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Abstract

The upgrade project for TCV (Tokamak a Configuration Variable) in-
cludes the installation of a set of saddle coils, namely the saddle coil system
(SCS), located and powered such as to create a helical magnetic perturba-
tion. Using independent power supplies, the toroidal periodicity of this per-
turbation is tunable, allowing simultaneously edge localized modes (ELM)
control through resonant magnetic perturbation (RMP), error field correc-
tion and vertical control. Other experimental applications, like resistive wall
mode and rotation control, are also in view. In this article, the adequacy
of two SCS designs, an in-vessel one and an ex-vessel one, is assessed with
respect to the desired experimental applications. The current requirements
and the system performances are also characterized. The conducting vessel
wall is accounted for in a model used to determine the coupled response func-
tions of the SCS, the screening of the magnetic perturbation by the wall, the
induced voltages and currents during a plasma disruption and the maximal
magnetic forces exerted on the SCS. A scaling of the SCS parameters with
the number of coil turns is presented and the issue of coil heating and cooling
is discussed.
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1. Introduction

Edge localized modes [2], related to the high confinement regime (H-
mode) [3], lead to a degradation of the plasma confinement and a release of
energetic particles toward the vessel walls. Scaling the current experimental
data to ITER predicts that the power flux released by ELMs will cause an
intolerable erosion and heat load on the plasma facing components [4, [5].
Experiments on DIII-D [6] [7], JET [8] and MAST [9] 10] have demonstrated
that the application of resonant magnetic perturbation is able to mitigate or
suppress ELMs while keeping sufficient confinement properties. The limits
of the process, in terms of operation domain, are not yet accurately known,
DIII-D being up to now the only Tokamak where a complete suppression of
ELMs has successfully been obtained. In addition, experiments in different
Tokamaks reveal opposite results for similar conditions, for example RMP
can trigger ELMs during ELM-free phases in NSTX [11] and COMPASS [12].
With that respect, TCV unique plasma shaping and positioning capability
could extend the range of accessible magnetic perturbation modes for a given
RMP coil system geometry and contribute to a clearer description of the
conditions required for ELM suppression.

Error fields are another aspect of toroidally asymmetric magnetic fields.
They are created by construction tolerances in Tokamak coil positions and
shapes. These fields, dominated by low values of the toroidal mode number,
induce plasma braking and locked modes [I3], themselves responsible for
disruptions. Their effects can be corrected by applying an asymmetric field
of opposite sign, as provided by a SCS. Measurements have shown that these
fields are non negligible on TCV and that their correction could be beneficial
to the operation of the machine.

Vertical control is required to stabilize the highly unstable vertical po-
sition of the plasma. It is obtained by applying an axisymmetric radial
magnetic field. The growth rate of vertical modes is such that the vertical
control coils need to be located inside the Tokamak vessel to avoid screening
of the control field. TCV already has a vertical control system, namely the
internal G-coils. Due to the lack of free space inside the vessel and to the
required number of feedthroughs, it would be difficult to have both a new
SCS and the actual internal coil systems coexisting in the machine. There-
fore, the G-coils must be removed and the SCS must be designed to provide
the vertical control functionality.

Generally, stationary asymmetric magnetic fields result in a toroidal plasma



braking, as observed in the case of strong error fields. For higher toroidal
harmonics, perturbation fields can also lead to counter-current toroidal ac-
celeration, as reported recently on DIII-D [I4] 15 [16]. This effect could be
of particular interest for TCV, since there is presently no external source of
momentum on the machine, due to the absence of NBI heating.

Tearing modes [17), 18] are regularly present in Tokamaks. In TCV, their
frequency is typically in the range of 5 kHz. A SCS powered with a high
bandwidth source could, taking into account the vessel screening, open a field
of research on the interaction of these modes with rotating perturbations,
especially on the question of stability and phase locking of the modes.

Resistive wall modes [19, 20] (RWM) are ideal MHD instabilities that
are not stabilized by the vessel wall because their growth rate is slower than
the resistive time of the vessel. A SCS covering a sufficient portion of the wall
could be used as a way to actively reproduce the wall screening on slower time
scales, following the smart shell principle [21] demonstrated on RFX [22].

In this document, a description and a characterization of two proposed
SCS designs, namely the in-vessel and ex-vessel SCS, are given. The physi-
cal arguments at the root of the proposed designs are detailed in section [2]
where the geometry of the designs, the current requirement for RMP and the
expected perturbation spectra and ergodization features are also presented.
The spectral characterization of the designs is given in section [3. The study
on error field control (EFC) is presented in section |4} including the determi-
nation of the current requirement for the error field correction on TCV. The
questions of inductance and wall coupling are dealt with in section 5 This
section also details the determination of the SCS response function. The
requirements for vertical control are established in section [6] using a principle
of equivalence with the system currently used on TCV. The voltage and cur-
rent induced in the in-vessel SCS during a plasma disruption are calculated
in section [7. The maximal magnetic force exerted on the SCS is calculated
in section [§f A discussion on the impact of the number of turns per coil
and a scaling of different parameters with this parameter are presented in
section [9} The issue of coil heating due to Joule effect and the questions of
cooling time and necessity of active cooling are addressed in section The
document ends with a short conclusion on the presented studies. Note that
the ex-vessel design has been studied for a limited number of aspects, namely
RMP, EFC and self-inductance.



2. RMP and coil system design

This section first describes the principle of RMP. This includes the de-
scription of the method used to establish the current requirements and the
approaches used to qualify a SCS with respect to RMP. Physical arguments
are then given to optimize the coil system topology in terms of poloidal coil
location, poloidal and toroidal coil distribution, individual coil shape and di-
mensions, number of coils and toroidal phase shift between coil rows. Finally,
two coil designs are proposed and discussed with respect to their expected
performances, using vacuum field calculation in a number of situations.

2.1. Principle of RMP

The technique of resonant magnetic perturbation is based on the applica-
tion of a magnetic perturbation perpendicular to the plasma equilibrium flux
surfaces with a spatial variation tuned to align with the equilibrium magnetic
field lines. This perturbation is generally created by a set of poloidally and
toroidally distributed coils having mainly a radial field contribution. The
current explanation of ELM mitigation or suppression by RMP is based on
the overlap of the magnetic islands created by RMP that generates an er-
godic zone in the plasma edge, itself increasing the outward transport and
thereby limiting the pedestal gradients to values below the instability limits.
This description is however still incomplete as the weak effect of RMP on the
pedestal electron temperature remains unexplained.

The formalism used to describe RMP [23], 24, 25] is based on a local
normalization of the perpendicular component B, (with respect to magnetic
flux surfaces) of the magnetic perturbation:

0,¢
where p is a flux surface label, * is a poloidal angle coordinate defined
such that equilibrium field lines are straight in the (0*,¢) plane, ¢ is the
toroidal angle, R is the major radius and By, is the toroidal component
of the equilibrium field. The amplitude of the resonant components of the
perturbation is given by the space Fourier transform of b along the angular
coordinates:

1 2 . i
b(p, m, n) = W //0 d¢d0*b(p, 0", Qﬁ)el(—me —no) (2)
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The width of the resulting island on the resonant surface p; is then given by:

5 2

| mq, |

where ¢, = m/n is the value of the safety factor at ps and ¢, is the derivative
with respect to p.

Note: Since the RMP coil systems are generally made of saddle-shaped
coils, the generic name of saddle coil system (SCS) will be used in the re-
maining part of this document.

2.1.1. Current requirement determination

The determination of the minimal required current for RMP is based
on two complementary approaches. In the first approach, the required per-
turbation amplitude is given by the condition of creating a radial magnetic
field at the plasma separatrix that has the same amplitude, with respect
to the toroidal field, as in DIII-D or JET. This condition corresponds to a
perturbation of 0.4%, i.e. 5.7mT for TCV. The second approach is based
on the criterion of magnetic island overlap in the plasma edge. According
to Fenstermacher [26], the ergodization of the plasma edge on a width of
Aty = 0.17 is required to suppress ELMs on DIII-D, where 1g; is the nor-
malized poloidal flux. Magnetic island overlap is quantified by the Chirikov
parameter o (1) [25] and ergodization appears when the condition o > 1 is
satisfied. The value of ¢ is a function of the amplitude of the current in the
SCS and the required current can therefore be calculated using the condition

2.1.2. Qualifying a SCS with respect to RMP

For a given plasma equilibrium, the magnetic perturbation created by
a SCS can be characterized by the space spectrum E(p,m,n). In the case
of RMP, the spectrum of the magnetic perturbation must be optimized to
obtain minimal resonant core mode amplitudes, maximal edge ergodization
and minimal non resonant mode amplitudes, while maintaining technically
realistic coil current requirements [27, 28, [I4] 15 16]. Using independent
coil powering gives a certain freedom with that respect. A method [25] has
been developed to calculate the optimal coil current distribution for a given
coil setup and plasma equilibrium and quantify the quality of the obtained
perturbation spectrum. The method is based on a Lagrange optimization



where a cost function is minimized while a given amplitude is imposed for a
set of modes. For well-behaved cases of RMP, the cost function f is defined

as:
1

FULY = 5 S 1+ wfy({1}) (@)

where {/.} are the coil currents, N,y is the number of coils, f, is the integral
of |b|? over the whole space and wy is a tuning weight. Minimizing f, results
in spectrum optimization because it corresponds to peaking the spectrum
around the resonant edge modes, for which an imposed amplitude is used. f
is hence made of two parts, current minimization and spectrum optimization,
with a weight w, used to adjust their relative importance. The quality of the
obtained spectrum is then quantified with a figure of merit r defined as the
ratio of the amplitude of a resonant edge mode to f, and therefore measuring
the degree of peaking of the spectrum around the resonant edge modes.

Once the optimal current distribution is known, the proposed SCS is
qualified with respect to a variety of elements:

Spectrum quality: a figure of merit is attributed to the optimal spectra ob-
tained for each controlled value of the toroidal mode number n of the
perturbation. An equivalent figure of merit is also attributed to the
spectra corresponding to a minimal current requirement while main-
taining a certain activation of the edge modes.

Ergodization localization: by plotting the location of the generated is-
lands as a function of the SCS current and the flux surface coordinate
on a 2D map, the localization of the ergodized regions can be visualized.
This method of analysis is similar to a radial profile of the Chirikov pa-
rameter but solves the issue of island pairing inherent to the Chirikov
approach.

Poincaré plots: the vacuum magnetic field perturbation is added to the
equilibrium field and a large number of field lines are followed in space.
A Poincaré plot is obtained by marking the position of the field lines
on a poloidal cross-section after each toroidal turn. They provide an
independent way of determining the location of the ergodized regions.
Although they require a much longer computation time than the previ-
ous method, the obtained result is more robust since they require less
intermediate computations and do not assume a constant perturbation
amplitude across the islands.



2.2. Optimal coil system topology

In order to limit the range of studied coil systems, it is useful to formulate
a number of generic arguments serving as reflection guides. These arguments
are then used to propose a number of possible SCS designs, which are in
turn qualified with respect to a given plasma equilibrium using the methods
described above.

