but a
crucial contribution to achieve these objectives.

Cullen & Allwood (2010) pointed out in a global map of energy conversion efficiency
that currently low-temperature waste heat was the main product coming from energy
conversion systems. Most engines, burners, motors and heaters are air-cooled, because
air is cheap and accessible. The resulting waste heat is rarely reused and is very often
released to the environment. The development of better heat management systems able
to recover this heat is often slowed down by financial considerations.

Electronic applications offer the economical backing to develop low temperature (≤100◦C)
waste recovery, because they generate a very large amount of heat. Currently air-cooled
systems are commonly used for computers and IGBTs (Insulated Gate Bipolar Transis-
tors), used for example in AC/DC converters. However for these applications, air-cooling
is expensive. Koomey et al. (2009) have calculated that the annual cost of running an
air-cooled data center is currently as high as its annualized equipment costs. Air has a
low specific heat, such that large volumes have to be moved and chilled before entering
the data center. In turn, the power needed to operate a data center is rising rapidly and
approaches close to 3% of the total American electricity production (EPA (2007)).

As long as air remains the cooling medium, options for improvement are limited. Changing
to liquid-based cooling, which has better heat removal capacities, would decrease power
consumption, improve the system’s efficiency and allow recovery of waste heat. Regarding
increasing efficiency, the latter advantage is particularly interesting: it is possible to design
a liquid-based cooling system to have an output temperature over 50◦C which for example
could enable saving on building heating costs. Moreover, liquid-based systems would raise
the ceiling for applications combining high heat fluxes and low operating temperatures;
in these situations air cannot dissipate much more than 50W/cm2.

Among liquid-base cooling systems, two-phase cooling is optimal: the latent heat of
evaporation of a refrigerant (≈150kJ/kg) is much greater than the sensible heat of liquid
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2 1. Introduction

water (4.2kJ/kg). Therefore, it requires a much lower flow rate and pumping power to
remove the same amount of heat. In addition, the fluid temperature of two-phase flow
can be almost constant over the whole surface whilst using a dielectric refrigerant removes
the risk associated with water in an electrical circuit. Finally, two-phase cooling can be
integrated in a heat pump cycle, which can efficiently increase the value of the waste heat
for further use by raising the system’s output temperature.

Any such heat recovery system starts from the evaporator mounted on the heat gener-
ating chip. Park & Thome (2010) have shown that with a copper micro-evaporator, an
evaporating flow of refrigerant can successfully dissipate heat fluxes over 350W/cm2 while
maintaining the operating temperature under a given temperature limit, typically 85◦C
for CPUs and 125◦C for IGBTs. Current high-end CPU applications have a heat load of
around 35W/cm2 which is expected to rise in the next generation of chips to about 100-
150W/cm2, while IGBTs have local heat fluxes above 120W/cm2. The temperature limi-
tation is principally set to reduce risk of failure by electro-migration in micro-electronics
nanometer-sized wires. Electro-migration is mostly a function of the electrical current
and temperature (Black (1969)) and as a consequence improved cooling by two-phase
flow would allow higher currents and faster clock speed.

Typically, CPUs have “hot-spots” (highly localized heat fluxes) in the cores and lower heat
fluxes in the cache and interconnect zones. The heat load also varies rapidly depending
on the demand for computational power. These characteristics have not been studied in
two-phase flow microchannel boiling experiments so far, although it is accepted that two-
phase flow will be suitable for non-uniform heat flux conditions. Testing refrigerant flow
boiling in multi-microchannels for non-uniform and transient heat flux is an important
step needed in order to assess the feasibility of an on-chip two-phase refrigerant cooled
data center.

The present investigation aims at studying the behavior of two-phase cooling of micro-
electronics using a test setup mimicking the thermal behavior of a CPU. Two multi-
microchannels evaporators are used to investigate uniform, non-uniform and transient
heat flux situations. The objectives are to answer the following questions:

• What is the respective importance of the inlet and outlet pressure losses with respect
to the diabatic channel pressure drop and how can the outlet pressure losses be
evaluated?

• What are the heat transfer coefficients in microchannels of hydraulic diameter less
than 300μm and how can they be predicted accurately?

• What is the response of a two-phase multi-microchannel evaporator to non-uniform
heat fluxes and what are the interactions between the power dissipation maps and
two-phase cooling?

• How fast can two-phase flow stabilize the chip temperature after a sudden change
in heat flux?

To answer these questions, a large experimental database will be presented for four differ-
ent refrigerants and a wide range in heat fluxes, for eight power map configurations and
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at different refrigerant mass fluxes. As a result, it will be possible to predict all relevant
thermal and hydraulic quantities, needed to design and optimize micro-evaporators from
the cooler’s inlet to outlet connecting pipes.

The thesis will be organized as follows:

• Chapter 1: Introduction

• Chapter 2: State of the art review

• Chapter 3: Experimental facility

• Chapter 4: Pressure drop

• Chapter 5: Uniform heat flux results

• Chapter 6: Non-uniform heat flux results

• Chapter 7: Transient heat flux results

• Chapter 8: Conclusions
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Chapter 2

State of the art review

The design of micro-coolers for CPUs is constrained by the size of the chip. It usually
has a “footprint” of less than 2cm2 and has high aspect ratio channels to multiply the
actual heat transfer surface area. The thermal package typically has a thermal resistance
of about 10×10−6m2K/W, so that the wall temperature is about 80◦C. Fig 2.1 plots the
required base (or “footprint”) heat transfer coefficients for different heat fluxes for a CPU.
The values vary between 5000 and 80’000W/m2K. Based on the information compiled by
Lin et al. (2002), there are three cooling methods which can be expected to reach these
values using fins but without heat spreaders: water pool and flow boiling, refrigerant flow
boiling and single-phase water flow.
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Figure 2.1: Required αb to maintain the chip temperature below 85◦C for different heat fluxes.

The resulting heat sink will be composed of several channels, which will need to be smaller
than 1mm. At this scale, it was not certain that thermal and hydraulic prediction methods
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derived from experiments and simulations made at larger scales were valid, especially for
two-phase processes. This led many researchers to study flow in microchannels and when
needed to define new methods for microscales.

This review will have eight sections pertaining to the development of two-phase micro-
coolers. First, the state of the research in heat transfer with single-phase liquid flow in
microchannels will be covered to provide a point of comparison with the capabilities of two-
phase flow cooling. Then the definition of the transition from macro- to microscale two-
phase flow will be discussed. Next, the behavior of two-phase flow in microchannels will be
presented in the flow patterns and flow stability sections. Important design parameters for
micro-coolers such as the pressure drop and heat transfer coefficient will also be covered
in detail. Finally, research made on critical heat flux in microchannels and non-uniform
and transient heat flux in microchannels will be presented.

2.1 Single-phase liquid flow heat transfer in microchan-

nels

The behavior of single-phase fluid flow in microchannels, often called microfluidics, is well
studied. Several journals and books focus on the subject, for which Bruus (2008) is a
good introduction. Unfortunately, microfluidics does not always answer directly the need
of the heat transfer community that is concerned with much higher flow rates and the
prediction of pressure drops and heat transfer coefficients, aspects discussed in detail by
Kandlikar et al. (2006).

Since the channel sizes used are several orders of magnitude larger than the molecular
mean free path of liquid coolants, the Navier-Stokes and Nusselt equations can be ex-
pected to be valid. This was however not always observed in early experiments on the
subject and discrepancies were attributed to new micro-effects. In fact, as explained by
Morini (2005), once conjugate heat transfer and viscous heating are correctly taken into
account, the traditional well-known theories are proven and do not need modification.

Results presented by Agostini et al. (2006), reproduced in Fig 2.2(a), confirm that the
experimental laminar single-phase frictional factors in microchannels follow well the cor-
relation of Shah & London (1978) for laminar flow in rectangular channels:

f =
24

Re

(
1− 1.3553γ + 1.9467γ2 − 1.7012γ3 + 0.9564γ4 − 0.2537γ5

)
(2.1)

for which γ is the channel aspect ratio, W/H. The equation gives a slope of 4f=57/Re
for a channel aspect ratio of one. Agostini et al. (2006) also showed that Blasius (1908)
correlation is adequate for single friction factor of fully-developped turbulent flows. Other
methods are more appropriate for developing flows. Biber & Belady (1997) used the
following correlation to calculate single-phase developing flow pressure drop:

f =

⎛
⎝ 3.44√

z+
+

24 + 0.674
z+

− 3.44√
z+

1 + 2.9×10−5

z2+

⎞
⎠ Γ (γ)

Re
(2.2)
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The function Γ(γ) is defined as:

Γ (γ) = 1− 1.3553 · γ + 1.9467 · γ2 − 1.7012 · γ3 + 0.9564 · γ4 − 0.2537 · γ5 (2.3)

and

z+ =
z

ReDh

. (2.4)

On the thermal side, Agostini et al. (2006) showed in Fig 2.2(b) that the results for
fully-developed flow presented by Shah & London (1978) for laminar flow and Gnielinski
(1976)’s one for turbulent flows were precise. For thermally and hydro-dynamically devel-
oping flow, Olivier (2008) used a Taylor series expansion to approximate the tabulated
results of Shah & London (1978):

Nux = 3.04 +
0.0244

z∗
+

0.448

γ
− 2.69× 10−5

z∗2
+

0.02

γ2
− 6.78× 10−4

z∗γ
(2.5)

where

z∗ =
π

4

z

RePrDh

(2.6)

(a) f versus Re (b) Num versus Re average

Figure 2.2: Results for R-134a from Agostini et al. (2006).

Using these correlations, it is possible to evaluate typical single-phase pressure drops
and heat transfer coefficients in microchannels. Since turbulent pressure drop rates are
difficult to sustain in microchannels, most single-phase cooling applications operate in the
laminar flow regime. For fully developed flows, the Nusselt number is for these conditions

CH2/fRe.eps
CH2/Nu.eps
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constant and the heat transfer coefficient depends only on the liquid thermal conductivity
and the hydraulic diameter.

Setting the Nusselt number to 4.36, the variation of the wall heat transfer coefficient and
pressure drop with respect to the hydraulic diameter is plotted in Fig 2.3 for liquid R-
134a and water. Passing from 1 mm to 400μm, αw does not change much, but the pressure
drop rate decuples. Comparing Fig 2.3 to Fig 2.1, water cooling of microelectronics is
possible with channels smaller than 500μm. For a heat load of 35W/cm2, a laminar flow
of 30◦C single-phase water must pass in 300μm channels and the corresponding channel
pressure drop is 5bar/m. The same comparison for R-134a shows that single phase flow
of refrigerants is not a valid solution for high heat flux applications.

More complex geometries can be thermally beneficial for single-phase flow. Agostini et al.
(2006) reviewed single-phase cooling through microchannels, porous media and jet im-
pingement. The review showed that with improved geometries and using entrance or jet
impingement effects, the Nusselt number can be increased, as it was done by Colgan et al.
(2007), but at the cost of an increase in pressure drop and mechanical complexity. More
detailed information on single-phase microchannel methods is found in Thome (2010).
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Figure 2.3: αw and pressure drop rate for water and R-134a at 30◦C, Re=300.

2.2 Two-phase flow boiling

Two-phase flow boiling is a very effective cooling mechanism. Several books cover the
different aspects of two-phase flow boiling. For this work, Collier & Thome (1994), Thome
(2010) and Carey (2008) were used as reference. Specific chapters on two-phase microscale
flows have been written by, Kandlikar et al. (2006) and Bergles et al. (2003). For this
review, two-phase flow is divided into seven subsections:

• Microscale transition

• Flow boiling stability

CH2/NuHTC.eps


2.3. Two-phase flow transition from macroscale to microscale 9

• Flow patterns

• Pressure drop in microchannels

• Heat transfer coefficients in microchannels

• Critical heat flux in microchannels

• Non-uniform and transient heat flux cooling

2.3 Two-phase flow transition from macroscale to mi-

croscale

Before studying microscale two-phase flow pressure drop and heat transfer, it is important
to know where the transition between macro- and microscale two-phase flow lies. A
simple criterion was given by Kandlikar & Grande (2003), although not specifically for
two-phase flows. Conventional channels were defined as having a diameter larger than
3mm, minichannels between 200μm and 3mm and microchannels between 10μm and
200μm. Smaller channels where the molecular mean free path could come close to the
diameter size were called transitional and molecular.

This estimate can be improved for two-phase flows. The objective is to determine when
channel dimension does modify the flow behavior. This certainly happens when a bubble,
once released, immediately fills the channel. As an approximate estimate, nucleate pool
boiling methods for predicting the bubble departure diameter can be used to define a
microscale lower bound limit. Fritz (1935)’s correlation, shown below, gives a value of 98
μm for refrigerant R134a at 30◦C.

D = 0.0208β

(
σ

g (ρl − ρv)

)0.5

(2.7)

where β is the contact angle between the surface and the bubble. The contact angle, 5.8◦,
was taken from Vadgama & Harris (2007) for a copper surface. If the channel is larger
than this value, the flow can still differ from macroscale, since the viscous, surface tension
and buoyancy forces remain more important at small scales.

Kandlikar (2010) has evaluated the relative importance of each force affecting the flow as
follows:

• Inertia force: Fi ≈ G2A
ρ

• Surface tension force: Fσ ≈ σA
Dh

• Viscous shear force: Fτ ≈ μGA
ρDh

• Gravity (buoyancy) force: Fg ≈ μ(ρl − ρv)DhA
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• Evaporation momentum force: FM ≈
(

q
hlv

)2
A
ρv

where A is the channel cross-sectional area.

Kandlikar (2010) also plotted the diameter dependence of these forces per unit area for
water and R-123. The same analysis for R-134a with a heat flux of 200kW/m2 and a
mass flux of 500kg/m2s is repeated in Fig 2.4, using the recommended approximation
for the two-phase properties. Buoyancy forces decrease in importance with the hydraulic
diameter and has the same magnitude as surface tension around 800μm and as viscous
force around 80μm. The diameter must go down to 60μm before inertia and surface
tension have the same magnitude.
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Figure 2.4: Scale effect of hydraulic diameter on various forces, based on Kandlikar (2010).

The strength of each force can be assessed by non-dimensional numbers. Buoyancy to

surface tension forces ratio is represented by the Bond number, Bo = g(ρl−ρv)D2

σ
, the

inertia to surface tension by the Weber number, We = ρU2D
σ

, and the inertia to viscous

forces by the Reynolds number, Re = ρUD
μ

. All three will decrease in smaller channel.

Based on Fig 2.4, tracking changes in bubble’s buoyancy experimentally can be used to
describe the transition. Pictures taken by Revellin et al. (2006) for R134a in 0.5, 0.8 and
2 mm tubes, presented in Fig 2.5, point to a transition around 0.8 mm, when the bubble
is much less affected by buoyancy and flows in the middle of the tube. This is close to
where surface tension becomes greater than buoyancy in Fig 2.4. The Bond number is
thus a good indicator for the macro- to microscale transition.

Several authors defined transition criteria. Harirchian & Garimella (2010) used the Bond
and Reynolds number to define a transition from unconfined to confined flow as

Bo0.5Re =
1

μl

(
g (ρl − ρv)

σ

)0.5

GD2 = 160 (2.8)

CH2/Forces.eps
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Figure 2.5: Elongated bubbles for R-134a for (a)2.0mm channel; (b)0.8mm channel; (c)0.5mm
channel. From Revellin et al. (2006)

They noted that, at low heat flux, bubbles are smaller and many can be found in the
channel cross-section; thus the flow is not confined. In such a case, the macro to microscale
transition is also a function of the heat flux, even though this parameter is not present
in their transition criteria.

Ong & Thome (2011a) and Cheng & Wu (2006) used the Confinement and Bond numbers
(Bo = Co−2) respectively as transition criteria from microscale (Co>1 and Bo<0.05) to
a transition scale (0.3-0.4≤Co≤1 and 0.05≤Bo≤3) to macroscale (Co<0.3 and Bo<3).

Table 2.1 presents the expected transition diameters for R-134a at 30◦C and based on
these values, a 300μm channel lies somewhere between micro and the transition scales,
far away from macroscale.

Table 2.1: Macro- to microscale transition diameters for R-134a at 30◦C.

Microscale Transition Macroscale
Kandlikar & Grande (2003) D<200μm 200μm≤D≤3mm D>3mm
Harirchian & Garimella (2010) D<101μm – D>101μm
Ong & Thome (2011a) D<825μm 825μm≤D≤2.7mm D>2.7mm
Cheng & Wu (2006) D<175μm 175μm≤D≤1.45mm D>1.45mm

2.4 Two-phase flow boiling stability

Two-phase flow instabilities are common to both macro- and microscale flow boiling.
Boure et al. (1973) classified them in static and dynamic instabilities. The most impor-
tant one observed in microchannels are called Ledinegg instabilities.

Looking at Fig 2.6, when boiling starts, the rate of pressure drop with respect to mass flux
becomes negative, which means that the channel demands more external pressure for a
smaller mass flux. The flow loop characteristic also has a negative slope, as it can provide
more pressure to the evaporator at a smaller mass flux. However, if the channel’s slope
is steeper than the loop’s slope, pressure cannot be balanced and the system becomes
unstable. To ensure stability, the loop’s slope must be steeper than that of the channel.
This is achieved by adding a throttling device at the inlet of each channel. This device
will make the supply curve vary rapidly with mass flux and free the system of Ledinegg
instabilities, but in turn will increase the loop pressure drop.

CH2/Buoyancy.eps
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Figure 2.6: Channel and restriction demand curve: pressure drop vs. mass flux for constant
heat flux, adapted from Zhang et al. (2009).

Microchannels restrict the volume in which a bubble axially expand. If water is used
for the evaporation, the acceleration process can be dramatic and almost explosive, as
reported by Hestroni et al. (2005). In their experiment, the time needed from the onset of
boiling somewhere in the tube to a fully developed vapor core or post dryout regime was
less than 0.1s. Zhang et al. (2009) also studied these instabilities in microchannels. They
showed that boiling water was much more prone to be unstable than refrigerant HFE-7100
and suggested that the very large difference in kinematic viscosity ratio between vapor
and liquid phase for both fluids were the cause of it. This explanation gives too much
importance to dynamic viscosity: the main factor is most probably the liquid to vapor
density ratio of water under 100◦C shown in Fig 2.7. In order to respect the conservation
of mass, water bubbles will create a pressure peak and accelerate in some cases to sonic
velocities. It is thus very difficult to work with water in microscale evaporators under
100◦C. In comparison, the density ratio for refrigerants is 1000 times smaller than that
of water and consequently much easier to handle.
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CH2/Instability.eps
CH2/Waterdensity.eps


2.5. Two-phase flow patterns 13

If the instability problem is not tackled in an experimental setup, the validity of the heat
transfer and pressure drop results is questionable. As a remedy, an adequate size of the
inlet restriction must be defined. For water, Wang et al. (2008) found that 3mm long area
restrictions of 20% at the inlet of their channels of 186μm hydraulic diameter stabilized
the flow. Kosar et al. (2006), for similar experiments, needed an orifice of Dh=37μm in
front of a channel of Dh=227μm, at least 100μm long to stabilize their test section up to
an exit quality of xe=0.5. They also found that the inlet restriction increased the pressure
drop by at least 100%.

For refrigerants, Park et al. (2009) used a special insert with individual orifices and an-
other one with a slit placed at the beginning of the channels. Both setups prevented
back flows in the inlet reservoir and multi-channels instability. Back flows in the chan-
nels themselves were still observed, but were contained within the channel where they
occurred. The time-averaged performance of the evaporator was uniform for all channels.
A different type of restriction was used by Agostini et al. (2008a). The flow was forced
through a slit machined in channel cover and made a 90◦ turn as it entered the channels.
This configuration was shown to bring excellent stability and had the advantage to be eas-
ily integrated in the test section. It also decreased the proportion of the inlet restriction
pressure drop to only about 10% of the total pressure drop.

2.5 Two-phase flow patterns

The study of two-phase flow patterns describes how the liquid and vapor phases are
distributed. Each specific flow configuration will affect its thermal and hydraulic char-
acteristics. Once the flow patterns are determined, the information can be later used to
develop pressure drop and heat transfer flow pattern-based prediction methods.

Microscale two-phase flow patterns differ from those observed in macrochannels, due to
the increased importance of surface tension. Several microscale flow pattern maps have
been proposed based on water, refrigerant and water-air two-phase flow. Most share
approximately the same pattern description, but the transition criteria can differ from
one to another. For this review, the focus will be on studies which covered refrigerant
flow patterns.

Flow observations are the first step needed toward the development of flow pattern maps.
Revellin et al. (2006) divided microscale flow regimes using visual and statistical methods
into six different subsets: bubbly flow, bubbly-slug flow, slug flow, slug/semi-annular flow,
semi-annular flow and annular. This division is represented in Fig 2.8. The bubbly flow
regime is still affected by buoyancy, whereas the other are axisymmetric.

Most flow pattern studies used circular tubes larger than 500μm for their visualization
and some authors pointed out that there are differences in non-circular geometries. For
example, Barber et al. (2010) have observed that the flow evolution in high aspect ratio
channel can differ, especially when the bubbles grow. In Fig 2.9, at a low mass flux, the
bubble grows initially in all directions and once it is almost as large as the channel width,
it mostly grows laterally. Only when it reaches all walls, does the cross-section view look
like the view in a circular pipe.
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Figure 2.8: Schematic of flow pattern and transitions: (a)bubbly flow; (b)bubbly/slug
flow; (c)slug flow; (d)slug/semi-annular flow; (e)semi-annular flow; (f)annular flow. From
Revellin et al. (2006).

In a multi-microchannel evaporator of Dh = 336μm, Borhani et al. (2010) observed that
under diabatic conditions, two-phase flow in microchannels can be affected by intermittent
dry-out. Fig 2.10 graphically described the dewetting process after a pertubation at the
tail of a bubble occurs. After a certain time, the perturbation breaks the liquid annular
film and grows upstream. At that point, the surface is completely dewetted. This process
occurs in a few milliseconds and rewetting of the wall is done by the arrival of the next
liquid slug. It is however not clear if these dry-out zones are part of a transition between
two stable flow patterns or a permanent feature of two-phase flow in channels smaller
than 500μm.

Two-phase flow observation can be collected into a flow pattern map. In Fig 2.11
Revellin et al. (2006)’s map is shown. It is compared to a macroscale map developed
by Kattan et al. (1998). There are several differences between both maps. The strati-
fied flow regimes disappear in the microscale map due to the effect of surface tension, as

CH2/Regimes.eps
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Figure 2.9: FC-72 bubble growth in 400×4000μm channel. G=32kg/m2s, T=52◦C,
4.25kW/m2. From Barber et al. (2010).

highlighted in Fig 2.5. The microscale transition to annular flow is a function of the
mass flux, whereas it happens at a fix vapor quality for macroscale. This transition also
happens at lower quality in microscale channels for high mass fluxes.

On the microscale map, three flow regimes can be considered as transitional and the count
can be reduced to four stable flow regimes: IB, isolated bubble regime; CB, coalescing
bubble regime; AF, annular flow regime (completely coalesced regime) & PD, post-dryout
regime, as done by Revellin & Thome (2007b). The transitions were described by the
following equations:

IB–CB, isolated bubble to coalescing bubble regime transition

xIB−CB = 0.763

(
ReloBo

Wevo

)0.41

(2.9)

CB–AF, coalescing bubble to annular flow regime transition

xCB−AF = 0.00014
Re1.47lo

We1.23lo

(2.10)

AF–PD, annular flow to post-dryout regime transition

xAF−PD = 0.437

(
ρv
ρl

)0.073
Ghlv

We0.24lo

(
L
D

)0.72 (2.11)

Ong & Thome (2011b) proposed different transition equations at microscales, based on a
large database, including many fluids. He included the effect of the Confinement number,

Co =
√

σ
g(ρl−ρv)D2 , and that of the liquid to vapor phase viscosity and density ratios. The

dry-out zone was not directly observed but was predicted via critical heat flux correlations.
The IB–CB transition is thus:

xIB−CB = 0.36Co0.3
(
μv

μl

)0.65(
ρv
ρl

)0.9
Re0.75vo Bo0.25

We0.91lo

; (2.12)
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Figure 2.10: Schematic channel frame sequence of the intermittent dewetting-dryout process
for elongated bubbles, with the liquid and vapour regions represented by gray and white, re-
spectively. From Borhani et al. (2010).

and that for CB–AF is:

xCB−AF = 0.047Co0.05
(
μv

μl

)0.7(
ρv
ρl

)0.6
Re0.8vo

We0.91lo

; (2.13)

Harirchian & Garimella (2010) used their unconfined to confined transition criteria to
create a comprehensive flow regime map shown in Fig 2.12. They found that the slug to
annular transition both in confined and unconfined flow was:

Bl = 0.017

(
Bo0.4

Re0.3

)
(2.14)

It should be noted that their flow regime map does not include information about the
local flow evolution (vapor quality, void fraction or velocity).

It is also possible to infer flow pattern transition from heat transfer results, by following
the change in trends. Karyiannis et al. (2010) found that in a 0.52 mm tube, four different
trends in heat transfer could be associated with flow pattern change, as shown in Fig 2.13.
In zone I, a confined bubble regime could exist, which would peak when dry-patches start
to occur in zone II. The results in zone III may depend on the interaction between
nucleation sites and the changing flow regime. In zone IV, the flow is annular, based on
observation at the microchannel outlet.

CH2/FlowBorhani.eps
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Figure 2.11: Comparison between Revellin et al. (2006) and Kattan et al. (1998) flow pattern
maps. From Revellin et al. (2006).

