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Biomaterials are increasingly being developed as in vitro microenvironments 
mimicking in vivo stem cell niches. However, current macro-scale 
methodologies to produce these niche models fail to recapitulate the spatial 
and temporal characteristics of the complex native stem cell regulatory 
systems. Microfluidic technology offers unprecedented control over the spatial 
and temporal display of biological signals and therefore promises new 
avenues for stem cell niche engineering. Here we discuss how the two 
approaches can be combined to generate more physiological models of stem 
cell niches that could facilitate the identification of new mechanisms of stem 
cell regulation, profoundly impacting drug discovery and ultimately therapeutic 
applications of stem cells. 
 

Introduction 
Stem cell biologists begin to recognize the relevance of advanced 
biomaterials as tools for the study of stem cell self-renewal and differentiation. 
The interest in biomaterials has risen largely due to the increased awareness 
of the shortcomings of existing cell culture techniques to control stem cell 
behavior in vitro. Isolated from a tissue and exposed to a rigid and 
hydrophobic plastic cell culture substrate, many adult stem cell types rapidly 
lose their multipotent characteristics. In vivo, the stem cells reside in highly 
hydrated and soft niches (Fig. 1A) that anchor the stem cell to its anatomical 
site in a tissue and provide instructive cues that regulate fate (Fig. 1B) [1,2]. 
Niches are typically composed of crosslinked extracellular matrices (ECMs) 
rich in proteins and sugars, as well as support cells that secrete short-range 
soluble signaling cues and provide crucial cell-cell interactions (Fig. 1A). 

 
The niche-dependency of stem cell fate therefore necessitates in vitro 

milieus that provide the key biochemical signals that need to be presented in 
a tissue-specific, biophysically relevant context [3,4••]. Indeed, new 
generations of biomaterials can be tailor-made to mimic the in vivo milieu of 
stem cells [5,6,7] (Fig. 1C). Recent advances allow for example the 
fabrication of hydrogels with precisely and to some extend independently 
tunable mechanical property, degradability and bioactivity (e.g. [8,9•]). 
However, despite these exciting advances, many mammalian stem cells still 
cannot be cultured in vitro for an extended period of time without losing their 
self-renewing capacity, such as has been shown for hematopoietic stem cells 
[10] or muscle stem cells [4••], and the differentiation of stem cells in a highly 
controlled fashion remains a formidable challenge, presumably because of 
our limited control over the spatial and temporal presentation of biological 
signals to stem cells in vitro. 
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We believe that one way to overcome this hurdle is the application of 

microfluidic technology to the design and modification of biomaterials. 
Microfluidics, that is the manipulation of nano- and picoliters of liquid within 
channels of dedicated micro-devices, is characterized by laminar flow profiles 
and diffusive mixing. It is this unique flow regime that allows the positioning of 
biomolecules or cells with previously unmet precision and well-defined 
dynamics [11,12,13]. When cleverly combined with biomolecular materials, 
this approach thus promises the development of a panoply of miniaturized 
models of stem cell microenvironments or even tissues with various levels of 
complexity (Fig. 1D). What is more, new ways of screening artificial 
microenvironments in high-throughput can be envisioned (Fig. 1E).  

 
Here we review recent efforts that have integrated biomaterials, 

particularly hydrogels, in microfluidics platforms (or vice versa) to study stem 
cells in a physiologically relevant context. Furthermore, we highlight emerging 
technologies that have not yet found their way to stem cell applications, but, if 
successfully implemented, could become powerful tools to further our 
understanding of stem cell biology. 

 

Micropatterning of biomolecules and hydrogels on surfaces 
In the native niche, stem cells may be exposed to graded or ‘polarized’ 
microenvironmental distributions of biomolecules such as growth factors or 
ECM proteins. In vitro, an asymmetric signal distribution can for example be 
achieved on a surface by hydrodynamic patterning, which relies on the 
controllable diffusive mixing in micro-channels of microfluidic devices.  
 