2.2.1. Toroidal distribution

As far as RMP is concerned, there is no theoretical constraint on the
toroidal distribution of coils in the coil setup. However, a number of argu-
ments must be considered:

e A system that is not evenly-spaced toroidally activates a whole fam-
ily of toroidal modes, with few control on the relative amplitudes in
each value of the toroidal mode number n, although the perturbation
spectrum is usually peaked on modes with low n values. This may
seriously impair the experimental usage of the coil system, as well as
the physical interpretation of the experimental results. For example, it
becomes very difficult to limit the magnetic field line ergodization to
the plasma edge in such a case.

e A coil system can therefore be used for error field correction only if it
is evenly-spaced toroidally.

e In vertical control operation, the pure n = 0 correction is much better
mimicked if the coils cover the whole toroidal circumference, i.e. if they
are juxtaposed with one another.

e [f the coils are juxtaposed with one another and evenly-spaced, the
toroidal spectrum of the perturbation displays less activation of side-
band modes. It also means that the coil current requirements to obtain
a given perturbation amplitude are smaller.

The optimal toroidal distribution is therefore made of evenly-spaced juxta-
posed coils.

2.2.2. Poloidal location and distribution
Concerning the poloidal location and distribution of the coil system, the
following arguments should be considered (see [29] and equation (1))



e Since the edge safety factor is usually large in Tokamaks, a perturbation
must activate modes with high values of the poloidal mode number m
in order to be resonant. Sharp poloidal variations of the magnetic
perturbation are therefore necessary. This constraint can be somewhat
lessened on the low field side since the poloidal angle between two
successive turns of a field line is larger in that particular location.

e A magnetic perturbation located close to a region of the plasma where
the poloidal flux expansion is small has a larger effect. Since Tokamak
plasmas are vertically elongated, such a region is present on the median
plane of the plasma. In addition, the flux expansion is further reduced
by the Shafranov shift on the low field side of the machine.

e The relatively smaller toroidal magnetic field on the low field side con-
tribute to a larger effect of a magnetic perturbation located there.

From these arguments, it appears clearly that the coil system must be located
on the low field side of the machine, spread on as many rows as possible.

2.2.83. Individual coil shape and dimension

The exact shape of each coil has small significance in terms of perturba-
tion spectrum. A saddle-like shape is nonetheless preferred to other possible
shapes since it maximizes the amplitude of the perturbation field for a given
coil area and, in case of juxtaposed coil systems, minimizes the effect of
spatial discretization when the coils are combined to mimic systems having
smaller spatial mode numbers. In a system made of juxtaposed coils, the
coil dimension is determined by the poloidal and toroidal number of coils.
Otherwise, the coils should be as large as possible to minimize the current
requirement.

2.2.4. Number of coils

The number of coil rows is determined as a trade-off between current
requirements and spectrum shaping. A higher number of rows allow more
control on modes with high values of m, but comes with smaller coils requiring
more current. The number of coils in the toroidal direction, N,yis+, defines
Nmae the highest controllable value of n. Again, a trade-off between current
requirements and coil system features must be chosen. Important aspects
in this matter are the number of available feedthroughs, the cost of power
supplies and the natural geometry of the Tokamak.



2.2.5. Mechanical toroidal phase shift between coil rows

When using independent coil powering, the phase of the perturbation
created by each row of coils can be tuned for all the values of n smaller than
Nmag- 10 the case where N5 is even and for n = n,,q,, this statement
does not hold and the spectrum of the perturbation can only be optimized
by adjusting the relative current amplitude between coil rows, which might
be insufficient. In that case, the alignment of the magnetic perturbation
with the magnetic field lines in the edge of the plasma may be optimized by
a mechanical toroidal phase shift between coil rows. Such a design raises a
number of issues:

e The optimization is rigid and might be optimal with respect to a narrow
experimental domain, in particular limited by the value of ge44¢, the sign
of the helicity, the plasma position and the plasma shape.

e The optimization rigidity may be alleviated by increasing the number
of coils on one or more rows and changing the coil connections in these
rows depending on the desired phase shift. However, such a solution
requires a much higher number of coils and the development of multiple
coil designs. Space occupation might also be an issue.

2.3. Optimal coil system topology for TC'V

The particular geometry of TCV, approximately 3 rows of 16 evenly-
spaced portholes, and the requirement of flexible plasma positioning dictate
most of the topology choices for the SCS project. The positioning flexibility
requires the conservation of the mid-plane symmetry of the machine. Since
small elongation plasmas located in the top or bottom half of the machine
are commonly created, a mid-plane coil row is also necessary. Therefore,
at least (and at most, due the portholes) 3 coil rows must be installed.
The choice of n,,q., the highest controllable value of n, is driven by the
toroidal symmetry of the machine: n,,,, € {1;2;4;8}. RMP requires at
least Nypee = 2, but n,,.. = 4 is certainly preferable to ensure a certain
flexibility during experimental studies. n,,,, = 8 would not only represent
an important cost, but also be less interesting in terms of resonant mode
control since the corresponding values of m are too high with respect to the
capabilities of a 3-row system.

Concerning the question of mechanical toroidal phase shift between coil
rOWS, in a Ny, = 4 design and taking the vessel geometry into account,



only a 27/16 phase shift of the mid-plane row would be sensible. For n =4,
such a phase shift actually worsen the magnetic perturbation alignment since
the field line pitch angle is usually much flatter than the pitch angle of the
perturbation that would then be created.

Following the arguments stated above, the optimal coil system topology
for TCV consists in 3 rows of 8 evenly-spaced coils. If possible, these coils
should be juxtaposed with one another and the rows should be vertically
aligned.

2.8.1. In-vessel coil system

An in-vessel coil system would be the most interesting option in terms
of potential experimental usage of the system since all the intended applica-
tions would be possible. A number of important restrictions are nonetheless
present for such a system, as shown in the list below:

e The coils must be passed through the manhole during the installation
procedure. As a result:

— The toroidal extent of the coils is limited by the height of the
vessel. This is compatible with a choice n,,., = 4, i.e. a coil
encircling 2 portholes.

— The height of the coil is limited by the diameter of the manhole,
giving a final height of approximately 38 cm.

e The number of portholes for feedthroughs limits the number of coils
(nmax S 4)

e The coils must be as thin as possible to fit in a narrow space between
the vessel and the tiles.

e The coils must be as far away as possible from the vessel to limit the
screening of the perturbation and as close as possible to the plasma in
order to minimize the required coil current and maximize the amplitude
of modes with high values of m.

e The coil support must be strong enough to endure the mechanical
shocks related to plasma disruptions.

e The coil design must be vacuum-compatible.
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e The coil design must account for the coil temperature increase due to
Joule effect in the absence of active cooling and due to vessel baking
during conditioning phases.

A possible design is shown in figure [I} This design is compatible with all
the requirements stated above and follows the optimization guidelines. The
10-turn design used for numerical applications throughout this document is
shown in figures 2] and [3]
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Figure 1: Perspective view of the optimal in-vessel design for the SCS project
(in blue) for TCV, drawn on top of the vacuum vessel (in black). The system
consists of 3 rows of 8 internal saddle coils located on the low field side of
the torus. The coils are toroidally juxtaposed and vertically aligned. The
number of turns per coil in the figure is illustrative only.

2.3.2. FEx-vessel coil system

An ex-vessel coil system might prove interesting in terms of cost reduction.
The restrictions specifically related to an ex-vessel system are listed below:

e The vertical control and mode rotation control features are lost due to
the vessel wall screening of any high frequency perturbation. Resistive
wall mode control becomes very limited or impossible.
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Figure 2: Poloidal cross-section of the 10-turn in-vessel SCS design. On
the LHS, the toroidal projection of the coils is shown, as well as the actual
position of the internal fast coils, also known as G-coils (©). On the RHS, a
zoom on the coil is shown.

e The coils are further away from the plasma. As a result, the amplitude
of modes with high values of m is decreased, with a possible detri-
mental effect on ELM control by RMP, and the current requirement is
increased.

e The current induced in the coils due to a disruption is reduced, thanks
to the vessel wall screening.

e The space occupation outside the vessel limits considerably the possible
coil geometry. A “chair-like” design might be envisaged to minimize the
distance between the coils and the plasma. The toroidal juxtaposition
of coils is not possible in that case.

A possible design is shown in figure [d} The design is compatible with the
restrictions stated above but some portholes might need to be re-engineered
in order to accommodate such a system. A configuration with only 4 coils
toroidally, generating a perturbation with n,,,, = 2, would fit more eas-
ily into the current TCV setup. The single-turn design used for numerical
applications throughout this document is shown in figures [5 and [6]
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Figure 3: Toroidal cross-section of the 10-turn in-vessel SCS design. Top:
overview of the TCV vessel with the coil array (nearly continuous circle).
Bottom: zoom on a particular pair of coils. NB: the tangential porthole is
missing on the figure.

2.4. RMP performances and current requirement of the in/ex-vessel SCS

In this section, the performances of the proposed in- and ex-vessel SCS
in terms of RMP are assessed following the principles given in section [2.1.2]
The current requirements (see section [2.1.1]) are also given.

2.4.1. FEquilibrium description

A typical ELMy H-mode plasma equilibrium is used to calculate the differ-
ent parameters used in the design quality assessment. The same equilibrium
is used at two different vertical positions of the magnetic axis: 2,4y = 0
and 2, = 0.23cm. The plasma is characterized by a density on axis
ne = 7.5-10"m™? a plasma current I, = 415kA, a toroidal magnetic
field on axis By gzis = 1.4T, a major radius R,zis = 0.91m, a minor radius
a = 0.22m, a triangularity dg; = 0.4, an elongation kg5 = 1.7, a normalized
pressure 3, = 0.65 and a safety factor go5 = 2.6.
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Figure 4: Perspective view of the optimal ex-vessel design for the SCS project
for TCV, drawn on top of the vacuum vessel. The system consists of 3 rows
of 8 external saddle coils located on the low field side of the torus. The coils
are vertically aligned.
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Figure 5: Poloidal cross-section of the ex-vessel SCS design. On the LHS,
the toroidal projection of the coils is shown, as well as the position of the
TCV coil system. On the RHS, a zoom on the coil is shown.

2.4.2. Current requirements and figure of merit

The figure of merit and the required current, based on the overlap of
magnetic islands, are shown in figure m for both coil designs and 2,y = 0.
Both parameters are shown as a function of the cost function weight w,
indicating a scan between the current requirement minimization and the
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Figure 6: Toroidal cross-section of the ex-vessel SCS design. Top: overview
of the TCV vessel with the coil array. Bottom: zoom on a particular coil.
NB: the tangential porthole is missing on the figure.

spectrum optimization.

The general aspects of the dependence of the figure of merit and the
required current on the weight w, are discussed in [25]. The focus is brought
here on the comparison between both designs. Despite the extra distance to
the plasma, the ex-vessel design displays spectral features close to the values
given by the in-vessel system. However, in the case of the in-vessel SCS, a
realistic multi-turn coil design has been used to calculate the spectra, whereas
a single-turn design has been used for the ex-vessel system. This choice might
have a noticeable impact on the presented results, since a multi-turn system
produces a perturbation with less activation of the modes with high values of
m. As expected, the current requirements for the ex-vessel system are much
larger than those for the in-vessel system. This result is explained by the
limited toroidal extent and the larger distance to the plasma in the ex-vessel
case. The figure of merit r generally takes a higher value at z,,,, = 0.23 for
wy small. At this position, the location of the transition from the equatorial
coil row to the upper coil row coincides with the plasma magnetic axis and
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Figure 7: Figure of merit r (solid lines) and required current for edge er-
godization I, (dashed-dotted lines) as a function of the weight w, in the
cases n; = 2, ny = 3 and n; = 4 for the in- and ex-vessel SCS and 2,44 = 0.
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the SCS therefore naturally produces perturbations with high values of m
without increasing the value of the current cost function. However, the overall
current requirements are higher (factor 2 to 3) at z,,,, = 0.23, especially for
optimal spectra. This is due to the weak contribution of the bottom coil row.