Figure 2.12: Comprehensive flow regime map for FC-77, from Harirchian & Garimella (2010).
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Figure 2.13: Heat transfer coefficient vs. quality for mass flux of 300kg/m2sfor R-134a at
Psat=6bar in a 0.52mm tube. From Karyiannis et al. (2010).
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2.6 Two-phase pressure drop in microchannels

In a two-phase system, pressure drop is used both to define the hydraulic and thermal
characteristics. Accurate pressure measurements are thus important to develop efficient
micro-evaporators. In single-pipe microchannels, which typically have a diameter over
500μm, pressure measurement techniques are well developed. Revellin & Thome (2007a)
showed (graph repeated in Fig 2.14) that the two-phase frictional pressure drop of R-
245fa was more than twice larger than that of R-134a, reaching 10 bar/m for a vapor
quality of 0.6.

Figure 2.14: Two-phase frictional pressure drop for R134a and R245fa. D=0.509mm,
Tsat=35◦C, G=700kg/m2s. From Revellin & Thome (2007a).

Helped by micro-machining techniques, multi-microchannels usually have a hydraulic
diameter smaller than 500μm. In such a configuration, accurate pressure measurements
are difficult. These are usually made in the larger inlet and outlet plenums and not
directly in the channel.

The pressures at the channel extremities are determined by the pressure measurements
using pressure loss correlations, as explained by Lee & Garimella (2008). Single-phase
losses can in principle be accurately determined by using design tables, such as those
provided in Idelcik (1999). In comparison, predicting the two-phase losses in a sudden
reduction or expansion is difficult and many articles eluded the subject. For example,
Agostini & Bontemps (2005) presented two-phase pressure drop results in an evaporator
composed of 11 square channels of 3.28mm × 1.47mm, a schematic of the test section is
shown in Fig 2.15, but did not discuss the pressure difference that exists between the
measurement point in the outlet manifold and the end of the evaporator (Lj).

Chen et al. (2010) studied pressure in sudden contraction and expansion for macroscale
pipes and showed that existing prediction methods for a sudden expansion were not
accurate and that the best method for sudden contraction was the homogeneous method
described in Collier & Thome (1994), which had a mean average error of 49.2%. The

CH2/PressRevellin.eps
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Figure 2.15: Test section of Agostini & Bontemps (2005), dimension in mm.

static pressure change expression for a sudden contraction from point 1 to 2 given by
Collier & Thome (1994) is:

Δp1−2 =
G2

2υl
2

[(
1

Cc

− 1

)2

+

(
1−

(
A2

A1

)2
)][

1 +
υlv
υl
x

]
(2.15)

where G2 is the outcoming mass flux and Cc a contraction coefficient, for which tabulated
results are provided.

For sudden enlargement, Collier & Thome (1994) give

Δp1−2 = G2
1

A1

A2

(
1− A1

A2

)
υl

(
1 +

υlv
υl
x

)
(2.16)

where G1 is the incoming mass flux.

In microchannel, Garimella et al. (2002) included two-phase singularity losses in the pres-
sure drop calculation of a condensing flow of R-134a by first measuring the pressure drop
in a short test section. The losses were estimated by using the models recommended by
Hewitt et al. (1993) and validated against pressure measurements. The model for con-
traction is the same as equation 2.15. For enlargement the equation differs from equation
2.16 by using a separate flow multiplier instead of a homogenous flow one:

Δp1−2 = G2
1

A1

A2

(
1− A1

A2

)
υlψs (2.17)

where G1 is the incoming mass flux and ψs the separated flow multiplier.

To evaluate the two-phase channel pressure drop itself, numerous prediction methods are
available. Classical methods, presented in Collier & Thome (1994), include:
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• The homogeneous model with two-phase viscosity modelled using McAdams et al.
(1942), Cicchitti et al. (1960) and Dukler et al. (1964).

• The separated flow model of Lockhart & Martinelli (1949)

• The correlation of Baroczy (1965), adapted by Chisholm (1973)

• The correlation of Friedel (1979)

Ribatski et al. (2006) reviewed 12 methods against 1800 pressure measurements taken
from 9 experimental microchannel databases and found that the most accurate methods
were those of:

• Mueller-Steinhagen & Heck (1986), which proposed an asymptotic fit based on the
single-phase liquid and vapor frictional pressure drop

• Mishima & Hibiki (1996), which modified a parameter in the Chisholm (1973) method

• The homogeneous model used with the Cicchitti et al. (1960) two-phase viscosity
expression.

Ribatski et al. (2006) also noted that at high vapor quality, where annular and mist flow
can be expected, the methods worked poorly.

Cioncolini et al. (2009) proposed a new one-dimensional turbulence model for macro and
microscale annular two-phase flow, typically occuring at higher vapor quality. It can be
used to predict the frictional pressure gradients, the liquid velocity profile in the annular
film, the film thickness, the fraction of liquid entrained in the vapor core and the void
fraction.

Three further other studies have come up with new expressions specific to microchannels.
One, Tran et al. (1999), modified the method of Baroczy (1965) and the later two changed
the definition of the C coefficient in the method of Lockhart & Martinelli (1949) based
on their experimental results. Lee & Mudawar (2005a) proposed two new definitions:

Cvv = 2.16Re0.047lo We0.60lo (2.18)

for laminar liquid and laminar vapor flow.

Cvt = 1.45Re0.25lo We0.23lo (2.19)

for laminar liquid and turbulent vapor flow.

Lee & Garimella (2008) evaluate the coefficient as:

C = 2566G−0.5466D0.8819
(
1− e−319D

)
(2.20)
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2.7 Two-phase heat transfer coefficient

Many studies have examined two-phase heat transfer in microchannels. This section of
the review will focus on stable flow experiments using refrigerants (i.e. which did not
report an instability problem) that used a single tube or multi-microchannel test section.
Although the data reduction for single tube experiments is simpler, especially regarding
the flow distribution assumption, both types of test sections provide precise results, once
proper care is taken. In fact, to achieve the level of heat transfer required in Fig 2.1,
multiplying the cooling channels is the only solution and multi-microchannels studies are
probably closer to future applications.

Thome & Consolini (2009) placed experimental trends reported for microscale heat trans-
fer coefficients in several groups. In some studies, the heat transfer coefficient was found
to be unaffected by the vapor quality or the mass flux, but strongly dependent on the
heat flux. One of the first studies on the subject was made by Lazarek & Black (1982)
using R-113 in 123mm and 246mm long tubes of a diameter of 3.1mm. An example of
their results is shown in Fig 2.16(a). A simple expression for the Nusselt number, using
the liquid fluid properties, fits their results well:

Nu = 30Re0.857Bl0.714 (2.21)

Tran et al. (1996) used R-12 in 870mm long, round and rectangular single channels. They
also found a strong link between the heat flux and the heat transfer coefficient, as shown
in Fig 2.16(b), and fitted their experimental data with:

α = 8.4× 10−5
(
Bl2Wel

)0.3( ρl
ρv

)−0.4

(2.22)

Hamdar et al. (2010) used HFC-152a in a 1mm tube and found that equation 2.22
with modified exponents fitted their results well, an example of which is shown in Fig
2.16(c). Bao et al. (2000) repeated the same type of experiment, this time with R-11
and R-123 in a 1.95 mm copper tube. Their experimental heat transfer coefficients for
both fluids at a given saturation pressure can be accurately predicted by a power law
fit of the heat flux, given in Fig 2.16(d), with n=0.735. Based on this and not on
any visual observation, they deduced that nucleate boiling was the dominant mechanism
and recommended using the pool boiling method of Cooper (1984) for heat transfer
prediction. However linking microchannel flow boiling to pool boiling is problematic
because according to Collier & Thome (1994), the exponent value n in Tw − Tsat = Cqn

for pool boiling is normally in the range 0.25–0.5, far from n=0.735.

Harirchian & Garimella (2008) used FC-77 in silicon multi-microchannels of different
cross section and obtained results similar to Bao et al. (2000), as shown in Fig 2.16(e),
and also found that the Cooper (1984) nucleate pool boiling correlation was the most
accurate method to predict their results. In their test section, the heat flux was provided
by a 5 × 5 array heater, each having its own temperature sensor, but their results were
derived from measurements made with only one heater, making it impossible to assess if
the reported heat transfer trends are constant along the channel.
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(a) Lazarek & Black (1982), R-113, D= 3.1mm (b) Tran et al. (1996), R-12, D= 2.46mm

(c) Hamdar et al. (2010), HFC-152a, D= 1mm (d) Bao et al. (2000), R-11, D= 1.95mm

(e) Harirchian & Garimella (2008), FC-77, Multi-
microchannels

Figure 2.16: Heat transfer coefficient results for different studies.
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In the microchannel flow pattern observation of Fig 2.11, nucleate boiling is not seen,
but could be linked to the isolated bubbles flow regime, described in Fig 2.8, which
exists only at very low vapor qualities since the bubbles quickly become confined by the
channel which then promotes thin film evaporation. Thus, extending this heat transfer
mechanism to all vapor quality does not correspond to what is observed in two-phase
microchannel flows. In fact, Mukherjee (2009) showed in his numerical simulations of
elongated bubble growth in microchannels, that thin-film evaporation, which directly
increases with heat flux, is the dominant heat transfer mechanism, confirming a point
already made by Jacobi & Thome (2002). He also stressed that thin-film evaporation
can create heat transfer-wise the apparence of nucleate boiling.

In a second group of studies, heat transfer coefficients were found to be a function of the
vapor quality and the heat flux. Graphs by Lin et al. (2001) for R-141b in a 1mm tube
and Agostini et al. (2008a) for R-236fa in a silicon 680μm × 223 μm multi-microchannel
evaporator, reproduced in Fig 2.17, show the variation of heat transfer coefficient with
respect to heat flux and vapor quality. As the heat flux increases, the mean heat transfer
increases. First the local heat transfer tends to be higher towards the end of the channel,
at high vapor qualities, but at higher heat flux, the shape of the curve changes. It flattens
and later has a decreasing trend with vapor quality.

The two first trends are clearly seen in the results of Ong & Thome (2011b). His heat
transfer coefficient experimental database is extensive, covering three fluids (R-134a, R-
236fa and R-245fa) and three tubes (1.03mm, 2.20mm and 3.04mm) for mass fluxes
varying from 200 to 1400 kg/m2s, and wall heat fluxes from 5 to 180kW/m2. Fig 2.18
presents an excerpt of his results. Using a reference case (Fig 2.18(a)), the change
in trends due to variation in diameter (Fig 2.18(b)), mass flux (Fig 2.18(c)) and by
changing the fluid (Fig 2.18(d)) are highlighted. For example Fig 2.18(c) displays
a 50% increase in heat transfer at 39.8 kW/m2 from inlet to outlet, whereas in Fig
2.18(d), heat transfer coefficient curves are almost flat and the graph ressembles the
one of Lazarek & Black (1982). It is then possible that, by having a relatively narrow
experimental range, the studies presented in Fig 2.16 could have observed only a fraction
of the two-phase microchannel heat transfer coefficient trends.

More authors observed variation of heat tranfer coefficients with respect to vapor quality.
Kew & Cornwell (1997) used R-141b in 500 mm long tubes with diameters 1.39–3.69mm.
The heat transfer coefficients increasing and flattening trends are clear in Fig 2.19(a).
Karyiannis et al. (2010) used five different tube diameters and also observed that the heat
transfer trends changed with diameter. An example of their results is shown in Fig 2.13.

Yan & Lin (1998) tested R-134a in an array of 2.00mm tubes with a heated length of
100mm and found that the heat transfer mostly decreased with increasing vapor quality
(Fig 2.19(b)). Heat transfer results by Lee & Mudawar (2005b), shown in Fig 2.19(c),
also display this decreasing trend. They performed their experiments in a 25.3 mm long
copper multi-microchannel evaporator with 231μm × 714μm channels and obtained the
highest wall heat transfer coefficients values seen in this review (50’000W/m2K).
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(a) Lin et al. (2001), R-141b, D= 1mm

(b) Agostini et al. (2008a), R-236fa, Multi-microchannels

Figure 2.17: Heat transfer coefficient results for different studies.
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(a) R-236fa, D=1.03mm, G=499kg/m2s,
Tsat=31◦C

(b) R-236fa, D=2.20mm, G=503kg/m2s,
Tsat=31◦C

(c) R-236fa, D=1.03mm, G=201kg/m2s,
Tsat=31◦C

(d) R-134a, D=1.03mm, G=499kg/m2s,
Tsat=31◦C

Figure 2.18: Heat transfer coefficient results from Ong & Thome (2011b).

CH2/HTCOng1.eps
CH2/HTCOng2.eps
CH2/HTCOng3.eps
CH2/HTCOng4.eps


2.7. Two-phase heat transfer coefficient 27

(a) Kew & Cornwell (1997), R-141b, D=
3.69mm, G= 212kg/m2s

(b) Yan & Lin (1998), R-134a, D= 2.00mm

(c) Lee & Mudawar (2005b), R-134a, Multi-
microchannels

(d) Saitoh et al. (2005), R-134a, D= 1.12mm

(e) Bertsch et al. (2008), R-134a, Multi-
microchannels

Figure 2.19: Heat transfer coefficient results for different studies.
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Saitoh et al. (2005) found that a higher mass flux had a positive influence on heat transfer.
In Fig 2.19(d), heat transfer coefficients for q=13kW/m2 increase faster for G=300kg/m2s
after a vapor quality of 0.3 than for G=150kg/m2s. Finally, Bertsch et al. (2008) observed
that going from 20.3kg/m2s to 81.0kg/m2s in a copper multi-microchannel composed of 17
channels, Dh=1089μm, 9.9 mm long, doubles the heat transfer, as shown in Fig 2.19(e).

Predicting experimental two-phase heat transfer coefficient in microchannels, which vary
from 2000 to 50’000W/m2K, and their trends is a complicated task. Nevertheless, several
prediction methods have been proposed. The most interesting ones were written with
the insight from several studies, fluids and geometries. Some studies adapted macroscale
methods, such as Bertsch et al. (2009), who developed a new formulation of the Chen
(1966) correlation. They assumed that heat transfer was the combined result of nucleate
boiling and two-phase convective heat transfer.

αFB = αNBS + αconv−tpF (2.23)

where S and F are the suppression and multiplication factors.

For the nucleate boiling part, αNB, they used the correlation of Cooper (1984) and for the
convective part, they used a single-phase laminar developing flow correlation, combining
the liquid and vapor component by the vapor quality fraction (respectively (1-x) and x).
Once their fit for S and F are included, equation 2.23 reads as follows:

αFB = αNB(1− x) + αconv−tp

[
1 + 80

(
x2 − x6

)
e−0.6Co

]
(2.24)

Kandlikar & Balasubramanian (2004) also used the idea of combining nucleate and con-
vective boiling components. They extrapolated a previously developed macroscale corre-

lation to microscale, effectively removing the effect of the Froude number
(
Frl =

m2

ρ2l gD

)
found in the macroscale correlation. In this method, the microscale two-phase heat trans-
fer is set to the larger value between the nucleate and convective boiling component.

Moving away from nucleate boiling, Thome et al. (2004) developed a semi-mechanistic
model, the three-zone model, to describe the evaporation of elongated bubbles in mi-
crochannels. Fig 2.20 shows the schematic of their model. Bubbles form at a given
frequency (f) and are separated by liquid slugs. The bubbles grow and form a film with
an initial thickness δ0. The rate of vapor formation is tracked and if, as the bubble grows,
the liquid film surrounding the bubble reaches a minimum value (δmin), the evaporating
film is assumed to dry out and form a vapor slug (dry zone) behind the elongated bubble.

The heat transfer coefficient in the liquid and vapor slug are evaluated using laminar and
turbulent developing flow correlations. Heat transfer in the elongated bubble happens
through thin film evaporation, which is modeled by one-dimensional conduction through
the film. Finally, the cyclical variation of the heat transfer due to the different zones
is used to obtain a time-averaged heat transfer coefficient. The method requires f, δ0
and δmin to be modeled. Agostini et al. (2008a) and Ong & Thome (2011b) showed that
setting the minimum film thickness to the channel wall roughness improved the accuracy
of the method. The mechanisms described in the three-zone method are intermittent
and can be associated to the isolated bubbles and coaslescing bubbles flow regimes of
Revellin et al. (2006) and Ong & Thome (2011a).



2.7. Two-phase heat transfer coefficient 29

Figure 2.20: Schematic of three-zone model of Thome et al. (2004).

Although heat transfer in annular flow appears at first look to be similar in macro- and
microscale, since the liquid film thickness in both cases are much smaller than the chan-
nel diameter, they nevertheless differ in some aspects. In microchannels, the liquid film
is thinner and can thus be laminar, which affects the liquid-vapor interface interactions.
Moreover, since the surface tension is more important in microchannels, a non-circular
channel will proportionally concentrate more liquid in its corners, thin the film and in-
crease heat transfer, as it was shown by Nebuloni & Thome (2010) through numerical
simulation of condensing laminar annular flow.

The annular flow heat transfer prediction method of Cioncolini & Thome (2011) covers
macro and microscales. It is derived from a mechanistic analysis of the annular flow and
used experimental results from 1.03mm to 14.4mm test sections to optimize the method’s
accuracy. It provides information about the film velocity and temperature profiles, the
average film thickness, the void fraction, the entrainment and the heat transfer coefficient.
With an intermittent to annular flow transition criteria, it could be used in combination
with the three-zone model to create a flow pattern-based method.

Another approach almost developing a flow pattern-based prediction method, is proposed
by Lee & Mudawar (2005b). They proposed an empirical heat transfer method for each
trend, based on the vapor quality. For vapor qualities from 0 to 0.05, their expression for
heat transfer is.

αtp = 3.856χ0.267αsp,l (2.25)

where χ2 is the ratio the liquid only and vapor only pressure drop. For x=0.05 to 0.55:

αtp = 436.48Bl0.522We0.351lo χ0.665αsp,l (2.26)

Finally, for x=0.55 to 1:

αtp = max
[(
108.6χ1.665αsp,v

)
, αsp,v

]
(2.27)
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2.8 Critical heat flux in microchannel

The critical heat flux (CHF) in microchannels represents the upper boundary beyond
which the heat transfer coefficients drop rapidly, as there is no liquid film left on the
channel wall to evaporate. In turn, the wall temperatures increase to a level that can
damage what was being cooled. For two-phase experiments, it represents the upper heat
flux limit at which experiments can be performed. Flow pattern-wise, it can be associated
to the microchannel dry-out zone as done by Revellin & Thome (2007b).

Since staying under the critical heat flux is a thermal safety criterion, defining it has
received a lot of attention. For example, in single tube microchannels, Ong & Thome
(2011b) and Wojtan et al. (2006) made together 215 critical heat flux measurements with
R-134a, R-236fa and R-245fa. Basu et al. (2011) made 113 measurements with R-134a.
Park & Thome (2010) made 323 measurements in copper multi-microchannels. Using the
same multi-microchannel in slit flow configuration, Mauro et al. (2010) made 78 measure-
ments. Also 25 measurements were made by Agostini et al. (2008b) with R-236fa and 30
with R-113 by Kosar & Peles (2007) in silicon multi-microchannels.

There are probably as many prediction methods for critical heat flux in microchannels as
there are experimental studies on the subject. Overall, two empirical prediction methods
stand out as the most accurate. The first is given Katto & Ohno (1984) which combines
five different correlations, differentiated by the fluid’s density ratio. The second one is that
of Ong & Thome (2011b) who modified Wojtan et al. (2006) method, itself a modified
and simplified version of Katto & Ohno (1984) method. Note that these methods predict
wall critical heat flux and for multi-microchannels, this value needs to be transformed
onto the base (“footprint”) critical heat flux, using the area ratio and the fin efficiency.

A mechanistic CHF model was proposed by Revellin & Thome (2008). The model starts
from the observation that dry-out occurs when the liquid film in the annular flow regime
dryouts at the trough of the waves in the film. On the other hand, if evaporation is the
only factor influencing the film thickness, dry-out will occur at a vapor quality of 1. Since
critical heat flux has been seen to occur at much lower vapor qualities, the shear force
imposed by vapor core on the liquid film must play a role on the dry-out by creating
interfacial waves.

A schematic of both phenomena is shown in Fig 2.21. If the wave amplitude exceeds
the mean liquid film thickness, the channel will be directly in contact with vapor. By
using conservation of mass and energy, the mean liquid thickness along the channel can
be determined. It is then compared to the size of the interfacial waves, calculated based
on the one dimensional Kelvin-Helmholtz critical wavelength. If the wave size exceeds
the local film thickness, critical heat flux is said to occur.

2.9 Non-uniform and transient heat flux cooling

Many devices, such as CPUs or IGBTs, generate a non-uniform heat flux, with hot-spots
several times greater than their background heat flux. Actual hot-spot signatures for a
stacked UltraSPRAC T1 (Niagara) chip are reproduced in Fig 2.22. The hot-spot to
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Figure 2.21: Schematic of dry-out of Revellin & Thome (2008).

background heat flux ratios presented by Hamann et al. (2007) were around 10 to 1 and
the hot-spot covered 5 to 25% of the chip’s area. Precise information regarding power
maps is usually not disclosed by manufacturers, but the IBM Research Center in Zurich
confirmed for this work that these values were typically found in micro-processors.

Figure 2.22: Thermal maps of two UltraSPARC T1 (Niagara) chips stacked one on the top of
the other (Case A in Section VI-E). From A. et al. (2012)

Under non-uniform heat flux conditions, the cooling method will influence both the junc-
tion temperature and the size of the region affected by the hot-spot, setting respectively
the maximum hot-spot heat flux and the maximum number of hot-spots possible on the
unit. These two aspects are particularly important to microelectronic design, which aims
to pack more power on an ever smaller surface. Two-phase flow cooling has been of-
ten seen as an excellent candidate for non-uniform heat flux cooling, because the heat
transfer coefficients are a function of the heat flux. Moreover, its very high heat transfer
coefficients should help contain the spread of the hot-spot to surrounding areas.

Experimental studies on microchannel flow boiling in non-uniform heat flux situations
have been performed with water as the cooling fluid. Koo et al. (2002) presented results
for several silicon micro-evaporators, but did not reduce their data and present heat
transfer coefficient results. As it was previously noted, due to the large difference between
the vapor and liquid densities, flow boiling of water in microchannels is difficult to control.
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The relation between those water-induced instabilities and non-uniform heat flux were
the subject of a study by Bogojevic et al. (2011).

On the modeling side, Revellin et al. (2008) extended their critical heat flux prediction
method for uniform heat flux to non-uniform heat flux situations. The hot-spot’s effect is
included in the local energy balance along the channel. In this model, both the hot-spot
and the background heat flux can generate the critical heat flux. For example, in Fig
2.23(a), the wave height meets the film thickness at 20mm, under q= 386kW/m2, and
critical heat flux is assumed to happen there, while in Fig 2.23(b), this point is first
reached at the hot-spot position.

(a) Dry-out at outlet (b) Dry-out at hot-spot and outlet position

Figure 2.23: Liquid film thickness and wave heights for R-134a, G=500kg/m2s, Tsat=30◦C.
Hot-spot at 10mm. From Revellin et al. (2008).

One last important aspect remains to be addressed on in the heat load variation in
microelectronics. In CPUs, the heat generation follows the computational duty. Since
CPU clock speeds are on the order of mega- and gigahertz, instantaneous local heat flux
variations are very fast. However, from a cooling requirement point of view, the time scale
is longer. The CPU usage history of a normal computer provides an idea for the cooling
requirements. A typical example is shown in Fig 2.24. The CPU usage changes suddenly,
but is otherwise mostly stable. Hamann et al. (2007) also measured the temperature
signature evolution of a laptop microprocessor during bootup (Fig 2.25). Temperature
maps follow the CPU power jumps. Thus as a primary requirement, a two-phase cooling
system for microelectronics must be able to handle a step increase in heat flux.

Figure 2.24: CPU usage history from a laptop.
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Figure 2.25: Laptop microprocessor temperature evolution during bootup. Time-step between
each image 10s. From Hamann et al. (2007).
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Chapter 3

Experimental facility and data
reduction

3.1 Refrigerant flow loop

The flow loop used for the experiments is shown in Fig 3.1. It was previously used by
Park & Thome (2010) and was modified by adding instrumentation and expanding the
data acquisition capabilities for the present tests.
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Figure 3.1: Schematic of the flow loop.

The flow is driven by an oil-free magnetic-driven gear pump and its mass flow rate is
measured using a Coriolis mass flow meter. The pre-heater is used to bring the fluid
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temperature close to the experimental saturation point. The fluid temperature is never
increased in the pre-heater by more than 20◦C, a limit beyond which sub-cooled boiling
was found to happen. It was also important to maintain the pressure in the pre-heater
above the saturation pressure, since the target level of subcooling was typically lower
than 1◦C. For this purpose, a needle valve was placed between the pre-heater and test
section. It was set to decrease the pressure enough to reach the desired conditions at the
inlet of the test section.

Sight glasses were placed before and after the test section to visualize if the flow was
single or two-phase. After passing through the test section, the flow is condensed in a
plate heat exchanger. The cold fluid is a water-glycol solution normally at 5◦C. The
system pressure is set by keeping the refrigerant in the reservoir in a two-phase condition.
The saturation point is adjusted through the temperature of the reservoir, connected to
a computer controlled thermal bath. The fluid is always single-phase from the exit of
the condenser to the inlet of the test section. The system is loaded with about 5kg of
refrigerant, most of which remained in the reservoir. Before filling the loop, it is carefully
vacuumed to remove any trace of air or moisture in the test loop.

The test loop is instrumented with thermocouples, placed across the pre-heater and after
the condenser. Pressure measurements are made in the reservoir and across the pump.
These measurements are not directly used to study the multi-microchannel evaporator,
but are needed to monitor the flow loop’s operation and to evaluate the heat losses.