One the one hand, when employing a chip where diffusion is limited, 
hydrodynamic patterning can be directly used to stimulate cells in a spatially 
controlled fashion with bioactive molecules at sub-cellular resolution by 
flowing two different liquid streams over a single cell (as successfully 
demonstrated in classical experiments [14]), embryonic stem cell (ESC) 
colonies [15], or even individual Drosophila embryos [16]. On the other hand, 
by manipulating the diffusive mixing of two inlet streams, microfluidics allows 
the well-controlled generation of continuous gradients of soluble proteins. 
These microfluidic gradient generators offer higher spatial control than 
classical methods such as the Boyden chamber or micropipets. 
Consequently, numerous systems to generate gradients have been 
developed over the last decade (as reviewed in [17]) and utilized, for example, 
to investigate the effect of various soluble growth factor gradients on neural 
stem cell behavior [18]. 
 

However, most studies employing gradient makers were conducted 
with cells cultured on non-physiological glass or plastic substrates. Clearly, 
integrating biomimetic hydrogels into such hydrodynamic patterning devices 
would increase their relevance. This may be achieved by simply coating a 
chip surface with a biomaterial of interest [15], or by employing microfluidics to 
synthesize micro-patterned hydrogels directly within the micro-channels. To 
this end, step-wise photopolymerization reactions were for example used to 
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generate cell-adhesive poly(ethylene glycol) (PEG) substrates with defined 
stiffness regions to investigate directional cell migration (‘durotaxis’) [19•]. 
Notably, at the end of the fabrication, the chip was removed and the patterned 
substrate used for cell culture in a normal macro-scale culture environment.  
 

Alternatively, preformed reactive hydrogel films may be patterned by 
tagged biomolecules using microfluidic technology [20,21•] (Fig. 2). A PEG 
hydrogel film, covalently modified with NeutrAvidin and/or ProteinA, was for 
example used to capture from solution, in just a few minutes, gradients of 
biotinylated or Fc-tagged proteins within a microfluidic gradient maker (Fig. 
2A-C). After patterning, the microfluidic chip was removed and the patterned 
hydrogels used for cell culture. Importantly, hydrodynamic flow focusing 
allowed forming, in a software-controlled fashion, gel-immobilized protein 
patterns with virtually any shape (Fig. 2D) [21•], while the orthogonality of the 
two affinity binding schemes enabled independent immobilization of two 
overlapping protein gradients (Fig. 2E). Hydrodynamic patterning of hydrogels 
could be applied to other elegant microfluidic techniques [22,23•]. 

Micropatterning of proteins and hydrogels in three dimensions 
Whereas the above two-dimensional (2D) approaches provide powerful 
reductionist models to study the role of the heterogeneous distribution of 
biomolecules in a natural stem cell niche, they omit the third dimension and 
therefore possibly an important determinant of stem cell fate. However, 
exciting advances have been made in generating three-dimensional (3D) 
artificial niches by combining microfluidics and biomaterials technology.  
 

In one popular approach, hydrogel precursors and cells can be loaded 
between two channels within a microfluidic device where the hydrogel 
crosslinks in situ and encapsulates the cells. The channels can then be 
perfused to act as a source and sink of a biomolecule diffusing through the 
hydrogel to establish a stable gradient. In order to perfuse the system, it is 
obviously crucial not to obstruct the perfusion channels with the hydrogel 
which requires localized gelation for example via photolithography [24,25], 
micro-patterning via laminar flow [26•,27] or by physical confinement. The 
latter is usually achieved with narrowly spaced posts, which, when properly 
designed, restrict the flow of the liquid gel precursor by balancing surface 
tension and capillary force [28,29,30•] (Fig. 3). This chip design, which has 
been commercialized (e.g. Ibidi GmbH, Germany) [31], has been successfully 
applied to study cells exposed to gradients in 3D gels [32,33]. Examples 
include studies of neurite growth in a 3D collagen gel under a Netrin-gradient 
[32], or the de novo formation of vascular capillaries under a gradient of 
vascular endothelial cell growth factor or sphingosine-1-phosphate [33].  

