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Abstract—We consider the problem of localizing wireless
devices in an ad-hoc network embedded in a d-dimensional Eu-
clidean space. Obtaining a good estimate of where wireless devices
are located is crucial in wireless network applications including
environment monitoring, geographic routing and topology con-
trol. When the positions of the devices are unknown and only local
distance information is given, we need to infer the positions from
these local distance measurements. This problem is particularly
challenging when we only have access to measurements that have
limited accuracy and are incomplete. We consider the extreme
case of this limitation on the available information, namely only
the connectivity information is available, i.e., we only know
whether a pair of nodes is within a fixed detection range of each
other or not, and no information is known about how far apart
they are. Further, to account for detection failures, we assume
that even if a pair of devices is within the detection range, it
fails to detect the presence of one another with some probability
and this probability of failure depends on how far apart those
devices are. Given this limited information, we investigate the
performance of a centralized positioning algorithm MDS-MAP
introduced by Shang et al. [3], and a distributed positioning
algorithm HOP-TERRAIN introduced by Savarese et al. [4].
In particular, for a network consisting of n devices positioned
randomly, we provide a bound on the resulting error for both
algorithms. We show that the error is bounded, decreasing at
a rate that is proportional to Rcyitical/ R, Where Rciitical is the
critical detection range when the resulting random network starts
to be connected, and R is the detection range of each device.

Index Terms—centralized, distributed, localization, sensor net-
work

I. INTRODUCTION

In this paper, we address the problem of positioning when
only a partial information on pairwise distances is provided.
Location estimation of individual nodes is required for many
wireless sensor network applications such as environment
monitoring, geographic routing and topology control, to name
only a few [5], [6]. In environment monitoring, for instance,
the environmental measurement data by the wireless sensor
network is more useful when accompanied by the location
information. One way to acquire the positions is to equip all
the sensors with a global positioning system (GPS). The use
of GPS not only adds considerable cost to the system, but
more importantly, it does not work in indoor environments or
when the received GPS signal is jammed [7]. Alternatively, we
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need an algorithm that can derive positions of sensors based on
local and basic information such as proximity (which nodes are
within communication range of each other) or local distances
(pairwise distances between neighbouring sensors).

Two common techniques for obtaining the local distance
and connectivity information are Received Signal Strength
Indicator (RSSI) and Time Difference of Arrival (TDoA).
RSSI is a measurement of the ratio of the power present in a
received radio signal and a reference power. Signal power at
the receiving end decreases as a function of the distance, and
RSSI has the potential to be used to estimate the distance. Al-
ternatively, TDoA techniques use the time difference between
the receipt of two different signals with different velocities,
for instance ultrasound and radio frequency signals [8], [9].
These techniques can be used, independently or together, for
distance estimation.

Given a set of such measurements, we want to find the
positions. One common approach, known as multi-dimensional
scaling (MDS) [10], assumes that all pairwise distances are
known. However, in almost all practical scenarios such infor-
mation is unavailable for two major reasons. First, sensors are
typically highly resource-constrained (e.g., power) and have
limited communication range. Thus, far away sensors cannot
communicate and obtain their pairwise distances. Second, due
to noise and interference among sensors, there is always the
possibility of non-detection or completely incoherent measure-
ments.

Many algorithms have been proposed to resolve these issues
by using heuristic approximations to the missing distances,
and their success has mostly been measured experimentally.
Regarding the mechanisms deployed for estimating sensor
locations, one can divide the localization algorithms into
two categories: range-based and range-free. In the range-
based protocols the absolute point-to-point distance estimates
are used for inferring the locations, whereas in the range-
free protocols no assumptions about the availability of such
information are made and only the connectivity information is
provided. As a result, range-free algorithms are more effective
in terms of stability and cost, hence more favourable to be
deployed in practical settings. In sensor network literature,
“range-free” is also referred to as “connectivity-based”, and
“range-based” is also referred to as “range-aware”.

The theoretical guarantees associated with the performance
of the existing methods are, however, of the same interest
and complementary in nature. Such analytical bounds on the
performance of localization algorithms can provide answers
to practical questions: for example, “How large should the
radio range be in order to get the reconstruction error within



a threshold?” With this motivation in mind, our work takes a
step forward in this direction.

We first focus on providing a bound on the performance
of a popular localization algorithm MDS-MAP [3] when
applied to sensor localization from only connectivity infor-
mation. We should stress here that pairwise distances are
invariant under rigid transformations (rotation, translation and
reflection). Hence, given connectivity information, we can only
hope to determine the configuration or the relative map of the
sensors. In other words, localization is possible only up to
rigid transformations. With this point in mind, we prove that
using MDS-MAP, we are able to localize sensors up to a
bounded error in a connected network where most of distances
are missing and only local connectivity information is given.

More precisely, assume that there are n sensors positioned
randomly in a d-dimensional unit cube with the radio range
R = o(1). Further, assume that each pair can detect each other
with probability at least py. Let the n X d matrices X and X
denote the true sensor positions and their estimates by MDS-
MAP, respectively. Define L = I,,x,, — (1/n)1,17 where
I,,xn is the identity matrix and 1,, is the all ones vector. The
quantity LX X T L satisfies nice properties: (a) it is invariant
under rigid transformations and (b) if LXX"L = LXXTL,
then X and X are equal up to rigid transformations. Therefore,
a natural distance metric is:

@m@&X):%MLXXfL—LXXTMb,

where || - ||r denote the Frobenius norm. Using this, we
establish an upper bound on the error of MDS-MAP:
S R
dinv(X7X) S — + 0(1)7
where Ryps = Cy(In(n)/(pon))/? for some constant Cy
that only depends on the dimension d.

One consequence of the ad-hoc nature of the underlying
networks is the lack of a central infrastructure. This hinders
the use of a centralized algorithm like MDS-MAP. In partic-
ular, centralized algorithms suffer from scalability problems,
making it difficult to implement in large scale sensor networks.
Centralized algorithms also require higher computational com-
plexity [11]. This leads us to investigate if similar performance
guarantees can be obtained in a distributed setting, where
each sensor tries to estimate its own global position. As
mentioned above, this task cannot be accomplished unless
some additional information, other than local measurements,
is provided. It is well known that in a d-dimensional Euclidean
space, we need to know the global positions of at least d + 1
sensors, referred to as anchors, in order to uniquely determine
the global positions [12].