As shown in figure [7] the current requirements based on magnetic island
overlap vary greatly as a function of the degree of optimization of the spectra.
A study published in [25] also shows that they depend on the equilibrium
parameters, mainly the g-profile. To determine the DIII-D and JET equiva-
lent current, the relative current distribution giving an optimal spectrum at
Zmag = 0 has been retained. This choice is justified by a too weak activation
of the bottom and top coil rows in the minimal current configuration lead-
ing to a nearly insignificant contribution to the total perturbation in that
case. For the in-vessel system, a DIII-D and JET equivalent is given by a
current of approximately 4kAt. As shown in figure [7] such a current would
be sufficient for non-optimal spectra. At z,,, = 0, the reserve of current
dedicated to the error field correction (approximately 3kAt) could be used
to reach the optimal spectra. Note that at z,,,, = 0.23, the optima would
not be reached unless the current limit for RMP only is increased to 12 kAt.
For the ex-vessel system, the DIII-D and JET equivalent is reached for a
current of 14kAt. As before, the error field correction current can be used
for RMP and offers an additional 7kAt. Here again, the optimal spectra at
Zmag = 0.23 are reachable only at the cost of a large increase of the current
requirement for RMP.

2.4.3. Spectra

The magnetic perturbation spectra corresponding to both extremes of w,
for the in-vessel SCS design, n = 2 and 2,4y = 0 are plotted in figure [§] to
illustrate the process of spectrum optimization. This detailed view shows
that the figure of merit captures correctly the main features of the spec-
tra. In general, the z,,,, = 0 spectra of the in-vessel system exhibit sharper
variations along m than those of the ex-vessel system, consistently with the
smaller distance to the plasma of the in-vessel system. For all cases, the
alignment of the perturbation with the g-profile is sufficient and the opti-
mization of the spectra is efficient, particularly in terms of reduction of core
mode amplitudes.

17



4

=
O\

0.8

max = 1 At)

0.6

2)| (&

0.4

[b(n

0.2

PN Wb oo N o ©o X

-15-10 -5 0 5 10 15
m

(a) Minimal current

[bn =

-15-10 -5 0 5 10 15
m

(b) Optimal spectrum

Figure 8: ‘B(p, m,n = 2)‘ ®: resonant flux surface locations, ®: symmet-

rical non resonant counterparts. Case: in-vessel, zpqy = 0, n = 2.

2.4.4. Ergodization map and Poincaré plot

An example of ergodization map is given in figure[9] This corresponds to
the in-vessel design with a current distribution giving an optimal spectrum
for n = 4 and 2,4y = 0. The maximal current in the plot is given by the
condition of equivalence with DIII-D and JET perturbation amplitude at the
separatrix. In that case, the ergodization layer is well located at the edge of
the plasma and grows toward the core as the current is increased.

Although Poincaré plots are not directly used in the design study, they
provide a point of comparison to verify the results obtained by the analytical
island width approach. Indeed, the only common part to both approaches

18



w

25}

N

[kAY]

max
-
(3}

-

05

&

Figure 9: Ergodization map. Island width (red) and ergodic regions (dark
brown) shown as a function of the maximal current fed in the SCS. Vertical
black dashed line: inner limit of the required ergodic zone according to the
o1 = 0.83 limit. Vertical white dashed line: 1y; = 0.95. Case: in-vessel,
Zmag = 0, n = 4, optimized spectrum.

is the total magnetic field in cylindrical coordinates. The Poincaré plot cor-
responding to figure [0 is shown in figure [I0] The edge ergodization and the
isolated core islands can be observed. In addition, the deformation of the
plasma separatrix due to the magnetic perturbation is clearly visible. Fig-
ure illustrates the effect of strike point splitting due to the application
of RMP. Interestingly, the simple vacuum field approximation is sufficient to
account for an experimentally observed phenomenon [30, 31}, 32, [33].

3. Spectral characterization of the SCS

The spectrum of the magnetic field perturbation as defined in is a
function of the coil geometry, the coil locations and the relative coil currents.
Due to the small number of coils and to their identical geometry, spectral
degeneracy occurs, consequently limiting the number of simultaneously con-
trolled modes provided by the coil system. A simple theory [25], based on
the combination of the real-space Fourier transform of the perturbation due
to a single coil and the current-space Fourier transform of the current distri-
bution of a set of equivalent coils, is used to entirely characterize the spectral
limitations of a coil system. Formally, the Fourier transform b of the mag-
netic perturbation is expanded using sets s of toroidally equivalent coils (e.g.
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Figure 10: Poincaré plot of the magnetic field lines for the in-vessel SCS
design in the n = 4 configuration with optimized spectrum, using the 2,44 =
0 equilibrium. The SCS is powered so that the Chirikov criterion is satisfied.
The equilibrium separatrix and magnetic axis are shown in red. Core islands
are not represented.
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identical coils on the same row, with arbitrary toroidal spacing ¢?):

p,mn Zst p,m,n)I;
—st (p,m,n) le ~ing:
—st p.m.m) " (n) )

where l~)§ is the Fourier transform of the magnetic perturbation due to a unit
current in coil ¢ of set s, the index 0 labels a reference coil in the set having
¢o = 0 and I* is the generalised discrete Fourier transform of I in the
current space. In the case of evenly spaced coils, I¢ is equal to the standard
discrete Fourier transform of /7, so that modes with different values of n
can be orthogonally activated by using Fourier modes for the currents in
each coil row. In addition, the equalities I*(n 4+ pN,) = I*(n) ¥p € N and
I$(N, — n) = I**(n) where N, is the number of coils in the set s mean that
the activation of modes with a given value of n implies the activation of a
whole class of modes with other degenerated values of n.

In the particular topology proposed for TCV (section , equation
leads to the conclusion that 5 orthogonal classes of n are available {0; 1; 2; 3;
4}, with main degenerate pairs {0; 8}, {1; 7}, {2; 6} and {3; 5}. For classes
n=1,n=2 and n = 3, the 3 coil rows allow a maximum of 3 simultaneous
targets (i.e. 3 points (p, m,n) for which b is controlled) per class, while for
classes n = 0 and n = 4, only 1 target per class is allowed (with simultaneous
spectrum optimization if independent power supplies are used). The toroidal
periodicity results in maximal gains for each row as follows: ¢({0;4}) = 8,
g({1;3}) = 4.3 and ¢({2}) = 5.6, where g is the gain of a perturbation
amplitude for 8 coils with respect to the amplitude given by a single coil.
For class 3, the degeneracy between n = 3 and n = 5 and the small spectral
distance between these modes implies a non negligible effect of n = 5 modes
when working in n = 3 configurations.

4. Error field correction

This section describes the issue of error fields on TCV and how the pro-
posed SCS could correct them. First, the error field situation on TCV is
described. Then, the correction principle used in this study is detailed and
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the SCS design capabilities are discussed. Finally, the question of current
requirement is addressed.

4.1. Error field on TCV

According to Piras [34], the main source of non-axisymmetric error field
on TCV is a tilt of the central coil column corresponding to a misalignment of
a maximum of 5 mm of the poloidal field coils located on the central column.
This shift corresponds to a n = 1 radial perturbation in the range of 1 to
5mT. The effect of the error field on the plasma is a function of the powering
of the different poloidal coils and also a function of the distance between the
coils and the plasma.

4.2. Error field correction principle

A correction of the error field by a SCS in the entire vacuum chamber is
not possible. The SCS can only correct a few spectral components of the error
field on a given number of flux surfaces. If the source of error field is known,
the resulting magnetic perturbation on the flux surfaces can be calculated for
a given magnetic equilibrium. The simplest approach consists in assuming
no plasma response to the error field and using the vacuum error field as the
error field existing at the flux surfaces. A possible theoretical approach [24]
for EFC consists in using a SCS to create a magnetic perturbation that
cancels out the most damaging components on the resonant flux surfaces
(e.g. cancelling out the (n,m) = (1,2) component on the ¢ = 2 surface). Of
course, the SCS will itself be a source of error field and its own contribution
should be minimized. A more advanced theoretical approach [35], [36], taking
into account the amplification of certain components of the error field by the
plasma, would possibly give more accurate results, but since the aim here
is only to estimate the required current for EFC, the simple vacuum field
approach described above is thought to be sufficient.

The experimental approach consists in scanning the parameter space of
the n = 1 perturbation created by the SCS and correlating the scans with the
plasma performances or breakdown robustness. If the number of degrees of
freedom of the SCS is large, such an approach might prove extremely resource
consuming, especially if the variety of possible magnetic configurations is
large, like on TCV.
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4.3. EFC capabilities with the proposed SCS

Since error field is mainly present for n = 1 components, EFC can be
obtained independently of other usages of the SCS as long as the combined
current requirements do not exceed the design value. As described in sec-
tion (3] the proposed SCS can correct at most 3 modes. Instead of a total
correction of 3 modes, the SCS can also be fed with a current distribution
that minimizes the error field on a larger number of modes, without can-
celling them totally. Depending on the experimental program, one could for
example correct exactly a particularly strong resonant mode and minimize
the amplitude of a set of non-resonant modes. The method described in [25]
returns the optimal current distribution for any of the options described
above.

4.4. Required current for EFC on TCV

In order to determine the required current for EFC on TCV, the n = 1
error field due to a 5mm radial shift of each poloidal field coil powered at
their nominal current of 7.5kA is calculated on the main resonant flux sur-
faces ¢ = 1 and ¢ = 2 of both magnetic equilibria described in section [2.4.1}]
The SCS current distribution is then optimized to cancel this field in different
situations: cancellation of the m = 1 or m = 2 resonant mode only, simul-
taneous cancellation of both components and, finally, cancellation of one of
the resonant modes while minimizing the activation of parasitic modes by
the SCS. In all cases, the results are given for the error field phase requiring
the largest coil current.

The results for the in-vessel SCS are given in table [lal As expected,
the coils that are close to the magnetic axis have a larger effect. The error
fields created by the so-called F-coils (low field side poloidal coils) also have
a larger impact than those created by the F-coils (high field side poloidal
coils), consistently with the expected larger impact of perturbation coils lo-
cated on the low field side of the vessel (see section [2.2.2). The required
current depends strongly on the case under consideration. In the present
study, a variation from 0.9 to 16.2 kAt is observed. Following the conclusions
of the study of the required current for RMP, the required current for EFC
increases when an optimal spectrum is required or when several modes are
corrected simultaneously. The situation becomes worse when the plasma is
located at zp,qy = 0.23 and any of both previously stated situations occurs.
When considering the values given in table it seems reasonable to fix the
required current at I,.qq, = 3 kAt since the error field is mainly created by
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the F-coils in TCV and since special correction scenarios (i.e. multi-mode
or optimal spectrum approaches) could use the reserve of current dedicated
to RMP (4kAt in this case). With such a choice, the current limit would
be sufficient to cover the standard correction scenario (i.e. one mode with
minimal current) with sufficient margin in all the cases and the second limit
offered by the RMP reserve would give access to most of the cases of interest.
Only multi-mode correction at z,,,, = 0.23 would not be possible, but such
a scenario would require 9kAt in addition to the RMP reserve and there-
fore represent a large increase of cost with respect to the expected scientific
output.

