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Abstract—In this paper we present a novel nonlinear video
diffusion approach based on the fusion of information in audio
and video channels. Both modalities are efficiently combined
into a diffusion coefficient that integrates the basic assumption
in this domain, i.e. related events in audio and video channels
occur approximately at the same time. The proposed diffusion
coefficient depends thus on an estimate of the synchrony between
sounds and video motion. As a result, information in video parts
whose motion is not coherent with the soundtrack is reduced and
the sound sources are automatically highlighted. Several tests on
challenging real-world sequences presenting important auditive
and/or visual distractors demonstrate that our approach is able to
prevail regions which are related to the soundtrack. In addition,
we propose an application to the extraction of audio-related video
regions by unsupervised segmentation in order to illustrate the
capabilities of our method. To the best of our knowledge, this
is the first nonlinear video diffusion approach which integrates
information from the audio modality.

Index Terms—Audio-visual processing, linear/nonlinear diffu-
sion, graph cut segmentation

I. INTRODUCTION

The perception that we have about the world is influenced

by elements of diverse nature. Indeed humans tend to integrate

information coming from different sensory modalities to better

understand their environment. In the audio-visual domain for

example, the listener can exploit the correspondence between

speaker lips movements and the produced sounds to better

understand speech, especially in adverse environments [1–3].

The speech recognition task is thus facilitated by the integra-

tion of acoustic and visual stimuli. Following this observation,

scientists have been trying to combine different research

domains. Nowadays it is possible to use the video information

to improve results in the audio domain for applications such

as speech recognition [4, 5], speech enhancement [6, 7] and

sound source separation [8–10]. Other methods try to assess

coherence between both modalities to track or locate sound

sources in the video signal [11–17]. Some approaches go

one step beyond and try to separate the scene into audio-

visual structures, each of them composed by a visual part and

the associated soundtrack [18–20]. All these applications can
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Fig. 1. Example of a 3D video signal [left] and the corresponding 1D audio
signal [right]. The temporal axis of each modality has a different resolution.

then be used for automatic management of videoconferences,

automatic speaker recognition [21], indexing and segmentation

of multimedia data [22], and robotics [23].

Fig. 1 depicts the typical baseline in audio-visual analysis.

We have a three-dimensional video signal recorded with one

video-camera and the corresponding one-dimensional audio

signal captured by one microphone. Notice that here we

consider the simplest audio-visual configuration, which does

not include microphone arrays. As shown in Fig. 1, audio and

video signals share a temporal axis, but the resolution of this

axis is different. Typically, we have much more audio samples

than video frames since the sampling rate of the audio signal is

much higher. Then the challenge lies in efficiently combining

the information in both channels.

Many approaches in this domain first define features for

each modality such as the energy [17, 24, 25] or Mel-

Frequency Cepstral Coefficients (MFCC) [12, 13, 26, 27]

for the audio, and pixel intensities [15, 24, 28] or temporal

variations [13, 17, 27] for the video. Then, they use these

representations in a fusion step, whose objective is to assess

the synchrony between both modalities using canonical corre-

lation analysis [12, 17, 20] or through the estimation of the

joint densities of audio and video features [13, 14, 24, 26, 28].

Most of those methods are based on pixel behavior, which

makes them vulnerable to visual noise. Furthermore, they do

not ensure video spatial coherence. Other methods propose to

decompose each modality [19] or both modalities at the same

time [29] over redundant dictionaries of signals. That makes

the fusion step more intuitive since they deal with audio and

video structures and the signals can be expressed as a sum of a

small number of functions. As a result, the computational cost

for the audio-visual fusion step is much smaller than in pixel-

based methods [13, 24, 26, 28]. However, the decomposition
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of audio and video signals into such meaningful structures is

time consuming.

As discussed before, approaches in audio-visual analysis try

to assess the synchrony between audio and video channels in

order to extract information about the observed scene. Thus,

in most applications only the video parts that are related to

the soundtrack are used. For example, speech recognition only

needs the region around the mouth, and approaches in sound

source localization search for regions moving coherently with

the sounds. The remaining video information (i.e. background

and video structures not related to the soundtrack) is super-

fluous and not necessary for those audio-visual applications.

However, identifying a mouth or discriminating audio-related

motion from distracting motion involves a significant amount

of computational cost.

The aim of this work is to simplify audio-visual sequences

by eliminating most of this non-relevant video information

through a cheap and fast procedure. After Perona and Malik’s

preliminary work in [30], nonlinear diffusion (also called

anisotropic diffusion) has been proven to be a useful tool for

the selective removal of information in a given signal. This

technique has been successfully applied to image denoising,

restoration and edge detection [31–34]. Furthermore, the flexi-

bility in the design of the diffusion coefficient (which controls

the intensity of the diffusion at each point of the signal) makes

it applicable to a great variety of problems.