Under such decentralized scenario, we analyze the perfor-
mance of a popular localization algorithm: HOP-TERRAIN
[4]. This algorithm can be seen as a distributed version of
the MDS-MAP. We prove that HOP-TERRAIN can localize
sensors up to a bounded error in a connected network where
most of the pairwise distances are unknown and only local
connectivity information is given.

Similarly as in the case of MDS-MAP, assume n sensors
in a d-dimensional unit cube and d + 1 anchors in general

positions. We show that when only connectivity information
is available, the Euclidean distance between the estimate Z;
and the correct position z; is bounded by

Ruop

[l = 24| < +o(1),
for all ¢ where Ryop = C/)(log n/(pon)) for some constant
C!, that only depends on d.

Preliminary results on analyzing the performance of MDS-
MAP and HOP-TERRAIN was presented at SIGMETRICS
2010 and Information Theory Workshop in 2010 [1], [2]. The
main new contribution of this paper is that we generalize the
previous results by considering a more general scenario where
two sensors within a communication radio range can still fail
to detect the presence of each other due to hostile environment
or sensor malfunction. In particular, the main results presented
in this paper includes as a special case the results in both of
the previous conference papers under traditional disc model.
Further, we provide a complete proofs of these results, which
was not present in previous papers.

II. RELATED WORK

The localization problem has attracted significant research
interests in recent years. A general survey of the area and
an overview of recent techniques can be found in [12] and
[11]. In the case when all pairwise distances are known, the
coordinates can be derived by using a classical method known
as multidimensional scaling (MDS) [10]. The underlying prin-
ciple of the MDS is to convert distances into an inner product
matrix, whose singular vectors are the unknown coordinates.
In the presence of noise, MDS tolerates errors gracefully due
to the overdetermined nature of the problem. However, when
most distances are missing, finding coordinates becomes more
challenging. Three types of practical centralized algorithms
have been proposed in the literature. The first group consists
of algorithms that try first to estimate the missing entries of
the distance matrix and then apply MDS to the reconstructed
distance matrix to find the coordinates of the sensors. MDS-
MAP, introduced in [3] and further studied in [14], is a well-
known example, where it computes the shortest paths in order
to approximate the missing distances. The algorithms in the
second group mainly consider the sensor localization as a non-
convex optimization problem and directly estimate the coordi-
nates of sensors. A famous example of this type is a relaxation
to semidefinite programming (SDP)[15]. In the third group,
the problem is formulated through a stochastic optimization
where the main technique used in these algorithms is the
stimulated annealing, which is a generalization of the Monte
Carlo method in combinatorial optimization [16], [17].
Perhaps a more practical and interesting case is when there
is no central infrastructure. [13] identifies a common three-
phase structure of three popular distributed sensor-localization
algorithms, namely robust positioning [4], ad-hoc positioning
[18] and N-hop multilateration [19]. Table I illustrates the
structure of these algorithms. In the first phase, nodes share
information to collectively determine the distances from each
of the nodes to a number of anchors. Anchors are special



TABLE 1
DISTRIBUTED LOCALIZATION ALGORITHM CLASSIFICATION [13]

Phase Robust positioning  Ad-hoc positioning ~ N-hop multilateration
1. Distance DV-HOP Euclidean Sum-dist

2. Position Lateration Lateration Min-max

3. Refinement  Yes No Yes

nodes with a priori knowledge of their own position. In the
second phase, nodes determine their position based on the
estimated distances to the anchors. In the last phase, the initial
estimated positions are iteratively refined. It is empirically
demonstrated that these simple three-phase distributed sensor-
localization algorithms are robust and energy-efficient [13].
However, depending on which method is used in each phase,
there are different trade-offs between localization accuracy,
computation complexity and power requirements.

The performances of these algorithms are measured through
simulations and little is known about their theoretical analysis.
A few exceptions are in the following work. In [20] the
authors use matrix completion methods [21] as a means to
reconstruct the distance matrix. The main contribution of their
paper is that they are able to provably localize the sensors
up to a bounded error. However, their analysis is based on a
number of strong assumptions. First, they assume that even
far-away sensors have a non-zero probability of detecting
their distances. Second, the algorithm explicitly requires the
knowledge of detection probabilities between all pairs. Third,
their theorem only works when the average degree of the
network (i.e., the average number of nodes detected by each
sensor) grows linearly with the number of sensors in the
network.

Our first result on the analysis of MDS-MAP provides
a theoretical guarantee that backs up experimental results.
We use shortest paths as our primary guess for the missing
entries in the distance matrix and apply MDS to find the
relative positions of the nodes up to a rigid motion. In contrast
to [20], we require significantly weaker assumptions. More
specifically, we assume that only neighbouring sensors have
information about each other and that only connectivity infor-
mation is known. Furthermore, for the purpose of estimating
the positions, the algorithms presented in this paper do not
require the knowledge of the detection probability. And last,
in our analysis we assume that the average degree grows
logarithmically, instead of linearly, with the number of sensors,
which results in needing many less revealed entries in the
distance matrix. On one hand, we would like to choose the
radio range large enough such that the graph is connected.
Otherwise, we would be wasting the part of the graph that
is not connected to the giant component. On the other hand,
we would like to use as small a radio range as possible to
save power consumption and operation cost. Hence, choosing
a radio range which gives the average number of neighbors
of order logn is desired. We provide the first error bounds on
the performance of MDS-MAP.

Of particular interest are the two new results on the perfor-
mance of sensor localization algorithms. In [22], Javanmard
et al. proposes a new reconstruction algorithm based on
semidefinite programming where they could establish lower

and upper bounds on the reconstruction errors of their al-
gorithm. Similarly, in [23], due to new advances in matrix
completion methods [24], the authors analyze the performance
of OptSpace [25], a novel matrix completion algorithm, in
localizing the sensors. Interestingly, they did not need to
adhere to the assumptions made by [20]. However, they have
a restrictive assumption about the topology of the network:
sensors are scattered inside an annulus.

The above analytical results crucially rely on the fact that
there is a central processor with access to the distance mea-
surements. However, centralized algorithms suffer from the
scalability problem and require higher computational power.
Hence, a distributed algorithm with similar a performance
bound is desirable. In our second result, we analyze the
reconstruction error of a distributed algorithm. To the best
of our knowledge, we show for the first time that HOP-
TERRAIN, introduced in [4], achieves a bounded error when
only local connectivity information is given.