The results for the ex-vessel SCS are given in table [Ib] Observations
similar to those given for the in-vessel case could be mentioned. Following
the arguments given for the in-vessel case, the required current for EFC can
be fixed at TkAt (recall: the required current for RMP is 14 kAt in that
case).

5. Inductance, wall currents and response function of the SCS

The electrical characterization of the SCS requires the calculation of the
self and mutual inductances of the coils. For in-vessel coil systems, the elec-
trical coupling of the coils with the vessel wall must also be characterized in
order to deduce the frequency response of the coil system and the proportion
of screening due to the wall. These aspects are studied in this section.

5.1. Mutual and self inductance

The mutual and self inductance calculation of the SCS is based on the
Neumann’s formula (A.1)). When possible, analytical or semi-analytical for-
mulations are used to speed up the calculation. The details of this procedure

are given in [Xppendix A}

5.2. Calculation results in DC mode

When the coils are powered with a constant current, the presence of the
vessel wall has no importance. In that case, the coils of the in-vessel design,
in a 10-turn configuration, have a self-inductance of 138 yH while the coils
of the ex-vessel design, in a single turn configuration, have a self-inductance
of 1.44 yH. For the in-vessel design, the mutual inductance between direct
neighbours on the same row is of -6 pH and between direct neighbours one
row apart of -10.6 uH. The current induced in a coil due to the powering of a
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Optimal | max(lreq £)

spectrum [kAt] [kAt]
1 0 No 0.9 (E3) | L3 (F5)
1 0 Yes 1.7 (E3) | 2.5 (F5)
2 0 No 1.3 (E4) | 1.3 (F4)
2 0 Yes 1.7 (E4) | 1.8 (F4)
12| 0 No 6.5 (B4) | 7.7 (F4)
1| 023 No 0.9 (E5) | 1.3 (F6)
1| 023 Yes 3.8 (B5) | 5.7 (F6)
2 | 023 No 1.1 (E5) | 1.2 (F5)
2 | 023 Yes 5.7 (E5) | 6.5 (F5)
1,21 | 0.23 No 13.0 (E5) | 16.2 (F6)

m | Zmag [M]

Optimal | max(Zeq g)

spectrum [kAt]
1 0 No 3.2 (E3) | 48 (F5)
1 0 Yes 4.1 (E3) 6.3 (F5)
2 0 No 44 (E4) | 4.6 (F4)
2 0 Yes 5.1 (E4) | 5.2 (F4)
12| o No 24.9 (E4) | 29.6 (F4)
1| 023 No 2.9 (E5) | 4.2 (F6)
1 | 023 Yes 8.5 (E5) | 12.6 (F6)
2 | 023 No 40 (E5) | 4.5 (F5)
> | 023 Yes | 13.7 (E5) | 15.6 (F5)
1,2]| 023 No 26.9 (E5) | 33.2 (F5)

Table 1: Required current for EFC with the in- and ex-vessel SCS. The “op-
timal spectrum” column mentions whether the required current is minimized
(“No”) or the parasitic modes are minimized (“Yes”). The maximal correc-
tion current for each group of poloidal coils is given. The coil for which this
current is required is given in brackets. The FE-coils are the high field side
poloidal coils and the F-coils the low field side ones. Both sets are numbered

(b) Ex-vessel SCS

from 1 to 8 from bottom to top (see figure [5)).
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neighbouring coil is therefore more than an order of magnitude smaller than
the current in the active coil. The mutual inductance between coils located
further apart is negligible.

5.8. Calculation of wall currents

In order to estimate the electromagnetic coupling between the vessel wall
and the SCS, the wall is represented by a set of conducting filaments having
an imposed geometry. The choice of filament geometry is determined by the
expected spatial distribution of the vessel current density, which is in general
conforming with the shape of the coils. Particular geometries are proposed
below (sections |5.3.1| and [5.3.2)). For the moment, it is sufficient to consider
a set of generic vessel filaments. The electromagnetic system formed by the
SCS and the wall is then completely described by the resistance and the self
and mutual inductances of all the vessel filaments and coil turns. Assuming
the time-dependence of the SCS currents to be I.e“!, the wall currents are
given by the vessel filament voltage equations:

[(wMyy + Ryv] I, = —iwM,, - L (6)
o= Ridy (7)

l;
Ri = pvesselgi <8>

with v the vessel filament index, ¢ the SCS coil index, I the current vector,
R the electrical resistance matrix, M the inductance matrix, [ the conductor
length, S the conductor cross-section and p the resistivity. As the frequency
is increased, the image currents induced in the vessel wall reduce the mag-
netic flux created by the SCS and cancel partially the radial magnetic field
perturbation. Above a certain frequency, the resistive contribution of the
vessel filaments becomes negligible and the relative amplitude of the vessel
currents saturates. In theory, the wall screening can therefore be completely
compensated by increasing the value of the SCS nominal current, especially
for the in-vessel design, but the necessary increase might be very large (a
factor 5 to 10) depending on the distance between the coils and the vessel
(see section [5.3.5)).

The effect of the wall can be fully represented by an apparent inductance
of the SCS. For this purpose, the SCS voltage equation must be used:

U = [ (ioMes + Rer) oMoy || 1| )
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Using @ to replace I in @, the vessel contribution can be represented by
a frequency-dependent apparent inductance matrix:

U, = [iwMece app(w) + Reel - Ie (10)

with
Mec.app(w) = Mee — iwMey (iwMyy + Ryy) "My (11)

From an electrical point of view, the wall decreases the apparent inductance
of the system as the current frequency is increased. This is consistent with
Faraday’s equation.

Note that this study is meaningful only in the case of the in-vessel design,
since the ex-vessel design would not be powered at frequencies exceeding the
wall penetration time.

5.8.1. Filament geometry for independent coil powering

In the general case of independent coil powering, the vessel filament ge-
ometry is chosen as follows. Each coil of the SCS is matched with a number
of geometrically equivalent loops in the wall, taken as an infinite cylinder
here. These loops are defined so that wall loops of two neighbouring coils
are at most juxtaposed (see figure . Since the current density in the wall
tends to tighten along the projection of the SCS coils as the frequency is
increased, the values at the limit w = oo will be unaffected by the number
of wall filaments outside the coil projection.

Note that the central column, the top and the bottom of the vessel are
not taken into account in this representation of the vessel. Since these ele-
ments are relatively far away from the coils, neglecting them is certainly not
too damaging. The n = 0 combination case (section shows that this
assumption has no major consequences.

5.3.2. Filament geometry for n = 0 coil combination

The n = 0 combination of the in-vessel SCS is of particular interest for
vertical control, especially if a special common power supply is used for it.
In order to calculate the magnetic field produced in n = 0 configuration, it is
easier to replace the rows of the SCS by circular toroidal loops and to also use
circular toroidal filaments to describe the wall. Such an assumption allows to
take into account the remaining parts of the vessel (bottom, top and central
column). In this context, the general method developed in section still
holds, but the calculation is greatly simplified by the axisymmetric geometry.
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Figure 11: Tllustration of the vessel filaments (in dashed lines) used in the case
of independent coil powering. The number of filaments has been decreased
here for the sake of clarity. The coil turns are represented by solid lines. The
number of turns per coil in the figure is illustrative only.

The results obtained here are also useful to check the validity of the results
obtained in the independent coil powering geometry. Note that this approach
neglects the contribution from the vertical segments of the SCS and the
toroidal gaps between the coils.

5.8.3. Apparent inductance as a function of frequency

The apparent self and mutual inductances as a function of frequency of the
in-vessel system using the filament geometry for independent coil powering
and equation is shown in figure Similarly to the DC case, coupling
between coils at high frequency is weak and becomes negligible for coils that
are not direct neighbours. For the sake of clarity, the apparent self-inductance
of a single coil is shown separately in figure [I3] The effect of the wall is not
negligible, since the reduction of apparent inductance is close to a factor
2. Therefore, the required voltage to reach a given peak current at high
frequency is smaller than what could be expected from DC values.

5.3.4. n =20 coil combination and wall model consistency

When combining coils in n = 0 configurations, the total inductance of the
system depends on the relative direction of the current between the coil rows.
For simplicity, we assume that each coil row is either not active (‘0’) or carry
the same current amplitude as the other rows (‘+’ or ‘-, depending on the
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Figure 12: Apparent self and mutual inductances of a selection of pairs of
coils as a function of frequency for the 10-turn in-vessel SCS, using the wall
filament geometry described in section A 2-character alphanumeric
code is used to describe the coil locations, the digit indicating the location
of a coil in a row and the letter indicating the coil row.
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Figure 13: Apparent self inductance of a coil of the 10-turn in-vessel SCS
as a function of frequency, using the wall filament geometry described in

section @

current sign). In this case, the minimal inductance is obtained for the ‘0+0’
configuration while the ‘+-+’ configuration yields the largest inductance.
The results for both type of wall filaments can be compared by grouping the
apparent inductances obtained with the saddle-shaped wall filaments inn = 0
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configurations (see figure . As expected, the DC inductance is slightly
higher for the combination of saddle coils because of the contribution of the
vertical segments of the coils. At high frequency, the decrease of apparent
inductance due to the presence of the wall is slightly larger for the circular
filament model, consistently with a better modelling of the screening effect
due to a full spatial coverage of the vessel by the filaments. The discrepancy
between both results is not significant from the engineering point of view
and both approaches will be considered as satisfactory. Nonetheless, when
possible, the worst situation results should be used for the power supply
design, i.e. the inductance given by the saddle-shaped filament model and
the effective vertical control given by the circular filament model.
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Figure 14: Apparent self-inductance of ‘0+0" and ‘+-+" n = 0 combinations
of the 10-turn in-vessel SCS as a function of frequency. The results obtained
for the toroidally circular wall filaments (“circ”) are compared to the results
obtained for the saddle-shaped filaments by combining the apparent induc-
tances of the SCS coils obtained for that geometry (“comb”).

5.3.5. Magnetic perturbation screening as a function of frequency

The 10-turn in-vessel SCS design is used to quantify the screening of the
magnetic perturbation due to the vessel image currents. For that purpose,
a single coil of the system is used so that the number of filaments in the
wall can be increased both vertically and radially to obtain a more accurate
description of the wall. Equation @ is solved for a range of frequencies to
obtain the wall currents. The radial magnetic field due to the coil and the
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wall currents is averaged on the coil axis, limited by the radial extent of the
vacuum chamber. This calculation is repeated for a selection of radial loca-
tions of the coil, going from 0 to 4 cm between the coil and the wall surfaces.
The results are shown in figure [I5] Note that the indicated distance to wall
is measured from the coil center to the wall inner surface. On figure [I5a], the
saturation of the attenuation at high frequencies can be seen. The deviation
of the attenuation along the radial coordinate is larger for the case where the
coil is further away from the vessel wall, consistently with a larger spreading
of the vessel currents and a non negligible distance between both sources of
magnetic field with respect to the probed location. Figure shows that
the attenuation is strongly dependent on the distance from the coil to the
wall. The coil centers of the original 10-turn design are located at 2.5 cm from
the wall surface, in which case only approximately 25% of the perturbation
remains at high frequency.