The main contribution of our approach is the definition of an

audio-visual diffusion coefficient, which integrates the basic

assumption in this domain and represents a natural way to

combine audio and video modalities. The proposed diffusion

coefficient is a function of the synchrony between audio energy

and video motion at each point of the video domain. As a

result, our diffusion procedure removes information in parts

of the video signal whose motion is not coherent with a

synchronously recorded audio track, while preserving regions

that are useful for audio-visual applications.

In summary, the main strengths of our approach are:

1) Our method can handle all kind of audio-visual sources

since it is based on a general assumption, i.e. synchrony

between related events in audio and video channels.

2) The 3D characteristic of the diffusion process implicitly

brings spatio-temporal coherence to our approach, by

prevailing regions instead of pixels.

3) The proposed method can deal with multiple audio-visual

sources because video structures in different locations are

treated independently, i.e. we do not need to chose a

region to preserve over the rest.

To the best of our knowledge, this is the first nonlinear

video diffusion approach which integrates information from

the audio modality.

The paper is structured as follows. Sec. II presents the

proposed model for audio-based nonlinear video diffusion.

Sec. III explains the discrete implementation of our method

and presents a stopping criterion for the diffusion process. In

Sec. IV we detail the audio and video features used in our

approach. Sec. V introduces a quantitative measure of our

method’s efficiency. In Sec. VI we show the results when

analyzing challenging audio-visual sequences. Sec. VII pro-

poses a simple application of our method to the unsupervised

extraction of audio-related video regions. Finally, in Sec. VIII

achievements and future research directions are discussed.

Partial results were presented in [35].

II. AUDIO-BASED VIDEO DIFFUSION

Our diffusion model is inspired by the variant of the classic

Perona-Malik model [30] that Catté et al. proposed in [32].

This nonlinear diffusion approach based on partial differential

equations (PDEs) has been demonstrated to provide good

results in the previously mentioned applications. Sec. II-A

recalls the main principles of PDE-based diffusion and Sec.

II-B describes the proposed audio-visual diffusion coefficient.

A. PDE-based Diffusion

Let us consider a 3D video domain Ω with boundary Γ :=
∂Ω and let a video signal v be represented by a mapping

f ∈ L∞(Ω). Then, a general continuous model for anisotropic

diffusion filters is represented by the following boundary value

problem:

∂τv = div(D∇v) on Ω× (0,∞) , (1)

v(x, 0) = f(x) on Ω , (2)

〈D∇v,n〉 = 0 on Γ× (0,∞) . (3)

Here D is a positive definite diffusion coefficient, τ refers to

the diffusion time, n denotes the outer normal, x = (x, y, t)
are the 3D video coordinates, 〈., .〉 is the Euclidean scalar

product on R
3, div(·) and ∇ denote, respectively, the diver-

gence and the gradient operators with respect to the space

variables. Notice that τ is used for the diffusion time and t
for the temporal axis of the video signal. This notation will

be kept throughout the paper.

The diffusion equation in (1) belongs to a general class

of equations satisfying the maximum principle. The principle

states that all the maxima of a solution of Eq. (1) for diffusion

times τ ∈ [τ0, τ1] are to be found on the boundary Γ or at

τ = τ0 provided that the diffusion coefficient D is positive.

Since our boundary problem is also composed of Eq. (3), the

diffusion is 0 across the boundary Γ and the maxima can

only belong to the original video (initial condition at τ = τ0).

A proof of the maximum principle can be found in [36]. In

practice, this is a very important property since the principle

prevents the creation of new local extrema when applying the

diffusion process to any function v.

For a deeper understanding of PDE-based diffusion, please

refer to the works in [31, 33].

B. Audio-Visual Diffusion Coefficient

We propose the following diffusion coefficient D:

D(x, τ) = g(|sσ(x, τ)|
2) , (4)

where g(·) is a function that determines the intensity of the

diffusion process at each point of the video volume and sσ
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Fig. 2. Shape of the function g(·) in Eq. (6), which determines the value of
the diffusion coefficient according to the audio-visual synchrony sσ .

is a regularized measure of the synchrony between events in

audio and video channels, which is defined as

sσ(x, τ) = (a(x)∂tv(x, τ)) ∗Gσ(x) . (5)

In this expression, Gσ is a 3D Gaussian of variance σ2, ∂tv
is the temporal derivative of the video signal, and a(x, y, t) =
a(t) ∀x, y represents the energy of the audio channel at time

t (notice that the audio feature does not depend on the spatial

coordinates x and y). Thus, the audio-video synchrony sσ
evaluates the coherence between both channels by combining

audio energy and video motion at each point x of the video

volume. According to Eq. (5), |sσ| is high when an important

acoustic event matches a relevant pixel motion while its value

is close to zero in the rest.

The convolution with a Gaussian Gσ in Eq. (5) makes our

audio-visual synchrony measure sσ much more robust to visual

and acoustic noise and ensures spatio-temporal coherence to

our method. Furthermore, this procedure was used by Catté

et al. in [32] in order to regularize the nonlinear diffusion

problem presented by Perona and Malik in [30], whose formu-

lation is similar to ours. In all experiments the regularization

parameter is fixed to σ = 1. This value has been shown in [34]

to be sufficient for a large interval of noise variances when the

noise in neighboring pixels is uncorrelated and the grid size

is one.