The organization of this paper is as follows. In Section III
we introduce the model used in our work. In Section IV we
describe the MDS-MAP and HOP-TERRAIN algorithms.
Our main results are stated in Section V, and we provide the
proofs in Section VI. Finally, we conclude in Section VII.

ITI. MODEL DEFINITION

In this section, we define a probabilistic model considered
in this work. We assume we have no fine control over the
placement of the sensors that we call unknown nodes (e.g.,
the nodes are dropped from an airplane). Hence, n nodes are
placed uniformly at random in a d-dimensional cube [0, 1]%.
We assume that there are m special sensors, which we call
anchors, with a priori knowledge of their own positions in
some global coordinate. In practice, it is reasonable to assume
that we have some control over the position of anchors.
Anchors can be some nodes that are planted on the field
before any positioning takes place. Let V, = {1,...,m}
denote the set of m vertices corresponding to the anchors and
Vu={m+1,...,m+n} the set of n vertices corresponding
to the unknown nodes. We use x; to denote the position of
node i and X € R"*? to denote the position matrix where
the ¢-th row corresponds to x;.

In positioning, due to attenuation and power constraints,
only measurements between close-by nodes are available. As a
result, the pairwise distance measurements can be represented
by a random geometric graph G(n+m, R) = (V, E, P), where
V =V,UV,, E C VXV is aset of edges that connect pairs of
sensors that are detected, and P : E — Rt isa non-negative
real-valued function. Edge weights P is a mapping from an
edge (i,7) to a pairwise distance measurement.

A common model for this random geometric graph is the
disc model where node ¢ and j are connected if the Euclidean
distance d; ; = ||lx; — ;|| is at most a positive radio range



Connected

Fig. 1. This example shows the model. Nodes a and b are connected since
they are within R. Although b and c are also within R, they are not connected
due to detection failure. a and c are not connected because they are far apart.

R. There are a variety of ways to measure the connectivity
between two nodes, including TDoA and RSSI. Due to limited
resources, there is a probability of non-detection. Think of
RF ranging in the presence of an obstacle or in the case of
multiple paths. Depending on the acquisition mechanism, this
may result in the absence of measurements.

To model this failure of detection, we assume that two nodes
can detect each other with a probability that only depends on
the distance d; j. Namely, (¢, j) € E with probability p(d; ;)
if d; ; < R. The detection probability p(-) : [0, R] — [0, 1] is
a non-increasing function of the distance. Our main results on
the error achieved by localization algorithms assumes that the
detection probability p(-) is lower bounded by a parameter pg
such that

p(z) > po ,

for z < R. For example, p(-) might be a simple function
parameterized by two scalar values py and 3:

p(z) = min (Lpo (;)_B> , )

for some pg € (0, 1] and 3. This includes the disc model with
perfect detection as a special case (i.e., po = 1,5 = 0). An
example is shown in Figure 1.

To each edge (4, j) € E, we associate the distance measure-
ment P; ; between sensors ¢ and j. In an ideal case, we have
exact distance measurements available for those pairs in E.
This is called the range-based model. Formally, P; ; = d; ;
if (i,j) € E and x otherwise, where a x denotes that the
distance measurement is unavailable. In the following, the
algorithms presented in this paper only uses values of P; ;’s
where it is well defined (i.e. for (i,j) € F, and equivalently
for P; ; # *). In this paper, we assume that we are given only
network connectivity information and no distance information.
This is known as the connectivity-based model. Formally,

1
Pij :{ .

In the following, let D denote the nxn squared distance matrix

where D; j = d7 ;. By definition, D = a1} +1,a" —2X X7,

where a € R™ is a vector with a; = ||z;||? and 1,, is the all

if (i,7) € E,
otherwise.

Fig. 2. The shortest path between two nodes is defined in terms of the
minimum number of hops multiplied by the radio range R.

ones vector. As D is a sum of two rank-1 matrices and a rank-
d matrix, its rank is at most d + 2. A summary of notation is
provided in Table II.

IV. ALGORITHMS

Depending on the application, we might want a relative
map or an absolute map of the locations. A relative map is
a configuration that have the same neighborhood relationships
as the underlying graph G. In the following we use the terms
configuration and relative map interchangeably. An absolute
map, on the other hand, determines the absolute geographic
coordinates. In this paper, our objective is two-fold. First,
we present a centralized algorithm MDS-MAP, that finds a
configuration that best fits the proximity measurements. Then,
we discuss its distributed version, HOP-TERRAIN, where
the goal is for each sensor to find its absolute position.

A. Centralized Positioning Algorithm: MDS-MAP

The centralized MDS-MAP algorithm, assumes no anchors
in the system. We denote the random positions of n sensors
by x;’s. MDS-MAP consists of two steps:

Algorithm 1 MDS-MAP [3].
Input: dimension d, graph G = (V, E, P). _
1: Compute the shortest paths, and let D be the squared

shortest paths matrix. R
2: Apply MDS to D, and let X be the output.

Shortest paths. The shortest path between nodes 7 and j in
graph G = (V, E, P) is defined as a path between two nodes
such that the sum of the proximity measures of its constituent
edges is minimized (see Figure 2). Let Jl ; be the computed
shortest path between node 7 and j. Then, the squared shortest
paths matrix D € R™*" is defined as D;; = cifj for i # j,
and 0 for ¢ = j.

Multidimensional scaling. In step 2, we apply the Multi-
dimensional scaling (MDS) to D to get a good estimate of
X, specifically, we compute X = MDS;(D). MDS refers to
a set of statistical techniques used in finding the configuration
of objects in a low dimensional space such that the measured
pairwise distances are preserved [10]. It is often used for a



TABLE II
SUMMARY OF NOTATION.

n number of unknown sensors
m number of anchors

R communication range

P; distance measurements

d;

» Pairwise distance between nodes 4 and j
z; position of node 7
Po minimum detection probability
d dimension
D squared distance matrix
O(d) orthogonal group of d X d matrices
(A, B)  Frobenius inner product

Vu set of unknown nodes
' set of anchors
1, all ones vector of size n
D
I

estimated squared distance matrix
n X n identity matrix

nXxXn 4 ) . 3

T; estimated position of node ¢

X positions matrix

X estimated positions matrix

d; shortest path between node ¢ and j
|| ||z  Frobenius norm

|-l spectral norm

visual representation of the proximities between a set of items.
Formally, MDS finds a lower dimensional embedding ;s that
minimize the stress:

Zi;ﬁj (f(du) - Ciz’,j)Q
Yizsdi

where d; ; is the input similarity (or dissimilarity), di,j =
||#; — @;]| is the Euclidean distance in the lower dimensional
embedding, and f(-) is some function on the input data.
When MDS perfectly embeds the input data, we will have
fldij) = CZZJ and the stress is zero. In this section, we use

stress =

Algorithm 2 Classic Metric MDS [3].