3.2 Test sections

Two different test sections were used for the experiments. In one, the evaporator was
made of silicon, in the other copper. Fig 3.2 shows each test section assembled on the
test stand. The main visible differences are the pressure ports placed on top of the copper
test section, which were used to measure pressure drops directly along the channels.
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(a) Silicon test section

(b) Copper test section

Figure 3.2: Assembled test sections without insulation.
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The general design and operation of both test sections was similar. Cut views of each
test section along the channels, shown in Fig 3.3, are useful to visualize how the thermal
packages were built and what the flow paths were. Fig 3.4 gives schematically the
position of the relevant test section dimensions, which are later needed for calculations.
Their values are listed in Table 3.1.

Pyrex glass

Thermal chip
and PCB

Evaporator

Plenum measurement 
ports

Silicon evaporator

Polycarbonate
manifold

Inlet plenum Outlet plenum

Inlet
restriction

(a) Silicon test section

Thermal chip
and PCBCopper evaporator

Copper frame

Stainless steel
manifold

Channel 
pressure ports

Inlet plenum Outlet plenum 
Plenum measurement 

ports

Inlet
restriction

(b) Copper test section

Figure 3.3: Schematic of the test sections. Cut views along the channel axis. Blue: Sections
filled with refrigerant.

The test sections’ description will be divided into four sub-groups:

• The thermal chip and the printed circuit board (PCB)

• The thermal interface material (TIM)

• The evaporator

• The manifold
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Figure 3.4: Position of test section dimensions.

3.2.1 Thermal chip and the printed circuit board

A thermal chip was used to mimic the behavior of a CPU. Theses chips were manufactured
by Delphi Corporation under the name PST1-02/5PU Thermal Test Die. Heaters were
made on the back of a silicon wafer by locally doping silicon between two bus bars. Two
temperature sensors were positioned at the center of each heater and solder balls were
deposited on connection pads. Before shipping, the wafer’s thickness was brought to
350μm.

As shown in Fig 3.5, each wafer contain many heaters. The wafers were diced into arrays
of 7×9 heaters, of which the center 5×7 heaters were used for the experiments. For clarity,
the following terminology will be used throughout the thesis:

• Heater: individual heater with its own thermal sensor.

• Chip or array heater: 5×7 individual heaters forming the unit generating the whole
heat flux.

• Test section: Thermal package including the PCB, chip, TIM, evaporator and man-
ifold.

The array heater was mounted in this study on a printed circuit board (PCB) using a flip-
chip process. This process was developed in collaboration with the IBM Zurich Research
Center and involves a lot of technical know-how, such that the following description is a
simplified one. The PCB and the chip were placed in parallel and heated over the melting
point of the solder balls. At this point, both surfaces were brought together, until the
solder balls on the chip also wetted the corresponding pads on the PCB. The package
was then cooled and the bond solidified. An underfill epoxy was flowed between the chip
and the PCB in order to strengthen the bond.

For the silicon test section, the chip was directly mounted on a large PCB (300mm×200mm)
used to make the external electrical connections. During the mounting process, a total of
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Table 3.1: Test section dimensions.

Dimension Silicon Copper Uncertainty
B: Evaporator width(mm) 17.78 17.78 ±0.1
Lch: Channel length(mm) 12.7 13.2 ±0.1
l: Heater size(mm) 2.54 2.54 ±0.02
H: Channel height(μm) 560 1560 ±5
W: Channel width(μm) 85 163 ±5
F: Fin thickness(μm) 47 178 ±5
N: Number of channels 135 52 –
Dh: Hydraulic diameter(μm) 148 246 ±10
echip: Thermal chip thickness(μm) 350 350 ±5
eTIM : TIM thickness(μm) 50 40 ±15
eevap: Evaporator base thickness(μm) 440 1800 ±10
Wall roughness (nm) 90 460 ±10/50
Inlet slit(mm) 0.5 0.5 ±0.1
Outlet slit(mm) 1.5 2.0 ±0.1
Slit height (mm) 1.66 6.67 ±0.05
Inlet plenum(mm) 1.5 4.5 ±0.05
Outlet plenum(mm) 3 4.5 ±0.05
Pressure tap diameter(mm) – 0.5 ±0.05
LPTap1: Pressure tap position 1(mm) – 2.73 ±0.01
LPTap2: Pressure tap position 2(mm) – 11.72 ±0.01

420 connections needed to be made simultaneously. While cooling, the PCB, which con-
tained copper, did not shrink uniformly nor at the same rate as the chip. This weakened
the bonds and an operational base temperature limit of 65◦C was respected to decrease
thermal stresses. The temperature sensors were particularly at risk of failure, due to the
small wire size used for their connections.

The package was improved for the copper test section by using an intermediate PCB.
The chip was mounted on a PCB of 42.5mm×42.5mm, with a low coefficient of thermal
expansion, which was designed to have uniform shrinking and with redundancies for the
power and temperature lines. This assembly was then pressed on a cLGA (Land grid array
socket) produced by Amphenol InterCon Systems. In this socket, 1052 metallic springs
were found and once under sufficient pressure, physically connected the intermediate and
the larger PCB(250mm×180mm).

The thermal chip itself was composed of 35 independent heaters arranged in a 5 × 7 array.
Each heater was 2.54mm×2.54mm in size, and its electricalresistance was of about 25Ω.
It was surrounded by a row of unactive heaters. The heater notation is given in Fig 3.6.

A switch box, connecting the PCB to the power supplies, was used to control the power
to each heater independently. The individual electrical circuit allowed a current of up
to 1.1A, thus the maximum design power per heater was 30W, so the total per chip was
1050W (465W/cm2). For the experiments, the central temperature sensor of each heater
was used. It was made of a series of temperature sensitive diodes, which once excited
with a sufficient voltage, worked similarly to a 4-wire RTD.
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Figure 3.5: Heater subdividing process.
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Figure 3.6: Heater notation.
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3.2.2 Thermal interface material

Between the thermal chip and the evaporator, a thermal interface material (TIM) was
used. The TIM was a high thermal conductivity liquid metal alloy made of gallium,
indium and tin (62.5Ga-21.5In-16.0Sn) and having a melting temperature of 10.7◦C. The
listed bulk thermal conductivity is 35 W/mK, but in order to include the influence of
temperature and thickness across the TIM, tests were performed by André (2009) within
the LTCM laboratory to determine the effective thermal conductivity across the thin
layer, including the contact resistances, as shown in Fig 3.7(a).

A dimensional correlation was developed for determining the thermal conductance of the
layer for the temperature range between 20 and 80◦C, and is given as

α =
λ

eTIM

= 3.735× 106

(
T

(
eTIM

100μm

)2
)−0.9634

+ 29080 (3.1)

where T is the temperature in ◦C, eTIM the thermal interface thickness in μm and the
thermal conductance, α is in W/m2K. The performance of the curve fit is shown in
Fig 3.7(b), predicting 90% of the data to within 5%, finding values lower than that
quoted by the manufacturer.

On the test section, the thickness of the thermal interface was indirectly determined by
measuring the thickness of the assembled test section and substracting the evaporator,
manifold and chip assembly thickness. For the silicon test section, the TIM layer was
50μm thick and for the copper test section, 40μm, resulting in a thermal conductivity
at 40◦C of respectively 22W/mK and 28W/mK, an order of magnitude higher than for
commonly used polymer-based TIMs. The combination of the high thermal conductivity
and the thin interface minimized the temperature drop across the interface, making the
determination of heat transfer characteristics more accurate.

Hardy (1985) measured a surface tension of 700mN/m at 20◦C for liquid gallium; the
Ga–In–Sn alloy shares this high surface tension and is non-wetting. The chip surface was
carefully covered by a thin layer of liquid metal (Fig 3.8(a)) and the evaporator was slowly
placed on it. In this process, part of the liquid metal flowed out and partial dewetting of
the surface was unavoidable. However, it was mostly contained to the unactive heaters
on the chip, as it can be seen on Fig 3.8(b) taken when experiments with the copper test
section were complete. Unfortunately, for the copper test section, dewetting extended to
heater 15 and its results were not usable.

Liquid metal is corrosive and its reactivity with copper was uncertain, whereas it is
chemically inert with silicon. After eight months of testing, the surface of the copper
evaporator in contact with the liquid metal was inspected. A superficial footprint mark
was visible, which disappeared after 5μm of the evaporator were grinded off.

3.2.3 Evaporators

The silicon and copper evaporators differed in many ways. The silicon evaporator’s top
view and its cross-section are shown in Fig 3.9. It was etched into the 1mm thick silicon
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Figure 3.7: TIM thermal characteristics.

wafer using a DRIE process, described in Laermer & Urban (2003). It was then anodically
bonded on top of a 1.1mm thick Pyrex glass, forming a hermetical bond. The evaporator
was composed of 135 channels, each 85μm wide and 560μm high, with fins 47μm thick.
The hydraulic diameter, measured by image processing, was 148μm. The same value can
be computed from Dh = 2WH

W+H
. The total channel length was 14.7mm. At the channel

extremities, two openings were made in the glass across the evaporator to create an inlet
(0.5mm) and an outlet (1.5mm). The effective channel length, Lch, was then 12.7mm.
The inlet opening formed, with a 90◦ angle change of flow direction, a restriction at the
inlet of each microchannel, in essence a micro-orifice.

Wolverine Tube Inc. manufactured the copper evaporator using a micro-deformation
technology. The copper evaporator’s top view and its cross-section are shown in Fig 3.10.
The fins were first raised from a copper block. A copper surface was then milled around
the fins to the desired thickness. Finally, the channels’ extremities were closed by brazing
a copper frame surrounding the fins on the copper surface. The frame was made higher
than the fins for sealing and adjustment purposes.

The copper evaporator was composed of 52 channels, each 163μm wide and 1560μm high,
with fins of 178μm thick. The hydraulic diameter was measured by image processing
the channel cut view. Since the channels were not perfectly rectangular, the area to
perimeter ratio was smaller and the hydraulic diameter was measured as 246μm. The
value for Dh = 2WH

W+H
was 294μm. The total channel length was 15.7mm and as in

the silicon evaporator, restrictions were formed at the channel extremities. The inlet
restriction was 0.5mm wide, the outlet restriction 2.0mm such that the effective channel
length was 13.2mm. The copper channels were thus 0.5mm longer than the thermal chip
(12.7mm). This extra length was positioned at the channel outlet and was accounted for
in post-processing.
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(a) Before (b) After

Figure 3.8: Thermal interface spreading on copper test section.

(a) Top view (b) Cut view of the evaporator

Figure 3.9: Silicon evaporator.

3.2.4 Manifolds

The manifolds were used to seal the test sections, to make pressure and temperature
measurements and to connect the evaporator to the flow loop. The manifold in the
silicon test section was made of polycarbonate. The inlet plenum was 1.5mm wide and
the outlet one, 3mm. At plenum mid-height, two openings were made in each plenum.
In one, a thermocouple was inserted. The other was used as a pressure tap. Each tap
was connected to its own absolute pressure transducer and to a common inlet/outlet
differential pressure transducer. Two O-rings were placed around the inlet and the outlet
to seal them.

The copper test section’s manifold was machined out of stainless steel. It was in contact
with the evaporator on two planes. At the center, the manifold was pressed on the
evaporator to close the top of the channels. On the edges, an O-ring sealed the test
section. The inlet and outlet slits, respectively 0.5mm and 2mm wide, were machined

CH3/TIMbefore.eps
CH3/TIMAfter.eps
CH3/SiTop.eps
CH3/Cutevap.eps


3.3. Test fluid 45

(a) Top view (b) Cut view of the evaporator

Figure 3.10: Copper evaporator.

in the manifold up to the plenums, both 4.5mm in diameter. As in the silicon test
section, two openings were made in each plenum at mid-height for temperature and
pressure measurements. In addition, two 0.5mm pressure tap holes were made on top
of the evaporator at 2.73mm and 11.72mm from the inlet edge. They were positioned
over column 2 and 6, 130μm away from their centerline (3.70mm and 13.82mm away for
column 1 edge) and recorded pressure over two channels at most.

3.3 Test fluid

Four refrigerants were used for the tests, R-134a, R-1234ze(E), R-236fa and R-245fa.
Table 3.2 compares some of their properties. The main differences are found in the
liquid viscosity and liquid to vapor density ratio. In both cases, values for R-245fa and
R-236fa are higher than those of R-134a and R-1234ze(E). R-1234ze(E) is produced by
Honeywell International as a substitute for R-134a and was donated to the LTCM. It has
a low greenhouse warming potential compared to the others and its properties are similar
to R-134a.

After charging the refrigerant in the flow loop, pressures and temperatures were closely
monitored to ensure that they corresponded to the listed values for saturation point, an
indicator that the loop is free of contaminants. This was particularly important in the
case of R-245fa, because its bottles contained nitrogen to maintain the pressure above
the atmospheric pressure at low temperatures.

The silicon test section was limited to 4 bar and was only suitable for experiments with
R-236fa and R-245fa. One inlet saturation temperature was tested in this test section,
30.5◦C. It corresponded to an average saturation pressures of 3.26 bar for R-236fa and
1.81 bar for R-245fa. Higher pressures were achievable in the copper test section, which
allowed tests at higher saturation temperatures, so that flow boiling at 30◦C and 50◦C
was investigated with R-134a, R-1234ze(E) and R-245fa. In both test sections, the needle
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Table 3.2: Refrigerant saturation properties at 30◦C and 50◦C.

R-134a R-1234ze(E) R-236fa R-245fa
30◦C
Pressure (bar) 7.70 5.78 3.21 1.78
Liquid density (kg/m3) 1187.5 1146.3 1342.8 1324.9
Vapor density (kg/m3) 37.54 30.56 21.57 10.17
Liquid to vapor density ratio 31.6 37.5 62.3 130.3
Latent heat (kJ/kg) 173.10 162.90 142.95 187.33
Liquid viscosity (μPas) 183 188 268 382
Vapor viscosity (μPas) 13 12.5 11 10.5
Liquid ther. cond. (mW/K) 79.0 72.68 71.4 86.5
Vapor ther. cond. (mW/K) 14.3 14.06 13.2 13.3
Surface tension (mN/m) 7.4 8.2 9.5 13.4
50◦C
Pressure (bar) 13.18 9.97 5.84 3.44
Liquid density (kg/m3) 1102.3 1073.8 1270.3 1267.4
Vapor density (kg/m3) 66.27 53.59 39.21 19.21
Liquid to vapor density ratio 16.6 20.0 32.4 66.0
Latent heat (kJ/kg) 151.81 145.55 129.96 174.64
Liquid viscosity (μPas) 142 148 209.5 300
Vapor viscosity (μPas) 13 13.5 12 11
Liquid ther. cond. (mW/K) 70.4 66.1 65.6 80.1
Vapor ther. cond. (mW/K) 16.7 16.0 15.1 14.8
Surface tension (mN/m) 4.89 5.74 7.13 10.8

valve placed before the test section was used to maintain a low subcooling into the inlet
plenum. The inlet restriction (micro-orifices at the entrance of each channel) then partially
flashed the fluid, providing vapor bubbles to start the boiling process.

3.4 Measurement and accuracy

In this section, the different measurement techniques, calibration methods and the experi-
mental accuracy will be detailed. The measurement accuracy is composed of a systematic
uncertainty (Sχ) and a random one (Rχ). For steady-state experiments, the random un-
certainty was measured during the experiment by taking the standard deviation of 100
individual measurements, where:

δχi =
√
S2
χi
+ 2R2

χi
(3.2)

Rχi
=

√√√√ 1

N

i=N∑
i=1

(χi − χ)2 (3.3)
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The systematic component was determined through a calibration or taken from the in-
strumentation documentation. Table 3.3 lists the systematic experimental error for each
type of measurement. In transient experiments, power spectrum analysis was used to
determine the cut-off frequency, where the background noise equals the strength of the
significant signal.

Table 3.3: Systematic measurement errors.

Silicon test section Copper test section
Voltage ±0.045% ±0.045%
Flow rate ±0.05% ±0.05%
Thermocouple ±0.1◦C ±0.1◦C
Temperature diodes ±0.15◦C ±0.15◦C
Heater resistance ±0.003Ω ±0.003Ω
Absolute pressure ±750Pa ±1500Pa
Differential pressure SP ±37.5Pa ±17.5–37.5Pa
Differential pressure TP ±37.5Pa ±500Pa

3.4.1 Dimension

The evaporator length and width, the slit and plenum dimensions were measured using a
vernier caliber, with an accuracy of 20μm. The values listed in Table 3.1 are larger, since
they take into of account the variation of the dimension due to machining. For example,
the copper test section inlet slit, machined by electro-erosion, went from 0.43mm to
0.6mm.

The channel height and width and the fin thickness were measured from the microscope
pictures shown in Figs 3.9(b) and 3.10(b). The accuracy also took in account the variation
along the height and between the channels. Finally, the pressure taps’ positions and
dimensions were measured on an optical table.

The picture of the wall roughnesses for both test sections are shown in Fig 3.11. The wall
surface roughness of the silicon microchannels were evaluated using a Veeco Wyko NT1100
optical profiler. For the copper evaporator, a scanning electron microscope was used to
obtain eight wall profiles at different positions and the wall roughness was calculated from
the pictures. The root-mean square surface roughness Rq values are listed in Table 3.1.

3.4.2 Signal acquisition

The data acquisition was made using National Instruments cards. A SCXI-1102 module
with a 2Hz filter was used for thermocouple and pressure measurements, a SCXI-1102c
with a 10kHz filter was used for the temperature diode measurements and a SCXI-1104c
with a 10kHz filter for heat flux and mass flow measurements. All modules were mounted
in the same SCXI-1000 chassis and connected to the computer by a PCI-6251 card. The
combined accuracy for the input modules and the PCI card were:
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(a) Silicon evaporator

(b) Copper evaporator

Figure 3.11: Surface roughness measurements.

• For 100mV: ±0.0485 mV or 0.0485%

• For 5V: ±2.0824 mV or 0.0416%

• For 10V: ±3.6231 mV or 0.0362%

• For 30V: ±14.2404 mV or 0.0475%

Thus, for all voltage measurement, an accuracy value of 0.045% was used.

3.4.3 Flow rate

The mass flow rate passing through the test section was measured using a Coriolis flowme-
ter made by MicroMotion. The maximum allowable flow rate was 108kg/h. Its accuracy
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is 0.05% of the rate down to 5% of the full scale. The experimental mass flows were
always above the lower accuracy limit of 5.4kg/h, which corresponded in the silicon test
section to a mass flux of 233kg/m2s and in the copper test section to 115kg/m2s.

3.4.4 Temperature

K-Type thermocouples, made by Thermocoax, were used in the experimental facility.
Thermally compensated connection blocks of National Instruments, specially made for
thermocouple measurements, were used to ensure a stable reference temperature. For
these blocks, National Instruments acquisition software provided built-in calibration curves
for thermocouples. In-house thermocouple calibration was used to determine the actual
deviation from these built-in functions by a linear fit. For this, the thermocouples were
placed in a thermal bath next to high-precision RTD probes and the bath’s temperature
varied from 20◦C to 70◦C and back to 20◦C in increments of 4◦C. There was no notable
hysteresis in the measurements and the thermocouple systematic error was ±0.1◦C.

The calibration of the diode sensors and the heater resistances were made with the flow
loop, by varying the circulating single-phase fluid temperature by means of the pre-heater
while maintaining adiabatic conditions in the test section. To ensure uniform temperature
along the channels, the flow rate was set as high as possible. The temperature diodes
were calibrated by taking the average of the inlet and the outlet temperatures. The
systematic measurement error was ±0.15◦C. The same average temperature was used
for the calibration of the heater resistances. The diode sensor voltages decreased linearly
against temperature, as shown in Fig 3.12(a), while the heater resistances rose slowly with
temperature, Fig 3.12(b), depicting the results for heater 11 of the silicon test section.

It was not possible to directly assess the temperature diodes’ time response. Based on
their nanometer-sized thickness, the sensor’s Biot number was very small

(
Bi = hδ

λ

)
and

a lumped capacitance analysis shows that the response time was less than 1μs.

3.4.5 Absolute pressure

Absolute pressure measurements were made using Endress Hauser PMP75 transducers
with adjustable measuring range. The transducers were placed at the same level as
the inlet and outlet plenum and, starting at the connection point with the manifold,
the capillary tubes were horizontal for more than 10cm (vertical bending was required
to make the connection with the transducer), ensuring that there was no liquid height
difference between the measurement point and the transducer. The absolute pressure
calibration was done using a pressure balance. The resulting calibration accuracy was
less than 500Pa. However, in order to take into account all parameters influencing the
measurement, the accuracy guaranteed by the manufacturer was used: 750Pa for the
0–10bar range used in the silicon test section and 1500Pa for the 0–20bar range used in
the copper test section.
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(b) Resistance calibration.

Figure 3.12: Silicon test section, heater 11 calibration.

3.4.6 Differential pressure

All differential pressure transducers were made by Endress Hauser. They were calibrated
using a U-tube manometer filled with isopropyl-alcohol (786kg/m3 at 20◦C). The calibra-
tion curves were all linear and the calibration accuracy was below 15Pa. However, as in
the case of the absolute pressure transducers, the manufacturer’s accuracy was used. In
the silicon test section, a 50’000Pa differential pressure transducer with an uncertainty of
±37.5Pa was placed between both absolute pressure transducers.

In the copper test section four differential pressure transducers were used. A 4000Pa
transducer was placed between the inlet plenum and the pressure tap 1. Two transducers
were placed in parallel between tap 1 and 2, one 50’000Pa and one 25’000Pa. Finally a
±5000Pa was placed between pressure tap 2 and the outlet plenum. The manufacturer’s
accuracy was 0.075% of the full-scale, however due to the vertical orientation of the
pressure tap, shown in Fig 3.2(b), the fluid in the tube was not single-phase near the
manifold. As there was 4.5cm before the capillary was completely exposed to the ambient
air, this liquid height was used as absolute error. It corresponds to an error of around
500Pa depending on the fluid and its temperature. It was not possible to heat the
capillary tubes to only have vapor, because of the high saturation temperature used in
some experiments.

For single-phase measurements, the liquid column height was not a problem and the
accuracies were much better. Except for the 50’000Pa transducer, the manufacturer’s
accuracy was smaller than the calibration one. In this case, the single-phase differential
pressure systematic accuracy was the euclidian norm of the U-tube accuracy (±15Pa)
and the random measurement error (±4Pa).

CH3/Sensorcalibration.eps
CH3/Heatercalibration.eps


3.4. Measurement and accuracy 51

3.4.7 Heat flux losses

Part of the base heat flux did not go to the evaporator. These losses were due to natural
convection to the ambient air and conduction in the inlet and outlet tubes. In single-
phase, heat flux losses are typically measured by tracking the difference between enthalpy
gain from inlet to outlet and the input heat flux. It is more difficult in two-phase to track
these losses, as it is not possible to calculate the fluid properties in the outlet plenum
conditions without knowing what was the heat flux absorbed by the fluid.

Most losses were due to conduction through the inlet and outlet pipes, as the test section
and the flow loop were well insulated. Since the inlet pipe was subcooled, it was possible
to track the change in enthalpy between the outlet of the preheater outlet and the inlet
of the test section and evaluate the losses.

qloss = mcp (Tin − Tpreh) (3.4)

This idea was validated for single-phase against qloss = qinput −mcp (Tout − Tin) and the
results are shown in Fig 3.13.
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Figure 3.13: Comparison between heat losses based on measurement across the copper test
section and between the preheater and the test section.

The agreement between both heat loss measurement techniques is good and applicable
to two-phase experiments. Most losses were toward the inlet in single-phase, since it was
where the lowest temperature was.

In two-phase, the conduction losses will also be toward the inlet, because the outlet pipe
temperature is almost at the saturation temperature of the outlet plenum. Moreover, the
outlet connection pipe was lined with PTFE (λ=0.25W/mK), which reduced the conduc-
tion losses. In comparison, the inlet pipe was made of stainless steel (λ=14.4W/mK).
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The heat flux losses were applied uniformly to all heaters and to take into account that
convection losses and conduction losses through the outlet were neglected, a relative un-
certainty was added to equation 3.4. Typical two-phase heat flux losses measured in the
copper test section were 3±1% and less than 1±0.3% for the silicon test section. The
polycarbonate manifold (λ=0.7W/mK) in the silicon test section reduced losses.

3.4.8 Fluid and material properties

Fluid properties and the vapor pressure curve were obtained with REFPROP, the NIST
Standard Reference Database 23, Version 8.0 using temperature and pressure measure-
ments. In the plenums, pressure measurements were used to calculate the saturation
point, since the curves Psat–Tsat are less sensitive to pressure. Pressure and temperature
measurements in the outlet plenum were in close agreement with respect to the saturation
pressure curve as shown in Fig 3.14. Only a few points for R-1234ze(E) were distant by
more than 1500Pa (max 1800Pa) at its saturation pressure of 600’000Pa.
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Figure 3.14: Saturation pressure from temperature and pressure measurements for uniform
heat flux at Tsat=30◦C.

The silicon thermal conductivity was calculated using a curve fit of the data of Shanks et al.
(1963):

λsi = 7× 10−4(T )2 − 0.5416T + 157.39 (3.5)

where T is the local temperature in ◦C.

The copper evaporator were machined in ETP copper. Wolverine Tube provided a thermal
conductivity value of 388W/mK at 20◦C. To take into account the change in thermal
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conductivity with temperature, the equation of Abu-Eishah (2001) for pure copper was
modified to match the listed thermal conductivity:

λcu = 82.56648T 0.262301e−4.06701×10−4T e59.72934/T − 10; (3.6)

where T is the local temperature in Kelvin.