Let us now discuss the shape of the function g(·) in Eq.

(4). As explained before, we want a linear diffusion process

to take place in spatio-temporal regions with low audio-visual

synchrony. In addition, the diffusion coefficient D should be

close to 0 in points with high |sσ| in order to stop there the

diffusion. Thus, g(·) should be a non-negative monotonically

decreasing function with g(0) = 1, since the diffusion coeffi-

cient D has to be positive. An appropriate shape for g(·) can

then be the function proposed by Perona and Malik in [30]

(see Fig. 2):

g(|sσ|
2) =

1

1 + |sσ |2

K2

. (6)

The value of the constant K acts as a threshold: points where

|sσ| < K are strongly affected by linear diffusion (Gaussian

blurring) while those points where |sσ| > K are least diffused.

Appropriate values for this parameter are discussed in the

experiments section.

We can now analyze qualitatively the behavior of the

proposed audio-visual diffusion process given the diffusion

coefficient defined in Eq. (4). First of all, the diffusion co-

efficient is maximal and constant to D(x, τ) = 1 in video

regions where sσ = 0, that is:

1) Static video regions (video inactivity).

2) Silent time slots (audio inactivity).

3) Situations where the visual motion is not synchronous

with the appearance of sounds (audio-video incoherence).

Inside these regions, the diffusion coefficient is constant to

1, the diffusion equation in (1) becomes the heat equation

(∂τv = ∆v) and the region is homogeneously diffused. Out

of those regions, the diffusion coefficient D becomes smaller

and the diffusion process is stopped. In fact, the larger is |sσ|
the lower is the level of diffusion that a pixel experiences. In

addition, the nature of linear 3D diffusion together with the

regularization with a Gaussian Gσ in Eq. (5) implicitly bring

spatial coherence to our approach by prevailing structures

over pixels. Notice that the diffusion coefficient D ≈ 1 in

a pixel that is surrounded by pixels with low audio-visual

synchrony |sσ|, independently of the synchrony of the pixel

itself. Thus, only spatio-temporal regions whose movement is

coherent with the soundtrack are preserved.

As a summary, we are performing a nonlinear diffusion

over a 3D volume (the video signal) which is controlled by a

diffusion coefficient D that depends on the coherence of audio

and video signals. The proposed diffusion process leads to the

blurring of the visual structures that are not relevant for audio-

visual analysis while keeping a good resolution in the rest.

Thus, in the resulting video signal the possible sound sources

in the scene are automatically highlighted. Some examples of

this behavior can be seen in Fig. 3 (b), where the hand that

is playing the piano (audio-visual source) is better preserved

than the other elements in the scene (e.g. piano brand in the

top sequence).

Other strategies could be considered in the definition of

an audio-visual diffusion process. For example we could use

other approaches such as [14, 17, 18, 29] to estimate in a

first stage the location of the sound sources in the image.

Then, it would be possible to define a diffusion coefficient

which does not change through time and simply blur video

regions that are far from the estimated position of the source.

An approach in this direction can be found in [38], were the

authors use audio-video analysis to encode regions close to

the source’s location with more quality than other regions

in the video. However, our purpose is to preserve only the

video structures whose motion is related to the soundtrack.

Approaches in audio-visual speech recognition require the

lips’ shape and movements (maybe also the mouth region)

but not the speaker’s eyes for example. After localizing the

sound source with other methods we would still need to define

the region to preserve, and by using a proximity criterion we

would obtain a high-resolution region with a circular shape

and an arbitrary radius. An example of the resulting signal

after such a “Localize & Diffuse” approach can be observed

in Fig. 3 (c). In this case, using a fixed value for the radius

that defines the region to preserve might not be appropriate,

since it could lead to the removal of important information

in some cases and to the preservation of irrelevant details in

other sequences. In contrast, by using our method only edges

whose motion is coherent with the soundtrack are preserved,
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(a) Original frame (b) Our Audio-based Diffusion Approach (c) “Localize & Diffuse” Approach

Fig. 3. Results when applying the proposed audio-based video diffusion approach (b) and a method based on a “Localize & Diffuse” strategy (c), which
first localizes the audio-visual source and then applies a Gaussian blurring to the pixels further than 40 pixels from the source position. White crosses in (c)
represent the source position (hand), which is manually fixed for this visualization. Sequences belong to the audio-visual source localization method in [37].

and the size and shape of the source(s) does not need to be

specified in advance.

III. DISCRETIZATION AND STOPPING CRITERION

A. Discretization

We have previously presented the continuous model for the

audio-based nonlinear video diffusion. The discretization of

the proposed approach by means of finite differences can be

found in [35].

Let vni,j,k be the value of v at location (i∆x, j∆y, k∆t) and

diffusion time n∆τ . Here ∆x, ∆y and ∆t are the grid spacing

used in the discretization of the video dimensions, while ∆τ
is the grid spacing used for the diffusion time discretization.