Input: Dimension d, estimated squared distance matrix D
Output: Estimated positions MDS4(D)
1: Compute (—1/2)LML, where L =1,, — (1/n)1,1%.
2: Compute the best rank-d approximation U;X,UT of
(=1/2)LML.
3: Return MDS,(M) = U552

what is called the classic metric MDS [26], where f(-) is
the identity function and the input dissimilarities correspond
to the Euclidean distances such that d; ; = ||z; — z;|| for
some lower dimensional embedding {x;}. This algorithm has
been frequently used in positioning applications; and from here
on whenever we say MDS we refer to the above algorithm.
Let MDS4(D) denote the n x d matrix returned by MDS
when applied to the squared distance matrix D. Then, in
formula, given the singular value decomposition (SVD) of
a symmetric and positive definite matrix (—1/2)LDL as
(-1/2)LDL =UXUT,

MDS4(D) = U552 |

where Uy denotes the n x d left singular matrix that corre-
sponds to the first d singular values and X, denotes the d x d
diagonal matrix with top d singular values. This is also known
as the MDSLOCALIZE algorithm in [20]. Note that as the
columns of U are orthogonal to 1,, by construction, it follow
that L - MDS,(D) = MDS4(D).

It is crucial that we apply the double scaling by L to the
distance matrix:

D=all +1,a" —2XxX7T.

Since by construction, L is orthogonal to 1,,, but preserves
the n — 1 dimensional complementary subspace, the double

scaling eliminates the first two terms. Hence, when MDS is
applied to D without noise, the configuration of sensors are
exactly recovered up to a rigid motion:

—(1/2)LDL = LXXTL . ()

Note that we only obtain the configuration and not the
absolute positions, in the sense that MDS,4(D) is one ver-
sion of infinitely many solutions that matches the distance
measurements D. We introduce a formal definition of rigid
transformation and related terms below.

Let O(d) = {Q|QRT = QTQ = I;} denote the or-
thogonal group of d x d matrices. We say Y € R™*? is
a rigid transformation of X, if there exists a shift vector
s € R? and an orthogonal matrix @ € O(d) such that
Y =XQ+1,s7 . Here Y is a result of rotating X by @ and
then adding a shift by s. Similarly, when we say two position
matrices X and Y are equal up to a rigid transformation,
we mean that there exists a rotation ) and a shift s such
that Y = XQ + 1,s7. Also, we say a function f(X) is
invariant under rigid transformation if and only if for all X
and Y that are equal up to a rigid transformation we have
f(X) = f(Y). Under these definitions, it is clear that D
is invariant under rigid transformation, as for all (i, j), since
Dij = lla; — ]2 = [(@:Q + s7) — (2;Q + sT)|[% for any
Q € O(d) and s € RY.

Although MDS works perfectly when D is available, in
practice not all proximity measurements are available because
of the limited radio range R. This is why, in the first step, we
estimated the unavailable entries of D by finding the shortest
path between disconnected nodes.

B. Distributed Positioning Algorithm: HOP-TERRAIN

Recall that HOP-TERRAIN is a distributed algorithm that
aims at finding the global map. In order to fix the global
coordinate system in a d dimensional space, we need to know
the positions of at least d + 1 anchors, nodes with known
positions. In this section, we assume that we have m anchors.
Based on the robust positioning algorithm introduced in [4],
the distributed sensor localization algorithm consists of two
steps:

Distributed shortest paths: Similar to MDS-MAP, the
first step is about finding the shortest path. The difference
is that in the first step each of the unknown nodes only
estimates the distances between itself and the anchors. These
approximate distances will be used in the next triangulation
step to derive an estimated position. In other words, the



Algorithm 3 MDS-MAP [3].

1: Each node 7 computes the shortest paths {a?la :
between itself and the anchors.

2: Each node ¢ derives an estimated position Z; by triangu-
lation with a least squares method.

a€cVy}

shortest path between an unknown node ¢ and an anchor a in
the graph G provides an estimate for the Euclidean distance
diq = ||Ti — x4]|. We denote by di,a the computed length of
the shortest path. When the corresponding graph is defined
as in the connectivity-based model, the shortest path a?m
is equivalent to the minimum number of hops between two
nodes, scaled by the radio range R.

In order to compute the number of hops in a distributed
way, we use a method similar to DV-HOP [18]. Each unknown
node maintains a table {z,, h,} that is initially empty, where
2o € R? refers to the position of the anchor a and h, to
the number of hops from the unknown node to the anchor a.
First, each of the anchors initiate a broadcast containing its
known location and a hop count of one. All of the one-hop
neighbors surrounding the anchor, on receiving this broadcast,
record the anchor’s position and a hop count of one, and then
broadcast the anchor’s known position and a hop count of
two. From then on, whenever a node receives a broadcast,
it does one of the two things. If the broadcast refers to an
anchor that is already in the record and the hop count is larger
than or equal to what is recorded, then the node does nothing.
Otherwise, if the broadcast refers to an anchor that is new or
has a hop count that is smaller, the node updates its table with
this new information on its memory and broadcasts the new
information after incrementing the hop count by one. When
every node has computed the hop count to all the anchors, the
number of hops is multiplied by the radio range R. Note that
to begin triangulation, not all the hop counts to all the anchors
are necessary. A node can start triangulation as soon as it has
estimated distances to d + 1 anchors.

The above step of computing the minimum number of hops
is the same distributed algorithm as described in DV-HOP.
However, one difference is that instead of multiplying the
number of hops by a fixed radio range R, in DV-HOP, the
number of hops is multiplied by an average hop distance. The
average hop distance is computed from the known pairwise
distances between anchors and the number of hops between
the anchors. Although numerical simulations show that the
average hop distance provides a better estimate, the difference
between the computed average hop distance and the radio
range R becomes negligible as n grows large.