5.4. SCS reduced response function

Equation defines the response functions of the SCS in the presence of
a conducting wall. Note that the response functions of the different coils are
coupled with one another and with the wall. Although each response function
can be represented as a function of frequency in both directions (I.(U.) and
U.(1.)), they cannot be described by a simple analytical expression, as would
be required to design the power supplies. In order to reduce the complexity
of the system, the general method of system response reduction is used. This
procedure is described below.

Equations @ and @ expressed in a more general form are written:

U=MI+R-I (12)
with

Uc - Mcc Mcv
U_{ 0 ] M“{MVC M}

I. | Ree O
SIS
from which the time derivative of the currents is written:

I=—M ! R-I+B.-U, (13)
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Figure 15: Mean attenuation along the coil axis of the magnetic perturba-
tion created by the 10-turn in-vessel SCS. frequency dependence for two
different distances from the coil center to the wall surface (in centimeters),
including the standard deviation along the radial coordinate. @ dependence
on the distance to the wall at saturation (i.e. 100kHz), also including the
standard deviation.
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with B the first n. columns of M~!. In this form, the circuit equation is an
example of a linear time invariant system (LTT) and the tools developed in
the frame of LTI theory are applicable.

LTT theory involves the manipulation of state-space models. A general
state-space model formulation is given by:

{)'(:Ax—i—Bu (14)

y = Cx + Du

where u is the input, y the output and x the space vector of the system. Of
course, u and y can also be vectors, in which case the system is said to be
a MIMO (multiple inputs, multiple outputs). Writing x = sx, the transfer
function G(s) := y/u is given by:

G(s)=C(s1—A)"'B+D (15)

Note that G is a matrix of transfer functions in the general case.

In the case of the wall filament model, the state space model is given
by comparing equations and : x =1 A:=-M'!'R, B =
B,u:=U,y =1, C =[1,0 and D = 0. In equation (14]), x is
an internal variable. It is therefore possible to approximate the transfer
functions corresponding to the state-space model by reducing the dimensions
of the space vector and the state matrix A. In terms of response function,
such an approach is equivalent to cancelling close pole-zero pairs. In the
formalism of LTT systems, a Hankel singular value decomposition (HSVD) is
used to obtain such a system reduction. The wall filament model leads to a
problem of degeneracy, each coil and its set of wall filaments being identical
or very close to one another. To obtain a correct reduction of the order
of the system, the degeneracy must be alleviated beforehand by replacing
the multiple input by a single one, so that the system becomes asymmetric.
The system order reduction by HSVD is then determined by the desired
reduced system order and the conservation of the DC gain of the system.
Generally, the reduced system order should be as low as possible and the DC
gain should be conserved while keeping a good approximation of the original
system. These aspects are studied in the analysis given below. Note that the
state-space description of a LTI system is exactly equivalent to a zero-pole-
gain description. Therefore, a reduced system can be converted to a set of
transfer functions with a number of poles and zeros given by the order of the
reduced system.
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The numerical analysis is performed on the 10-turn in-vessel SCS. Due
to the symmetry of the SCS and to the weak coupling between coils, it is
sufficient to consider one of the middle row coils as input of the system.
Two questions are then addressed: what is the adequate reduced system
order and should the equivalent DC gain constraint be used? The study
concerning the model reduction is presented in figure [16, An order of 3
has been chosen to reduce the model since, as shown, the response function
is well approximated in the range of frequencies of experimental interest.
A lower order would result in a sufficient approximation quality only on a
reduced frequency interval, while a higher order would lead to unnecessary
complication of the analytical expression of the transfer functions. In general,
system reduction by truncation results in a much better approximation of the
transfer functions, at the cost of a small discrepancy on the DC gain. In our
case, this discrepancy is negligible and the truncation method should be kept.

6. Vertical control

In the current TCV setup, vertical control (VC) is successfully provided
by the internal fast coils, also called G-coils. Since the co-existence of two
internal coil systems is problematic in terms of space occupation, not only
with the coils themselves but also with feedthroughs and power lines, the
questions of replacement of the actual G-coils by the in-vessel SCS and the
conditions under which this replacement can occur must be addressed. In this
section, the applicability of the in-vessel SCS to vertical control is studied,
using a principle of equivalence with the present system, a 3-turn coil whose
turns are located in both LF'S corners of the vacuum vessel (see figure [2]) and
fed with a maximum of 2kA.

6.1. Vertical control principle

Vertical control is obtained by applying a magnetic field with a dominant
component along the main radial coordinate. Combined with the plasma
current, this field gives rise to a vertical Laplace force whose direction and
amplitude are adjusted to counteract a vertical displacement of the plasma.
Since these corrections must be applied on short time scales, the vessel wall
screening currents must be taken into account when dimensioning the am-
plitude of the control radial field.
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Figure 16: Original and reduced (order 3) response functions between differ-
ent pairs of coils of the 10-turn in-vessel SCS. Original model: ‘or’. Reduced
model with DC gain constraint: ‘tDC’. Reduced model by simple truncation
of small singular values: ‘rTt’. The DC gains for each case are given in the
figure titles. Each considered coil is labelled by a two-character alphanumeric
symbol, the digit representing the toroidal position and the letter indicating

the coil row.
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6.2. Calculation method

As vertical control is obtained by n = 0 combinations of the coils, the
circular toroidal filament model (section is used to represent the vessel
wall. Equation @ is used to get the wall currents as a function of frequency
for a given coil combination. The effective radial control field at each point of
the Tokamak poloidal cross-section is obtained by adding up the contribution
of the coil system with the contribution of the vessel wall. Note that only
the high frequency results are of interest for this analysis.

Since three independent coil rows are available, different row combinations
are possible. Using the same labelling as in section [5.3.4] the possible non
redundant combinations creating the highest possible radial field are: ‘+++’,
‘47, ‘44" and ‘-4

In order to assess the efficiency of the different coil row combinations and
to compare them with the control capacity offered by the G-coils, a series of
synthetic plasma current distributions is generated to cover a range of typical
situations occurring in TCV. The series of synthetic current distributions is
expressed as follows:

W<R,Z> — (=t RO) - (ZAy’
](R Z) = jaux <0
with

Ry = 0872m
Zy = 0 or 0.23m
a = 0.225m (17)
b = 2a or 3a
Jmag = 10° 3ba T ]mldeZ

In other words, an elliptic cross-section with quadratic current profile is used.
Ry = 0.872 corresponds to the vessel center, accounting for the new position
of the tiles due to the saddle coil system. b = 3a corresponds to an elongated
plasma and is used only when Zy = 0. The current density is scaled to give
a total plasma current of 1 MA at the largest elongation.

For each current distribution, the vertical component of the Laplace force
is calculated and integrated over the plasma poloidal cross-section. The force
per unit current serves as a comparison parameter between the different coil
row combinations, while the current required to provide a force equal to the
force provided by the G-coils gives the equivalent current /.4, for each case.
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6.3. Optimal coil row combinations

The vertical forces created by the SCS in optimal coil row combinations
for given plasma current distributions, defined as the combinations delivering
the largest vertical force per unit current at high frequency, are plotted as
a function of frequency in figure [[7] In general, the best row combination
at high frequency is also the best combination at low frequency. For the
elongated plasmas, this is however not the case (see figure . This is due
to an increased importance of the coil segments located in the corners of the
vessel for highly elongated plasmas. At low frequency, these segments have a
strong contribution to the vertical force, resulting in an optimal combination
of type ‘++-+’, while at high frequency these segments are more efficiently
screened by the vessel than the other coil segments and have a weaker con-
tribution, therefore leading to an optimum given by the ‘+-4’ combination.
In figure the results for all the up-down symmetric combinations in the
case of a highly elongated plasma located at z,,,, = 0 are plotted. Since the
vertical force obtained for the ‘+-+’ combination dominates above 50 Hz, it
can be safely considered as the optimal combination for this kind of plas-
mas. If lower frequencies are of importance, the ‘04+0’ combination could be
a possible consensus between efficiencies at low and high frequencies.

6.4. Current requirements

The vertical force provided by the G-coil for the three plasma current
distributions is compared to the force provided by the in-vessel SCS in fig-
ure The force ratio displayed in the figure is defined as:

rr = [Fza/(IaNg)) [ [Fzscs/(IscsNscs)] (18)

where [ is the current in the respective coils and N the number of turns. The
required current for the SCS is obtained by: Iscs equiv = 610 - 7p [At]. The
most demanding situation, i.e. highly elongated plasmas, corresponds to a
required current of 4.05kAt. This value might change if the SCS geometry is
modified and should therefore be considered as indicative. Based on a 20%
safety margin, a current of 5kAt must be considered for vertical control.
Note that this value is inferior to the 6 kAt of the G-coil system. The SCS
provides a much better control for low elongation plasmas located at z,,y = 0
(factor 5 at high frequencies), but these plasmas are less vertically unstable
than the highly elongated ones.

For the sake of completeness, the results for different sensible coil com-
binations in the high elongation case are shown in figure [I8b] Keeping in
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mind that the optimal combination is determined by the smallest force ratio,
the frequency response of the vertical force provided by the G-coil does not
change the conclusions given previously for the choice of optimal row combi-
nation. For high elongation plasmas, the G-coil is better than all the possible
combinations at low frequency because it creates a magnetic field that has a
radial component of constant sign across the whole plasma.

7. Effects of disruptions

Plasma disruptions induce large currents in the Tokamak vessel and in
any internal coils. It is therefore necessary to estimate the maximal voltage
and current that coils of the SCS will endure during disruptions. This study
is presented in this section.

7.1. Disruption models

Two kind of disruptions are considered in this study: vertical disruptions
and plasma current quenching. Vertical disruptions are modelled by a 20 cm
vertical shift of the plasma on a characteristic time of 250 pus. Current quench-
ing disruptions are modelled by a linear decrease of the plasma current from
its initial value to zero on a typical time of 1 ms. The different values given
here are typical of TCV disruptions. The initial plasma states are described
in terms of current density distributions, as defined in section [6.2] For this
study, the number of conditions is nonetheless increased: Zj is scanned from
0 to 0.5m by step of 0.1 m and b = 3a — |Zy|. The plasma is represented by
toroidal circular current filaments. The vessel wall is modelled by the circu-
lar toroidal filament model (section [5.3.2)), but the real geometry of the SCS
coils is used. With this choice, the wall and coil models are not consistent,
but the small error due to this inconsistency (recall that the perturbation
is in n = 0) is negligible compared to the benefit of using the correct self-
inductance of the coils. For simplicity, the time traces of the plasma filament
currents I,(t) are chosen to be linear by parts. For vertical disruptions of
shift AZ = £0.2m, the current variation in the plasma filament is given
by AL(Z) =1,0(Z — AZ) — 1,0(Z) where I, = I,(t = 0). For current
quenching disruptions, Al is simply given by Al, = —I,o. The current
variation occurs linearly during a time 7.