3.5 Data reduction and error propagation

The local pressure evolution in the test section and the local heat transfer coefficients must
be derived from the measurements. In this data reduction, it is important to propagate
the measurement absolute and random errors to the calculated quantities. This was done
following the method of Kline & McClintock (1953):

Γ = f(χ1, χ2, χ3, ..., χn) (3.7)

δΓ =

√(
dΓ

dχ1

δχ1

)2

+

(
dΓ

dχ2

δχ2

)2

+

(
dΓ

dχ3

δχ3

)2

+ ...+

(
dΓ

dχn

δχn

)2

(3.8)

where δχi is the norm of the absolute measurement error (Sχ), listed in Table 3.3, and
the random measurement error (Rχ).

Differentiating Γ with respect to χi was always not possible, for example with REFPROP
data, so the error was alternatively calculated as:

δΓ = f(χ1 + δχ1, χ2 + δχ2, χ3 + δχ3, ..., χn + δχn)− f(χ1, χ2, χ3, ..., χn) (3.9)

The equations used to propagate errors are found in the Appendix A.

3.5.1 Heat conduction

The heat flux dissipated by each heater was calculated as:

qb−xy =

V 2
xy

Rxy
− qloss

l2
(3.10)

To obtain the wall heat fluxes and temperatures, different thermal conduction schemes
were used according to the situation. For a one-dimensional thermal conduction model,
qw = qb and the wall temperatures were determined as:

Tw−xy = Tb−xy − qb−xy

(
echip
λchip

+
eTIM

λTIM

+
eevap
λevap

)
(3.11)

The computation was sub-divided into 5μm layers in order to include the variation of the
thermal conductivity with temperature.
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Figure 3.15: Schematic of the temperaturees and heat fluxes.

In some cases, the heat flux found at the evaporator (qw) differed importantly from what
was found at the base of the package (qb), due to thermal conduction effects inside the
package, in other words due to “heat spreading”. Fig 3.15 helps to visualize the different
heat flux definitions.

To solve this problem using the experimental measurements, there is no information re-
garding the fluid boundary, but both the local heat fluxes and temperatures are known at
the base. Instead of relying on an iterative solution, the problem was solved as presented
in Fig 3.16. In the experiment, T1, T2, T3 and qS are measured. After computing
qW and qE from the temperature measurements by linear thermal conduction and qN is
known from an energy balance on node 2. T4 can be then calculated using linear thermal
conduction. By repeating this process for all nodes on the second layer and then layer by
layer up to the top of the composite wall, including the effects of the thermal interface
material (TIM) and the change in thermal conductivity due to temperature, the wall heat
flux and temperature are obtained at the top layer.

Each layer was set to 5μm thickness and adiabatic conditions were used for external
walls. The surface mesh was fixed by the heater size (2.54mm×2.54mm), so this way
no assumptions were needed for the base temperature distribution between the sensors.
This calculation was extended, when needed, into a three-dimensional thermal conduction
scheme by linking the column nodes (front and back). Some temperature sensors failed
during the experimental campaign and in order to proceed with the calculations, their
values were set to the average temperature of all sensors on the same row.
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Figure 3.16: Two-dimensional heat conduction data reduction scheme.

3.5.2 Fluid-side parameters

The first quantity needed on the fluid side is the mass flux:

G =
m

NWH
(3.12)

where m is the mass flow, N is the number of channels, W is the channel width and H is
the channel height.

Δptotal was measured directly in the silicon test section, whereas in the copper test section
it was calculated by adding the measurements of the three local differential pressure
transducers: Δp1 from the inlet plenum to tap 1, Δp2 from tap 1 to tap 2 and Δp3 from
tap 2 to the outlet plenum. The total pressure drop can be divided into three components,
the inlet restriction, the channel and the outlet restriction.

Δptotal = Δprestr−in +Δpch +Δprestr−out (3.13)

= Δp1 +Δp2 +Δp3 (3.14)

Silicon test section: inlet and outlet restriction losses

In the silicon test section, the single-phase channel pressure drop must first be calculated
before the restriction losses can be determined. The single-phase liquid frictional channel
pressure drop is:

Δpfr = 4f
G2

2ρl

Lch

Dh

(3.15)

In order to evaluate f in the silicon test section, FLUENT (version 12.1.2) was used to
perform a 3D numerical simulation of one channel with the plenums. The pressure drop

CH3/Heatflux.eps


56 3. Experimental facility and data reduction

measured across the test section was used for the inlet and the pressure outlet boundary
conditions. The fluid used was R-236fa, with the physical properties evaluated at 20◦C.
The grid independence was ensured by comparing results obtained with two different grid
sizes (103000 and 824000 elements).

For the same total pressure drop, the experimental mass fluxes were 10 to 15% lower
than that of the simulation. This difference was probably caused by the geometrical
simplification in the plenums and prevented using the CFD results to describe the single-
phase behavior in the whole test section. On the other hand, the simulated frictional
pressure drop in the channel was used, since both the CFD and experimental geometries
were very similar. Thus, based on the CFD results, the single-phase frictional factor f
for the silicon channel was expressed as:

f =
25.18

Re
(3.16)

The single-phase inlet and outlet restriction losses were determined by subtracting Δpfr
from the total measured pressure drop. Based on the CFD simulation, the inlet losses
were the most important, representing between 75 and 95% of the single-phase restriction
and plenum losses. The inlet restriction pressure drop values are presented in Chapter 4.

For two-phase tests, the inlet restriction was used to flash the incoming fluid, which
effectively increased the inlet restriction pressure drop. It was not possible to evaluate
this parameter, but compared to the two-phase pressure drop in microchannels, it was
certainly small. Therefore the single-phase inlet restriction pressure drops were used in
the two-phase calculations.

To evaluate the two-phase channel pressure drop, Δprestr−out is needed. It is a complex
quantity which includes an area expansion, thus pressure recovery, and several changes
in flow direction, leading to frictional pressure drop. Instead of relying on imprecise
prediction methods, the outlet restriction pressure drop was measured experimentally.
This was done by heating and evaporating in the first part of the test section(Rows 1
& 2) and keeping a two-phase adiabatic flow of known vapor quality at the end of the
channels (Rows 4 & 5).

In the adiabatic zone, there was negligible heat flux and the local base temperature
measurements equaled the wall temperature. This temperature was assumed to be the
same as the local saturation temperature, T4Y−5Y=Tsat, such that the local saturation
pressure could be determined using the fluid’s vapor pressure curve. A linear drop was
assumed between the local saturation pressures, p4Y and p5Y , and extrapolated to the
channel end to obtain pch−end. To take into account the small variation of pressures in
rows 4 & 5, the value used was an average of all columns. Since the outlet plenum pressure
was already measured, the two-phase outlet restriction and plenum pressure losses could
be evaluated. This was given as follows:

pch−end = p5−sat − l

2

p4−sat − p5−sat

l
(3.17)

where l is the length of a single heater (2.54mm) and the distance between two tempera-
ture sensors.



3.5. Data reduction and error propagation 57

Δprestr−out = pch−end − pout (3.18)

Due to the possibility of encountering conjugated effects within the channels, care was
taken to ensure that the temperature sensors at the end of channels were still in an
adiabatic zone. This was proven by heating Row 1 alone. Once a base temperature of
around 60◦C was recorded in Row 1, similar increases were done by heating of Row 2. As
the heat source came closer to the end of the channels, the temperature sensors should
have recorded a change if they were affected by heat spreading.

Fig 3.17 shows that when Row 2 was heated, there was a strong change in trend for the
sensors of Row 3, but none for Rows 4 and 5. Their temperatures kept on dropping at the
same rate, following the fall in saturation pressure in the channels. This shows that the
temperature sensors of Row 5 remained in an adiabatic zone throughout the experiment
and thus recorded the local saturation temperature of the two-phase refrigerant flowing
in the channel.
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Figure 3.17: Base temperature evolutions for R-236fa at G=963kg/m2s in silicon test section.

Copper test section: inlet and outlet restriction losses

In the copper test section, each component of the total pressure was measured, but due
to geometrical constraints, it was not possible to directly place the pressure tap at z=0
and z=Lch. The single-phase channel pressure drop (dP2) was then extrapolated linearly
to determine the inlet restriction pressure drop, as shown in Fig 3.18. The resulting
equation was:

Δprestr−in = Δp1 − Δp2
LPTap2 − LPTap1

× LPTap1; (3.19)
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Figure 3.18: Single-phase pressure profile for R-134a at 502kg/m2s in copper test section.

The two-phase outlet restriction pressure drop was calculated by the same technique:

Δprestr−out = Δp3 − Δp2
LPTap2 − LPTap1

× (Lch − LPTap2) ; (3.20)

Channel pressure

For both test sections, a two-phase linear pressure drop was assumed to describe the local
channel pressures. The channel length was discretized into 100 increments i. The first
channel pressure, p1,y, was calculated by substracting the inlet restriction pressure drop
from the inlet plenum absolute pressure:

p1,y = pinlet −Δprestr−in (3.21)

If the liquid entering the channel was sub-cooled, the local pressure drop was computed
using:

pi,y = pi−1,y − 4f
G2

2ρl

dz

Dh

(3.22)

where f was evaluated using equation 3.16 for the silicon test section and for the copper
test section, using Biber & Belady (1997)’s correlation.

Once the fluid’s saturation temperature was reached, the position was denoted as onset
and the local pressure as ponset,y. A linear pressure drop rate was assumed between ponset,y
and a reference pressure, pref,y.

CH3/CuPressProfile.eps
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pi,y = ponset,y − dz(i− onset)
ponset,y − pref,y
zref,y − zonset

(3.23)

For the silicon test section, the reference was the channel end:

pref,y = pch−end (3.24)

and for the copper test section, pressure tap 2:

pref,y = poutlet −Δp3 (3.25)

In some instances, pressure drop prediction methods were also used to determine the
local channel pressure and a linear correction was sometimes applied to the prediction.
It consisted in comparing the predicted pressure at the reference point with pref . The
difference was then linearly corrected from the channels inlet to its outlet. The influence
of this correction will be highlighted when it is used.

The local fluid enthalpy was calculated from an energy balance. The inlet restriction was
assumed to be adiabatic.

h1,y = hin (3.26)

hi,y = hi−1,y + qw,xy
dB

GHW
dz (3.27)

where dB=W+F and, using local pressure and temperature in REFPROP to determine
the reference enthalphy hl and hv, the local vapor quality was:

xiy =
hiy − hl,iy
hv,iy − hl,iy

. (3.28)

Finally, the local fluid temperature was determined in REFPROP using the local pressure
(and enthalpy for single-phase).

3.5.3 Heat transfer coefficient

With the local wall heat flux and the fluid and wall temperatures, the base heat transfer
coefficient can be calculated:

αb,xy =
qw,xy

Tw,xy − Tf,xy
. (3.29)

As previously noted, the calculation of the fluid temperature was divided into 100 incre-
ments, whereas there were 5 base temperature measurements in each column. Thus for the
calculation of the heat transfer coefficient, the average of the 20 local fluid temperatures
found over each heater was used.

The base heat transfer coefficient (αb) is useful for thermal resistance analysis in thermal
packaging. However, to compare results to prediction methods and design an evaporator,
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information about the wall heat transfer coefficient, which includes the influence of the
fins, is needed. The fin heat flux and local wall heat transfer coefficient were calculated
by iteratively solving equations 3.30 – 3.32, adapted from Kreith & Bohn (2001) for N+1
fins:

qfin,xy = qw,xy
(N + 1)(F +W )−W

NW + 2(N + 1)Hηfin,xy
(3.30)

with

ηfin,xy =
tanh

√
2αfin,xy

(H)2

λevapF√
2αw,xy

(H)2

λevapF

(3.31)

and

αw,xy =
qfin,xy

Tw,xy − Tf,xy
. (3.32)

The results of the error propagation analysis are shown in Table 3.4.

Table 3.4: Results of the error propagation analysis.

Silicon test section Copper test section
Base heat flux ±1% ±2%
Wall heat flux ±1% ±2%
Fin heat flux ±1% ±2%
Wall temperature ±0.2–0.35◦C ±0.18–0.25◦C
Mass flux ±5–6% ±3%
Inlet restriction pressure drop ±10% ±6%
Outlet restriction pressure drop ±900Pa ±510Pa
Channel pressure drop TP ±901Pa ±512Pa
Fluid temperature SP ±0.1◦C ±0.1◦C
Fluid temperature TP ±0.15% ±0.02–0.09◦C
Vapor quality ±0.02% ±0.01–0.05%
Base heat transfer coefficient ±3–15% ±3–15%
Wall heat transfer coefficient ±3–15% ±3–15%



Chapter 4

Pressure drop

Pressure measurements were taken at different locations in the test sections in order to
evaluate the following pressure drop components: the inlet restriction pressure drop, the
microchannel pressure drop and the outlet restriction pressure drop. Added together, they
formed the total pressure drop across the test section. The measurement and calculation
procedures were detailed in Chapter 3.

4.1 Inlet restriction pressure drop

The pressure drop found in the inlet restriction was evaluated for each refrigerant in single-
phase adiabatic conditions. It covers pressure drop from 50 to 30’000Pa. It was then used
for two-phase experiments, although the restriction, by flashing the incoming liquid as it
exits the restriction, increased the pressure drop. This added pressure component was
assumed to be negligible when compared to the two-phase channel pressure drop.

The measurements were repeated for several mass fluxes and using a standard formulation
for singularity pressure losses (Idelcik (1999)), the inlet restriction losses were modeled
as:

Δprestr−in =
G2

2ρl
ξ (4.1)

where ξ is the pressure loss coefficient.

Fig 4.1 shows all five curves for the different test conditions. In the silicon test section
the coefficient ξ was found to be a function of G. Comparing with equation 3.15 for
single-phase frictional pressure drops, ξ is in fact equivalent to 4f L

Dh
. Since the friction

factor f is a function of the Reynolds number, thus of the mass flux, it can be expected
that over a large range of mass flux, ξ = f(G).
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(b) Silicon test section: R-245fa
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(c) Copper test section: R-134a
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(d) Copper test section: R-1234ze(E)
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Figure 4.1: Inlet restriction pressure drops in the silicon and the copper test sections.
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In the copper test section it is possible to assess if the increase in pressure drop in the
inlet restriction due to flashing is indeed negligible using its local pressure taps near
the entrance of the microchannels, as shown in Fig 3.4,. This was done by comparing
the pressure drop measured by the first differential pressure transducer, Δp1, to the one
calculated through equation 4.1. The results for R-134a are shown in Fig 4.2. The values
for Δp1 are less than two times that calculated for the inlet restriction alone. Taking into
consideration that part of the pressure drop measured by Δp1 is due to the channel
(pressure tap 1 is positioned 2.73mm away from the restriction), once removing that
influence, the single phase inlet restriction correlation for a flow flashing in the restriction
appears still to be precise, as long as vapor qualities remain low.
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Figure 4.2: Comparison between Δp1 and equation 4.1 for R-134a at Tsat=30◦C for the
copper test section.

To obtain an estimate of ξ without experimentation, Idelcik (1999) lists pressure loss
coefficients for simplified geometries (sudden expansion, round to square pipe, etc...).
The inlet restrictions of the test sections must be divided into three sections to fit the
description of Idelcik (1999). The flow first enters a sudden contraction, when it goes from
the plenum to the slit. Then it flows through a second area reduction, when entering the
channels from top, and finally it makes a right angle turn into the channels.

The pressure loss coefficient for each section was calculated for a channel-based mass
flux of 500kg/m2s and the results are tabulated in Table 4.1. The sum of the three
components is close to the values shown in Fig 4.1 for the copper test section (5.708,
6.399 and 6.563), but its predictions are not accurate compared the losses calculated for
the silicon test section.

4.2 Outlet restriction pressure drop

The outlet restriction pressure drop was measured in two different manners. In the silicon
test section it was possible to obtain adiabatic temperature measurement corresponding

CH4/dPincheck.eps
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Table 4.1: Pressure loss coefficients ξ from Idelcik (1999).

Silicon test section Copper test section
Section 1 0.5 1.7
Section 2 0.5 0.4
Section 3 4.5 6.5
Sum 5.5 8.6

to the local saturation pressure at Row 5 using the mean temperature of the row. The
difference between this pressure and the outlet plenum pressure corresponds to the re-
striction pressure drop. As Fig 4.3 shows, the losses can be up to 7kPa for R-245fa. It
is also important to note that the uncertainty on these measurements is relatively high,
±1.8kPa, compared to the measured values.
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Figure 4.3: Outlet restriction pressure drop in silicon test section, Tsat=30◦C.

In the copper test section, the restriction pressure drop was measured directly by a
differential pressure transducer, Δp3. This technique is more precise than the one used in
the silicon test section. However, since copper is about four times more conductive than
silicon, conduction effects in the thermal package were more important and it was not
possible to form a quasi-adiabatic zone in the copper test section. The tests were made
with R-134a, R-1234ze(E) and R-245fa for mass fluxes between 205 and 562kg/m2s at
two saturation temperatures.

The pressure drops shown in Fig 4.4 are lower than those of the silicon test section, which
means that the pressure drop in the restriction is a function of the channel width. In
both test sections, R-245fa has the highest pressure drop level. As noted in Table 3.2,
this fluid has the highest liquid to vapor density ratio, which increases the pressure drop.
Finally, the pressure drop increases with mass flux and vapor quality.
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Figure 4.4: Outlet restriction pressure drop in copper test section.
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The density ratio, geometry, vapor quality and mass flux are all present in Collier & Thome
(1994) equation for pressure drop in expansion flows. A simple enlargement will lead to a
pressure recovery, which is predicted by equation 2.16, taken from their book. However,
in the outlet restriction the complex geometry leads to a pressure drop from the channel
end to the plenum in most cases.

All pressure measurements for the outlet restriction (585 datapoints) have been col-
lected into a single database in order to develop a prediction method. Starting from,
Collier & Thome (1994)’s equation, the term 1 + υlv

υl
x was simplified into ρl

ρv
x. The area

ratio was replaced by the channel width (Wch) to the slit width (Wslit) ratio to an expo-
nent. This exponent value was found by numerical least-square fit iteration. The resulting
equation is:

Δprestr−out =
G2

ρl

Wch

Wslit

0.2274

xch−end
ρl
ρv

(4.2)

The predicted data are shown against the experimental ones in Fig 4.5. The mean
average error for pressure drops larger than 500Pa is 28.5% and 65.1% of all data are
predicted within 30%.

Based on equation 4.2, reducing Δprestr−out for a constant mass flow and heat flux without
increasing the total pressure drop can be done two ways:

1. By increasing Wslit to reduce the ratio of Wch/Wslit (decreasing Wch would increase
the channel pressure drop) .

2. By using a refrigerant with a low liquid to vapor density ratio. R-134a and R-
1234ze(E) are then better choices than R-236fa and R-245fa.

4.3 Channel pressure drop

The experiments used to evaluate the microchannel pressure drops were made under a
uniform heat flux, varying the mass flux and the saturation temperature. As described
in Chapter 3, two methods were used to obtain the channel pressure drop. In the silicon
test section, it was calculated by substracting the inlet and outlet restriction losses from
the total pressure drop and in the copper test section, it was directly measured through
Δp2.

4.3.1 Single-phase validation

Single-phase microchannel pressure drops in the copper test section were used to validate
the measurement and data reduction methods. Using the same measurement datasets
as the one used to determine the inlet pressure loss coefficient, Fig 4.6 shows that
the experimental frictional pressure drop factor in the channel is very well predicted by
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Figure 4.5: Prediction of outlet restriction pressure drop.

Biber & Belady (1997)’s method. Only a few measurement points below Re=100 are not
accurate. At these Reynolds number, the mass fluxes are below 150kg/m2s and the fixed
systematic measurement error of the pressure drop leads to large uncertainties in the
determination of the friction factor.

The channel pressure drop measurement technique is thus validated for the copper test
section. The same validation was not possible with the silicon test section, but a numerical
model was used to evaluate the single phase channel pressure drop. Furthermore, methods
to predict the inlet and outlet pressure drops in microchannel test sections have been
developed, which can be tentatively used as design equations for these types of cold
plates.

4.3.2 Flow distribution

One of the central assumptions in multi-microchannels is that the flow is uniformly dis-
tributed. Assessing the lateral variation of mass flux in the evaporator is therefore im-
portant. As it is difficult to measure the mass flow in each channel, substitute methods
were used. In the silicon test section, the results from experiments used to determine
Δprestr−out also provided information about pressure drops over each column from each
column’s temperature. The lateral pressure drop variation from the inlet plenum to the
exit at Row 5 for all tests was close to or less than 5%, as shown in Fig 4.7. Since the
pressure drop is proportional to the square of the mass flux, 5% in lateral pressure drop
variation corresponds to a mass flux variation of about 2.5%. Thus, the inlet restriction
in the silicon test section was well designed to distribute the flow and the pressure drop
in all channels was uniform.
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Figure 4.6: Frictional pressure drop factor for copper test section.
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Figure 4.7: Pressure drop from the inlet plenum to Row 5 for silicon test section.
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In the copper test section, another proxy method was used to assess the flow distribu-
tion. As presented in Chapter 3, Δp2 was measured along Column 2 and along Column
6. As shown in Fig 4.8, their pressure drop measurements for several different test
conditions differ by less than 500Pa, the systematic measurement accuracy. Combined
with the single-phase pressured drop validation, whose computation was based on the
expected mass flux, Fig 4.8 shows, indirectly, that the mass flow across the evaporator
was uniformly distributed.
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Figure 4.8: Comparison between Δp2 measured along Columns 2 and 6 for copper test section.

4.3.3 Results

The results for the two-phase channel pressure drops for both test sections are shown in
Figs 4.9 and 4.10. The pressure drop increases almost linearly with the quality and
with mass flux. As the vapor quality nears zero, the total pressure drop tends toward the
single phase pressure drop of each fluid.

The pressure drop levels are much higher in the silicon test section than in the copper
test section. The pressure drop rate can be as high as 50bar/m in the first, compared to
9bar/m in the latter. This is mostly due to the difference in hydraulic diameter. Starting
from equation 3.15 for the frictional pressure drop, this time using a two-phase frictional
factor, the hydraulic diameter appears in the denominator and in the calculation of the
friction factor, f. This coefficient is typically a function of 1

Re
, and thus a function of 1

Dh
.

The two-phase channel pressure drop is therefore proportional to:

Δpch ∝ 1

D2
h

(4.3)

For the present test sections, this proportion means that for the same fluid and mass
flux, the channel pressure drop in the silicon evaporator should be 2.8 times larger than
in the copper one. This result can be compared to the values obtained for R-245fa in
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Figure 4.9: Channel pressure drops in silicon test section.

Figs 4.9(b) and 4.10(e). In the first graph, at 501kg/m2s and for x=0.325, the pressure
drop is 23’440Pa. For the copper test section, at 367kg/m2s, for the same vapor quality,
the pressure drop is 6682Pa, a ratio of 3.5 between the two. This is larger than the 2.8
factor previously found, but quite close considering that the experimental mass fluxes
were different.

Comparing the fluids, Figs 4.9 and 4.10 show that the pressure drops for R-245fa are the
highest. This is once again explained by the high liquid to vapor density ratio of R-245fa,
provided in Table 3.2, which is twice that of R-236fa and four times that of R-134a. For
a given vapor quality, the vapor portion of R-245fa needs to move faster to respect the
conservation of mass and in doing so, produces more shear.
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Figure 4.10: Channel pressure drops in copper test section.
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4.3.4 Temperature

The channel pressure drop is used to determine the local fluid saturation temperature
and subsequently the local heat transfer coefficients. Thus the pressure drop values given
in Figs 4.9 and 4.10 also tell what is the fluid temperature drop from one end of
the channel to the other. If the pressure drop is small, the fluid temperature is almost
constant. In such case, the evaporator thermal performance is independent from hydraulic
considerations, which simplifies the design process.

In Fig 4.11, the drop in saturation temperature associated with the pressure drop are
shown for both test sections using the respective vapor pressure curves. The temperature
changes in the copper test section are much lower than in the silicon test section. In the
case of R-134a and R-1234ze(E) below Δpch=6000Pa, the temperature drops are less than
three times the measurement accuracy. For these two fluids, a constant fluid temperature
boundary condition can certainly be used for numerical simulations, although the actual
values were used for reducing the heat transfer coefficient.
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Figure 4.11: Fluid temperature drop versus pressure drop.

4.3.5 Comparison with prediction methods

Most pressure drop prediction methods cited in the state of the art review were devel-
oped for circular tubes and applying them to high aspect ratio cross-sections can be
problematic. Three methods were developed using data derived from rectangular mi-
crochannels, those of Tran et al. (1999), Lee & Garimella (2008) and Lee & Mudawar
(2005b), although neither had aspect ratios over 3.6 while the present ratios were 6.6
(silicon test section) and 10 (copper test section). Along with these three correlations,
the homogeneous model with Cicchitti et al. (1960)’s viscosity model, the separated flow
model of Lockhart & Martinelli (1949) and the methods of Cioncolini et al. (2009), Friedel
(1979), Mueller-Steinhagen & Heck (1986), Mishima & Hibiki (1996) and Baroczy (1965),
adapted by Chisholm (1973) will be compared to the experimental results.
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The method of Cioncolini et al. (2009) cannot handle low vapor qualities as it was de-
rived for annular flows. Thus at low vapor qualities, the method of Lockhart & Martinelli
(1949) will be used and after the IB–CB transition vapor quality predicted by the map
of Ong & Thome (2011a) is reached, Cioncolini et al. (2009) will be applied. The mo-
mentum pressure drop component will be included in the comparisons. To calculate it,
Zivi (1964)’s void fraction method was be used if the authors did not specify another one.
Finally, each method will be evaluated using three different definitions for the hydraulic
diameters:

Dh =
4A

P
(4.4)

Dh =
2WH

W +H
(4.5)

Dh =

√
4WH

π
(4.6)

The last one is also called the equivalent diameter, as it gives a circle of the same area as
the rectangle. The actual mass flux is inputed into the calculation and it is only the value
of the diameter that changes. For the silicon test section, the first two definitions give
the same value of Dh=146 μm, and the last equation gives Dh=246μm. In the copper
test section, the three hydraulic diameters are respectively: 246μm, 294μm and 567μm.