Triangulation using least squares. In the second step, each
unknown node ¢ uses a set of estimated distances {dm
a € V,} together with the known positions of the anchors,
to perform a triangulation. The resulting estimated position is
denoted by ;. For each node, the triangulation consists in
solving a single instance of a least squares problem (Ax = b)
and this process is known as Lateration [27], [13]. The position
vector x; and the anchor positions {z, : a € {1,...,m}}

Fig. 3.  Multilateration with exact distance measurements (top) and with
approximate distance measurements (bottom). Three solid circles denote the
anchors (red) and the white circle denotes the unknown nodes. The intersection
of the blue lines corresponds to the solution of multilateration.

satisfy the following:

o1 — x> = dfy,
[#m —xl* = df,, -

Geometrically, the above equalities simply say that the point z;
is the intersection point of m circles centred at 1, zs, ..., Tn
(see Figure 3). This set of equations can be linearized by sub-
tracting each line from the next line. By reordering the terms,
we get a series of linear equations in the form A x; = b((f), for
A€ RM=1xd and h € R™ ! defined as

2(xy —x9)T
A = : ,
12(Zm—1 — zm)T
[ [Ja]? - Hx2\|2+d1272—d12,1
b = :
L zm—1l? = llzml?® + d = dF s

Note that the matrix A does not depend on the particular
unknown node 4 and all the entries are known accurately to all
the nodes. However, the vector b((f) is not available at node i,
because d; ,’s are not known. Hence we use an estimation b(i),
that is defined from bgz) by replacing d; , by ciw everywhere.
Notice that azw > diq. As a result, the circles centred at
Z1,%2,...,%y, have potentially larger radii. Therefore, the
intersection between circles is no longer a single point, but
rather a closed area. Then, finding the optimal estimation Z;
of x; that minimizes the mean squared error is solved in a
closed form using a standard least squares approach:

i = (ATA)71 AT (3)

C. Computational complexity and network connectivity

Complexity analysis. For bounded d = o(1), a single least
squares operation has complexity O(m), and applying it n
times results in the overall complexity of O(nm). No com-
munication between the nodes is necessary for this step. In the
MDS-MAP algorithm we require that all-pairs shortest paths
be found. This problem has an efficient algorithm whose com-
plexity is O(n?logn + n|E|) [28]. For R = C(logn/n)/?
with constant C, the graph is sparse with |E| = O(nlogn),



Fig. 4. The red vertices indicate the anchors. Under the right scaling of the
radio range R, the graph stays connected (top figure) whereas otherwise there
will be nodes without any means of communication to others (bottom graph).

whence the complexity is O(n?logn). Contrary to MDS-
MAP, in HOP-TERRAIN we must only compute the shortest
paths between the unknown nodes and the anchors. This
distributed shortest paths algorithm can be done efficiently
with total complexity of O(nm).

Network connectivity. In general when the graph G is not
connected, the localization problem is not well defined, and
there are multiple configurations resulting in the same ob-
served proximity measures. For instance if graph G consists of
two disconnected components, they can be placed in any way
with respect to each other without violating any constraints
imposed by G.

In this work, we are interested in a scalable system of n
unknown nodes for a large value of n. As n grows, it is
reasonable to assume that the average number of connected
neighbors for each node should stay constant. This happens, in
our model, if we chose the radio range R = C'/n'/?. However,
in the unit square, assuming sensor positions are drawn uni-
formly, the random geometric graph is connected, with high
probability, if 7R?> > (logn + ¢,)/n for ¢, — oo [29]. A
similar condition can be derived for generic d-dimensions as
C4R* > (logn + ¢,)/n, where Cy < 7 is a constant that
depends on d. Moreover, in case CqR? < (logn + ¢,,)/n, not
only the graph is not connected, there will be isolated nodes
with hight probability. In this case, both MDS-MAP and
HOP-TERRAIN algorithms will be in trouble (see Figure 4).
Hence, we focus in the regime where the average number of
connected neighbors is slowly increasing with n. Let Rc;itical
be the critical detection range where the resulting graph
starts to be connected. Then we are interested in the regime
R = CRcyitical, for some positive constant C' > 1 such that
the graph stays connected with high probability.

V. MAIN RESULTS

In this section we present our main results regarding the per-
formance of MDS-MAP and HOP-TERRAIN algorithms.

A. MDS-MAP

Our first result establishes an upper bound on the error
achieved by MDS-MAP under connectivity-based model. Let
X denote an estimate for X. Then, we need to define a metric
for the distance between the original position matrix X and the

estimation X , which is invariant under rigid transformation.
Define L = I, — (1/n)1,,1% as in the MDS algorithm. This
naturally defines a distance between X and X:

diny (X, X) —HLXXTL LXXTLH o 4)
where [|Allp = (32, ; A%)'/? denotes the Frobenius norm.
Notice that the factor (1/ n) corresponds to the usual normal-
ization by the number of entries in the summation. Indeed
this distance is invariant to rigid transformation of X and X.
Furthermore, diyy (X, X ) = 0 implies that X and X are equal
up to a rigid transformation. With this metric, our main result
establishes an upper bound on the resulting error. The proof
of this theorem is provided in Section VI. We define

1
241ogn \ ¢
Rups = 32 (g ) . (5)
po(n —2)

Theorem 5.1 (connectivity-based model): Assume n nodes
are distributed uniformly at random in the [0, 1]¢ hypercube,
for a bounded dimension d € {2,3}. For a positive radio
range R with a minimum detection probability py, we are
given the connectivity information of the nodes according to
the range-free model with probabilistic detection. Then, with
a probability larger than 1 —1 /n*, the distance between the
estimate X produced by MDS-MAP and the correct position
matrix X is bounded by

Rvps

diny (X, X) < +20R 6)
for R > (1/po)* % Ryps, where dip,(+) is defined in (4) and
RMDS in (5)
The proof is provided in Section VI. The following corollary
trivially follows, as for each (7, ) € E, we have d; ; < R.
Corollary 5.2 (range-based model): Under the hypotheses
of Theorem 5.1 and in the case of range-based model, with
high probability

Ryvps

dinv(Xa)?) S +20R

As described in the previous section, we are interested in
the regime where R = C(logn/n)'/? for some constant C.
Given a small positive constant J, this implies that MDS-
MAP is guaranteed to produce estimated positions that satisfy
diny (X, X) < § with a large enough constant C' and a large
enough n. When py is fixed and R = C(logn/n)'/¢ for
some positive parameter C, the erroI/Sound in (6) becomes
diny (X, X) < i + C2C (1ogn) ’
constants Cy and Cg. The first term is inversely proportional
to C' and pé/ d and is independent of n, whereas the second
term is linearly dependent on C and vanishes as n grows
large. This is illustrated in Figure 5, which shows numerical
simulations with n sensors randomly distributed in the 2-
dimensional unit square, and assuming (1). Notice that the
resulting error decreases with pgy and is independent of (.