In order to find the voltages and currents in the SCS, the coupled voltage
equations of the SCS and the vessel wall must be solved for all times, using
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the plasma current variation as a source term. These equations are written:

RssIs + MssatIs + Msxatlx =0 (19>

R, 0 1,
RSS_|:0 RC‘|7]:S_|:IC:|7

Mvv 1\/Ivc o va

with ¢ the SCS coil index, v the vessel filament index, s = ¢ 4+ v, x the
plasma filament index, M, the mutual inductance matrix between systems
a and b, R, the diagonal matrix of resistances of system a and I, the current
in system a. The resolution of equation is described in .
Knowing I, the voltage induced by the plasma disruption in the SCS is given
by:

with

U. = Reele + M0/ 1 (20)

7.2. Induced voltage and current

The maximal voltage and current induced by a plasma disruption in the
10-turn in-vessel SCS is obtained by calculating I.(¢) and U.(t) (20)
for each initial plasma current distribution and keeping the maximal value
over time, distributions and SCS coils. The results for a scan on 7 are
shown in figure (19, For the studied interval of values of 7, the induced
current remains approximately constant and the largest value is obtained
for a disruption of type plasma current quenching. The voltage is larger
for the same type of disruption, but since the characteristic time is smaller
for vertical disruptions, their related voltage is higher. The worst situations
therefore results in 16.5 kAt of induced current and 51 V/t of induced voltage.
Note that only the resistance and the inductance of the SCS coils have been
taken into account in the calculation. A more realistic description should also
consider the feeding line inductance and resistance, as well as the presence
of safety resistances along the current path. In that case, the voltage would
remain the same, but the induced current would be decreased.

8. Magnetic forces on the SCS

This section describes the aspect of magnetic forces endured by the in-
vessel SCS in a worst-case scenario, i.e. the situation leading to the highest
force amplitude.
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8.1. Origin of the magnetic forces

Magnetic forces are exerted on the coils when the magnetic field at the
coil location has a non zero component perpendicular to the coil segments.
They are described by the Laplace force formula:

Fn(s) = Iyes x B(s) [N/m] (21)

where s is a linear coordinate along the coil turns, Fy(s) is the Laplace force
density per turn at s, Iy is the current flowing in the coil, e, is the unit
vector along the coil turn and B(s) is the total magnetic field at s.

The current Iy flowing in the coil is given by the sum of the desired
applications of the SCS and the current induced by a disruption. In the
worst-case scenario, all these currents are present simultaneously, so that:

[N = IN,nominal + IN,d'L'S?" = IRMP i IJL\E}FC - IVC + ]C]lifsr <22>
with [RMP == 4kAt, IEFC = 3kAt, IVC’ = 5kAt, Idisr,top = 16.5kAt and
Lyisr.mia = 12.1kAt for the N = 10-turn in-vessel SCS (coil in short-circuit).
Note that the difference between the disruption-induced currents in each coil
row is retained in this section.

The magnetic field at the coil location is the sum of the contributions
from the poloidal coils B,, the toroidal coil By, the plasma current By, the
vessel currents at disruption B, and the saddle coils (neighbours and coil
themselves) B.. For each source, the worst-case scenario must be considered:
the coils must be powered at their maximal current, a series of plasma current
distributions must be considered and the disruptions inducing the strongest
currents must be used in the calculation.

8.2. Maximal magnetic field and force calculation

The magnetic field related to the different sources is calculated on each
point of the SCS. Points are considered independently and the worst situation
is kept for each point and each source. The magnetic fields are combined in
absolute value whenever a possible constructive superposition of the fields is
encountered.

The magnetic field due to the poloidal coils is given by:

Ba(s) - |G§a|Inom,aeR + |Gsza|Inom,an (23>
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with Inoma the maximal currents in the poloidal coils, GR and GZ the
(R, Z) components of the magnetic field at s due to a unit current in coil a.
The G-coils are not included here since the SCS should replace them.

The magnetic field due to the toroidal coil is given by:

Br(s) = |G Lnom rler + |Gl Tnom,r|es (24)

with I,m 7 the maximal current in the toroidal coil, GE. and G%, the (R, ¢)
components of the magnetic field at s due to a unit current in the toroidal
coil.

The series of representative plasma current distributions used in the study
of disruption effects (section is used to calculate the magnetic field due
to the plasma current:

By(s) = max(|GR. - L(Z) Jen + max(|GZ - Tu(Zo))es  (25)

with Ix(Zy) the currents in the plasma filaments x for the current distribution
labelled by Zy, GE and GZ the (R, Z) components of the magnetic field at
s due to a unit current in filament z.

The worst-case magnetic field due to the currents induced in the Tokamak
vessel during a plasma disruption is calculated with:

B,(s) = max (|GE .I,(disr. case)|)er

disr. case
+ max (|GZ -TI,(disr. case)|)ez (26)
disr. case
with I (disr. case) the matrix of vessel filament currents, each column cor-
responding to one of the studied disruption cases (see section , GR and
GZ, the (R, Z) components of the magnetic field at s due to a unit current
in filament v.

The magnetic field due to the saddle coils themselves is also considered
in this analysis. The sources are reduced to the direct neighbouring coils
(top t, bottom b, left [, right ) and the coil itself i. Due to the symmetry
of the system, only two target coils need to be considered: one coil of the
middle row and one coil of the top row. The worst case magnetic field per
unit current is then given by:

Gerop(s) = Y (Ltcops) D |Ghlex (27)

ke{i,lr,b} 2€{R,Z,¢}
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Gemia(s) = Y (Ltcman) Y |Gxlex (28)

ke{il,rtb} z€{R,Z,¢}

with G the z-component of the magnetic field at s due to a unit current in
4 . IN mi IN to

COll k’ (k? € {t, b, l, T‘,Z}), Ctop,k = 5kb(ﬁ — 1), Cmid,k = (d’ct + 5kb)(ﬁ — 1)

and Jy; the Kronecker symbol. cpr and cmiqr are correction factors to

obtain the correct forces when multiplying by I3, and I3, 4 respectively.

The worst-case force density per turn is then given by:
Fiurn(s) = Iyes X [Ba + By + By + By + Ives x G [N/m] (29)

The total force density on the coil is obtained by adding up the forces on
each turn. In the process, the variation of the sign of Gg; (the field created
by a saddle coil on itself) on the coil cross-section can be explicitly accounted
for:

Fcoil(s> =
> |[Ives x [Ba + By + By + Br] + I3 s x (Ge — |Gail)]|

turns

+ Z []2\[65 X Gsi

turns

[N/m]  (30)

Note that the force calculated in is expressed as a linear density. Its
value corresponds to the maximal force that could be exerted independently
on each point of the coil, with no information on the sign of this value. Con-
sequently, a direct interpretation in terms of torque would be incorrect. Also
note that each value corresponds to a maximum over a number of combined
situations which have little chance of happening simultaneously in reality.
For the sake of simplicity, the coil current Iy and the worst-case magnetic
field are calculated independently. The worst-case magnetic fields due to the
vessel currents and the plasma current are also calculated independently.

8.3. Results and discussion

The calculation of the worst-case magnetic field at the SCS location using

equations , , , , and leads to the following conclu-

sions. For the R-component, the most important contribution comes from the
poloidal coils, the toroidal coil contribution is negligible, the plasma and ves-
sel contributions are in the same range, representing approximately a fifth of
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the poloidal coil contribution, and the SCS contribution is important on the
edge turns of the winding. For the Z-component, similar observations can be
made for the poloidal coil contribution with respect to the plasma and vessel
contributions. The SCS contribution is nonetheless much smaller. Finally,
the ¢-component contribution of the SCS is comparable to its Z-component
contribution and is much smaller than the toroidal coil contribution.

When considering the spatial variation of the magnetic field across a
coil of the SCS, a scan on the different combinations of sources of magnetic
field shows that it can display variations of amplitude across a coil equal to
its maximal amplitude, therefore leading to important gradient of magnetic
forces.

The total worst-case force density on each coil, as calculated with is
shown in figure . A maximal force density of 50 kN/m is to be expected
when considering all the possible sources of magnetic field together. The
contribution of the SCS itself is of 20% at most, since it mainly appears as a
force oriented towards the coil winding center that cancels out when adding
up the coil turns.

9. Number of turns per coil

Although the number of turns per coil is not a relevant issue from the
point of view of the physical applications of the SCS, it is an important aspect
when discussing engineering constraints. This section gathers a number of
arguments related to the number of turns per coil and details how the main
electrical parameters scale with it.

9.1. Mechanical aspects

For a small number of turns (1 to 3), a rigid material (e.g. GlidCop) can
be chosen so that each turn is self-supporting. In that case, the insulating
material would be limited to coil supports. For a large number of turns
(more than 3), the turns must be packed together to ensure rigidity. In that
case, each turn must be coated with an insulating material. This material
must be able to withstand the thermal expansion due to vessel baking and
Joule effect and be vacuum compatible. In the case of a large number of
turns per coil, a smaller cross-section is allowed for the connection lines from
the feedthroughs to the coils. In addition, smaller magnetic forces would
be exerted on these conductors, so that their mounting point could be less
resistant mechanically.
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9.2. FElectrical aspects

Note: In the following, the index N corresponds to a N-turn coil while
the index 1 corresponds to an equivalent single-turn coil.

Required current : The electrical specifications of the coils of the SCS

are given in terms of effective required current: I eq1 = Nlegn. Ireg
itself is made of a near DC component for RMP and EFC (l,cqpc =
Irvp + Igre) and a high frequency component for vertical control

(Ireq,hf = IVC)-

Cross-section : The effective conductor cross-section is determined by the

Skin

allowed increase of temperature during a duty cycle of the SCS due to
Joule effect. The current value used for this calculation might depend
on the exact physical application, but in general I, pc should be used.
The adiabatic variation of temperature AT of a conductor due to Joule
effect is given by:

Pel f I 2dt

AT =
pmc  S?

(31)

where pg; is the electric resistivity, p,, the mass density, ¢ the heat
capacity, I the current and S the cross-section. In order to maintain a
constant temperature variation of the different possible coil designs, the
current density must remain constant: Sy = S;/N. S; must be chosen
to obtain a tolerable AT. Note that even though the overall conducting
cross-section remains constant with /N, the coil cross-section increases
with IV due to the thickness of the insulator between the turns.

effect : For small values of N, the skin effect might become a problem
at high frequency, leading to a non uniform distribution of temperature
on the conductor cross-section. The skin depth § at frequency f is given
by 0 = \/(2pet)/ (27 f piopr) where g, is the relative permeability of the
conductor. Writing fq., the effective fraction of conducting surface
and considering an AC current, equation becomes:

12, .dt
AT_ p8l f geak (32>

a PmC 2 skinS2

The contribution of the skin effect, appearing through 1/f2  might

therefore be important. It must however be noted that the temperature
variation of the whole conductor, after diffusion from the edge to the
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core, only goes as 1/ fsin. In addition, the integral of the AC current
results in the presence of a factor 1/2 which lessens the importance of
the skin effect. Finally, since most of the temperature increase is related
to I ¢q.pc, this high frequency issue should usually not be important. In
advanced applications, like RWM or rotation control, it might however
be relevant. Note that the prozimity effect related to the juxtaposition
of coil turns in AC mode has not been accounted for here.

Resistance : The resistance of a N-turn coil is given by Ry = N2R;.

Inductance : The mutual inductance between the turns of a coil is at most
equal to the self-inductance of each turn. Therefore: Ly ~ NZ2L,.
At high frequency, the apparent inductance can be approximated by
Ly(w — inf) ~ N?(L; — Cy) where C} is the coupling term of a single-
turn coil with an ideal wall (see equation (11])).