Tables 4.2 and 4.3 list the mean average error (MAE) obtained for each prediction
method with each definition of hydraulic diameter. For each test section, the four best
predictions, based on the mean value of MAE for all fluids, are highlighted. These are
found for the two first definitions the hydraulic diameter. Thus the equivalent diameter
version of Dh is not a good choice to extend circular pipe correlations to high aspect ratio
channels.

Three prediction methods are in the top four for both test sections: Cioncolini et al.
(2009), Lockhart & Martinelli (1949) and Lee & Mudawar (2005a). A visual comparison
of these methods against all experimental channel pressure drops is shown in Fig 4.12.
Cioncolini et al. (2009)’s method can be considered as the best method, as it centers
the data well around the middle line, whereas the two other tend to underestimate the
channel pressure drop. Notably, the larger pressure drops are more accurately predicted,
i.e. those in the silicon test section.
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Table 4.2: Mean average error for silicon test section.

Dh = 146μm R-236fa R-245fa Mean
Baroczy (1965) 17.4 86.1 51.8
Cioncolini et al. (2009) 5.3 32.5 18.9
Friedel (1979) 37.0 305.6 171.3
Homogeneous model 19.0 271.7 145.4
Lee & Garimella (2008) 59.7 48.2 54.0
Lee & Mudawar (2005a) 20.7 50.0 35.4
Lockhart & Martinelli (1949) 28.7 41.8 35.3
Mishima & Hibiki (1996) 65.7 50.9 58.3
Mueller-Steinhagen & Heck (1986) 27.0 43.3 35.2
Tran et al. (1999) 6.5 119.6 63.1
Dh = 246μm R-236fa R-245fa Mean
Baroczy (1965) 52.1 32.4 42.3
Cioncolini et al. (2009) 77.7 70.3 74.0
Friedel (1979) 46.3 41.0 43.7
Homogeneous model 42.4 41.7 42.1
Lee & Garimella (2008) 69.9 54.6 62.3
Lee & Mudawar (2005a) 47.1 42.5 47.1
Lockhart & Martinelli (1949) 59.7 44.7 52.2
Mishima & Hibiki (1996) 78.5 65.9 72.2
Mueller-Steinhagen & Heck (1986) 51.2 30.9 41.1
Tran et al. (1999) 57.8 31.3 44.6
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Table 4.3: Mean average error for copper test section.

Dh = 246μm R-134a R-1234ze(E) R-245fa Mean
Baroczy (1965) 31.0 20.0 53.0 34.7
Cioncolini et al. (2009) 50.7 56.1 94.3 67.0
Friedel (1979) 29.5 24.6 192.1 82.1
Homogeneous model 41.0 26.3 149.3 72.2
Lee & Garimella (2008) 57.8 51.6 42.7 50.7
Lee & Mudawar (2005a) 31.8 34.2 38.6 34.9
Lockhart & Martinelli (1949) 43.2 35.7 29.2 36.0
Mishima & Hibiki (1996) 66.3 59.5 49.4 58.4
Mueller-Steinhagen & Heck (1986) 49.7 41.4 22.0 37.7
Tran et al. (1999) 42.2 27.7 43.6 37.8
Dh = 294μm R-134a R-1234ze(E) R-245fa Mean
Baroczy (1965) 42.4 30.9 28.9 34.1
Cioncolini et al. (2009) 35.0 35.7 36.3 35.6
Friedel (1979) 44.0 27.7 108.4 60.0
Homogeneous model 52.2 37.6 86.6 58.8
Lee & Garimella (2008) 61.8 56.5 45.9 54.7
Lee & Mudawar (2005a) 42.6 45.0 44.0 43.7
Lockhart & Martinelli (1949) 53.1 47.7 35.7 45.5
Mishima & Hibiki (1996) 71.5 66.3 54.4 64.1
Mueller-Steinhagen & Heck (1986) 56.6 49.5 24.3 43.5
Tran et al. (1999) 55.5 43.6 21.0 40.0
Dh = 567μm R-134a R-1234ze(E) R-245fa Mean
Baroczy (1965) 68.8 63.7 41.7 58.1
Cioncolini et al. (2009) 79.7 73.4 70.5 74.5
Friedel (1979) 75.5 69.5 39.0 61.3
Homogeneous model 70.7 66.1 26.6 54.5
Lee & Garimella (2008) 67.8 65.5 52.0 61.8
Lee & Mudawar (2005a) 67.6 68.7 62.2 66.3
Lockhart & Martinelli (1949) 74.1 72.6 59.8 68.8
Mishima & Hibiki (1996) 81.2 79.4 69.5 76.7
Mueller-Steinhagen & Heck (1986) 70.2 66.3 40.7 59.1
Tran et al. (1999) 78.3 75.2 58.1 70.5
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Figure 4.12: Comparison with best channel pressure drop prediction methods.

CH4/CioncoliniSi.eps
CH4/CioncoliniCu.eps
CH4/LockhartSi.eps
CH4/LockhartCu.eps
CH4/LeeMudawarSi.eps
CH4/LeeMudawarCu.eps


4.4. Total pressure drop 77

With mean average errors of 30%, the choice of the pressure drop model can then have
consequences on the determination of the heat transfer coefficients, especially in the case
of the silicon evaporator, where the change in fluid temperature can be important. In Fig
4.13, the different fluid temperature profiles computed using the best prediction methods
are shown for R-236fa and R-134a in the silicon and copper test sections for high heat
fluxes. In the copper test section, the largest temperature difference between the methods
is 0.3◦C, found at the end of channel. Since the wall to fluid temperature difference at
qw=334kW/m2 is larger than 15◦C, the pressure model chosen has little consequence in
the calculation of the heat transfer coefficients. On the other hand, in the silicon test
section, the largest temperature difference is about 2◦C, found around z=8mm, for a wall
to fluid temperature difference of 13◦C for a linear pressure drop. Thus in the silicon test
section, between the pressure models, there is a 15% difference in the calculation of the
heat transfer coefficient due to the evaluation of the fluid temperature.

For evaluation of the heat transfer coefficient under uniform heat flux, the linear pressure
drop model was used as is common in the literature (e.g. Lin et al. (2001), Karyiannis et al.
(2010) and Ong & Thome (2011b)). Although the pressure drops are not in fact linear,
it is the only model that insured that the measured channel inlet and end pressures were
respected.
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Figure 4.13: Comparison with best channel pressure drop prediction methods.

4.4 Total pressure drop

For the design of efficient cooling systems, knowing the total pressure drop over the test
section is imperative. If the total pressure drop is very low, a pump-free system such
as a thermosyphons could be used to drive the system. In this arrangement, the fluid
circulation is induced by a column of liquid. Taking into consideration that in current
datacenters, two meter high columns are possible, around 24kPa would be available to
run a pump-free system.

CH4/SiPsatTsat.eps
CH4/CuPsatTsat.eps


78 4. Pressure drop

In Figs 4.14 and 4.15 are plotted the total pressure drops for the silicon and copper
test sections. The total pressure drop increases approximately linearly with the vapor
quality. Extending these trends to x=0 gives an estimate of what would be the single-
phase pressure drop over the test section. It is lower than the two-phase pressure drop,
but as it was pointed out in the state of the art review, a flow of single-phase refrigerant
is not able to meet the thermal requirement of chip cooling.

As it can be expected from the channel pressure drop results, the silicon test section has
higher total pressure drops than the copper ones. In the latter case, the total pressure
drop remains well below 20kPa for all cases, such that a pump-free cooling system could
be possible. In fact, except with R-134a for 472kg/m2s and 569kg/m2s at Tsat=30◦C,
the values of total pressure drop in the copper test section remain below 10kPa. This
corresponds to a liquid column height of less than one meter, well within what is achievable
in a datacenter. Therefore, with a careful sizing of the other elements in the cooling
systems, it could possible to bring the overal pressure drop of the system below the
20kPa.
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Figure 4.14: Total pressure drop in silicon test section.
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Figure 4.15: Total pressure drop in copper test section.
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4.4.1 Pressure drop ratios

Using the inlet and outlet restriction pressure losses and the channel pressure drop, it is
possible to evaluate the relative importance of each component in the total pressure drop.
With this information, it will be then be possible to assess which part of the test section
should be improved to reduce the total pressure drop. The ratio of the channel, inlet and
outlet pressure components divided by the total pressure drop are plotted in Figs 4.16
and 4.17. Note that some graphs were placed in Appendix B to lighten the text.

Since at the outlet, pressure recovery sometimes occured, the outlet pressure ratio are
sometimes negative at low vapor qualities. When this happens, the ratio of the two other
pressure component increases and it is possible that in the case of the channel pressure
that the ratio goes over 1.

In the silicon test section, the channel pressure drop is by far the most important pressure
drop component. For xch−end > 0.2 is represents more than 70% of the total pressure
drop and it does not fall below 45%. At low vapor quality, the inlet and outlet restriction
losses in the silicon test section can represent half the pressure drop, equally distributed
between the inlet and the outlet. Pressure recovery is seen for R-236fa at low mass
fluxes, Fig 4.16(e). In the case of R-245fa, the importance of the outlet losses falls for
xch−end < 0.1.

The importance of the inlet restriction pressure drop decreases rapidly with vapor quality.
For x > 0.4, it tends towards 5%. The outlet restriction represents about 10 to 15% of
the total losses at high vapor qualities. In the case of R-236fa, the outlet losses become
independent of the mass flux for xch−end > 0.3, whereas for R-245fa, this happens for
xch−end > 0.15.

Similarly the importance of the inlet pressure restriction in the copper test section is
small. The channel pressure drop remains the most pressure component in the copper test
section, but it tends towards lower ratios. At high vapor qualities, the outlet restriction
pressure drops are high, representing 10 to 20% of the total pressure drop and peaking
at almost 40% in Fig 4.17(i).

This analysis of channel pressure drop stresses the importance of evaluating each pressure
drop component (inlet, outlet, channel) individually. The outlet restriction pressure drop
is an important factor, which has often been neglected, possibly leading to important
error in pressure drop and heat transfer analysis. For example, in the silicon test section,
if the outlet restriction losses were neglected and the outlet plenum pressure was used to
calculate the fluid saturation temperature at the end of the channel, it would lead to a
temperature of 0.8 ◦C lower for R-236fa, for a mass flux of 1051 kg/m2s and xch−end = 0.35.
The heat transfer coefficient would then be underestimated by 17% for a wall superheat
of 4◦C.
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(a) R-236fa: Channel
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(b) R-245fa: Channel
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(c) R-236fa: Inlet restriction
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(d) R-245fa: Inlet restriction
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(e) R-236fa: Outlet restriction
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(f) R-245fa: Outlet restriction

Figure 4.16: Pressure drop ratios for silicon test section, Tsat=30◦C.
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(b) R-1234ze(E): Channel
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(c) R-245fa: Channel
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(d) R-134a: Inlet restriction
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(e) R-1234ze(E): Inlet restriction
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(f) R-245fa: Inlet restriction
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(g) R-134a: Outlet restriction
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Figure 4.17: Pressure drop ratios for copper test section, Tsat=30◦C.
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Chapter 5

Uniform heat flux: Heat transfer
coefficients

The 35 temperature sensors provided simultaneous information about the heat transfer
over the array heater. Therefore, the experimental database for heat transfer coefficients
under uniform heat flux is very extensive. Experiments were performed at several mass
fluxes, with four refrigerants, at two saturation temperatures and numerous heat fluxes.

5.1 Validation

Four different validations were done with respect to the local wall heat transfer coefficient
results:

• Accuracy with respect to single-phase Nusselt predictions for subcooled liquid tests

• Exactness of the data reduction scheme

• Lateral uniformity of the results

• Repeatability of the results

5.1.1 Single-phase Nusselt number

As discussed in the state of the art review, the results tabulated by Shah & London (1978)
for hydrodynamicaly and thermally developing laminar flows can be expressed in a Taylor
series expansion as (Olivier (2008)):

Nux = 3.04 +
0.0244

z∗
+ 0.448γ − 2.69× 10−5

z∗2
− 0.02γ2 − 6.78× 10−4

z∗γ
(5.1)

where
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z∗ =
π

4

z

RePrDh

(5.2)

and γ is the aspect ratio W/H. This expression has been compared versus subcooled
liquid heat transfer data taken in the test section. As z∗ increases, the value of Nusselt
number tends toward is fully developped value, respectively 5.1 and 5.5 for the silicon
and the copper test sections.

Silicon test section

In the silicon test section, single-phase experiments were performed with subcooled liquid
flow of R-236fa and R-245fa. For this last fluid, the validation could only be made on a
narrow range of Reynolds numbers. For the tests, the refrigerant entered the evaporator
at 22◦C and the fluid pressure was set high enough to avoid flow boiling. With R-236fa,
the tests were performed at 12 mass fluxes from 275 to 1400kg/m2s. The base heat fluxes
were varied between 40kW/m2 and 350kW/m2. In the case of R-245fa, 4 mass fluxes from
1500 to 2080kg/m2s were tested between 360kW/m2 and 540kW/m2. A one-dimensional
thermal conduction scheme was used to reduce the data.

The local and average Nusselt numbers measured versus the Reynolds number are shown
in Fig 5.1, and they are compared to the prediction method of Shah & London (1978)
for hydrodynamically and thermally developing laminar flow. In the top graphs results
for Nux against z∗ are plotted. The lateral average of these local Nux are plotted in the
middle graphs, which shows that across the evaporator’s columns the differences in heat
transfer are small. In the bottom graphs, the evaporator mean Nusselt number is plotted
against the Reynolds number of the microchannels.

The bottom Num graphs show that above Reav = 400 the experimental results are in good
agreement with the predictions. The deviation at low Reynolds numbers is probably due
to conjugate conduction effects in the evaporator and to the differences between the
experiment and the simulations of Shah & London (1978): heating from three sides, two
of which being fins, instead of four in their case and having a non-uniform channel inlet
velocity. The perturbations are better seen on the local Nusselt number plot, Figs 5.1(a)
and 5.1(b), showing that the best local agreement is obtained at high Reynolds numbers
and toward the end of the channel. As shown in Table 5.1, the average results agree well
with the prediction method. For R-236fa, 91% of Num (Fig 5.1(e)) datapoints are within
±20% of predicted values, while 82% of the local values (Fig 5.1(a)) are predicted to
within ±20%. For R-245fa, all Num (Fig 5.1(f)) are within ±20% and, 85% of Nux (Fig
5.1(b)) within ±20%. Note tha the test section was not designed for measuring single-
phase heat transfer coefficients. especially not at low Reynolds number, Hence overall, the
agreement with Shah & London (1978) is excellent, which validates the instrumentation
and the data reduction for the silicon test section.
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Figure 5.1: Single-phase validation of Nusselt number in the silicon test section.
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Table 5.1: Mean average error and accuracy for single-phase Nusselt number

Nux Num

MAE – Within ±20% MAE – Within ±20%
Si: R-236fa 12% – 82% 9% – 91%
Si: R-245fa 9% – 91% 3% – 100%
Cu: R-134a 23% – 83%(with error band) 7% – 93%
Cu: R-1234ze 23% – 75%(with error band) 10% – 80%

Copper test section

The same validation tests were performed on the copper test section with R-134a and
R-1234ze. It was not possible to reach more than Re=400 with R-245fa, such that the
single-phase validation could not be made for this fluid. The data reduction in the copper
test section presents other difficulties. Since copper is about four times more conductive
than silicon, conduction effects are more important in the copper test section. The top
view of the evaporator in Fig 3.3(b) shows that the copper frame surrounding the multi-
microchannels is large and in single-phase flow, this mass will redistribute the heat flux
towards the colder inlet. Two measures were then taken to counter heat spreading in the
copper test section. First, a two-dimensional conduction scheme was used for the data
reduction to include the flow-wise heat spreading. Second, the results from Columns 1
and 7 were not used, because the copper frame also pulled heat flux through the side of
the evaporator area and measurement zones most affected by this effect were Columns 1
and 7. Both of these measures will be also applied to the data reduction for two-phase
flow.

The local and average Nusselt numbers obtained in the copper test section in Fig 5.2
are compared to Shah & London (1978)’s method. The values obtained for Num are well
predicted; the mean average error for R-134a was 7% and for R-1234ze, 10%. It was
possible to reach transitional flow regime (Re≥1200) with R-134a and the correlations
of Pethukov (1970) for turbulent flow and Olivier (2009) for transitional flow in smooth
pipe were used for the comparison. The results for laminar Nux are scattered around
Shah & London (1978)’s prediction, but once the error bars are taken into account, most
datapoint uncertainties cover the predicted values. For R-134a 83% of the data, including
the error bars, falls within ±20%. For R-1234ze, the number of data within ±20% is 75%.
Taking the lateral average of Nux centers the data on the prediction line.

The test sections were designed and instrumented for two-phase flow boiling experiments
and for low Reynolds number single-phase heat transfer tests, the instrumentation was
not appropriate to measure heat spreading. Thus some single-phase test results will lie
outside the predicted values and the validations cannot be performed for all conditions.
The importance of heat spreading is greatly reduced in flow boiling as the heat transfer
coefficients are ten to thirty-fold higher. Thus, based on the results shown in Fig 5.2, the
single-phase validations show that the instrumentation and the data reduction used for
the copper test section are adequate for two-phase heat transfer coefficients experiments.
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Figure 5.2: Single-phase validation of Nusselt number in the copper test section.
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5.1.2 Thermal conduction data reduction scheme

For the data reduction of two-phase flow results, the thermal conduction schemes used in
single-phase validations were applied to the experimental measurements. It is important
to show that the thermal conduction was well computed and for this, validations were
performed with a numerical simulation program, COMSOL Multiphysics 4.0. This valida-
tion is actually a reverse calculation: the results of data reduction are used in the program
to set the heat transfer coefficients and then the base temperatures are recalculated. If
the results for base temperature agree with the measurements, then the exactness of the
data reduction scheme is validated.

In simulations with COMSOL, all boundary conditions must be specified since the pro-
gram used a different solving strategy than the data reduction scheme. The local heat
transfer coefficients calculated through the data reduction were used to create a contin-
uous function from z=0 to L to be input in COMSOL. Comparisons were then made
between the measured base temperatures and those calculated by COMSOL using a one-
dimensional conduction scheme for the silicon test section and a two-dimensional for the
copper test section.

The results of these validations are shown in Fig 5.3(a) with R-236fa and in Fig 5.4(a)
with R-1234ze(E) along with the input base (“footprint”) heat transfer coefficient curve in
Figs 5.3(b) and 5.4(b). The simulated base temperatures fall very close to the measured
values, except for one point with R-236fa where the base temperature gradient is steep.
The one-dimensional scheme used for the silicon test section does not capture the heat
spreading due to this gradient and the calculated local wall heat flux is greater than the
real one. Evenso, agreement is still good. The heat spreading is well captured by the
two-dimensional conduction model used for the copper test section, which means that
using a three-dimensional scheme is not needed for uniform heat flux tests. Thus, the
thermal conduction models used for both test sections are accurate and can be used for
the calculation of local heat transfer coefficients.
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Figure 5.3: Comparison between the one-dimensional thermal conduction data reduction and
COMSOL Multiphysics’ results for the silicon test section: R-236fa, 933kg/m2s, Column 4,
qb=96.4W/cm2.
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Figure 5.4: Comparison between the two-dimensional thermal conduction data reduction and
COMSOL Multiphysics’ results for the copper test section: R-1234ze(E), 411kg/m2s, Column
6, qb=136.3W/cm2.

5.1.3 Lateral heat transfer coefficients uniformity

In order to lighten the presentation of the results, the downstream evolution of the local
heat transfer coefficients will be presented as a lateral average of the values in all columns.
This is possible because the heat flux and mass flux in each channel are the same, such
that in theory the local heat transfer coefficients at any lateral position will also be the
same. However in practice, due to small geometrical variations between the channels,
there will be differences in heat transfer. These will be more important when the local
flow regime is sensitive to the wall geometry, for example for bubble generations and
cyclical dry-outs.

In Fig 5.5, the profiles of heat transfer coefficients are plotted for two cases. In the silicon
test section, the trends in each column are similar and the main difference is found at Row
3, where the minimum value of heat transfer is lower in Column 1 and 2. In the copper
test section, the position of the minimum heat transfer coeffcient moves. In Columns 2
and 4 it is positioned over Row 3 and in the other columns over Row 4. The differences
in trends are probably due to a delay in the flow regime transitions.

Since the heat transfer coefficients are not perfectly uniform laterally, the standard de-
viation will be reported on each graph and noted as the RMS value. A typical example
is provided in Table 5.2. For all heat fluxes tested with R-236fa at 933kg/m2s in the
silicon test section, the mean standard deviation is 9.9% and for R-134a at 473kg/m2s in
the copper test section it is 15%. In comparison, the mean uncertainty in the calculation
of the local wall heat transfer coefficients in the first case is 5.9% and in the second case
is 6.1%. Later, however for the comparison of the heat transfer coefficients with different
prediction methods, all measurements will be used.
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(b) Copper test section: R-134a, 477kg/m2s,
qb=1290kW/m2, Tsat=50.7◦C

Figure 5.5: Heat transfer coefficients in all columns.

Table 5.2: Ratio of lateral standard deviation over lateral mean value of the local heat transfer
coefficient.

Silicon test section Copper test section
R-236fa R-1234ze(E)(E)
933kg/m2s,Tsat=31.1◦C 412kg/m2s, Tsat=50.6◦C

Column 1 5.5% 10.0%
Column 2 8.0% 6.4%
Column 3 17.2% 17.6%
Column 4 7.1% 26.5%
Column 5 11.5% 14.6%
Mean 9.9% 15.0 %

5.1.4 Repeatability of the results

An important issue in flow boiling is the repeatability of the tests. The reproductibility
of the heat transfer coefficient results are presented in Fig 5.6 for both test sections with
R-245fa and R-134a using the lateral mean of the heat transfer coefficients. The different
sets of data were recorded with about month interval between them referred to as Test
1 and Test 2. In each case, the results for both tests fall on the same trend curve for
all heat fluxes. On the graphs, the spread around the trend lines for the Test 1 and 2
pairs are smaller than the heat transfer coefficient uncertainty and small offsets in vapor
quality are observed due to experimentally setting the inlet subcooling. The results were
therefore found to be very reproducible both over time and location on the test sections.

5.2 Uniform heat flux heat transfer coefficients

An experimental database for local heat transfer coefficients under uniform heat flux con-
ditions was obtained for both test sections. The refrigerants were tested at two saturation
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Figure 5.6: Reproductibility of αw at different wall heat fluxes.

temperatures, 31◦C and 50◦C and at mass fluxes from 205 to 569kg/m2s. The heat flux
was incrementally raised until the base temperature reached 85◦C. Base heat fluxes varied
from 130 to 2950kW/m2 (13 to 295W/cm2). No attempt was made to reach the critical
heat flux, which was avoided to prolong the life of the test sections.

In order to report the results in a consistent fashion, the wall heat transfer coefficients are
analyzed only with respect to the wall heat flux, accounting of course for the fin efficiency
of the walls. For quick comparisons, multiplying the wall heat flux and heat transfer
coefficients by 7 for the silicon test section and by 8 or the copper test section yields a
value close to the equivalent “base area” heat transfer coefficient. Seven and eight are
the rounded value of the right hand side coefficient multiplying qb,xy in equation 3.30.

Some temperature sensors were not used, seven in for the silicon test section and three
for the copper test section, mostly because the connections of their temperature sensor
failed during the flip-chip mounting process and the sensors did not work. In some
instances, the sensors were working, but reported inconsistent results and were probably
damaged. Lastly, in the copper test section, heater 15 was not properly wetted by the
liquid metal and its readings were not used. For the multi-dimensional thermal conduction
calculations, the temperature of a non-functioning sensor was replaced by the lateral
average of the temperatures in the same row. Since the temperatures in one row were
almost uniform, as shown in Fig 5.7 for the same cases as in Fig 5.5, this replacement will
not affect the heat transfer calculations. Note that all power connections were working
and thus all heaters were functioning for the experiments.

A representative sample to the results for average wall heat transfer coefficients versus
vapor quality are shown in Figs 5.8 to 5.9 and 5.13 to 5.15. The remaining part of
the database is shown in Appendix B in Figs B.2 to B.12. On the graphs, each curve is
composed of five measurement points, corresponding to each row position. The points are
linked by a spline to help the visualization of trends. This curve fit should not be used to
infer the local heat transfer coefficients between the measurement points. The wall heat
transfer coefficients were calculated using the local wall heat flux values. However each
curve is described by the average value of wall heat flux for that test condition. Due to
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(a) Silicon test section: R-236fa, 933kg/m2s,
qb=964kW/m2, Tsat=31.1◦C
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(b) Copper test section: R-134a, 473kg/m2s,
qb=1290kW/m2, Tsat=50.7◦C

Figure 5.7: Base temperatures.

the local change in fin efficiency, there are differences between this average value and the
local ones. These can represent up to ± 20% of the mean value, but is usually closer to
± 10%. Error bars are not shown in order to make the graphs readible.