Even though the upper bounds for both range-free and
range-based models have the same form, their behaviours is
different as R grows. In the range-free case, up to some point,
the performance of MDS-MAP improves as R increases. This

for some numerical
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Fig. 5. Average error for MDS-MAP with R = C'\/log n/n under range-
free model.
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Fig. 6. Average error of MDS-MAP under the range-based model.

is due to the fact that the first and second terms go in opposite
directions as a function of R. However, in the range-based case
(where we measure the pairwise distances exactly if the pair
is within a radio range R), as R increases, we obtain more
measurements of the exact Euclidean distances. As a result,
once the radio range increases, the resulting error of MDS-
MAP decreases and we do not see the contribution of the
second term. This phenomenon is illustrated in Figure 6.

Using the above theorem, we can further show that there is
a linear transformation S € R%*?, such that when applied to
the estimations, we get a similar bound in the Frobenius norm
of the error in the positions.

Theorem 5.3: Under the hypotheses of Theorem 5.1, with
probability larger than 1 — 1/n%,

. 1 > Rwmps
—||ILX — LXS| < 2 .
Sé%dnxd\/ﬁ” S|_\/6< 7 +20R

A more natural choice of metric might be
mingeo(q) ﬁHLX — LXQ|. However, there is no
known relationship between this quantity and the bound
in Theorem 5.1.

Note that although for the sake of simplicity, we focus
on [0,1]¢ hypercube; our analysis easily generalizes to any
bounded convex set and homogeneous Poisson process model
with density p = n. The homogeneous Poisson process model
is characterized by the probability that there are exactly &

nodes appearing in any region with volume A : P(ky =
k) = %e””‘. Here, k4 is a random variable defined as
the number of nodes in a region of volume A.

To simplify calculations, we assumed that d is either 2 or 3.
However, the analysis easily applies to general d and only the
constant in the bound (6) would change as long as d = O(1).

B. HOP-TERRAIN

Our second result establishes that HOP-TERRAIN [4]
achieves an arbitrarily small error for a radio range R =
C(logn/n)"/* with a large enough constant C, when we
have only the connectivity information as in the case of the
connectivity-based model. The same bound holds immediately
for the range-based model, when we have an approximate
measurements for the distances, and the same algorithm can be
applied without any modification. To compute better estimates
for the actual distances between the unknown nodes and the
anchors, the extra information can be readily incorporated into
the algorithm. We define

24 1logn a
g) , ™

po(n —2)

Theorem 5.4: Assume n sensors and m anchors are dis-
tributed uniformly at random in the [0,1]¢ hypercube for
d € {2,3}. For a given radio range R > (1/po)"/* Ruop,
with a minimum detection probability pg, and the number of
anchors m = Q(logn), the following is true with probability
at least 1—1/n*. For all unknown nodes i € V,,, the Euclidean
distance between the estimate Z; given by HOP-TERRAIN
and the correct position z; is bounded by

RHOP =12 (

Ruop

The proof is provided in Section VI. As described in the
previous section, we are interested in the regime where R =
C(logn/n)'/? for some constant C. Given a small positive
constant 4, this implies that HOP-TERRAIN is guaranteed
to produce estimated positions that satisfy ||z; — &;|| < ¢ for
all ¢ with a large enough constant py and large enough n.

When the number of anchors is bounded and the positions
of the anchors are chosen randomly, it is possible that, in the
triangulation step, we get an ill-conditioned matrix A7 A, re-
sulting in an large estimation error. This happens, for instance,
if three anchors fall close to a line. However, as mentioned
in the introduction, it is reasonable to assume that, for the
anchors, the system designer has some control over where
they are placed. In that case, the next theorem shows that
when the positions of anchors are properly chosen, only d + 1
anchors suffice to get a similar bound. Note that this is the
minimum number of anchors necessary for triangulation. For
simplicity we assume that one anchor is placed at the origin
and d anchors are placed at positions corresponding to d-
dimensional unit vectors. The position of the d + 1 anchors
are {[0,...,0],[1,0,...,0],...}. (see figure 7)

Theorem 5.5: Under the hypotheses of Theorem 5.4, as-
sume that there are d 4+ 1 anchors, one of which is placed at
the origin, and the position vectors of the d remaining anchors
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Fig. 7. Three anchors in fixed positions ([0, 0], [1, 0], [0, 1]) with d = 2.

are the d-dimensional unit vectors. Then, the following is true
with probability at least 1 — 1/n*. For all i € V,, HOP-
TERRAIN achieves

Rrop

l|zs — & <2 + 48R . €))
The proof is provided in Section VI. There is nothing particular
about the position of the anchors in unit vectors. Any d + 1
anchors in general position will give similar bounds. The only
difference is that the constant term in the definition of Ryop
changes with the anchor positions.

Consider a case where we are designing a sensor network
system for environmental monitoring. We want to decide how
many sensors to deploy (dropping them from an air plane) and
how much radio power each sensors need to be equipped with,
in order to be able to determine the positions of the sensors
up to an error of €, for any positive €. Then, our main results
in (8) gives us a guideline for choosing appropriate n and
R such that the design goal is met. Precisely, choosing R =
v/ Ruop /24 which minimizes the right-hand side of (8) and
choosing n > C/ (%) for some universal constant C' achieves
the desired design goal. The similar argument is true for a
centralized system as well.

There is no known theoretical lower bound for localization
under the model considered. One implication of our main
results is that we guarantee, with high probability, that for any
arbitrarily small constant ¢, we can achieve error less than c
with radio range R which scales as R itical. We cannot hope
to achieve a small error bound with R < Rcritical, Since the
graph starts to be disconnected. However, as we saw in the
above example, the dependence on the desired error ¢ might
not be optimal, and there might be better algorithms that can
achieve the error with smaller R.