Voltage : The power supply voltage U is determined by the time required to
reach a given current in the coils. The step response of RL-circuits can
be approximated by I(t) ~ (U/L)t as long as t is small compared to the
characteristic time 7, = L/R. The error between the approximation
and the exact solution is smaller than 10% if ¢ < 0.197gr, i.e. in the
first 20% of the current ramp. For a N-turn coil, it gives:

1 1
[VC,NLN(W) ~ N

Treq Treq

Uy = Ivea (L — a(w)Cy) (33)

with 7,., the time required to reach Iy ¢; and a(w) the proportion of
wall coupling. If 7., is small enough, o = 1. In addition, 7,., < 0.1975,
and U > NRy(Irmpy1 + Igrca + Ive) must be satisfied.

Magnetic forces : During normal operation, the total force on a coil of the
SCS is given by the sum of the forces on each turn of the coil and is
therefore independent of N. In case of disruption, the induced voltage
is proportional to N and the induced current is consequently going as
1/N. The total force on the coil is hence independent of N in that case
as well.

The different parameters described above are calculated here in the case
of the 10-turn in-vessel SCS. In order to assess the robustness of the scaling
with N, the results are also given for a single-turn SCS equivalent to the
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10-turn system in terms of dimensions, cross-section and location. For both
cases, the coils are assumed to be made of GlidCop (see table . Calcula-
tion results for 7,., = 250us are given in table ] The disruption induced
voltage and current have been added to the list of parameters, as well as
the maximal magnetic force density exerted on the coil. The cross-section is
slightly different between both cases because of the room left for the insulator
in the 10-turn case. The most noticeable deviation from the scalings given
above occurs for the self-inductance calculation. A multi-turn coil has a lower
self-inductance than what would be predicted by the N? scaling because the
spatial spreading of the turns with respect to one another results in a mu-
tual inductance smaller than the self of each turn. The voltages obtained for
each case satisfy the conditions stated above: 0.197z, is well above 7,¢, and
U is sufficient to reach the total DC current. Note that the inductance and
resistance of the power lines have not been accounted for in the given results.

]Parameter \ 1-turn \ 10-turns ‘
ITryp [KA] 4 0.4
Ipre [KA] 3 0.3
Ive [kA] ) 0.5
Sx [mm?] 300 28.9
AT (2s Ipc) [K] 9.6 10.3
R[] 2.4-107% ] 2.4-1072
Lpe [pH] 1.58 138
Lat [pH] 0.96 77.8
TRL,DC [HlS] 6.5 5.7
TRLsat [10S] 4.0 3.2
U(a=0) [V] 32 277

U(a=1) [V] 19 156
Tiisr [KA] 16.9 1.65
Usisr [V] 58 510
Fcoil,max [kN/m] ol 50

Table 2: Various parameters of the 10-turn in-vessel SCS system and its
single-turn equivalent. The symbols and the mathematical approaches are

described in sections and .

Given the required raise time of 250 us, the maximal frequency in AC
mode is of 1kHz. Using GlidCop parameters and a relative magnetic per-
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meability of 1 (copper and aluminium values), the skin depth at 1kHz is
2.7mm. For N > 10, the increase of resistance due to skin effect should
be negligible, especially if the conductor cross-section aspect ratio is large.
Nonetheless, the proximity effect should be assessed on the final coil design.
For a smaller number of turns, the skin effect will be important. Note that
the resistance can increase by a factor 4 before an adaptation of the required
voltage is needed.

10. Coil cooling

Due to Joule effect, the coils of the SCS will heat up during operation.
This section addresses the issue of coil heating and cooling in a generic ap-
proach. Its aim is to quantify the main thermal parameters in order to
identify relevant engineering issues and deduce physical arguments to orient
the coil design. A detailed calculation of heat transport, if relevant, should
be done once the final coil design is known.

10.1. Lamellar structure model

In this study, coils are modelled by a linear lamellar structure as described
in figure . As shown, the coil folding is ignored (each turn has the same
length even though the turns remain conceptually connected in series), turns
are piled only in the z direction and each type of material has layers of
constant thickness. The y direction corresponds to parallel heat transport
while the z direction corresponds to perpendicular heat transport.

J/y -

Figure 21: Coil model for heat transport calculation. L is the length of the
coil, [ its width, d; the thickness of an insulator layer, d. the thickness of
a conductor layer, the z axis defines the perpendicular conduction direction
and the y axis the parallel one.
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10.2. Thermal properties of lamellar structures

When dealing with composite structures, as the lamellar model used here,
it is convenient to reduce the physical constants of the different components
to average values valid for the whole structure. This operation is detailed
here for the specific heat capacity and the thermal conductivity. Considering
a structure made of N; layers of thickness d; of material j (here j € {i,c}),
the total thickness of material j is D; = N;d;, its fraction f; = D;/D and the
overall total thickness D = Y D;. Writing p,,; the mass density of material
J and ¢; its specific heat capacity, its volumetric heat capacity is given by
C; = pm,jc;. The average volumetric heat capacity is then given by:

C=>fC; (34)

When considering thermal conductivity, the combination of materials must
account for the orientation of the layers with respect to the direction of heat
transport. By extensivity of the heat flux, the average parallel thermal con-
ductivity (i.e. along the y axis on figure is obtained by simple averaging
of the contribution of each layers:

K =) fiK; (35)

where Kj is the thermal conductivity of material j. When considering per-
pendicular thermal conductivity (i.e. along the z axis on figure , the
resistance to heat transport of each layer, proportional to 1/K;, must be
used in the average process to ensure conservation of heat flux across the
layers. It yields:

1 i
_— JI 36
i > i (36)
Note that in K, the interfacial thermal resistance related to the interface
between different materials on an atomic scale and the contact thermal re-

sistance related to the mechanical homogeneity of the contact between the
coil turns have not been accounted for. K| is therefore overestimated.

10.3. Joule heating of lamellar structures

Writing [ /N, the current circulating in each layer of conductor and using
the expression of the total resistance of the coil R. = (ps LN.)/(d.l), the total
dissipated Joule power is given by:

pa LN, (I \”
P==r <F> (37)
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where pg; is the electrical resistivity of the conductor. If a constant current
is applied during a time t,,, the resulting temperature variation of the coil
is given by:

o Pton o peljfton
~ LIDC  D.2DC

10.4. Cooling time constants and asymptotic temperature

Based on the lamellar model used here and the distinction between par-
allel and perpendicular heat transport, the 1D form of the heat equation can
be used:

AT

(38)

dTr K d*T
dat Cda?
If both edges of the considered dimension are in contact with a heat sink at
constant temperature 7;, the solution of the heat equation is given by:
T(x,t) =3 o0, Dysin (22) e /™ + T,
Dy =% [y (T(x.0) = Ty)sin (22) da (40)
L C

=0 (39)

L

Tn T K

Note that D, is a Fourier component of T'(z,0) — T} on the basis of sine
functions compatible with the boundary conditions. The longest-lived mode
is the n = 1 mode. It defines the cooling time constant gg In the particular
case of the lamellar model, it yields:

L*C
= g, (41)

and D
TL 2K, (42)

In general, K| < K because of the insulator layers, but L > D by construc-
tion. Since the square of the length is used in the cooling time calculation,
the final ordering is 7 > 7.

For an infinity of duty cycles to, + tog With 7) > Tperp ~ tog > ton
and a temperature increase AT after each t¢,,, the coil temperature increases

up to an asymptotic temperature T,,. T, is found by using the conditions
T(x,0) =Tos + AT and T'(x,to) = Ts in (40):

Tas (.I) = Tb+

o0

Z {sin (?) e—toH/Tn% /OL(T‘” + AT — Ty) sin <$> dx} (43)

n=1
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Using the ansatz
nmx
Too(z) =S Bysi (—) T, 44
(x) ; sin ( — + Ty (44)

the orthogonality of the basis of sine functions and the space invariance of

AT, equation results in:

_2AT (1 — (—1)")etor/m™

B
" onrw 1 — e~tort/Tn

(45)

Again, the n = 1 component dominates the space dependence of T,s. One
can therefore write:

4AT eftoff/‘rcooling . T
TG'S (x) = T 1 _ e—toH/Tcooling S (T) + Tb <46>

where Teooling 15 the coil cooling time constant. The correct choice for Tooling
depends on the coil design. The heat dissipation at the coil mounting points
and the heat transport through the power lines, for example, may have a
significant impact on the cooling time. Ignoring the heat transport through
mounting points, assuming that the power lines are ideal heat sinks and
recalling that 7, < 7|, the choice Teooling = 7 is @ good upper limit candi-
date, even though 7 gathers all the coil turns while only one turn is in fact
connected to the power lines. If 7 > t.g, equation gives:

4
Too(L)2) = %ATZ—L +T, (47)

10.5. Numerical applications

The choice of material for the coils is GlidCop as conductor and Kapton
as insulator. The physical constants of these materials are given in table [3|
As a reference, the values for copper are also given.

As in section [9 the 10-turn design and its equivalent 1-turn design are
used for the numerical applications. Due to the simple lamellar model used
here, the 10-turn design cross-section must nonetheless be adapted to the
lamellar design. The coil duty cycle is defined by t,, = 25, tog = 20 min and
I; = 7kA. In addition, the numerical application for a G-coil equivalent is
also given. For the GG-coil equivalent, since turns are non conjoint, a single
turn of length equal to the total winding length and fed with Iy = 2kA is
used to correspond to the coil specifications. In addition, G-coil results are
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’ Parameter ‘ GlidCop ‘ Kapton HN ‘ Copper ‘

pm [kg/m®] | 9000 1420 8920
¢ [J/kg/K] 400 1090 390
C[J/m3/K] | 3.6-10° | 1.5-105 | 3.5-10
K [W/m/K] | 342 0.12 390
per [Om] 31078 - 1.7-107%

Table 3: Physical constants of the materials used to build the coils: GlidCop
as conductor and Kapton as insulator. Copper is also given as a reference.

obtained with copper instead of GlidCop. In each case, the first and last
layer of the lamellar structure is an insulation layer, so that the insulated
mounting points are correctly modelled. The parameters for the different
cases are given in table [d The calculation results are given in table [5]

] Parameters \ 1-turn \ 10-turns \ G-coil equivalent ‘

L [m] 242 | 2.33 20.7
! [m] 0.01 | o0.01 8.86 - 1073
d, [m] 0.03 | 0.003 8.86- 1073
N, [m] 1 10 1

D. [m] 0.03 | 0.03 8.86- 1073
d; [m)] 0.0005 | 0.0005 0.0005
N; [m] 2 11 2

D [m] 0.031 | 0.0355 9.86 - 1073
Iy [kA] 7 7 2

Table 4: Parameters of the different coil designs used in the coil cooling
study. L is the coil length, [ its width, d. and d; are the thicknesses of a layer
of conductor and insulator respectively, N. and N; are the numbers of layers
of each material, D, is the total conductor thickness, D is the coil thickness
and [ is the sum of the currents in each turn. For the 10-turn design, L is
obtained by averaging the length of the individual coil turns.