Figs 5.8 and 5.9 show that in the silicon test section the average level of heat transfer
coefficients increases with heat flux, although this relation becomes less dependent for
wall heat fluxes over 100kW/m2. At low wall heat fluxes, the heat transfer coefficients
increase from Row 1 to Row 5, at a faster rate after Row 3. For wall heat fluxes over
45kW/m2, the heat transfer coefficients follow a V-shape, centered on the heaters of Row
3. They decrease from Row 1 to 3 and then increased in Row 3 to 5. The maximum
values, found at Row 1 and 5, are almost of of the same level at both ends, between 15’000
and 18’000W/m2K. On the right hand branch, the rate of increase is less dependent on
the heat flux. The increasing branches are separated, but keep a common rate of increase.
The minimum value initially increases with heat flux and after 100kW/m2, this value
stabilizes around 12’000W/m2K for both fluids.
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Figure 5.8: αw for different qw. Silicon test section R-236fa.
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Figure 5.9: αw for different qw. Silicon test section R-245fa.
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As it can be seen in Fig 5.10, the heat transfer for R-245fa is higher than for R-236fa.
This difference increases with vapor quality and it probably due to the vapor-to-liquid
density ratio. Due to this factor, the local void fraction for R-245fa is higher than that
of R-236fa, such that thermal resistance due to the liquid film is reduced. Figs 5.11 and
5.12 show the local heat transfer coefficient at various mass fluxes for different wall heat
fluxes. The curves on the decreasing branch are almost parallel, but once the minimum is
reached, the heat transfer coefficients fall on a common line, for example in Figs 5.11(a)
and 5.12(b), or increase faster for higher mass fluxes, as in Fig 5.11(b). Notably, the heat
transfer coefficient decreases with increasing mass flux at lower vapor qualities.
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Figure 5.10: Comparison between R-236fa and R-245fa at 703kg/m2s in the silicon test section.
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Figure 5.11: αw for R-236fa for increasing mass fluxes in the silicon test section.

In Figs 5.13 to 5.15 the local heat transfer coefficients are plotted for R-134a, R-1234ze(E)
and R-245fa in the copper test section. The peak heat transfer is positioned at Row 1 and
increases with heat flux. The highest heat transfer coefficient measured is 27’000W/m2K
with R-134a at 387kW/m2 (as a “footprint” heat transfer coefficient this is a value of about
216’000W/m2K). In most cases, the heat transfer increases at the end of the curve and
the minimum is positioned over Row 3 or 4. As the vapor quality increases, the influence

CH5/AllFluid_G703.eps
CH5/R236fa_AllG_109kW.eps
CH5/R236fa_AllG_190kW.eps


96 5. Uniform heat flux: Heat transfer coefficients

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.5

1

1.5

2
x 10

4

x [−]

α w
 [

W
/m

2 K
]

 

 

501kg/m2s

599kg/m2s

702kg/m2s

803kg/m2s

902kg/m2s

(a) qw=45kW/m2

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2
x 10

4

x [−]

α w
 [

W
/m

2 K
]

 

 

501kg/m2s

599kg/m2s

702kg/m2s

803kg/m2s

902kg/m2s

(b) qw=95kW/m2

Figure 5.12: αw for R-245fa for increasing heat fluxes in the silicon test section.

of heat flux decreases and the heat transfer coefficients tend toward a common curve, as it
was seen in the silicon test section and by Ong & Thome (2011b) in single channel tests.
In Fig 5.15(a), for 159kW/m2, the heat transfer coefficients always decreases with heat
flux. This is a possible sign that cyclical dry-outs are occurring on the channel perimeter.
The higher saturation temperature does not significantly change the heat transfer trends,
although the heat transfer levels are slightly higher at higher temperature. For example,
in Figs 5.14(a) and 5.14(b), the heat transfer values at 100kW/m2 are on average
1260W/m2K higher at 50.9◦C than at 30.2◦C.
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Figure 5.13: αw for different qw. Copper test section R-134a, 569kg/m2s.
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Figure 5.14: αw for different qw. Copper test section R-1234ze(E), 346kg/m2s.
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Figure 5.15: αw for different qw. Copper test section R-245fa.
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At 160kW/m2 and at about 350kg/m2s, Fig 5.16 shows that the highest heat transfer
coefficients are obtained with R-1234ze(E) and that all three fluids follow the same general
trend. The wall heat transfer coefficients were replotted for R-134a and R-1234ze(E) at
constant heat flux and varying mass fluxes in Figs 5.17 and 5.18. As it was seen in the
silicon test section, at low vapor quality, the heat transfer coefficient is higher for low mass
fluxes. Otherwise in Fig 5.17(b), the mass flux has no influence on the increasing branch.
When the heat flux is higher, as in Figs 5.17(a), 5.18(a) and 5.18(b), the curves are
separated at high vapor quality with lower heat transfer at low mass fluxes. This again
supports the possibility that cyclical dry-outs are occurring, as observed by Borhani et al.
(2010). Since those dry-outs are not permanent, they do not lead to critical heat flux,
but once time-averaged, they decrease the local heat transfer coefficient.
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Figure 5.16: Comparison between R-134a, R-1234ze(E) and R-245fa around 350kg/m2s and
Tsat=31◦C, in the copper test section.
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Figure 5.17: αw for R-134a for increasing mass fluxes in the copper test section.

The heat transfer coefficients can also be plotted against the wall heat flux in a pseudo-
boiling curve. Agostini et al. (2008a) found that once plotted this way, the heat transfer
coefficients for vapor qualities between 2 and 8% fell on an exponential curve with an
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Figure 5.18: αw for R-1234ze(E) for increasing mass fluxes in the copper test section.
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Figure 5.19: αw for R-245fa for increasing mass fluxes and qw=130kW/m2 in the copper test
section at Tsat=31.0◦C.

exponent of 0.67. Harirchian & Garimella (2008) reported that heat transfer coefficients
taken at the exit of their microchannel (at the same position as heater 54) were indepen-
dent of the mass flux and of the channel width. This type of plot was done in Figs 5.20
and 5.21. The heat transfer coefficients in the copper test section at Row 1 follow a power
curve, although the exponents are relatively low, around 0.2 for R-134a and R-1234ze(E).
The other rows are rather insensitive to heat flux. In the silicon test section, the heat
transfer coefficients for R-236fa in all rows can be fitted with a power curve, but the
curves remain separated. Thus heat transfer in the test section are certainly a combined
function of the heat flux, mass flux and vapor quality.

Comparing wall heat transfer coefficient results with flow pattern maps, Ong & Thome
(2011a) predicts a IB–CB transition at around x=0.05 and a CB–AF transition at around
x=0.15 for both test sections. The influence of the IB–CB transition is not seen in the
heat transfer results, although the cubic spline can give this impression in some graphs.
On the other hand, the CB–AF transition vapor quality is sometimes close the position
of the minimum heat transfer coefficients, although the predicted transition vapor quality
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Figure 5.20: αw versus qw at all mass fluxes in the copper test section.

does not change with heat flux.

The CB–AF transition should influence the heat transfer level. In the coalescing bub-
ble flow regime, the heat transfer should drop, because depending on the theory, the
importance of dry-out increases (Thome et al. (2004)) or the importance of nucleate
boiling, which has an higher rate of heat removal, decreases (Bertsch et al. (2009) and
Kandlikar & Balasubramanian (2004)). In the annular flow regime, heat transfer is a
function of the liquid film thickness. When the vapor quality increases, the film becomes
thinner and the heat transfer coefficient increases.

In this case, the inflection point in the heat transfer coefficient curves should denote a
change in flow pattern and could be used to track the diabatic CB–AF transition. This
was done in Fig 5.22 for R-134a in the copper test section. The vapor quality where the
minimum heat transfer occurs increases with increasing heat flux and to a lesser degree
with a decreasing mass flux. Tracking the minimum on the wall heat transfer coefficients
graphs, a new transition criteria can be defined to include the effect of heat flux and was
also plotted in Fig 5.22.

The vapor quality at which the minimum heat transfer coefficients was found to be well
predicted by

xCB−AF = 132.77

(
ρl
ρv

)0.0707

Bl1.105 (5.3)

where Bl is the boiling number. The constants were found by a least fit square iteration.
Equation 5.3 says that the transition is a function of the liquid to vapor density ratio,
the heat flux and the mass flux, both contained in the boiling number. In the database,
the minima found at Row 1 and Row 5 were excluded, because in the first case, they were
due to a subcooling effect and in the second case, it is not possible to say if the minimum
has been reached.

The results of the statistical analysis for each fluid are given in Table 5.3. Points falling
within the experimental resolution were counted as accurate. The resolution is defined as
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Figure 5.21: αw versus qw for R-236fa at all mass fluxes in the silicon test section.
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Figure 5.22: Vapor quality at the minimum heat transfer coefficients for R-134a in copper test
section

the difference in vapor quality between two measurement points. For example, if at Row
3 is x=0.3 and at Row 4, x=0.4, the resolution is x=0.1. In Table 5.3, more than 90%
of the data fall within the experimental resolution.

Although the number of mass fluxes tested is small, the shape of the transition curves
in Fig 5.22 is reminiscent of those of Revellin et al. (2006) and Ong & Thome (2011a).
However the boiling number is absent from their correlations. Their observations were
made in a adiabatic glass tube placed after an heated section of stainless steel tube.
Differences in the test setup could explain that they did not find an effect of the heat
flux on the CB–AF transition. Thus, it is recommended here to use the Ong & Thome
(2011a) map with the new CB–AF transition proposed here.

CH5/R236fa_qw.eps
CH5/R134a_Flowmap.eps
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Table 5.3: Prediction of the vapor quality at minimum heat transfer coefficient using three-zone
model.

Within experimental resolution
Si: R-236fa 81%
Si: R-245fa 98%
Cu: R-134a 99%
Cu: R-1234ze(E) 75%
Cu: R-245fa 94%

5.3 Comparison with prediction methods

The heat transfer coefficient results for uniform heat flux will be compared with six
prediction methods, namely:

1. Bertsch et al. (2009)

2. Kandlikar & Balasubramanian (2004)

3. Thome et al. (2004) (Three-zone model)

4. Lee & Mudawar (2005b)

5. Tran et al. (1996)

6. Cioncolini & Thome (2011)(Annular flow model)

As discussed previously, all local measurements were be used for the comparison, which
amounts to more than 15’000 indivual datapoints. In the five first prediction methods, the
hydraulic diameters used were respectively 146μm and 246μm for the silicon and copper
test sections. Applying the method of Cioncolini & Thome (2011) to non-circular shapes
is more complicated. It balances forces in the channel to calculate a radial film thickness
in a circular channel. This film must be redistributed to the rectangular perimeter keeping
the same area proportion between the shapes and to conserve the liquid cross-sectional

area proportions, so it make sense to use the equivalent diameter, Dh=
√

4WH
π

for this

method. Note that in the copper test, the true value of the perimeter was used and not
2(W+H). As a consequence of this adaptation, the average rectangular film thickness was
about half the circular one.

The three-zone model used for the comparison differed from the original publication. First,
as shown by several authors (e.g. Agostini et al. (2008a) and Ong & Thome (2011b)),
the three-zone model works better when the minimum film thickness was set to the wall
roughness. Second, the correlations used in the Nusselt number calculations for the liquid
and vapor slugs were changed, based on the recommendations of Olivier & Costa-Patry
(2010). The developing flow equations, which could lead to non-sensical results in small
channels, were replaced by fully-developed ones as follows:

Nulam = 4.36 (5.4)
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Nturb =
Pr f

8
(Re− 1000)

1 + 12.7
(
f
8

)0.5
(Pr2/3 − 1)

(5.5)

for Re≥1500.

Finally, the original definition of the liquid film heat transfer was used to prevent the com-
putational problems observed by Dupont et al. (2004) when δ0 ≈ δend, the denominator
was stabilized by adding one nanometer in the substraction such that:

hfilm =
λl

δo − δend + 1× 10−9
ln

δo
δend

(5.6)

The results of the comparison between the experimental data and the prediction methods
are shown in Figs 5.23 and 5.24, each fluid being shown in a different color. The methods
of Thome et al. (2004) and Bertsch et al. (2009) are the best at centering the data within
the ±30% accuracy range. The mean average errors are listed in Tables 5.4 and 5.5
by flow pattern, using Equation 5.3 as transition criteria. As it can be expected, the
three-zone model has a better accuracy for isolated and coaslescing bubble flow and the
annular flow method of Cioncolini & Thome (2011) is more precise for annular flows.

The two methods were here combined to form the first flow-pattern based prediction
method for flow boiling in microchannels. The three-zone model was used until the CB–
AF transition (equation 5.3) found on the heat transfer coefficient graphs was reached.
For the measurement point with a vapor quality the closest the transition, the heat
transfer was set to be a combination of the three-zone and the annular flow models:

αCB−AF = α3Z +
αAF

α3Z + αAF

(αAF − α3Z) (5.7)

such that if α3Z is small, αAF dominates and vice versa. This equation than creates
a smooth transition from intermittent flow to annular flow. The vapor quality transi-
tion region to which it should be applied can be based on the experimental resolution:
xCB−AF ± xch−end/5. For measurements at higher quality, the annular flow model was
used.

As given in Tables 5.4 and 5.5 and shown in Fig 5.25, the method centers all fluids
around the ±30% range and its accuracy is very good. For the copper test section, the
mean average error for all fluids is 27.8% and the same accuracy is obtained in the IB/CB
and annular flow regions. For the silicon test section, the mean average error decreases
to 19.4%.

Fig 5.26 shows some simulations of the new model at conditions similar to Fig 5.8(b) for
R-236fa in the silicon test section and Fig 5.13(a) for R-134a in the copper test section.
The minimum in the test data are seen to be reproduced by the new flow pattern based
model. This aspect is particularly important for modelling the microprocess temperature
map for two-phase cooling of computer chips.
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(b) Kandlikar & Balasubramanian (2004)
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(c) Thome et al. (2004)
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(d) Cioncolini et al. (2009)
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(e) Lee & Mudawar (2005b)
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(f) Tran et al. (1996)

Figure 5.23: Comparison with heat transfer prediction methods for silicon test section. Red:R-
236fa, Blue:R-245fa.
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(a) Bertsch et al. (2009)
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(b) Kandlikar & Balasubramanian (2004)
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(c) Thome et al. (2004)
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(d) Cioncolini et al. (2009)
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(e) Lee & Mudawar (2005b)
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(f) Tran et al. (1996)

Figure 5.24: Comparison with heat transfer prediction methods for copper test section. Red:R-
134a, Blue:R-1234ze(E), Green:R-245fa.
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Table 5.4: Mean average error for local heat tranfer coefficients in the silicon test section.

Silicon test section R-236fa R-245fa
Bertsch et al. (2009) IB/CB:18.1% IB/CB:29.5%

AF:24.8% AF:39.6%
Kandlikar & Balasubramanian (2004) IB/CB:70.6% IB/CB:80.2%

AF:63.4% AF:59.6%
Thome et al. (2004) IB/CB:17% IB/CB:14.3%

AF:22.5% AF:42%
Cioncolini & Thome (2011) IB/CB:49.1% IB/CB:78.1%

AF:20.8% AF:23.5%
Lee & Mudawar (2005b) IB/CB:60.8% IB/CB:99.6%

AF:43.1% AF:47.8%
Tran et al. (1996) IB/CB:63.6% IB/CB:81.1%

AF:62.3% AF:82.4%
New method IB/CB:17.3% IB/CB:15.1%

AF:16.6% AF:24.1%

Table 5.5: Mean average error for the local heat tranfer coefficients in the copper test section.

Copper test section R-134a R-1234ze(E) R-245fa
Bertsch et al. (2009) IB/CB:27.1% IB/CB:19.9% IB/CB:31.1%

AF:30.5% AF:26.4% AF:30.7%
Kandlikar & Balasub. (2004) IB/CB:50.1% IB/CB:37% IB/CB:104%

AF:59.1% AF:33.2% AF:122%
Thome et al. (2004) IB/CB:23.1% IB/CB:27.8% IB/CB:49%

AF:26.2% AF:48.8% AF:69.2%
Cioncolini & Thome (2011) IB/CB:46.5% IB/CB:62.1% IB/CB:43.4%

AF:23.8% AF:34.4% AF:37.7%
Lee & Mudawar (2005b) IB/CB:35.2% IB/CB:36.6% IB/CB:16.1%

AF:36.7% AF:41.0% AF:30.5%
Tran et al. (1996) IB/CB:34.6% IB/CB:48.8% IB/CB:72.0%

AF:28.2% AF:48.8% AF:67.7%
New method IB/CB:22.5% IB/CB:28.9% IB/CB:35.4%

AF:20.5% AF:36.4% AF:32.6%
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(a) Silicon Red:R-236fa, Blue:R-245fa
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(b) Copper Red:R-134a, Blue:R-1234ze(E),
Green:R-245fa

Figure 5.25: Comparison with the new flow pattern based heat transfer model.
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Figure 5.26: Predicted αw by the new flow pattern based heat transfer model.
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Chapter 6

Non-uniform heat flux

Microprocessors typically generate a non-uniform heat-flux over their footprint (or base)
area. To decrease the overall thermal resistance of the package, micro-coolers need to be
mounted as close as possible to the heat source. In such cases, micro-evaporators will
operate also under a non-uniform heat flux. The objectives in this chapter are to assess
the response of two-phase multi-microchannel evaporators to non-uniform heat fluxes
and to analyze the interactions between different power maps and the two-phase cooling
system.

6.1 Power and temperature maps

The present array heater is well adapted to study micro-cooling under non-uniform heat
flux conditions. The power map can be divided into zones where the heat flux is high,
called “hot-spot” and zones where the heat flux is lower, called “background”. Tests
were performed by varying both the background and the hot-spot heat fluxes for differ-
ent mass fluxes. With the silicon microchannel test section, seven different power map
configurations were tested with R-245fa at a saturation temperature of 30◦C:

• “Point” hot-spots as individual heater subjected to the high heat flux using heaters
14, 34 and 54. Notation: 14H, 34H and 54H

• Row hot-spots as a whole row subjected to the same high heat flux using Rows 1,
3 and 5. Notation: R1H, R3H and R5H.

• Column hot-spot as a whole column subjected to the same high heat flux using
Column 4. Notation: C4H.

These are shown in Fig 6.1(a) overlayed over the heater notation. Similar power maps
were tested with the copper microchannel test section for R-134a, R-1234ze(E) and R-
245fa at two saturation temperatures, 30◦C and 50◦C. The point and column hot-spots
were placed over Column 2, as seen in Fig 6.1(b), to compare the pressure drops using
two differential pressure transducers, Δp2, placed over Column 2 and Column 6. To

111



112 6. Non-uniform heat flux

describe the heat flux conditions, the power map configuration will be first given, then
the hot-spot and background base heat fluxes. For example the notation for a hot-spot
at Row 3 with a footprint heat flux of 1000kW/m2 against a background footprint heat
flux of 100kW/m2 is R3H, qb [kW/m2] 1000:100.

(a) Silicon test section (b) Copper test section

Figure 6.1: Power maps configuration.

6.2 Base heat flux and package thermal resistance

without heat spreading

A first order analysis of non-uniform heat flux can be done by using the measured base
temperatures, base heat flux and the mean fluid temperature, (Tinlet+Toutlet)/2. This
type of evaluation is interesting when one is concerned solely about the impact on the
chip itself. Heat spreading in the thermal package occurs mostly outside of the heater
chip, such that a one-dimensional approach answers most chip-level concerns. Hence,
first in this section a one-dimensional approach is applied to illustrate the results. The
detailed multi-dimensional analysis of the data is then presented in section 6.3.

A typical example of the impact of a non-uniform heat flux on the base of the chip is
given for each power map configuration in Figs 6.2 to 6.4 for the copper test section.
The lower values are drawn in dark blue and the higher in red. Similar graphs for the
silicon test section were placed in Appendix B. As seen in the left graphs, in the copper
test section hot-spots over 3MW/m2 were cooled without problems for all configurations,
maintaining a maximum base temperature below 85◦C. For hot-spot to background heat
flux ratios over 8, the base temperature gradients are high, sometimes greater than 15◦C
between two neighbouring sensors. This difference was stable: the deviation of all base
temperature sensors was lower than 0.1◦C for 100 measurements sampled at about 2Hz.

The effect of heat spreading can be seen in the base temperature maps shown in the middle
graphs. The base temperature of the area surrounding the hot-spot increase slightly with
respect to the remaining part of the background region and the thermal conductance
around the hot-spot decreases. This effect is mostly contained within the length of one
heater.
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Figure 6.2: Copper test section: Thermal conductance for row hot-spots in the package R-
1234ze(E), Tsat=30◦C, 350kg/m2s, assuming one-dimensional conduction.
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Figure 6.3: Copper test section: Thermal conductance for point hot-spots in the package for
R-134a, Tsat=30◦C, 364kg/m2s, assuming one-dimensional conduction.
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Figure 6.4: Copper test section: Thermal conductance for column hot-spot in the package for
R-245fa, Tsat=30◦C, 280kg/m2s, assuming one-dimensional conduction.

In all cases, the local thermal conductance, shown in the right graphs, is the highest
were the hot-spot is placed. Since the thermal conductivity through the composite wall
is not a function of the heat flux, this self-compensating mechanism is due to two-phase
flow cooling. Using the whole non-uniform heat flux database, in total 1120 test con-
ditions, the thermal conductance over the hot-spot was plotted against the local heat
flux and fitted with power law curves in Figs 6.5 and 6.6. These values are higher for
the copper test section, between 50’000W/m2K and 90’000W/m2K, than for the silicon
test section (40’000W/m2K to 70’000W/m2K). The thermal conductance and exponent
changes slightly with the power map configuration, but at the base no clear influence of
the mass flux and fluid can be seen.

Notably, the exponent values, which vary from 0.08 to 0.24, are lower than those found
in Figs 5.21 and 5.20 for uniform heat flux. In both test sections, the composite wall
has a thermal resistance of around 9×10−6m2K/W, whereas the total thermal resistance
(1/αb) over the hot-spot varies from 11×10−6m2K/W to 20×10−6m2K/W. The self-cooling
property of two-phase flow, which increases the fluid-side heat transfer with heat flux, is
thus dampened by the thermal resistance of the composite wall, which is not a function of
the heat flux. At qb=3MW/m2, the composite wall represents sometimes more than 70%
of the total thermal resistance and to reduce the total thermal resistance, the composite
wall would need to be thinned.
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Figure 6.5: Thermal conductance over the hot-spot versus local heat flux for R-245fa in the
silicon test section.
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Figure 6.6: Thermal conductance over the hot-spot versus local heat flux in the copper test
section.
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6.3 Footprint heat flux and wall temperatures with

heat spreading

To study the reaction of two-phase flow to non-uniform heat flux, the conditions found
at the wall are needed. The multi-dimensional thermal conduction scheme presented in
Chapter 3 will be used now to calculate the wall heat flux and temperatures. For row hot-
spots, the two-dimensional scheme will be used and for point and column hot-spots, the
three-dimensional one is required to take into account the lateral temperature gradients.
Capturing precisely heat spreading is central to be able to evaluate the local fluid-side
performance, where local here refers to that over an individual heater. It will now be
shown how the thermal conductance over the hot-spot, previously calculated using a one-
dimensional distribution, will be distributed at the fluid-side surface of the evaporator.

As noted in Chapter 5, some temperatures sensors were not working and their readings
were replaced by the row-averaged temperature, excluding where relevant the hot-spot
temperature. In row hot-spots, this replacement will have little effect on the calculation
of heat transfer coefficients, since heat spreading occurs in the flow direction.

For point and column hot-spots, the situation is different. In the silicon test section, all
inactive sensors, except one, are separated from Column 4 by one or more heater. Only
when the hot-spot covers heater 54 could this replacement lead to imprecision, since the
temperature sensor at heater 53 was inactive. However, as seen in Fig B.14(h), the
thermal conductance calculated in this situation for heater 53 is close to the value at
heater 55, such that this error is assumed to remain small.

In the copper test section, reducing the data accurately to obtain heat transfer coefficient
values for the point hot-spots was not possible. Heat spreading was very important and
the wall heat flux over the hot-spot was on average 40% of its base value. In the thermal
conduction scheme, the temperature difference between two heaters is assumed to be
evenly distributed. However, when heat spreading is very important, the mesh size of
the array heater is too coarse to compute reliably the heat transfer and thus a linear
temperature drop profile cannot be assumed over 2.54mm. The results for point hot-
spots could however be used to evaluate quantities less dependent on the local heat flux,
such as the total pressure drop and the total vapor quality, both of which are more a
function of the total heat flux than the local one.

6.3.1 Thermal conduction data reduction scheme

As it was done for uniform heat flux, the exactness of the two- and three-dimensional
schemes can be assessed using Comsol Multiphysics 4.0. The results of these validations
for row hot-spots are shown in Figs 6.7(a) and 6.8(a) with R-245fa and R-1234ze(E)
along with the inputed “footprint” heat transfer coefficient curves in Figs 6.7(b) and
6.8(b). The same work was done for point hot-spots and is shown in Fig 6.9 for R-245fa
in the silicon test section. More validations for point hot-spots in the silicon test section
are shown in Appendix B. The simplified two- and three dimensional data reduction
schemes agree well with the numerical simulations for all power map configurations. The
difference in base temperature over the hot-spot is at most 1◦C. Therefore, although the



6.3. Footprint heat flux and wall temperatures with heat spreading 119

data reduction described in Fig 3.16 uses a coarse mesh, it is sufficiently precise for
row hot-spots in both test sections and for point hot-spots in the silicon test section and
ensures that the heat transfer coefficient solutions are realistic and stable.

0 0.002 0.004 0.006 0.008 0.01 0.012
20

25

30

35

40

45

50

55

60

Downstream position[m]

T
b
[°

C
]

 

 

R1H q
b
[kW/m2] 1553:246 G=503kg/m2s

R3H q
b
[kW/m2] 1437:598 G=701kg/m2s

R5H q
b
[kW/m2] 1267:408 G=900kg/m2s

(a) Base temperature

0 0.002 0.004 0.006 0.008 0.01 0.012
0

5

10

15
x 10

4

Downstream position [m]

α fo
o

tp
ri

n
t[W

/m
2 K

]

 

 

R1H q
b
[kW/m2] 1553:246 G=503kg/m2s

R3H q
b
[kW/m2] 1437:598 G=701kg/m2s

R5H q
b
[k/m2] 1267:408 G=900kg/m2s

(b) Footprint heat transfer coefficient

Figure 6.7: Comparison between the two-dimensional thermal conduction data reduction and
COMSOL Multiphysics numerical results for the silicon test section with R-245fa along Column
4.
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Figure 6.8: Comparison between the two-dimensional thermal conduction data reduction and
COMSOL Multiphysics numerical results for the copper test section with R-134a along Column
4 for Tsat=30◦C.