In our case, the pixel size is chosen as the unit of reference

in all spatio-temporal dimensions: ∆x = ∆y = ∆t = 1. The

discretization scheme in [35] satisfies the maximum and mini-

mum principle (whose importance was discussed in Sec. II-A)

for a choice of ∆τ ∈ [0, 1/6]. Thus, if we define the maximum

and the minimum of the neighbors of vi,j,k at iteration n as

vM = max{(v, vl)
n
i,j,k} and vm = min{(v, vl)

n
i,j,k}, we can

prove that:

(vm)ni,j,k ≤ vn+1
i,j,k ≤ (vM )ni,j,k . (7)

Here l = {E,W,N, S, F,R} are the mnemonic subscripts

for the East, West, North, South, Front and Rear neighboring

pixels. As a result, at each iteration the maximum and the

minimum of v become closer and no new maxima or minima

are created. This characteristic guarantees the stability of the

proposed discretization scheme since it prevents the video

pixels’ intensity from growing in time.

B. Stopping Criterion

As discussed in Sec. II-B, our diffusion procedure progres-

sively smoothes regions whose motion is not coherent with the

audio channel activity. Looking at one frame we can observe

that the intensity of the edges becomes close to their entourage,

but the same happens across frames. Thus, the temporal edges

in non-relevant regions are iteratively smoothed and the motion

which is not related to the soundtrack is reduced. However, if

the diffusion process is not stopped it would finally blur the

entire signal, eroding also the audio-related parts. In this paper

we define a stopping criterion for the audio-visual diffusion

process which is intuitive and has a low computational cost.

Let L be a subset of the video domain Ω: L ⊂ Ω. Then,

the amount of motion M in the video subset L at iteration n
is defined as

Mn
L :=

∑

{i,j,k}∈L

|δ∗t v
n
i,j,k| , (8)

where |δ∗t v
n
i,j,k| is the absolute value of the temporal derivative

approximation δ∗t v at pixel coordinates {i, j, k}:

δ∗t vi,j,k =
vi,j,k+1 − vi,j,k−1

2∆t
. (9)

As shown in Fig. 4 [left], the amount of motion in the

entire video domain (Mn
Ω := Mn) decreases through iterations

because at each point the absolute value of the discrete

temporal derivative |δ∗t v| is bounded by

|δ∗t v
n
i,j,k| ≤

(vM )ni,j,k − (vm)ni,j,k
2∆t

, (10)

which is monotonically decreasing (see Eq. (7)). Our method

iteratively eliminates the motion in regions that are not related
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Fig. 4. Typical form of the evolution through iterations of the amount
of motion in the video signal [left] and the corresponding motion reduction
[right].

to the audio signal and leads to a global reduction of the

motion in the video domain. In Fig. 4 [left] only 20% of the

original amount of motion M0 is kept after n = 40 iterations.

The rest (80%) is considered as non-related to the soundtrack

and is iteratively removed. The shape of this curve depends

on the parameters choice. Thus, for example a higher ∆τ
represents a faster decrease in Mn since we converge faster

towards the solution. In any case, the decrease on the amount

of motion is smaller through iterations, tending towards a

relatively stable value.

According to this observation, we define the motion reduc-

tion ∆M at iteration n as

∆Mn :=
Mn−1 −Mn

M0
. (11)

This relative value denotes the percentage of the video motion

that is eliminated by our algorithm at iteration n. Thus,

when the amount of motion does not decrease significantly

∆Mnstop < ǫ we stop the diffusion process since we consider

that most of the information in regions that are not related

to the soundtrack has already been eliminated and we are

close to the resultant motion map. Fig. 4 [right] represents

a typical shape of the evolution of ∆M through iterations.

Here 30% of the video motion has been removed at the end

of iteration 1, while iteration 10 only eliminates the 1% of the

original motion. In this work, the value of ǫ has been fixed to

ǫ = 0.005. Here we consider that a reduction of 0.5% is not

worth the computation of another iteration since it does not

change the motion map in a significant way.

IV. EQUALIZATION OF AUDIO AND VIDEO FEATURES

Some considerations should be taken into account regarding

the audio and video features that we use in Eq. (5) to estimate

the audio-video synchrony. As explained in Sec. II-B, the

audio feature a(t) represents the energy in the audio channel

and the video feature ∂tv corresponds to the motion in the

video signal. However both features have been processed to

improve the performance of the proposed method. Thus, the

audio feature a(t) is an equalized audio energy, while the

video feature ∂tv is also an equalized video motion, which

means that all the “peaks” in each domain have approximately

the same magnitude. This ensures that our approach will give

the same opportunities to all the significant motion and sounds

instead of prevailing only the most intense video motion

occurring exactly at the same time as the louder sound. As

a result, the movements that are related to the soundtrack can

be effectively preserved even if they are significantly smaller

than some distracting motion in the scene.
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Fig. 5. Proposed features [bottom] corresponding to the audio and video
signals in the top row. Right column shows [from top to bottom] the original
audio signal, its energy and the equalized energy a(t) at the same temporal
resolution than the video signal. Left column depicts one video frame, the
motion in this frame (magnitude of the pixels’ temporal variation) and the
corresponding equalized motion, that is ∂tv(x, y, t) for a fixed time t. White
regions represent static pixels.