10.6. Discussion

e Parallel conduction is not sufficient to ensure cooling of the coils be-
tween two heating cycles but the asymptotic temperature might be
tolerable depending on the exact coil design.
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’ Parameters ‘ 1-turn ‘ 10-turns ‘ G-coil equivalent ‘
fe 97% 85% 90%
fi 3% 15% 10%
Ky [W/m/K] 331 289 350
K, [W/m/K] 3.68 0.77 1.18
C [J/m3 /K] 3.53-10° | 3.28 - 108 3.28 - 10°
7 [s] 6342 6252 407109
71 [s] 93.6 542.7 27.4
AT [K] 8.9 8.4 6.0
Tus — Ty [K] 60 56 2611

Table 5: Results of the thermal characterization of the different coil designs
used in the coil cooling study. f. is the fraction of conductor in the coil, f; the
fraction of insulator, K and K are the parallel and perpendicular thermal
conductivity, C' the volumetric heat capacity, 7 and 7, are the parallel and
perpendicular cooling time constants, AT is the temperature variation after
ton and T,s — T} is the temperature variation of the center of the coil after
an infinite number of heating cycles.

e The perpendicular cooling time is much shorter than the parallel one,
so that temperature uniformity across the coil is guaranteed. Note
that the lamellar design studied here is the worst case situation for
perpendicular heat transport since the number of insulator layers that
must be crossed is maximal.

e For coils with multiple turns in contact with one another, the effective
length is reduced and the parallel cooling is faster, but not sufficient.

e The worst case is the G-coil. This coil has been successfully used in
TCV without cooling for years, but only with short pulses of current
in the active part of the cycle.

e Adiabatic temperature increase reaches 9 K per cycle for GlidCop coils
and is almost independent of the coil design if the total conductor cross-
section is kept constant. Using copper would be beneficial with that
respect.

e [f the coils can be operated between 100°C and 150°C, the obtained
asymptotic temperatures show that no active cooling is necessary for
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the saddle coils. However, the calculation assumes a constant temper-
ature at the coil ends, which may result in an underestimation of the
asymptotic temperature, and assumes no perpendicular conduction,
which may result in an overestimation of the asymptotic temperature.
If the assumption of negligible heat conduction is made, 10 to 12 con-
secutive cycles at maximal current will be tolerated. It might therefore
be concluded that no active cooling is necessary but that thermocouples
should be included in the coil design to monitor the coil temperature.

e [f the design of the coil mounting points results in good thermal con-
tacts between the coil and the vacuum vessel, the length between two
mounting points could be used in the calculation of 7 instead of the
whole coil length, as long as 7 remains much larger than 7, .

e Proposed materials are adequate for baking temperature (250°C to
300°C).

e The overall evacuation of heat from the vacuum vessel or portholes
should be taken into account in the system design.

11. Conclusion

In this document, two saddle coil system designs have been proposed,
namely the in-vessel and the ex-vessel SCS. A number of physical arguments
have been suggested to justify the proposed designs in the perspective of
applications including RMP, EFC and vertical control and the current re-
quirements have been established for the different applications. A spectral
characterization of the proposed SCS has also been done. A wide range of
engineering issues have been addressed for the in-vessel design, including the
electrical and thermal characterization of the coil system, the magnetic force
calculation and an assessment of the consequences of plasma disruptions.
While the electromagnetic characterization of the in-vessel design should be
of sufficient accuracy, the magnetic forces might have been slightly overes-
timated in the worst-case approach used in this study. The thermal char-
acterization of the coils has shown that active cooling is not required and
that simple monitoring of the coil temperature should be sufficient, thereby
loosening coil engineering complexity. The RMP, EFC and vertical control
calculations are based on a vacuum field calculation, i.e. excluding plasma
response from the model. While this assumption is reasonable and probably
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necessary from an engineering point of view, there is no guarantee that it is
sufficient to obtain the desired effects on the plasma. The only justification
of this assumption is that the SCS design provides features that are similar to
other systems (G-coil for vertical control, DIII-D or JET for RMP) when ap-
plying the same assumption to these systems. When addressing the question
of the choice between an in-vessel and an ex-vessel design, one should keep
in mind that although a number of technical challenges have been identified
with the in-vessel design, it offers a wider range of experimental applications
than the ex-vessel design. In addition, the ex-vessel design also encounters
important problems related to space occupation, complex coil geometry and
availability of mounting points.
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Appendix A. Mutual and self inductance calculation

Appendiz A.1. Mutual inductance calculation in general geometry
In general, the mutual inductance between circuits C; and C} at a distance
r;; from one another is given by Neumann’s formula:

S A

where ds; and ds; are line elements along C; and C;. The integral appearing
in (A.1) allows a splitting of the circuits in sensible pieces and a reduction of
the mutual inductance calculation to these pieces, for example using ad hoc
analytical formulae. Such an approach greatly reduces the numerical cost of
inductance calculation and is used in the case of the SCS.

Note that Neumann’s formula assumes thin conductors. In general, re-
ducing the conductors to the path followed by their centers is a good as-
sumption if the minimal distance between both conductors is larger than
the cross-section dimensions of the conductors. Calculation shows that this
condition can be alleviated and Neumann’s formula remains valid when con-
ductors are in contact if the cross-section of the conductors has an aspect
ratio equal to 1 (i.e. square or circular). Practically, this means that rectan-
gular cross-section conductors must be split in a subset of square cross-section
conductors before performing inductance calculation.
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Appendiz A.2. Mutual and self inductance of saddle coils

The mutual inductance between two turns of a saddle coil or between two
turns of two different coils is calculated by dividing the turns into horizontal
arcs of circles and vertical segments. The mutual inductances are calculated
between each pair of segments/arcs and the results are combined to obtain
the mutual inductances between the turns. Note that the inductance between
a vertical segment and a horizontal arc is zero because they are orthogonal
to one another. Mathematically, the mutual inductance M is written:

M = Mt1t2 + Mlllz + Mble + MT - Mtle - Mb1t2 - Mll""? - MT (A2>

172 1l2

where turn segments are labelled with ¢: top, b: bottom, [: left (higher
toroidal angle ¢), r: right (lower toroidal angle ¢) and 1,2 label the turns.
The methods used to calculate each terms in equation are given in the
following sections.

Note that the ex-vessel coils have a particular geometry which involves a
number of additional terms in equation to account for the horizontal
radial segments. These terms are calculated by numerical integration of
Neumann’s formula and are therefore not described below.

Appendiz A.2.1. Mutual inductance between parallel segments

A general analytical formula is given in Grover [37, p. 45] to calculate
the mutual inductance between parallel segments. Two segments a and b
of lengths [, and [, separated by a perpendicular distance d and having an
algebraic length h from the top of a to the bottom of b (h can be negative)
have a mutual inductance given without approximation by:

h
M = 1077(aasinh% — 5asinh§ — fyasinhg + hasinh—

d
—\/a2+d2+\/62+d2+\/v2—|—d2—\/h2+d2) (A.3)
with
a:la+lb+h
B=1l,+h (A.4)
y=Uk+h

If the segments are aligned (d = 0) but have no contact point, another
formula is available:

M =10"(alna — BInf — yIlny + hlnh) (A.5)
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Finally, if the segments are aligned and juxtaposed (h = 0or h = —l,—1),
the mutual inductance is given by:

la+lb) +lbln(la+lb

M = 10""(l, In(
a lb

) (A.6)

If the segments are overlapping, the mutual inductance can be found by
calculating the self-inductance of the overlapping bit and combining it with
the mutual inductances of the different bits afterwards.

Appendiz A.2.2. Self inductance of a straight segment

The self inductance of a conductor can be understood as the average
of the mutual inductances of all the filaments it is made of. The value of
the inductance is dominated by a term going as In(1/d) where d is defined
above. The average of the mutual inductances can thus be replaced by the
mutual inductance of two segments separated by a distance given by the
average of the logarithm of the distances between the filaments, also called
the geometrical mean distance. Therefore, the self inductance of a segment
can be determined through equation (A.3) with dgn,g = 0.2235(w+1t), l, =1
and h = —l, where w is the width and ¢ the thickness of the segment.

Appendiz A.2.3. Mutual inductance between concentric arcs of circles

In the case of arcs of circles, the presence of elliptic integrals in the mutual
inductance calculation prevents the formulation of analytical solutions. The
best approach consists in using the concentricity of the arcs and the well
studied elliptic integrals to simplify the calculation of the mutual inductance.
Leduc [38] gives:

2 vz 0 ¢1 +m 0 ¢2—|—7T
My = 47r\/7“17’2/<p1 g(ka2 5 ) 9(k72 9 )d@ (A-7)

with

k - \/(21—2251271-11—23“1-1-7‘2)2

F(k,0) = [} sr=mda

E(k,0) = foe V1 — k2sinada
where (r1, 21, 1, o) define the position of the first arc of circle in cylindrical
coordinates and (7, 29, @1, ¢2) the position of the second arc. The elliptic

(A.8)
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integrals £ and F' can be calculated with an AGM method and a Landau
transform. The integral on # is then performed with a standard Simpson
method. The implementation of this formulation can be checked with full
circle cases and nearly straight segment cases (large radius and small angle).

As in the straight segment case, if the arcs are overlapping, the mutual
inductance can be found by calculating the self-inductance of the overlap-
ping bit and combining it with the mutual inductances of the different bits
afterwards. However, the 27-periodicity involved in the calculation leads to
a higher level of complexity.

Appendixz A.2.4. Self inductance of an arc of circle
As in the straight segment case, the self inductance is calculated with the
mutual inductance formulation and the geometrical mean distance.

Appendiz A.3. Inductance of turns connected in series

Once the self and mutual inductances of individual turns are known, the
effective inductances of individual coils or serial combination of coils can be
calculated. If the individual inductances are gathered in matrix M with M,;
the mutual inductance between turns ¢ and j, the effective inductance of the
combined system is given by:

M.;; = TMTT (A.9)

with T a line vector defined by T; = +1, depending on the sign of the current
in the turns.

Appendix B. Resolution of the disruption-induced voltage equa-
tion

In order to solve equation , the equation system must be diagonalized
to decouple the differential equations. One starts by rewriting the first terms
of equation ((19):

RssIs + MssatIs =
Ros'Ras'’Ls + Res'/? Rss "My Res 2 Res' 20,15 (B.1)

KSS

with Rssl/ % defined as the element-wise square root of the resistance ma-
trix. Since Mg is symmetric and Rgg is diagonal, K is symmetric. It can
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therefore by diagonalized by an orthogonal matrix T: Dgs =T ;rsKSSTSS and
Ky = TssDgsTL. The columns of Tgs corresponds to the eigenvectors of
Kgs and are found by standard algebraic methods. Using the property that
TL = T, equation (B.1)) is expressed as:

ss )

RssIs + MssatIs =
Re'/?Tes TERL2 T, + R /*Tos Do TE R /20,1 (B.2)
S———
Asgs Ag;
giving
RssIs + Mssﬁt:[s = AssASTSIs + AsstsAsTsatIs (BS)
Multiplying to the left by Al = TTRy~'/? therefore gives:
Ip + DOIp + Mpxd;IL = 0 (B.4)
with
Ip=ATI, D=D,  Mpyx=A_ M, (B.5)

In equation (B.4)), the unknowns are decoupled and each differential equation
can be solved separately. The solution of equation (B.4)) with the assumed
plasma current time traces is given by:

1 {l—et/D t<rt

ID(t) = _;MDXAIX ) (eT/D _ 1)6—t/D t> 7 (B6>

Numerically, the product of exponential terms appearing for t > 7 might be
problematic. This difficulty can be avoided by solving for the logarithm of
equation (B.6]). Once Ip(t) is known, I(¢) is found with:

I, = Ry V/*T.Ip (B.7)
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