6.3.2 Footprint heat flux and wall temperature maps

Typical examples of the footprint heat flux and temperature maps are shown in Figs 6.10
and 6.11. Heat spreading is contained within one heater around the hot-spot and is more
important in the copper test section. As it is highlighted in Fig 6.12, half the of the
hot-spot heat flux is redistributed inside the package, mostly to Row 2. The footprint
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Figure 6.9: Comparison between the three-dimensional thermal conduction data reduction and
COMSOL Multiphysics numerical results for the silicon test section with R-245fa for hot-spot
at 14H, qb[kW/m2] 2100:400, 507kg/m2s.

heat flux in that row can be 3 times larger than the base heat flux. In the silicon test
section heat spreading in more moderate, as shown in Fig 6.13, the background heat flux
increases at most by 1.5 times.
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Figure 6.10: Wall temperature and footprint heat flux for R-245fa with hot-spot at heater
34 in the silicon test section using a three-dimensional thermal conduction reduction method,
qb[kW/m2] 2020:400, Tsat=30◦C, 713kg/m2s.

For cooling purposes, heat spreading of hot-spots in the evaporator is positive. Heat
spreading activates a larger part of the evaporator and exposes the backgroud zones to
higher heat flux. Since the heat transfer coefficient is a function of the wall heat flux,
this decreases the overall base temperature. It is interesting to note that for the same
heat flux ratios, the heat spreading in both examples is relatively close. For example
for qb[kW/m2] 1332:407 and 1394:466, respectively for the silicon and copper test section,
Figs 6.13(b) and 6.12(b) show that the footprint heat flux over the hot-spot are 66% and
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Figure 6.11: Wall temperature and footprint heat flux for R-1234ze(E) with hot-spot at Row
1 in the copper test section using a three-dimensional thermal conduction reduction method,
qb[kW/m2] 2100:400, Tsat=30◦C, 350kg/m2s.

55% of their base value. The amount of heat spreading is due to the combined effect of the
evaporator’s thermal conductivity and the local two-phase heat transfer coefficients, such
that the footprint heat flux and the local heat transfer coefficient maps are intertwined.
The next section deals with this aspect fir determining the local heat transfer coefficients.
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Figure 6.12: Mean lateral heat spreading for R-1234ze(E) with hot-spot at Row 1 in the
copper test section using a three-dimensional thermal conduction reduction method, Tsat=30◦C,
350kg/m2s.
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Figure 6.13: Heat spreading for R-245fa with hot-spot at heater 34 in the silicon test section
along Column 4 using a three-dimensional thermal conduction reduction method, Tsat=30◦C,
713kg/m2s.

CH6/R245fa34HQft.eps
CH6/R245fa34HQprct.eps


6.4. Heat transfer coefficient under non-uniform heat flux 123

6.4 Heat transfer coefficient under non-uniform heat

flux

6.4.1 Pressure drop model

In non-uniform heat flux situations, the evaporation rate changes over the hot-spot and
the linear pressure drop assumption in the microchannels cannot be used. A modi-
fied version of the annular flow model of Cioncolini et al. (2009), combined to that of
Lockhart & Martinelli (1949), was used instead, since it was found to be the most accu-
rate in Chapter 4, especially for the silicon test section where channel pressure drops are
more important. This model can react to the change in local heat flux and momentum
pressure drop arising from the influence of the vapor quality. The modification consisted
in adding a linear correction to the pressure drop model to meet the channel inlet and
outlet pressure level.

In hot-spot situations, the combination of the annular flow model of Cioncolini et al.
(2009) and Lockhart & Martinelli (1949) pressure drop models will have a more realistic
shape than a linear approximation. Since the pressures at the channel extremities are
known and the pressure drop model is forced to meet these values, the largest uncertainty
in fluid temperature will be at the center row. Examples of the pressure drop correction
are given in Fig 6.14. In the silicon test section, the pressure correction increases the
saturation temperature at the end of the channels by about 0.6◦C, which in turn increase
the local heat transfer by decreasing the wall to fluid temperature difference. The change
in temperature in the copper test section are smaller than 0.1◦C, and will not affect the
local heat transfer measurably.
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(b) Copper test section: R-1234ze(E) along Col-
umn 4 for R1H, qb 2181:481 kW/m2, 350kg/m2s

Figure 6.14: Pressure drop model correction.
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6.4.2 Mass flux variation due to non-uniform heat flux

In the case of a row hot-spot, the increase in pressure drop due to the hot-spot will be
uniform in all channels and the mass flux will be uniform across all channels since the flow
path is normal to the row hot-spot. Note that the mass flux distribution validation for
the silicon test section presented in Chapter 4, used this characteristic of row hot-spots.

In the other power configurations, the different evaporation rates and vapor quality pro-
files will force the mass flux to vary in the parallel channels in order maintain the same
differential pressure drop over the test section. Thus in channels running over column
and point hot-spot conditions, the mass flux will be lower due to the higher resistance
to flow. This effect was taken into account in the data reduction process. The fluid-side
calculations were repeated over each column by changing the local mass flux until the
total pressure drop over all columns varied by less than 2.5%.

The variation of the mass flux across the two evaporators is shown in Fig 6.15. The mass
flux over the hot-spot decreases as its heat flux increases. In the copper test section, the
mass flux also decreases slightly in the neighbouring columns. For qb[kW/m2]2020:410,
the local mass flux in the silicon test section was calculated to be 68% of the nominal
value. In the copper test section, the changes are less important: the pressure drops are
lower, since the channels are bigger and there is more heat spreading. For a hot-spot at
12H, qb[kW/m2]4300:500, the local mass flux represents 78% of the nominal value.

This situation could runaway and reach dry-out in the channels where the hot-spot is
situated. Such cases were encountered in the column hot-spot configuration, as shown in
Fig 6.16, where the calculated exit qualities in the center channels were close 1, but a
temperature run-off, denoting critical heat flux, was not recorded. This means that the
heat spreading within the evaporators delayed the onset of the critical heat flux.
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Figure 6.15: Mass flux variation due to hot-spot.
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Figure 6.16: Vapor quality variation at Row 5 due to hot-spot.

6.4.3 Wall heat transfer coefficients

In this section, wall heat transfer coefficients will be described in the manner in which
they will be needed to define the boundary condition in a numerical simulation of the
present thermal packages, i.e. αw will be plotted for different Tf and qb. Since two-phase
flow heat transfer coefficients are a function of the local heat flux, information about the
average heat spreading over the hot-spot, qfootprint/qb, will be listed along with, as it was
done for uniform heat flux results, the lateral standard deviation (for row hot-spots), the
uncertainty obtained through the error propagation and for point and column hot-spot,
the mass flux variation over the hot-spot at the maximum heat flux difference.

The increase in local heat flux in the area surrounding the hot-spot, due to heat spread-
ing, is sometimes quite important. Since the background base temperature were much
colder than the hot-spot temperature, this led in a few cases to larger uncertainty in the
calculation of such wall heat transfer coefficients. When this uncertainty was larger than
30% of the calculated heat transfer coefficient, the curves were considered too uncertain
for use and were discarded.

Silicon test section

The heat transfer coefficients for row hot-spots at 701kg/m2s are plotted in Fig 6.17
and point hot-spots at 712kg/m2s in Fig 6.18. Due to the large amount of results
obtained with the silicon test section, results for 503kg/m2s and 900kg/m2s were placed
in Appendix B. The row and point hot-spots lose respectively 10 to 20% and 20 to 35%
of their strength to heat spreading and it is more important in Row 3 than in Row 1 and
5.

In row hot-spot situations, wall heat transfer coefficients are ranged from 8000–22’000
W/m2K, similar to what was found for uniform heat flux conditions. The strength of the
hot-spot is more important the closer it is positioned to the inlet. Row 1 hot-spot had
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a V-shape trend as seen earlier for uniform heat fluxes when qb ≥500kW/m2. For R3H
and R5H, this shape is not seen, since in most tests, the background heat flux was below
this level of 500kW/m2. As seen in Fig 6.17(a), doubling the hot-spot base heat flux
over Row 1, results in a 30% increase in heat transfer. On the other hand, in Fig 6.17(c)
for Row 5, the difference in heat transfer coefficients over the hot-spot are not significant.
This is consistent with what was observed in uniform heat flux tests. The situation for
Row 3 is more complex. There is an effect of heat flux, but more importantly Row 3 lies
over the CB–A flow pattern transition line, discussed in Chapter 5, where minimum local
heat transfer coefficient is often found.

In the case of varying background heat flux, the heat transfer evolution depends on the
hot-spot position. For an hot-spot at Row 5, it increases with heat flux until it reaches the
hot-spot. On the other hand, if the hot-spot is at Row 1, the heat transfer coefficients
stay around 15’000W/m2K for all vapor qualities. For uniform heat fluxes, relatively
constant heat transfer coefficients were observed for base heat fluxes over 700kW/m2.

For point hot-spot experiments, the background heat flux was fixed at 400kW/m2 and
the heat flux at the hot-spot was varied from 650 to 2200kW/m2. In Fig 6.18, the heat
transfer coefficient over the hot-spot is in line with what was observed in Fig 5.9 for
uniform heat flux: between 12’000 and 17’000W/m2K for 14H, 14’000W/m2K for 34H
and around 20’000W/m2K for 54H, which in this case is slightly over the uniform heat flux
values. The heat transfer coefficients for 14H increase with increasing hot-spot heat flux.
This increase is in part due to the relation between the heat flux and the heat transfer but
it is also due to the mass flux reduction expected on Column 4. The mass flux variation
can be important, down to 59% for 14H, qb[kW/m2] 2158:398. This reduction in mass
flux can be used positively: for uniform heat flux, in Fig 5.12, it was observed that
lower mass flux led to higher heat flux dependent heat transfer coefficients in the IB and
CB flow regimes (this was not the case in the annular flow regime). However, the mass
flux reduction also decreases the critical heat flux level, such that this effect should be
carefully used.
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Figure 6.17: αw for row hot-spot in the silicon test section at 701kg/m2s, Tsat=30◦C.
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Figure 6.18: αw along Column 4 in the silicon test section for point hot-spot at 712kg/m2s,
Tsat=30◦C.
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In Fig 6.18(a), the 14H hot-spot seems to have a beneficial effect on the cooling of the
surrounding heaters. This effect was not clearly seen for the row hot-spots, although in
Fig B.18(a) at 503kg/m2s, the heat transfer coefficients at Row 2 are larger than those of
Row 1. To ensure that this was not a deviation induced by differences between the two-
and three-dimensional conduction scheme, the data in Fig 6.17(a) were also reprocessed
with the three-dimensional scheme and, shown in Fig 6.19, the results are the same as
the one obtained with the two-dimensional scheme in Fig 6.17(a).
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Figure 6.19: αw for R1H at 701kg/m2s, Tsat=30◦C, calculated using the three-dimensional
conduction scheme.

Since several parameters come into play when comparing row and point hot-spots, two
similar situations have been compared in Fig 6.20 for results along Column 4. In the first
case, the hot-spot is at R1H, 502kg/m2s and qb[kW/m2] 1724:384 and for the other, the
hot-spot is at 14H, the nominal mass flux is 714kg/m2s, but the calculated one flowing
over Column 4 is 499kg/m2s and qb[kW/m2] 1596:399.

The wall heat transfer coefficients over Rows 1 and 2 for 14H are 16’200 and 22’500W/m2K
and for R1H, they are 17’400 and 20’250W/m2K. Since the difference is within the margin
of error, heat spreading in the point hot-spot is more important, but the wall heat fluxes
for Rows 2 to 5 along Column 4 for both cases are almost the same, which means that
the refrigerant extracted the same amount of heat flux. It is important to remember that
the calculation of the mass flux variation is an estimate. Still, Fig 6.20 shows that for
similar conditions the refrigerant reacts the same way to a row or to a point hot-spot.

Plotting uniform heat flux and hot-spot heat flux results in Fig 6.21, similarities and
differences between them are highlighted. When heat transfer coefficients are plotted
versus vapor quality, Row 5 hot-spots follow uniform heat flux results until they reach
the hot-spot. Row 1 hot-spots start from the corresponding uniform heat flux value, but
then tend toward the lower heat flux value. This is clearer when plotted against the
downstream position in the right graph: the hot-spot heat transfer coefficients fall on the
same point and can be deduced from the uniform heat flux one. Over the hot-spot, the
heat transfer coefficients are as high as their uniform value and then tend toward the heat
transfer coefficient of a uniform background heat flux.
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Figure 6.20: Comparison between the cooling for R1H and 14H at similar heat fluxes and
mass flux along Column 4.

Vapor quality does not describe completely the fluid state and behavior. For the case of a
uniform heat flux, the CB–A transition can be inferred from the heat transfer coefficient
graphs. In the Row 1 hot-spot heat transfer curves, the same observations can be made,
but the method cannot be extended to determine the flow pattern for hot-spots placed
further downstream, because the heat transfer coefficient increases continuously. The
effect of the hot-spot on the transition is difficult to assess, but it could generate the local
flow pattern found in uniform heat flux conditions, even though the vapor qualities are
different.

Hot-spots certainly modify the local flow regime compared to what would happen if it
were formed only by background heat flux, an effect that could be used to raise the overall
heat transfer coefficient. Close to the inlet, the hot-spot will be cooled by a slug flow
flow, which reacts positively to an increase in heat flux. The increase in heat transfer
over Row 2 can be tentatively explained by looking at the mechanism described by the
three-zone model of Thome et al. (2004). The bubbles are generated at the inlet, where
the hot spot is, at a frequency higher than if it was generated by the background heat
flux. By the time the liquid film has reached the minimum film thickness, the heat flux
is lower and the dry-out zone does not grow as fast. Thus on average, the local heat
transfer coefficient is augmented.
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Figure 6.21: Comparison between the cooling for uniform heat flux and row hot-spots for
R-245fa around 500kg/m2s, in the silicon test section for similar heat fluxes.
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Copper test section

The heat transfer coefficients for row hot-spots in the copper test section are plotted for
R-134a, R-1234ze(E) and R-245fa in Figs 6.22 to 6.24, for different combinations of hot-
spot and background heat fluxes. These graphs are representative of the trends observed
for row hot-spots and the other results are presented in Appendix B. The heat transfer
coefficients vary between 5000 and 27’000W/m2K, within the range of what was seen in
the copper test section for uniform heat flux. However direct comparisons are difficult
because the wall heat fluxes are different from the base heat flux due to heat spreading.

Compared to the silicon test section, the background heat fluxes tested were higher and
sufficiently high to have a V-shape, based on the uniform heat flux results. The peak
heat transfer coefficients have about the same level as those of the silicon test section
and results for R-245fa are lower than for R-134a and R-1234ze(E). In Row 1 hot-spots,
i.e. the top graphs in the figures, heat spreading is moderate and the hot-spot losses
about 20% of its strength. The heat transfer level over Row 1 appears to be lower
than what was measured at uniform heat flux (15’000 instead of 20’000W/m2K). For
this configuration, the boosting effect observed in the silicon test section over Row 2
is also present. Its importance increases with the hot-spot heat flux and decreases with
increasing background heat flux. In Fig 6.22(a), for qb[kW/m2]3125:494, the heat transfer
coefficient at Row 2 is about 25’000W/m2K, whereas for qb[kW/m2]3147:975, it is below
20’000W/m2K.

In Row 5 hot-spots, the bottom graphs in the figures, the heat spreading is more moder-
ate. For R-1234ze(E), the heat transfer coefficient is continously increasing reaching over
25’000W/m2K for qb[kW/m2]3249:478. On the other hand, the heat transfer coefficient
forms sometimes a plateau for R-245fa or drops over Row 5 for R-134a. The plateau
can be explained for the annular flow regime, which is expected to occur towards the
end of the channel. As it was discussed in Chapter 5, heat transfer in the annular flow
regime is a predominantly a function of the liquid film and not of the heat flux. For R5H,
qb[kW/m2] 1176:699, the wall heat flux goes from 120kW/m2 at Row 4 to 145kW/m2 at
Row 5 and the wall heat transfer changes from 17’900W/m2K to 18’800W/m2K, which is
comparable to the increase seen for a uniform heat flux in Fig B.7 for a similar situation.
As for the drop in heat transfer coefficient, it could signal partial dry-out at the channel
outlet, although the heat transfer level remains above 15’000W/m2K.

Compared to non-uniform heat flux results observed in the silicon test section, the mini-
mum heat transfer coefficient at Row 3 for hot-spots at the same position is a new trend.
In many cases, the curves for Row 3 hot-spots dip over the hot-spot, some taking the
V-shape seen for uniform heat flux conditions. In Fig 6.22(b), this effect increases with
increasing hot-spot heat flux, but in Fig 6.23(b), it stays constant around 10’000W/m2K.
In Row 3 hot-spots, heat spreading is important and the hot-spots lose on average 40%
of their strength.
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(a) R1H: G=364kg/m2s, Error: 11.2%, RMS: 18.3%, qfootprint/qb: 81%
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(b) R3H: G=366kg/m2s, Error: 11.3%, RMS: 20.1%, qfootprint/qb: 56%
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Figure 6.22: αw for row hot-spots with R-134a in the copper test section, Tsat=30◦C.
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Figure 6.23: αw for row hot-spots with R-1234ze(E) in the copper test section, Tsat=30◦C.
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Figure 6.24: αw for row hot-spots with R-245fa in the copper test section, Tsat=30◦C.
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The minimum over Row 3 could thus be mostly due to heat spreading. Fig 6.25 helps
to explain this trend. The heat spreads to the surrounding rows and the wall heat flux
is the smallest at Row 3 and so is the heat transfer. The minimum observed over Row 3
is thus indeed due to heat spreading. This means that for Row 3 hot-spots, the path of
least thermal resistance in the composite wall passes through Rows 2 and 4. In Fig 6.25,
the difference in base temperature between Row 2 and 3 is 17.2◦C, a strong driver for
heat spreading. The heat transfer coefficient also contributes to heat spreading towards
Rows 2 and 4, albeit to a lesser extend than the high thermal conductivity.
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Figure 6.25: Base temperature, wall heat transfer coefficients and heat flux for R3H,
qb[kW/m2]2212:499, 366kg/m2s.

In some cases, heat spreading from the R3H hot-spots creates an almost uniform wall
heat flux condition. It is then possible to make a comparison with results from Chapter 5,
as it was done in Fig 6.26. For each fluid, the heat transfer coefficients for the hot-spot
and uniform heat flux situation are close together, often within the margin of uncertainty
(about 10%). The largest difference in heat transfer is found for R-134a at the inlet (R3H:
25’500W/m2K, UHF: 19’000W/m2K), but the wall heat fluxes also differ: 186kW/m2 for
the hot-spot and 165kW/m2 for the uniform heat flux case.

A similar comparison is shown in Fig 6.27 for R1H and R5H, although in this case heat
spreading does not form a uniform wall heat flux. The results are the same as what
was observed for the silicon test section, shown in Fig 6.21: when plotted against the
downstream position, the non-uniform heat transfer coefficients can be deduced from the
uniform heat flux one. Over the hot-spot, the heat transfer coefficients are as high as their
uniform value and then tend toward the heat transfer coefficient of a uniform background
heat flux.

More generally, no important distinction was observed for flow boiling in microchannels
between uniform and non-uniform heat flux. In both situations, the pressure drop and the
local heat transfer coefficient are a combined function of the local mass flux, wall heat flux,
vapor quality and flow pattern. Figs 6.21, 6.26 and 6.27 show that when the conditions
at the wall are the same, the heat transfer coefficients for uniform and non-uniform base
heat flux are similar. This is an important conclusion since it means that uniform heat
flux heat transfer methods should extrapolate well to non-uniform conditions.
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Figure 6.26: Comparison between some results obtained with the copper test section for R3H
hot-spots and uniform heat flux results at Tsat=30◦C.

The difficulty with non-uniform heat flux lies in calculating the local wall conditions. In
the case of uniform heat flux, the computations are relatively simple because the mass
flux can be assumed to be uniform across the evaporator and the wall heat flux to be equal
to the base heat flux (for a one-dimensional thermal conduction approach). The vapor
quality is easily determined from an energy balance and the equations for flow pattern
transition are often based on the vapor quality. For non-uniform heat flux conditions, a
few assumptions need to be made, since in most cases neither the local mass flux nor the
wall heat flux can be directly known (but only backed out by appropriate calculations). In
the present experimental setup, iterative calculations could be avoided to determine the
wall heat flux by using the direct multi-dimensional thermal conduction scheme presented
in Chapter 3, which greatly speeds up the iterative calculation process with respect to a
fully numerical analysis.

If the thickness of the composite wall was smaller, it would first result overall in a lower
base temperature. Then the effect of heat spreading would be less important such that
the wall heat flux would be closer to the base heat flux values. This could simplify the
calculation of the thermal conduction if the heat spreading was low enough to use a
one-dimensional approach. For the fluid-side calculations, the situation would remain the
same; once the local conditions at wall are determined, it is possible to obtain the local
heat transfer coefficient.

Although the wall heat transfer coefficients can be derived from uniform heat flux results,
the hot-spot position and orientation remain important factors. It is clearly better to
orient “long” hot-spots perpendicular to the flow direction to diminish the mass flux non-
uniformity. Placing the hot-spot near the inlet or the outlet brings different advantages.
Positioned near the inlet, the average heat transfer coefficient will be higher along the
entire channel and, as it was discussed by Revellin et al. (2008), the critical heat flux
value will be higher, but for point hot-spots, the mass flux in the channels running over
the hot-spot will be smaller. On the other hand, when the hot-spot is placed near the
outlet, the pressure drop will be lower, especially for the silicon test section, and the mass
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Figure 6.27: Comparison between the cooling for uniform heat flux and row hot-spots for
R-245fa in the copper test section for 290kg/m2s and Tsat=30◦C, at similar heat fluxes.

flux will be more uniform.

6.5 Comparison with prediction methods

Since the characteristics of flow boiling in microchannels do not change locally between
uniform and non-uniform heat flux conditions, uniform heat flux prediction methods can
extended to non-uniform heat flux situations, although the computation must impera-
tively be done will the local mass flux and wall heat flux accounting for the influence of
heat spreading. For uniform heat flux, two methods were reasonably precise for all fluids
and both test sections: the new flow pattern-based method and the one of Bertsch et al.
(2009) (see Tables 5.4 and 5.5).

Two modifications were made here to the flow pattern-based method. Firstly, since a
clear link between the vapor quality and the CB–A flow pattern transition could not be
seen for non-uniform heat flux results, equation 5.3 cannot be used, and the criteria for
changing from the three-zone to annular flow model was to use the greater of the two
values, i.e.:

αw = max (α3Z , αAF ) (6.1)

Second, to bring in the increase in heat transfer coefficient over Row 2 when the hot-spot
is placed at Row 1 or 14H, the bubble frequency calculated for Row 1 was used for these
power configurations in the downstream calculation for Row 2:

fR2 = (1− c)

(
qw
qref

)1.74

+ cfR1 (6.2)

The effect of the multiplier c is shown in Fig 6.28. As c increases, the heat transfer over
the whole evaporator increases. In the silicon test section, n=0.25 was found to improve
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the prediction accuracy, whereas in the copper test section, it was better to set n=0,
because for high wall heat fluxes, the three-zone model overpredicted the heat transfer
coefficients.
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Figure 6.28: Impact of the multiplier for the bubble frequency in the silicon test section for
R1H, qb[kW/m2] 1550:553, 503kg/m2s.

In Figs 6.29 and 6.30, all the test conditions that were processed are compared against
the prediction methods. Both methods centered the result for the copper test section well,
although, as it is listed in Table 6.1, the flow pattern-based method has a smaller mean
average error and places more data within ±30%. In the case of the silicon test section,
the method of Bertsch et al. (2009) is not precise. The flow pattern-based method is more
precise, although it has a problem with the point hot-spots. Overall, this method predicts
all the data with a mean average error of less than 30%, which is quite good when taking
into account the relatively large experimental uncertainty found in non-uniform heat flux
situations.

Table 6.1: Mean average error and percentage of data within ±30% for the local heat tranfer
coefficients for non-uniform heat flux.

Silicon test section Copper test section
Bertsch et al. (2009) MAE 46% MAE 27.9%

Within ±30%: 18.2% Within ±30%: 55.6%
New method MAE 31% MAE 28.8%

Within ±30% 49.7% Within ±30%: 59.8%
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Figure 6.29: Comparison of non-uniform heat flux results with the new flow pattern based
heat transfer model.
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Figure 6.30: Comparison of non-uniform heat flux results with the method of Bertsch et al.
(2009).
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Chapter 7

Transient response

In two-phase cooling system for microelectronics, there are two important transient ther-
mal processes. First, the heat flux generated by the chip changes with the CPU usage and
second, the instantaneous heat removal by the fluid is time-dependent, since liquid slugs
are followed by vapor ones. The instrumentation on the test sections was designed to be
able to track the changes in the base temperature, the base heat flux and the mass flux
at rates over 1000Hz and provide insight on the physical reaction of the whole thermal
package.

7.1 Constant base heat flux

The first series of transient tests consisted of studying the instanteneous response mea-
sured for constant base heat flux cases, under conditions similar to those presented in
Chapter 5. The objective was to obtain information about the frequencies at which the
local base temperatures vary. These tests were done with the copper test section. The
procedure and results are presented below.