Biomicrofluidics: fabricating microchannel networks within bioactive 
hydrogels 
Most microfluidic chips are fabricated from PDMS, because this material has 
favorable properties such as ease of processing and handling, permeability to 
gases, and elastic deformability that enables for example the integration of 
on-chip valves in multilayered chips. Nevertheless, as a substrate and device 
for applications in stem cell niche engineering, PDMS has some limitations. It 
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rapidly adsorbs proteins, is rather difficult to biofunctionalize and does not 
allow the encapsulation of cells. For these reasons, researchers have sought 
to directly pattern micro-channels within hydrogels such as alginate, agarose 
or gelatin [13]. These ‘biomicrofluidic’ devices can be readily perfused [34,35] 
and at the same time can serve as scaffolds for cells [36,37,38]. In contrast to 
solid PDMS chips, nutrients and proteins can almost freely diffuse, just as 
within native ECMs. 3D biomolecule gradients can thus be established in a 
near-physiological context [34,35,38].  
 

Albeit not yet frequently applied to stem cell biology, such hydrogel 
chips could offer exciting avenues to modulate the cellular microenvironment. 
Nonetheless, their current fabrication by micromolding against a PDMS 
template makes the fabrication of complex 3D networks or multi-layered 
cellular constructs difficult. In addition, reliable micromolding necessitates 
relatively highly crosslinked hydrogels that may not be well suited for 3D stem 
cell culture and the induction of a morphogenetic cellular process. One 
approach that could circumvent these limitations may be the use of inkjet 
printing to fabricate biomicrofluidic networks. Inkjet printing theoretically allows 
the deposition of pico-liter droplets containing biomaterial precursors, cells 
and growth factors [39,40]. If suitable ‘bio-inks’ were available, the fabrication 
of macroscopic, cell-containing 3D constructs based on computer-assisted 
designs could be envisioned. Such physiological 3D cell culture models could 
not only be highly relevant for basic biological studies, but also for in vitro drug 
screening and ultimately regenerative medicine. 

 

Microfluidic platforms for high-throughput screening of 3D artificial 
stem cell niches 
An important impetus for the application of microfluidic technology in the 
context of stem cell niche engineering is its huge potential for miniaturization 
and therefore parallelization of experiments [41]. For example, 
microenvironments could be microfluidically produced in high-throughput as 
miniaturized cell culture systems, for screening applications or as micro-
tissues (Fig. 1E). One approach to achieve this goal consists in the 
development of integrated 3D chips with on-chip microfluidic valves. Such a 
system has been developed containing an array of 16 individually 
addressable cell-culture chambers that could be loaded with hydrogels and 
stem cells [42].  

 
Alternatively, microfluidic flow-through devices could be used to 

generate microbeads composed of hydrogels, cells and test compounds. 
They could be produced using stop-and-flow systems [43,44] or via 
microfluidic droplet generation. The latter technology relies on the injection of 
an aqueous solution into a stream of a carrier fluid, typically oil, inside of a 
microfluidic chip. Because the liquid streams are not miscible, they 
reproducibly emulsify at a very high frequency where the two streams meet 
[45]. Methodologies are emerging to produce microdroplets containing liquid 
gel precursors that can be crosslinked to hydrogel microbeads in the 
presence of cells and, if necessary, containing a tag encoding the composition 
of each microbead [43,46••,47]. However, at the moment, hydrogel 
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microbeads have mostly been fabricated from naturally derived polymers such 
as alginate that polymerize rapidly and are relatively dense (e.g. 
[34,48•,49,50]); slowly polymerizing and soft hydrogel systems require 
extensive incubation channels (in flow-through system, incubation time 
translates into distance) [51]. This limits the use of microbead technology for 
some stem cell types that grow poorly in densely crosslinked hydrogel 
systems. Therefore, microfluidic set-ups and biomaterials will need to be 
further optimized to produce cell-permissive microbeads in high-throughput.  