The equalization in audio and video domains is performed

independently but following the same procedure. First, we

convolve the original signal with two Gaussians of different

variances. We use 3D Gaussians in the case of the video

motion and 1D Gaussians for the audio energy. Then, the

equalized features are the result of dividing the signals after

convolution with the thinner (dividend) and thicker (divisor)

Gaussians. Thus, each peak in audio energy and video motion

is compared to the energy/motion in the region around it and

audio and video features become relative measures.

Some examples of the original and the equalized audio

and video features can be observed in Fig. 5. The audio

feature [bottom right] has approximately the same magnitude

for all significant sounds recorded with the microphone even if

originally they had very different energy. Regarding the video

signal, the strong motion corresponding to a rocking horse

and the mouth movements which are hardly visible in Fig. 5

[center left] are also represented by a similar magnitude in the

video feature [bottom left].

Other features for audio and video signals could also be

used. For example in the audio case we could use a smoothed

version of a binary audio activity detector, the acoustic en-

ergy in an important audio sub-band or a measure of the

audio nonstationarity. More complex features could also be

considered in the video case, but their computation should

have a low complexity. Notice that the video feature needs

to be recomputed through the diffusion procedure: the audio-

visual synchrony sσ at diffusion time τ depends on ∂tv at

time τ and thus on the evolving video volume itself. Thus, the

use of optical flow instead of the temporal derivative of the
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video signal (computed by means of finite differences) would

represent an important increase in terms of computational

cost. In this work we prefer to have a very basic but fast

estimate of the possible locations of the sound sources and use

the nonlinear diffusion procedure to ensure spatio-temporal

consistency. As a final remark, we stress that the features

should not be very selective since audio and video channels

are never exactly synchronous.

Results obtained when using different features are shown in

the experiments section.

V. EFFICIENCY MEASURE

We propose a measure to quantify the efficiency of the

proposed method in removing the video information that is

not related to the sounds in the audio channel.

First, we define an audio-visual region of interest (ROI)
as the subset of pixels in the video domain whose motion is

related to the soundtrack and the complementary region (ROI)
as the rest of pixels in the video domain: ROI ∪ROI = Ω.

Then, the audio-visual diffusion ratio α at iteration n can be

defined as

αn =







M0

ROI

Mn

ROI

M0

ROI

Mn
ROI







aON

, (12)

where the value M0
ROI/M

n
ROI is the ratio between the amount

of motion inside the region of interest at iterations 0 (original

motion) and n, and M0
ROI

/Mn

ROI
is the same ratio computed

outside this region of interest. Here [·]aON indicates that only

the frames where the audio channel is active (aON ) are used

in the computation of this ratio. In this work we consider the

audio channel to be active when sounds are captured by the

microphone and thus the normalized audio feature is large

enough: a(t) > 0.1 with a(t) ∈ [0, 1]. Thus, the audio-visual

diffusion ratio α is a relative measure that assesses the ability

to attenuate the motion in parts of the video signal that are

not related to the soundtrack by comparing it to the diffusion

experienced in the audio-visual region of interest, when sounds

are present in the audio channel. α > 1 when our method

favors regions associated to the soundtrack, α = 1 if the

video motion is equally eliminated inside and outside the ROI,
and α < 1 when the diffusion affects more the ROI than

the rest of the video signal in non-silent periods. Notice that

obtaining α > 1 is an extremely challenging task, especially

in sequences where the audio-related motion is less intense

than the distracting motion.

VI. EXPERIMENTS

The evaluation has been performed in sequences of different

nature presenting strong auditive and/or visual distractors. All

the sequences are composed of two moving objects, and only

one of them is related to the soundtrack. The purpose of this

configuration is to allow a quantitative comparison between

the strength with which the diffusion process affects the audio-

related region and the distracting moving object by means of

the efficiency measure α.

MovieA and MovieB (Fig. 6) are taken from the state-

of-the-art source localization work presented by Kidron et

Fig. 6. From top to bottom: frames belonging to MovieA, MovieB and
MovieC [left] and corresponding regions of interest (ROI) [right] used to
evaluate quantitatively the proposed method. White regions in the right column
depict parts of the image not related to the soundtrack (ROI).

al. in [17]. In MovieA the audio signal is generated by

a hand playing a guitar and then a synthesizer, while in

MovieB we can see a person speaking and the audio signal

is corrupted by the voice of another person. A strong periodic

visual distraction is introduced by means of a rocking wooden

horse. Both video sequences are sampled at 25 frames/sec at

resolution of 576× 720 pixels and the audio at 44.1 kHz. For

its analysis, the video signal has been resized to 144 × 180
pixels. Each sequence is 10 seconds long approximately.

A third sequence, MovieC, is synthesized using clips g01
and g08 from the groups partition of CUAVE database [39].