The first step is to determine what are the relevant frequencies found at the base. Fig 7.1
presents the signal to noise ratio of the base temperature signal for heater 34 for R-245fa.
Both signals were sampled at 1000Hz in 10 blocks of 2048 samples. The noise was defined
as the signal measured when all electrical equipment on the test facility were turned on,
the refrigerant was at the desired saturation temperature and the mass flux and heat flux
were set to zero. The power spectral density (PSD) of the two-phase signals has the same
strength as the noise signal for frequencies over 20Hz. The strong peak at 50Hz is the
noise created by the alternating current frequency. Based on these results, the sampling
frequency was reduced to 200Hz and anything occuring above 30Hz will be ignored.

The power spectral densities of various local base temperatures for a two-phase flow of
R-134a flowing at 290 and 460kg/m2sover Column 4 are shown in Fig 7.2. Similar graphs
for R-1234ze(E) and R-245fa are shown in Appendix B and the PSD for the other columns
were similar to those for Column 4. A peak is present at 8Hz for 290kg/m2s and at 13Hz
for 460kg/m2s. At Row 5 in Fig 7.2(f), the peak almost disappears.
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Figure 7.1: Signal to noise ratio for the copper test section with R-245fa.

These frequencies are the result of the combined effects of the thermal diffusivity in the
composite wall and the variation in instantaneous heat removed by the fluid. It is difficult
to separate these factors, but it is possible to evaluate a characteristic time (or frequency)
for heat conduction inside the composite wall and estimate its importance.

The copper base is the main component in the thermal package. It has a thermal diffusiv-
ity of 116.6×10−6m2/s at 20◦C (Kreith & Bohn (2001)). Taking the copper base thickness
as the characteristic length (1800μm), the characteristic frequency of the copper base is
36Hz, much smaller than the peak frequencies. Even adding the characteristic frequencies
of the silicon chip and the TIM (using data for pure gallium), the characteristic frequency
does not become smaller than 30Hz.

Consequently, the frequency peaks in Fig 7.2 could be linked to the fluid-side response.
Dupont et al. (2004) showed in a graph, reproduced in Fig 7.3, that for a wall heat flux
between 10 and 60kW/m2, the bubbles frequencies were around 10Hz. In such case, the
peak can be potentially explained by the bubble frequency. However if it was the only
factor, the peak would change with heat flux, which is not observed. Since the peak
changes with mass flux, the inlet restriction could be playing a role. It is used to flash
the incoming fluid and it is possible that the faster the flow is, the higher the bubble
frequency. Finally, the disappperance of the peak at Row 5 would then be expected if the
flow was annular, since the instantaneous heat transfer mechanism in annular flow region
is more constant, as the intermittency dissappears.
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Figure 7.2: Power spectral density for R-134a in the copper test section at Tsat=30◦C
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144 7. Transient response

Figure 7.3: Evolution of the optimum frequency identified for each series of test versus heat
flux for different fluid and tube diameter. From Dupont et al. (2004).

7.2 Varying base heat flux

In situations where the base heat flux varies, it is important to see if there is a time
response lag between an increase in heat flux and the rate of heat transfer. As it was
seen in Chapter 5 and 6, the steady-state base temperature increases as the heat flux in-
creases. However, if the fluid-side does not react fast enough, an undesirable temperature
overshoot could occur.

In Fig 7.4 the results for the base temperature response are shown at heater 34 to a
step change of the uniform heat flux for different mass fluxes. The signals for the other
heaters were very similar to those of heater 34. In these tests, the increase in heat flux
is denoted in a similar fashion to a non-uniform heat flux. To described a condition
where the initial base uniform heat flux is 300kW/m2 that then jumps to 600kW/m2, the
notation is qh−l[kW/m2]600:300. The change in heat flux was almost instanteneous, as
shown in Fig 7.5. Each signal was sampled for 10 seconds at 1000Hz, during which the
heat flux jumped. The moment when the heat flux was changed corresponds to the time
when temperature started increasing.

The base temperature changes rapidly and reaches an almost constant value within one
second. In Fig 7.4(a), the fourth curve for 800kg/m2s, qh−l[kW/m2] 889:396 presents a
small temperature overshoot of about 0.3◦C just after the heat flux increased. From the
transient signal, the characteristic reaction time of the thermal response can be calculated.
The response curve to a step input (Ogata (1998)) is:

θ(t) =
(
1− e

−t
τ

)
θ0 (7.1)

where τ is the characteristic time, θ0 is the difference in temperature at the start of
the step (T0) and that measured one second later. θ is then the difference between the

CH7/Dupont.eps
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instantaneous temperature and T0.

For the three graphs in Fig 7.4, the average characteristic times were respectively from
top to bottom: 61ms, 83ms and 50ms. The corresponding frequencies are: 16Hz, 12Hz
and 20Hz. These are relatively close to the peak frequencies seen in Fig 7.2, such that
both could be linked.

The copper test section was also tested for square wave change in heat flux in Fig 7.5
and for sudden change in heat flux starting from a single-phase flow in Fig 7.6. The
test section reacted very well to the square signal. Over the six cycles, the upper and
lower temperatures are stable and change by less than 0.5◦Cfrom the start to the end
of the sampled data. The temperature response follows the change in heat flux and its
reaction is instantaneous. Unfortunately, it was not possible to increase the frequency for
the signal and bring it closer to the characteristic response time, due to limitation in the
speed of the communication protocol used by the power sources.

In the case of a sudden change in heat flux starting from a single-phase flow condition, the
copper test section has no problem to handle thermally an increase from 0 to 582kW/m2,
as shown in Fig 7.6(a). The temperature overshoot is more important, about 2◦C, and
is probably due to the level of superheat needed to trigger the onset of boiling. On the
other hand, the evolution of the mass flux is more problematic. From an initial value of
455kg/m2s, it decreases in 10 seconds to 150kg/m2s. If this trend was allowed to continue,
the mass flux would become small enough to come close to a critical heat flux situation.
It is thus important for start-up situation to have a control mechanism which insures
a minimum mass flux. For example, on the present test loop, a quick reaction valve
could be installed right before the test section to increase the flow rate in the test section
by reducing the pressure drop up-front of the test section. In summary, the transient
tests showed that the two-phase cooling process responds rapidly and adequately to cool
microelectronics.
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Figure 7.4: Base temperature signal at heater 34 for sudden change in base uniform heat flux.
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Figure 7.5: Thermal response at heater 34 of the copper test section to a square change in
base uniform heat flux for R-134a, 453kg/m2s, Tsat=30◦C.
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Figure 7.6: Response of the copper test section to a sudden change in base uniform heat flux
from single-phase condition for R-134a, 453kg/m2s, Tsat=30◦C.
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Chapter 8

Conclusions

In the introduction to this work, open points concerning the thermal response of multi-
microchannels evaporators under uniform, non-uniform and transient heat flux situations
were listed. To answer them, an extensive experimental campaign was performed with
four refrigerants and two test sections at different mass fluxes. In order to extract the
most information from these measurements, a new method was implemented to measure
the pressure drop across the outlet restriction of a micro-evaporator and a robust multi-
dimensional thermal conduction scheme was developed to include in the data reduction
the effect of heat spreading inside the thermal package.

The analysis of the results was divided into four categories: pressure drop, heat trans-
fer under uniform heat flux, physical reaction to non-uniform heat flux conditions and
the thermal response to transient heat flux conditions. For each aspect, the following
conclusions can be highlighted:

• Each pressure drop component was evaluated, such that their relative importance
could be evaluated. The inlet restriction pressure drop had the smallest influence on
the total pressure drop, but was critical to ensure stable flow boiling conditions in
the microchannels. The channel pressure drop was the most important component.
It was found to be inversely proportional to the square of the hydraulic diameter,
such that it was much more important in the silicon test section (Dh=146μm - up to
50kPa) than in the copper test section (Dh=246μm - up to 15kPa). A combination of
the prediction methods of Lockhart & Martinelli (1949) and Cioncolini et al. (2009)
was found to be very precise for both test sections and is recommended for design
purposes.

The experimental instrumentation was designed to be able to measure outlet re-
striction pressure drop. This component is not negligible as it can represent in
some situations more than 30% of the total pressure drop. Using the results from
both test sections, a prediction method for the outlet restriction pressure drop was
developed starting from the equation from Collier & Thome (1994) for a two-phase
pressure drop across a sudden expansion. The total pressure drop in the copper
test section was found to be low enough to allow it in practice to be driven by a
pump-free system, such as a thermosyphon.
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• Heat transfer coefficients for uniform heat flux conditions were obtained for wall heat
fluxes varying from 15 to 400kW/m2 and were found to be as high as 27’000W/m2K.
For a given heat flux, the data typically depicted a V-shape as the vapor quality
increased. Each branch associated to a flow pattern: slug flow and annular flow. In
the slug flow region, the heat transfer was found to increase with increasing heat flux
and decreasing mass flux. In the annular flow region, the heat transfer coefficients
were less a function of the heat flux and the mass flux: the dominant factor was the
annular liquid film thickness.

The minimum point in the V-shape was used to develop an heat flux dependent
transition criteria between slug and annular flow. Using this criteria, it was then
possible to develop the first flow pattern-based prediction method for heat trans-
fer coefficients in microchannels. For the intermittent flow, the three-zone model
of Thome et al. (2004) was used and for the annular flow region, the model of
Cioncolini & Thome (2011). At the transition a combination of the prediction of
both model was used. The resulting method was found to give the most precise
predictions and to follow very well the experimental trends.

• The influence of non-uniform heat flux on several aspects of the cooling process
was studied. First of all, the overall cooling was found to be the highest where
the hot-spot was positioned. The composite wall represented up to 70% of total
thermal resistance and a simple thermal improvement would be to thin the wall.
For a non-uniform heat flux, the heat spreading inside the evaporator was found to
be important. Its influence was included in the data reduction procedure using a
multi-dimensional thermal conduction scheme. Using the local conditions found at
the wall, it was possible to show that two-phase flow of refrigerant reacted in the
same way to uniform and non-uniform heat fluxes.

The biggest difficult with a non-uniform heat flux operating condition is that several
assumptions have to be made for the flow distribution, such that the local mass flux,
wall heat flux and vapor qualities must all be iteratively determined. Once the wall
conditions were defined, the flow pattern-based method predicted well the heat
transfer coefficients calculated for non-uniform heat flux conditions and is suitable
for design of micro-evaporator under uniform and non-uniform heat fluxes.

• At constant heat flux situations, the power spectral density analysis of the base
temperature of the copper test section showed that frequencies between 8 and 13Hz
are important and that these could be linked to the bubble frequencies in the chan-
nel. When the heat flux is varied following a step or a square function, the base
temperatures reached their steady state values in less than one second and the char-
acteristic times where around 60ms. Thermally sudden start-up from single-phase
conditions were easily handle, but the reduction the mass flux can be problematic
if a compensation system is not included in the system.

Together, these results answered most concerns related to the use of two-phase flow cool-
ing for micro-electronic applications. Well-designed micro-evaporators are capable of
handling a wide range of conditions safely and without a complex control system. The
heat transfer levels are high enough to respect the 85◦C upper operating limit of CPU
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while cooling at saturation temperatures over 50◦C, such that the heat can be reused
for other applications. Future steps include integrating two-phase cooling systems into
datacenters and evaluating how much energy can be saved and reused. The saving could
be increased if micro-evaporators were integrated into pump-free systems and further
investigation should be made in this direction.

The evolution of flow patterns in microchannels smaller than 500μm is not well understood
and further studies in this direction are recommended. These results could then be used
to improve the definition of the transition criteria in the flow pattern-based prediction
method and to include the effect of cyclical dry-outs in the model.
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Appendix A

Error propagation

The error propagation was calculated following the Kline & McClintock (1953) method.
The equations to implement this are shown below.

A.1 Heat flux

δqb−xy =

√(
2Vxy
Rxy

δVxy

)2

+

(
V 2
xy

R2
xy

δRxy

)2

+ δq2loss (A.1)

A.2 Thermal conductivity

δλsi = 1.4× 10−3TδT − 0.5416δT (A.2)

C = 3.598× 106 (A.3)

Γ = λTIM(e+ δe)− λTIM(e) (A.4)

δλTIM =

√√√√√
⎛
⎝CeTIM

(
T

(
eTIM

100μm

)2
)−1.9634

δT

⎞
⎠

2

+ Γ2 (A.5)

δλcu = λcu(T + δT )− λcu(T ) (A.6)
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A.3 Wall temperature

A.3.1 1-D thermal conduction

Γ =

(
echip
λchip

+
eTIM

λTIM

+
eevap
λevap

)
(A.7)

δΓ =

√√√√∑((
δei
λi

)2

+

(
eiδλi
λ2i

)2
)

(A.8)

δTw−xy =
√
δT 2

b−xy + (δqb−xyΓ)
2 + (qbxyδΓ)

2 (A.9)

A.3.2 Multi-dimensional thermal conduction

Based on Fig 3.16. The process is repeated at each node.

δqW =

√(
δT1

dX

)2

+

(
δT2

dX

)2

(A.10)

δqE =

√(
δT2

dX

)2

+

(
δT3

dX

)2

(A.11)

δqN =
√
δqS2 + δqW 2 + δqE2 (A.12)

δqw = δqNtop (A.13)

δT4 =

√
(δqNdY )2 + δT22 (A.14)

δTw = δT4top (A.15)

A.4 Fluid

A.4.1 Fluid properties

The fluid properties were determined using REFPROP, the NIST Standard Reference
Database 23, Version 8.0.

For single-phase quantities:
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δρl = ρl(Tf + δTf , P + δP )− ρl(T, P ) (A.16)

δμl = μl(Tf + δTf , P + δP )− μl(T, P ) (A.17)

δTf = Tf (hl + δhl, P + δP )− Tf (h, P ) (A.18)

δhl = hl(Tf + δTf , P + δP )− hl(T, P ) (A.19)

For two-phase quantities:

δρl = ρl(Psat + δPsat)− ρl(Psat) (A.20)

δμl = μl(Psat + δPsat)− μl(Psat) (A.21)

δTf = Tf (Psat + δPsat)− Tf (Psat) (A.22)

δPsat = Psat(Tsat + δTsat)− Psat(Tsat) (A.23)

δhl = hl(Psat + δPsat)− hl(Psat) (A.24)

δhv = hv(Psat + δPsat)− hv(Psat) (A.25)

A.4.2 Mass flux

δA =

√
(WδH)2 + (HδW )2 (A.26)

δPer =

√
(2δW )2 + (2δH)2 (A.27)

δDh =

√(
4
δA

Per

)2

+

(
4
A

Per2
δPer

)2

(A.28)

δG =

√(
δm

NA

)2

+

(
mδA

NA2

)2

(A.29)
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A.4.3 Pressure

δΔp2fr =

(
4δf

G2

2ρl

L

Dh

)2

+

(
8f

G

2ρl

L

Dh

δG

)2

+

(
4f

G2

2ρ2l

L

Dh

δρl

)2

+

(
4f
G2

2ρl

δL

Dh

)2

+

(
4f
G2

2ρl

L

D2
h

δDh

)2

(A.30)

δΔprestr−in =

√(
2
GδG

2ρl
ξ

)2

+

(
G2

2ρ2l
ξδρl

)2

(A.31)

δΔpch =
√
δΔp2total + δΔp2restr−in + δΔp2restr−out (A.32)

δp1,y =
√
δp2inlet + δΔp2restr−in (A.33)

Single-phase channel pressure:

δpi,y =
√
δp2i−1,y + δΔp2fr (A.34)

Two-phase channel pressure:

δLtp = δL
100− onset

100
(A.35)

Γ = dz(i− onset) (A.36)

δpi,y =

√
δp2onset,y +

(
Γ
δponset,y
Ltp

)2

+

(
Γ
δpref,y
Ltp

)2

+

(
Γ
ponset,y − pref,y

L2
tp

δLtp

)2

(A.37)

Specific to the silicon test section:

δΔpch−end =

√
δp25−ave + (0.5δp4−ave)

2 + (0.5δp5−ave)
2 (A.38)

δΔprestr−out =
√
p2ch−end + p2out (A.39)

Specific to the copper test section:
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δΔptotal =
√
δΔp21 + δΔp22 + δΔp23 (A.40)

δΔprestr−out =

√
δΔp22 + (0.1646δΔp2)

2; (A.41)

δpref,y =
√
δp2outlet + δΔp2 (A.42)

A.4.4 Enthalpy and vapor quality

δdB =
√
δW 2 + δF 2 (A.43)

δh2i,y = δh2i−1,y +

(
δqw,xy

B

GHW
dz

)2

+

(
qw,xy

δB

GHW
dz

)2

+(
qw,xy

BδG

G2HW
dz

)2

+

(
qw,xy

BδH

GH2W
dz

)2
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qw,xy

BδW

GHW 2
dz

)2

(A.44)

δhlv,iy =
√
δh2l,iy + δh2v,iy (A.45)

δxiy =

√√√√( δhiy
hlv,iy

)2

+

(
δhl,iy
hlv,iy

)2

+

(
hiy − hl,iy
h2lv,iy

δhlv,iy

)2

(A.46)

A.5 Heat transfer coefficient

ΔT = Tw,xy − Tf,xy (A.47)

δΔT =
√
δT 2

w,xy + δT 2
f,xy (A.48)

δαb,xy =

√(
δqw,xy

ΔT

)2

+
(qw,xy

ΔT 2
δΔT

)2
(A.49)

For the fin heat flux, qfin, the error was assumed to be proportional to that of the wall
heat flux.

δqfin = qfin
δqw
qw

(A.50)



158 A. Error propagation

δαw,xy =

√(
δqfin,xy
ΔT

)2

+
(qfin,xy

ΔT 2
δΔT

)2
(A.51)
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Further results

B.1 Pressure drop ratios
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Figure B.1: Pressure drop ratios for copper test section, Tsat=50◦C.
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B.2 Uniform heat flux heat transfer coefficients
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Figure B.2: αw for different qw. Silicon test section R-236fa.
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Figure B.4: αw for different qw. Silicon test section R-245fa.
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Figure B.5: αw for different qw. Silicon test section R-245fa, Tsat: 31.1
◦C, 902kg/m2s, Error

in αw: 7.2%, RMS: 8.6%.
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Figure B.6: αw for different qw. Copper test section R-134a, 292kg/m2s.
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Figure B.7: αw for different qw. Copper test section R-134a, 367kg/m2s.
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Figure B.8: αw for different qw. Copper test section R-134a, 473kg/m2s.
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Figure B.9: αw for different qw. Copper test section R-1234ze(E), 205kg/m2s.
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Figure B.10: αw for different qw. Copper test section R-1234ze(E), 275kg/m2s.
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Figure B.11: αw for different qw. Copper test section R-1234ze(E), 412kg/m2s.
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Figure B.12: αw for different qw. Copper test section R-245fa, 365kg/m2s.
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B.3 Non-uniform heat flux

B.3.1 Base heat flux and package thermal conductance
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(i) αb R5H

Figure B.13: Silicon test section: Thermal conductance for row hot-spots in the package for
R-245fa, Tsat=31◦C, 703kg/m2s.
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Figure B.14: Silicon test section: Thermal conductance for point hot-spots in the package for
R-245fa, Tsat=31◦C, 909kg/m2s.
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Figure B.15: Silicon test section: Thermal conductance for column hot-spots in the package
for R-245fa, Tsat=30◦C, 702kg/m2s.
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Figure B.16: Comparison between the three-dimensional thermal conduction data reduction
and COMSOL Multiphysics numerical resulzs for the silicon test section with R-245fa for hot-
spot at heater 34, qb[kW/m2] 1200:400, 909kg/m2s.
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Figure B.17: Comparison between the three-dimensional thermal conduction data reduction
and COMSOL Multiphysics numerical results for the silicon test section with R-245fa for hot-
spot at heater 54, qb[kW/m2] 1600:400, 715kg/m2s.
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B.3.2 Wall heat transfer coefficients for the silicon test section
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(c) R5H: Error in αw: 5.1%, RMS: 10.7%, qfootprint/qb: 91%

Figure B.18: αw for row hot-spot in the silicon test section at 503kg/m2s, Tsat=30◦C.
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(b) R3H: Error in αw: 6.2%, RMS: 10.1%, qfootprint/qb: 77%
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(c) R5H: Error in αw: 4.6%, RMS: 9.2%, qfootprint/qb: 92%

Figure B.19: αw for row hot-spot in the silicon test section at 900kg/m2s, Tsat=30◦C.
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(a) 14H: Error in αw: 11.8%, qfootprint/qb: 71%, Gmin/Gnom: 56%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

x[−]

α w
[W

/m
2 K

]

 

 

q
b
[kW/m2]2020:397

q
b
[kW/m2]1833:397

q
b
[kW/m2]1658:397

q
b
[kW/m2]1491:398

q
b
[kW/m2]1333:398

q
b
[kW/m2]1182:398

q
b
[kW/m2]904.2:398

q
b
[kW/m2]667.6:399
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(c) 54H: Error in αw: 11.6%, qfootprint/qb: 72%, Gmin/Gnom: 85%

Figure B.20: αw along Column 4 for point hot-spot in the silicon test section at 507kg/m2s,
Tsat=30◦C.
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(c) 54H: Error in αw: 9.9%, qfootprint/qb: 71%, Gmin/Gnom: 90%

Figure B.21: αw along Column 4 for point hot-spot in the silicon test section at 908kg/m2s,
Tsat=30◦C.
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B.3.3 Wall heat transfer coefficients for the copper test section



182 B. Further results

0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

3
x 10

4

x[−]

α w
[W

/m
2 K

]

 

 

0 0.2 0.4 0.6
x[−]

 

 

0 0.2 0.4 0.6
x[−]

 

 
q

b
[kW/m2]1133:487

q
b
[kW/m2]1470:494

q
b
[kW/m2]1846:498

q
b
[kW/m2]2278:506

q
b
[kW/m2]2714:506

q
b
[kW/m2]3180:505

q
b
[kW/m2]3676:505

q
b
[kW/m2]1177:729

q
b
[kW/m2]1464:708

q
b
[kW/m2]1773:689

q
b
[kW/m2]2170:694

q
b
[kW/m2]2564:688

q
b
[kW/m2]3009:688

q
b
[kW/m2]3504:693

q
b
[kW/m2]1443:948

q
b
[kW/m2]1812:957

q
b
[kW/m2]2206:959

q
b
[kW/m2]2635:961

q
b
[kW/m2]3108:966

(a) R1H: G=293kg/m2s, Error in αw: 10.8%, RMS: 19.4%, qfootprint/qb: 81%
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(b) R3H: G=283kg/m2s, Error in αw: 11.4%, RMS: 20.6%, qfootprint/qb: 55%
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(c) R5H: G=300kg/m2s, Error in αw: 11.0%, RMS: 20.6%, qfootprint/qb: 83%

Figure B.22: αw for row hot-spots with R-134a in the copper test section, Tsat=30◦C.
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(a) R1H: G=468kg/m2s, Error in αw: 10.2%, RMS: 19.4%, qfootprint/qb: 82%
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(b) R3H: G=465kg/m2s, Error in αw: 12.0%, RMS: 20.8%, qfootprint/qb: 53%
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(c) R5H: G=468kg/m2s, Error in αw: 10.8%, RMS: 20.8%, qfootprint/qb: 82%

Figure B.23: αw for row hot-spots with R-134a in the copper test section, Tsat=30◦C.
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(a) R1H: G=388kg/m2s, Error in αw: 10.2%, RMS: 18.8%, qfootprint/qb: 85%
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(b) R3H: G=386kg/m2s, Error in αw: 15.4%, RMS: 19.9%, qfootprint/qb: 56%
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(c) R5H: G=384kg/m2s, Error in αw: 13.1%, RMS: 19.4%, qfootprint/qb: 84%

Figure B.24: αw for row hot-spots with R-134a in the copper test section, Tsat=50◦C.

Appendix/Cu_134_R1H_388_T50_HTC.eps
Appendix/Cu_134_R3H_386_T50_HTC.eps
Appendix/Cu_134_R5H_384_T50_HTC.eps


B.3. Non-uniform heat flux 185

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5
x 10

4

x[−]

α w
[W

/m
2 K

]

 

 

0 0.2 0.4 0.6
x[−]

 

 

0 0.2 0.4 0.6 0.8
x[−]

 

 

q
b
[kW/m2]1117:460

q
b
[kW/m2]1461:469

q
b
[kW/m2]1816:468

q
b
[kW/m2]2227:470

q
b
[kW/m2]2674:472

q
b
[kW/m2]3155:473

q
b
[kW/m2]3680:475

q
b
[kW/m2]1143:681

q
b
[kW/m2]1468:681

q
b
[kW/m2]1850:689

q
b
[kW/m2]2257:689

q
b
[kW/m2]2650:676

q
b
[kW/m2]3146:683

q
b
[kW/m2]3689:690

q
b
[kW/m2]1492:944

q
b
[kW/m2]1863:945

q
b
[kW/m2]2270:945

q
b
[kW/m2]2724:947

q
b
[kW/m2]3145:930

q
b
[kW/m2]3674:936

(a) R3H: G=278kg/m2s, Error in αw: 11.2%, RMS: 21.9%, qfootprint/qb: 64%
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(b) R5H: G=278kg/m2s, Error in αw: 11.6%, RMS: 21.5%, qfootprint/qb: 84%

Figure B.25: αw for row hot-spots with R-1234ze(E) in the copper test section, Tsat=30◦C.
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Figure B.26: αw for row hot-spots with R-1234ze(E) in the copper test section, Tsat=30◦C.
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Figure B.27: αw for row hot-spots with R-1234ze(E) in the copper test section, Tsat=50◦C.
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Figure B.28: αw for row hot-spots with R-245fa in the copper test section, Tsat=30◦C.
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Figure B.29: Power spectral density for R-1234ze(E) in the copper test section at Tsat=30◦C
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Figure B.30: Power spectral density for R-245fa in the copper test section at Tsat=30◦C
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