Corollary 5.6 (range-based model): Under the hypotheses
of Theorem 5.4 and in the range-based model, with high
probability

For 1 24R .

|zi — &l <

The similar result holds true when sensors are places deter-
ministically, specifically, under the hypothesis of Theorem 5.5,
with high probability,

Ruop

0.4 —
p0—0.25,ﬁ:1+
po=05 =0 —&—
po=058=1 —©6—
po =05 8=2 —H—

pp=18=1—"—

Average Error

0 10 20 30 40 50 60 70 80 90 100

Fig. 8.  Average error of HOP-TERRAIN for R = C\/logn/n under
connectivity-based model.
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Fig. 9. Average error under range-based model.

As it was the case for MDS-MAP, when R = C(logn/n)'/?
for some positive parameter C, the error bound in (9) is
0531/ 7 G0 (
constants Cy and Cj. The first term is inversely proportional to
C and p(lJ/ 4 and is independent of n, whereas the second term
is linearly dependent in C' and vanishes as n grows large. This
is illustrated in Figure 8, which shows numerical simulations
with n = 5,000 sensors in the unit square. We compare
{(1/n) 327, ||#; — 24]|?}/2. The Average error under range-
based model is shown in Figure 9.

logn
n

1/d
|z — 24| < ) , for some numerical

Figure 10 shows a network consisting of n = 200 nodes
place randomly in the unit circle. The three anchors in fixed
positions are displayed by solid blue circles. In this experiment
the distance measurements are from the range-based model
and the radio range is 1/0.8logn/n. In the final estimated
positions using HOP-TERRAIN, the circles represent the
correct positions, and the solid lines represent the differences
between the estimates and the correct positions. The average
error in this example is 0.075.
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Fig. 10. 200 randomly placed nodes with 3 anchors in blue (left). Location
estimation using HOP-TERRAIN (right).

VI. PROOF OF THE MAIN THEOREMS
A. Proof of Theorem 5.1

We start by bounding the distance dj, (X, X ), as defined in
Eq. (4). Recall |A||r denotes the Frobenius norm and ||A||2
denotes the spectral norm. For a rank r matrix A we have

Al < Al < v/7l|All2. Since L(XXT — XXT)L has
rank at most 2d, we get
IL(XXT — XXT)L|lp < V2d|L(XXT — XXT)L]> .

To bound the spectral norm, let M = —(1/2)LDL. Then,

IL(XXT - XXT)L||ls < |ILXXTL—M|2+ M- XX
< (1/2)|L(-D+ D)L|»
+(1/2)|L(~D + D)L|)»
< |ID-Dls, (10)

where in the first inequality we used the triangular inequality

and the fact that X = LX. In the second inequality we used
(2) and the fact that ||[M — XX 7|, = MiN A rank(4)<d | M —
Al|2, which follows from the definition of X. From the defini-
tion of X = MDS4(D), we know that X X7 is the best rank-d
approximation to M. Hence, X X7 minimizes ||M — Al| for
any rank-d matrix A. Since the rank of —(1/2)LDL is d, this
implies |M — X XT ||y < |[M + (1/2)LDL||5. The inequality
(10) follows trivially from the observation that || L||2 = 1.

Next, to bound || D — D||5, we use the following key result.
The main idea is that, the number of hops scaled by the radio
range I? provides a good estimate of the correct distance. Let
R = 2(241og n/(po(n — 2)))"/4.

Lemma 6.1: (Bound on the distance estimation) Under the
hypotheses of Theorem 5.1, with probability larger than 1 —
1/n?, for any pair of nodes i € V and j € V, the number of
hops between nodes % and j is bounded by

%

hij < (1+ i

’ R
for R > max{7R, (1/po)"/*R}.
The proof of this lemma is provided in Section VI-G. The
distance estimate from the first step of MDS-MAP is dA” =
Rh; ;. The following corollary gives a bound on the error.

Corollary 6.2: Under the hypotheses of Lemma 6.1,

MCF +8R.

72 2
g =45 < apti

Proof: From Lemma 6.1, we know that

_2R R R
Rhij)?—d2, (1 )d2 2R(1+ 7 )di; +4R?.
( ;]) 1,] — R + 2R + + R 5] +
The corollary follows from the assumption that TR<R<1
and d < 3. |

Define an error matrix Z = D — D. Then by Corollary 6.2,
Z is element-wise bounded by 0 < Z;; < (30R/(14R))D;; +
8R. We can bound the spectral norm of Z as follows. Let u
and v be the left and right singular vectors of the non-negative
matrix Z, respectively. Then by Perron-Frobenius theorem,
and v are also non-negative. It follows that

||l3 —D||2 ul'Zv
< (30R/(14R)u"Dv + (1Tw)(17v)8R
< (30R/(14R))||D|2 + 8Rn
< (30R/(14R))dn + 8Rn .

(In

The first inequality follows from the element-wise bound on
Z and the non-negativity of u and v, and the second inequality
follows form the definition of the spectral norm and the
Cauchy-Schwarz inequality. In the last inequality, we used
D]l < dn, which follows from the fact that D is non-
negative and element-wise bounded by d. Typically we are
interested in the regime where R = o(1), and by assumption
we know that R > R and d < 3. Therefore, the first . term in
(11) dominates the error. Substituting this bound on || D — Dl|2
in (10) proves the theorem.

B. Proof of Theorem 5.3

Using SVD we can write LX as UnxddedVded where
UTU = Tgxq, VIV = VVT = I4xq and ¥ is a diagonal
matrix. We also denote the inner product of matrices by
(A,B) = >, ;A ;B ;. It is easy to show that (A, B) =

Tr(ATB) < || A||p|| Bl 7. Now, for § = XTLUS VT, then

ILX — LXS||p = sup (B,LX — LXS) (12)

BGR"X‘i,HBHpSI
The above equation can be further written as

(12) = sup (B,(LXVyU" - LXXTL)US~'VT)

BeR"Xd,||B|| p<1

= sup (BVvSTWUT LXXTL - LXXTL)

BeR X4, || B||p<1

= sup |IBVE"'UT || p|ILXXTL — LXX"L| #.