The video part corresponds to two persons uttering the same

numbers in front of a camera but we only keep the audio

corresponding to the left person in Fig. 6 [bottom left]. The

resulting sequence is thus composed of one person uttering

numbers and another one mouthing the same numbers. Thus,

in this scene we have again one object (person) contributing to

the soundtrack and one strong audio-visual distractor. In this

case the motion generated by the distractor (silent person) and

the audio-related object are very similar. The video part of

MovieC is sampled at 29.97 frames/sec with a resolution of

480× 720 pixels, while the audio part is sampled at 44 kHz.

For its analysis, the video signal has been resized to 120×176
pixels. This sequence is around 6 seconds long.

This section is organized as follows. Sec. VI-A provides a

qualitative analysis of the resulting signals after the proposed

nonlinear diffusion procedure. In Sec. VI-B we present a

quantitative evaluation of the performance of our method.

Finally, Sec. VI-C compares the results when using different
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(a) Original frame (b) Resulting frame (c) Original motion (d) Resulting motion

Fig. 7. Results obtained when applying our method to MovieA, MovieB and MovieC with K = 0.1. The diffusion process has been automatically stopped
after nstop = 26, 25, 11 iterations respectively according to the stopping criterion in Sec. III-B.

audio and video features.

We use the same parameters in all experiments. We fix σ =
1 to avoid artifacts due to noise and ensure spatio-temporal

coherence. The parameter that controls the diffusion speed is

fixed to ∆τ = 0.15 since we need ∆τ ∈ [0, 1/6] to satisfy

the maximum and minimum principle in Eq. (7). The audio-

visual synchrony is normalized: sσ ∈ [0, 1]. Different values

of K ranging between 0.05 and 0.15 are used for comparative

purposes in Sec. VI-B. However, the rest of experiments in

this section are performed with K = 0.1.

The computational complexity of one iteration of our

method is O(N logN), where N is the number of pixels in

the video volume. The number of required iterations nstop is

determined as explained in Sec. III-B.

A. Qualitative Analysis

Results obtained when analyzing MovieA, MovieB and

MovieC with the proposed method are shown in Fig. 7. The

original frames of those sequences in (a) present a lot of

irrelevant background details such as a carpet or small objects

in the shelves that completely disappear or become blurred

in the resulting frames in (b). Even if the rocking horse is

moving continuously, its silhouette is blurred and most of its

details disappear equally. In contrast, the focus is preserved

in regions related to the soundtrack, i.e. the hand in MovieA,

the girl’s mouth in MovieB and the left speaker’s mouth in

MovieC. By comparing columns (c) and (d) it is possible to

observe that in all cases the motion is better preserved in the

audio-related video regions, even though some situations are

really challenging because the distracting motion is much more

intense.

In MovieB the audio signal is corrupted by a second voice.

However, the audio feature is not affected by the person

speaking out of the field of view, since the energy of this

second voice is significantly smaller than the energy of the

girl’s voice. As a result, the background sounds do not affect

significantly the result and the video signal is focused on the

girl’s mouth only when she is speaking.

Videos showing the test sequences and the corresponding

video signals after applying our method are available online

at http:// lts2www.epfl.ch/people/ llagostera/ .

These experiments illustrate also the limitations of our

approach. In fact, when the analyzed sequence contains a

distracting motion which is synchronized with the soundtrack,

our algorithm is not able to remove it. An example can be

found when the two persons in MovieC utter a word exactly

at the same time. In this case, the focus is kept in the mouths

of both persons because they could both be the sound source,

i.e. both movements are coherent with the sound. In fact, we

could be hearing two words, one uttered by each person, and

the audio feature would not change. Some a priori knowledge

about the frequency characteristics of their voices might help

in discarding the silent person. However, here we want to

keep our method general and we only use the assumption of

synchrony between audio and video channels.

B. Quantitative Analysis

This section evaluates the efficiency of the proposed non-

linear diffusion approach in prevailing the video information
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Fig. 8. Evolution through iterations of the audio-visual diffusion ratio α for different values of K .

that is useful in audio-visual analysis. For this purpose we

use the audio-visual diffusion ratio α defined in Sec. V,

which compares the amount of video motion removed inside

and outside some region of interest (ROI) when sounds are

present. In this work, the regions of interest for audio-visual

analysis are defined as spatio-temporal regions in the video

signal whose motion generates the sounds captured with the

microphone. Fig. 6 shows a frame belonging to each test

sequence and the corresponding ROI in this frame. From top

to bottom, the ROI in MovieA corresponds to the hand that

plays the guitar and the piano, in MovieB it is defined as the

speaker’s mouth region, and it is the speaker’s face in MovieC.

The depicted ROIs have been manually defined using a 3D

video segmentation interface.

Fig. 8 shows the audio-visual diffusion ratio α that we

obtain when applying our method to MovieA, MovieB and

MovieC with different values for the parameter K in Eq.