 
Nevertheless, over the last five years or so, microdroplet technology 

has progressed at impressive pace. Microdroplets can now be reliably stored, 
fused, separated and analyzed [45], and there are methods to modulate the 
composition of the microdroplets in high-throughput [46••,52••]. To this end, a 
microfluidic chip was developed to screen a library of eight acetylenes and 16 
acides under four different conditions for click crosslinking reactions 
[46••,52••]. The 1024 combinations were prepared and mixed on the 
microfluidic chip in a fully automated fashion and then sequentially loaded into 
Teflon tubing for incubation. From there, each combination could be eluded, 
purified and analyzed by mass spectrometry. Intriguingly, the preparation of a 
single combination required only ca. 17 seconds. The application of similar 
strategies to screen for hydrogel-based stem cell microenvironments to 
discover functional artificial niches would be truly exciting.  

 
A different approach was recently described to screen the effect of 

variable concentrations of the chematherapeutic agent mitomycine C on non-
adherent cancer cells [46••]. The authors first prepared a droplet-based library 
of different drug concentrations that was labeled with a fluorescent tag. This 
library was then loaded onto a second microfluidic chip where the droplets 
containing the cytotoxic compound were fused pair-wise with microdroplets 
containing the cells. After removing the microdroplets from the chip and 
incubating them for four days, the microdroplets were loaded onto a third chip 
and cell viability and the fluorescence tag were analyzed using spectroscopic 
methods.  

 
The successful integration of hydrogel microbeads could extend such 

screening possibilities to adherent (stem) cell types. One could imagine either 
drug screens or combinatorial testing of different ECM compositions. That 
said, screening applications will surely not be the only application of such 
microbeads as they could for example be utilized as stem cell expansion 
carriers, building blocks for tissue constructs or implantable bio-sensors 
[53,54,55].  

Towards functional tissue models using microfluidic chips and 
biomaterials 
One of the most captivating challenges in modern tissue engineering is the in 
vitro reconstruction of tissue or organ function. Microfluidics is well poised to 
facilitate such applications. Recently, an ‘artificial lung’ was generated on a 
chip composed of an immunologically functional bi-layer of endothelial and 
epithelial cells seeded onto the two sides of a porous PDMS membrane [56••]. 
This device served as a realistic model to study the toxicity of nanoparticles 
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by mimicking the respiration-induced deformation of the bi-layer and thus 
could trigger the strain-dependent uptake of nano-particles by the epithelium.  

 
An application of this concept to 3D tissue models, such as the bone 

marrow would require the integration of advanced biomaterials. We believe 
that most of the approaches that were discussed above could be suitable for 
this purpose. For example, photo-polymerizable materials can easily be 
patterned into complex structures using photolithography [24,25,57], or 
microfluidics can be used to assemble micro-tissues in a precise configuration 
for ‘tissue-on-a-chip’ models [54]. Alternatively, microfluidically generated 
hydrogel microbeads might be directly used to assemble three-dimensional 
tissue-models off-chip [58].  

 
An important challenge in the fabrication of functional artificial tissues is 

the adequate 3D patterning of multiple cell types into a tissue-like 
architecture. Microfluidics offers precise spatial control of the components of 
3D co-culture systems [28,29,30•]. For example, researchers have 
engineered a hydrogel bi-layer of hepatocytes and endothelial cells. 
Interestingly, the system allowed the mimicry of interstitial flow which 
promoted the formation of tissue-like structures by the hepatocytes [59]. 
Similar work has recently yielded a recapitulation of the perivascular 
association of mesenchymal stem cells (MSCs) [30•]. 400-µm wide stripes of 
hydrogels were loaded with mesenchymal stem cells (MSCs) with human 
umbilical vein endothelial cells (HUVECs) seeded to the channels next to the 
hydrogels. Over 14 days, these endothelial cells vascularized the hydrogels, 
while MSCs started to form close associations with the new capillaries. 
Although this represents only a first step towards the in vitro recapitulation of 
the perivascular niche of adult stem cells, such microfabricated co-culture 
models could be further advanced for example by applying biomolecules 
gradients, or by seeding primary functional niche cells, such as Nestin+ MSCs 
[60], together with functional hematopoietic stem cells. 

