Beyond the lateral resolution limit by phase imaging

We present a theory to extend the classical Abbe resolution limit by introducing a spatially varying phase into the illumination beam of a phase imaging system. It allows measuring lateral and axial distance differences between point sources to a higher accuracy than intensity imaging alone. Various proposals for experimental realization are debated. Concretely, the phase of point scatterers’ interference is experimentally visualized by high numerical aperture (NA = 0.93) digital holographic microscopy combined with angular scanning. Proof-of-principle measurements are presented by using sub-wavelength nanometric holes on an opaque metallic film. In this manner, Rayleighs classical two-point resolution condition can be rebuilt. With different illumination phases, enhanced bandpass information content is demonstrated, and its spatial resolution is theoretically shown to be potentially signal-to-noise ratio limited.


Published in:
Journal of Biomedical Optics, 16, 10, 106007
Year:
2011
ISSN:
1083-3668
Keywords:
Laboratories:




 Record created 2011-10-12, last modified 2018-03-17

External link:
Download fulltext
URL
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)