(6). As expected, in all sequences and for K ranging between

0.05 and 0.015, we obtain satisfactory values for the audio-

visual diffusion ratio (α > 1). This result proves that the video

motion is prevailed more efficiently inside the ROIs when the

audio channel is active.

However, there is not an optimal value for K that provides

the best performance in all situations. The higher is K the

higher is the diffusion coefficient D (see Eq. (6)). As a result,

the diffusion process affects the video volume with more

strength and the motion in the signal is reduced faster. Thus

K = 0.15 leads to a good performance in MovieA and to

a faster removal of the distracting motion. In contrast, high

values for K can result in the elimination of information in

regions that are associated to the soundtrack if the initial

motion in these regions has a low magnitude. In MovieB
for example, when K = 0.15 the diffusion affects most

moving regions almost from the beginning and some audio-

related motion in the speaker’s mouth is eliminated. A good

compromise can be obtained by fixing K = 0.1. As shown

in Fig. 8, a high audio-visual diffusion ratio α is reached

faster when the audio-related video motion is not very small

(MovieA and MovieC) and the results when the distracting

motion is dominant are also satisfactory (MovieB).

Table I depicts the results obtained for the three analyzed

sequences when using the stopping criterion defined in Sec.

III-B. First of all, notice that the stopping time determined for

MovieA MovieB MovieC

K = 0.05 1.33 (17) 1.26 (23) 1.44 (7)

K = 0.1 1.50 (26) 1.22 (25) 1.50 (11)

K = 0.15 1.59 (30) 1.20 (26) 1.45 (15)

TABLE I
RESULTING AUDIO-VISUAL DIFFUSION RATIO α FOR DIFFERENT VALUES

OF K . THE NUMBER OF ITERATIONS THAT ARE REQUIRED ACCORDING TO

THE STOPPING CRITERION ARE SHOWN IN PARENTHESIS.

MovieB and MovieC leads to values of α that are close to the

maximum of curves in Fig. 8. Even if the curve corresponding

to MovieA does not present a maximum for a small number

of iterations, the diffusion process is stopped when the value

of α is high. As discussed before, increasing the number of

iterations is not advisable in this case since it increases the

computational cost without changing significantly the motion

map. Finally, the lowest K (K = 0.05) leads to the smallest

number of iterations in all cases, since the amount of motion

in the video signal decreases slowly. In this case, many

motion concentrations are considered as possibly related to the

soundtrack, it takes time to discard them and the motion in

the video volume evolves so slowly that after some iterations

the motion map seems already stuck.

C. Feature Selection

Finally, we compare the performance of the proposed audio-

visual diffusion procedure when using different features (see

Table II) for the computation of the audio-video synchrony

measure sσ in Eq. (5). The purpose of this section is to

demonstrate the effectivity of the equalization step in Sec. IV

and to compare the performance of the audio energy to another

feature that is commonly adopted in audio-visual fusion, i.e.

the onsets in the audio channel.

Audio onsets represent a measure of the nonstationarity in

the audio channel and they are used in other audio-visual

fusion methods [18]. Since there are multiple examples of

stationary sounds that do not have any motion associated (e.g.

a car engine), in some situations audio onsets might perform

better than the audio energy in assessing the synchrony

between audio and video channels. In our case, onsets are

obtained by computing the time derivative of the audio energy
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Fig. 10. Evolution through iterations of the audio-visual diffusion ratio for the three different combinations of audio and video features in Table II.

AUDIO FEATURE VIDEO FEATURE

EQ_ENERGY Equalized energy Equalized motion

RAW_FEAT Energy Motion

EQ_ONSETS Equalized onsets Equalized motion

TABLE II
THREE TESTED COMBINATIONS OF AUDIO AND VIDEO FEATURES. OUR

METHOD USES EQ_ENERGY.
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Fig. 9. Soundtrack belonging to MovieA [top] and corresponding equalized

audio energy [bottom left] and onsets [bottom right].

as explained in [40]. Fig. 9 [right] shows an example of audio

onsets before and after equalization.

Fig. 10 shows the resulting audio-visual diffusion ratio α for

the analyzed sequences when the features are chosen according

to the three options in Table II. In all cases RAW_FEAT per-

forms worse than the other two possibilities, leading to α < 1
after less than 20 iterations for MovieB and MovieC. This

result demonstrates the importance of the equalization process

in Sec. IV, which ensures equal opportunities to all significant

sounds and motion. Regarding EQ_ONSETS, its performance

is superior than EQ_ENERGY in MovieA, similar in MovieB

and worse in MovieC. MovieA contains piano sounds, each

of them composed by an onset followed by a decay in the

acoustic energy (see Fig. 9 [top]). The video motion in this

case is synchronized with the onsets and not with the decay

period. The equalized onsets [bottom right] capture only the

time instants in which the keys are pressed and thus the

distracting motion can be effectively attenuated. In contrast,

the value of the equalized audio energy [bottom left] is high

during periods in which there is no motion correlated to the

soundtrack but the distracting motion is still present. While

the onsets seem more adequate than the audio energy when

the soundtrack contains stationary sounds, the equalized audio

energy leads to a better performance in sequences containing

speakers (MovieB, MovieC).