Conclusions 
The fields of biomaterials engineering and microfluidics have advanced to 
impressive levels of sophistication. The interface of these two fields now 
promises truly exciting avenues for stem cell biotechnology and biology. Novel 
in vitro platforms to decipher the mechanism of stem cell regulation have 
already been generated. For example, the micropatterning of biomaterials 
using microfluidics has made possible the fabrication of physiological niche 
models in two and three dimensions. These models are not only able to mimic 
the asymmetric or graded distribution of key niche components, but also the 
precise 3D arrangement of different cell types in co-culture systems. The time 
is ripe to expand on these pioneering efforts to further integrate biomaterials 
technology into microfluidic chips to tackle pertinent questions in stem cell 
research. The results of these efforts might have impact beyond in vitro 
studies into regenerative therapies of the future. 
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Figure 1:  

 
 
Figure 1: Application of biomaterials and microfluidics to mimic stem cell 
niches. (A) In vivo, stem cell are maintained in instructive microenvironments, 
or niches, which display short-ranged soluble signals, cell-cell interactions and 
tissue-specific ECMs. (B) These signals regulate stem cell behavior and in 
particular the delicate balance between self-renewal and differentiation. (C) In 
vitro systems mimicking stem cell niche properties (here: stiffness) can 
maintain stem cell function to some extend outside of a tissue. Adapted with 
permission from Reference [4••]. © 2010 AAAS. (D) The integration of 
advanced biomaterials such as biomimetic hydrogels into microfluidics can 
augment microfluidic technologies by i) providing more physiological 
substrates for stem cell culture, ii) facilitating the precise fabrication of co-
cultures and iii) artificial tissue models. (E) Because microenvironments can 
be tightly controlled and rapidly modulated in microfluidic chips, 
miniaturization could render biomaterials amenable to the combinatorial 
screening of functional 3D artificial niches.  
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Figure 2: 
 

 
Figure 2: Schematic representation of the microfluidic patterning of 
functionalized PEG hydrogels. (A) Microfluidic chip for hydrodynamic flow 
focusing. (B) Formation of NeutrAvidin-conjugated hydrogels from aqueous 
precursor solutions containing multi-arm PEG macromers and ‘PEGylated’ 
NeutrAvidin. (C) Patterning of gels using hydrodynamic flow focusing. Step 1: 
the PDMS chip is pressed onto a glass slide bearing a thin hydrogel coating. 
Steps 2–4: gradient patterning by flow focusing. Step 5: the PDMS chip is 
removed for cell culture experiments. (D) Generation of three types of model 
gradients by hydrodynamic flow focusing of FITC-BSA-Biotin on 
NeutrAdvidinconjugated PEG gels. Fluorescent micrographs and graphical 
representations obtained by image analysis of a linear (top), exponential 
(middle) and Gaussian (bottom) gradients (scale bar = 100 µm). Schemes on 
the left of each gradient depict the step-wise flow focusing process with the 
two buffer streams (Q1 and Q3) flanking the protein stream Q2. Flow rates 
were maintained constant for a time ti for each step ni. (E) Generation of gel-
immobilized overlapping gradients by sequential hydrodynamic flow focusing. 
Fluorescence micrograph and measured fluorescence intensities showing a 
linear gradient of tethered DsRed-BSA-Biotin combined with a Gaussian 
gradient of FITC-labelled IgG (scale bar =100 µm). Adapted with permission 
from Reference [21•]. © The Royal Society of Chemistry 2011  
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Figure 3: 
 

 
Figure 3: Microfluidics can also be explored to fabricate multi-layered 
hydrogels by physically confining the flow of hydrogel precursor solutions. (A, 
B) These 3D constructs permit precise co-cultures and can for example serve 
as models for tissue vascularization. (C) High magnification (63x) confocal 
images from day 14 co-cultures stained for F-actin and CD31. Scale bar = 50 
µm. Reprinted with permission from [30•]. © 2010 John Wiley & Sons 
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