VII. APPLICATION: UNSUPERVISED EXTRACTION OF

AUDIO-RELATED VIDEO REGIONS

The proposed audio-visual diffusion procedure erodes video

regions presenting a low coherence with the audio signal and

automatically highlights the possible sound sources. Thus, an

intuitive application of this diffusion procedure can be the

unsupervised extraction of audio-related video regions. The

algorithm that we introduce in this section is very simple, and

its purpose is to illustrate the capabilities of our approach.

Here we propose first to determine possible regions of interest

by comparing the motion before and after the audio-visual

diffusion process and then use this knowledge as a starting

point for a standard segmentation procedure using graph cuts.

The extracted region contains thus the video parts whose

motion is highly synchronous to the soundtrack that are

identified by the proposed method.

For this purpose we define the audio-visual coherence c(x)
at pixel location x as

c(x) =







∂tv(x,τstop)
∂tv(x,0)

if ∂tv(x, 0) > ξ

∂tv(x,τstop)
maxx ∂tv(x,0)

otherwise
(13)

where ∂tv(x, τstop) is the temporal derivative of the resulting

video signal after nstop iterations of the proposed nonlinear

diffusion procedure (τstop = nstop∆τ ) and the constant ξ
makes the audio-visual coherence c(x) close to zero in static

pixels (we can fix ξ = 10−1 for example). The higher is the

audio-visual coherence c(x) the higher is the probability for

the video pixel at location x to be part of an audio-related
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(a) Feature (b) Foreground seeds (c) Background seeds (d) Segmented frame

Fig. 11. Extracted audio-related video regions (d) for a frame belonging to MovieA when choosing the segmentation seeds according to the features in
(a): original motion [top], resulting motion [middle], and audio-visual coherence c(x) [bottom]. White pixels in (b)-(c) indicate the automatically labeled
segmentation seeds. The extracted regions in (d) are delimited by a white line and they are depicted in a brighter grayscale than the background.

video region, since its motion is well preserved through the

diffusion process.

The pixels with highest audio-visual coherence c(x) are

then labelled as belonging to the audio-related video region

(foreground), and the pixels presenting the lowest c(x) are

used as background seeds (i.e. initial labels). Only a small

number of pixels are labelled in this step. Thus, we estimate

that the points whose motion is better preserved through the

diffusion process are likely to compose the audio-related video

region. Once these pixels are automatically labelled, a standard

binary segmentation using graph cuts [41] is applied to extract

the whole audio-related video region (and label all remaining

pixels).

Fig. 11 shows an example of applying this procedure to a

frame belonging to MovieA. It compares the extracted regions

(d) when we label the pixels according to the original video

motion [top], the resulting video motion after the diffusion

procedure [middle] and, as proposed in this section, the audio-

visual coherence c(x) [bottom]. In this case, a 0.5% and

a 10% of pixels are automatically labelled as foreground

and background in (b)-(c) respectively. Notice that we are

much more selective when choosing the foreground seeds,

since we want to be sure of labeling only the right pixels.

The background seeds in Fig. 11 (c) are well distributed

across the frame for the three features that we consider.

Regarding the foreground seeds in (b), while they are equally

distributed between the hand (audio-related video region) and

the horse’s head (distracting moving object) according to the

initial motion [top], when using the resulting motion [middle]

most of them are in the correct location. Finally, the feature

that we propose, i.e. the audio-visual coherence [bottom],

leads to the smallest number of errors on the seed choice, i.e.

only a few seeds are located over the rocking horse. Since the

extracted region in (d) is determined by the seeds, the audio-

visual coherence provides more accurate results than the other

two features. The extracted audio-related video region in this

case [bottom] is very similar to the ROI that was manually

defined for the quantitative evaluation (see Fig. 6).

The interested reader can find in [42] a more elaborated

approach for the unsupervised extraction of audio-related

regions which is also based on the proposed audio-visual

diffusion procedure.

VIII. DISCUSSION

We have proposed a novel nonlinear video diffusion ap-

proach which is controlled by the fusion of information in

audio and video channels. Our method integrates the main

assumption in the audio-visual domain in the definition of

the diffusion coefficient, which depends on an estimate of

the synchrony between video motion and audio energy. As

a result, video parts that are related to the synchronously

recorded soundtrack are automatically highlighted while in-

formation which is not useful for audio-visual applications is

progressively reduced.

Several tests have been performed in challenging real-world

sequences. Quantitative results show that our approach is



11

effective in prevailing audio-related video regions over other

moving objects. However, our method is unable to distinguish

between two regions whose motion is coherent with a sound.

When two persons mouth a word at the same time for example,

both mouth regions are highlighted independently of which

voice we hear. We do not want to introduce any additional

knowledge about the sources’ characteristics because our goal

is to keep this method as general as possible. We believe that

this approach can be efficiently used as a preprocessing step

for other methods in this domain, since it is able to remove

misleading information in applications such as sound source

localization.
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