BeR™*4,||B||p<1
Using the fact ||A||z = Tr(AT A) and the cyclic property of
the trace, i.e., Tr(ABC) = Tr(BCA), we obtain

|BVE~UT |2 = Te(BVE2VIBT) <02

min

IB%

where oy, is the smallest singular value of LX. It remains
to show that o,;, > /n/6 holds with high probability when
nodes are placed uniformly at random. To this end we need to
consider two facts. First, the singular values (and in particular
the smallest singular value) are Lipschitz functions of the
entries. Second, we have E(LXXTL) = (n/12)l x4. By
using concentration of measure for Lipschitz functions on
bounded independent random variables, the result follows.



C. Proof of Theorem 5.4

In this section we provide the proofs of the theorems
5.4, and proofs of the technical lemmas are provided in the
following sections . From Eq. (3), we get

o =il = (AT A)7 AT — (ATA) AT
lATA) AT oo —6Pf a3

IA

First, to bound |6}’ —b(*) |, we use Corollary 6.2. Since di; <
d for all 7 and j, we have

i ; N o\ 1/2
187 =601 = (X (@ps = 2y~ B + B24)°)
k=1
30R
< 2\/m—1<MRd+8R> , (14)

Next, to bound ||(AT A)~1 AT, we use the following lemma.
Lemma 6.3: Under the hypothesis of Theorem 5.4, the
following is true. Assuming random anchor model in which
m = Q(logn) anchors are chosen uniformly at random among
n sensors. Then we have [(ATA)~tAT|, < with
high probability. B
By assumption we know that R > R and d < 3. By
combining (13), (14) and Lemma 6.3 proves Theorems 5.4.

m—1°

D. Proof of Theorem 5.5

Similarly to the proof of Theorem 5.4, for an unknown node
1, and the estimate T; we have

lzi — &l < [I(ATA) AT |28 — 0@

We have already bounded the expression ||b) — b(®|| in (14).
To bound ||(AT A)~1AT||5, we use the following lemma.
Lemma 6.4: Under the hypothesis of Theorem 5.5, the
following are true. We assume a deterministic anchor model,
where m = d + 1 anchors are placed on the posi-
tions ;1 = [1,0,...,0],...,2, = [0,0,...,0]. Then,
(AT A)~1AT||5 < £, with high probability.
This finishes the proof of Theorems 5.5.

E. Proof of Lemmas 6.3 (Random Model)

In order to upper bound ||[(ATA)~A|s we need to lower
bound the smallest singular value of A. Let the symmetric
matrix B be defined as A7 A. The diagonal entries of B are

m—1
bi; =4 (Thyi — Thot1,6)%, (15)
k=1
for 1 <4 < d and the off-diagonal entries as
m—1
bij =4 (Wi — Thi1i) @k — Thyry),  (16)

k=1
for 1 <14 # j < d where z;; is the i-th element of vector .
In the following lemmas, we show that with high probability,
as m increases, the diagonal entries of B will all be of the
order of m, i.e., b; ; = ©(m), and the off-diagonal entries will
be bounded from above by m3te, ie., b; ; = o(m).

Lemma 6.5: For any € > 0 the diagonal entries of B are
bounded as follows.

P (|bm —2(m—1)/3 > 4m%+6) < demm™

We use Hoeffding’s inequality. To this end, we need to divide
the sum in (15) into sums of even and odd terms as follows:

bii=b.+ b,

where
b = 4 Z (Thi — Tht1,0)%, 17
kEeven
by = 4> (ki — Trr1a)”. (18)
k€odd

This separation ensures that the random variables in summa-
tions (17) and (18) are independent. Let the random variable
zi denote the term 4(zg ; — xj41,4)% in (17). Since z}, € [0, 4]
and all the terms in bi are independent of each other, we can
use Hoeffding’s Inequality to upper bound the probability of
the deviation of b¢ from its expected value:

P (\bg — (m—1)/3] > 2m%+6) <2 (19)
for any fixed € > 0. The same bound holds for b,. Namely,
P (|b§, —(m—1)/3] > 2m%+f) <27 (20)
Hence,
i (\bi,i —2(m—1)/3] > 4m%+6)
<P (Jbe = (m = 1)/3] + b — (m = 1)/3] > 4m? "),

where we used triangular inequality. Applying union bound,
. . 2e
this is upper bounded by 4e~™
Lemma 6.6: For any € > 0 the off-diagonal entries of B
are bounded as follows.

]P) (|b2,]| > 16m%+6) S 4e_m26.

Using the Gershgorin circle theorem [30] we can find a lower
bound on the minimum eigenvalue of B.

Amin(B) > min(b; ; — R;), 2L

where R; = > ki |b; ;|. Now, let B;; denote the event that
{bi; <2(m—-1)/3— 4m%+€} and B;; (for i # j) denote the
event that {b; ; > 16m2"¢}. Since the matrix B is symmetric,
we have only d(d+ 1)/2 degrees of freedom. Lemma 6.5 and
6.6 provide us with a bound on the probability of each event.
Therefore, by using the union bound we get

Pl UB;| < 1-) PB;)
1<j i<y
= 1-3d% ™",

Therefore with probability at least 1 — 3d2e~™"" we have

2m —1 .
bii— R > % —16d - m3e, (22)
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Fig. 11. Two dimensional illustration of a bin A; ; when two nodes are far
apart (left), and bin B; ; when two nodes are less than R apart (right).

for all 1 < i < d. As m grows, the RHS of (22) can be lower
bounded by (m — 1)/3. By combining (21) and (22) we get

P (Amm(B) > W’;”) >1—3d% ™. (23)

As a result, from (25) and (23) we have

3) >1—3d% ™", (24)
m—1

P (II(ATA)1A||2 <

which finishes the proof.

F. Proof of Lemmas 6.4 (Deterministic Model)

By using the singular value decomposition of a tall m—1xd
matrix A, we know that it can be written as A = ULV 7T where
U is an orthogonal matrix, V' is a unitary matrix and X is a
diagonal matrix. Then, (AT A)~1A = UX 'V, Hence,

_
Umin(A) ’

where 0,5, (A) is the smallest singular value of A. This means
that in order to upper bound ||(AT A)~1Al|> we need to lower
bound the smallest singular value of A.

By putting the sensors in the mentioned positions the d x d
matrix A will be Toeplitz and have the following form.

[(ATA) " Allp = (25)

1 -1 0 0
0 1 -1 0
A=2 _
0 0 0 1

1 1 1 1
Lo 1
0 0 0 1

Note that the maximum singular value of A~! and the
minimum singular value of A are related as opin(4) =
(Omaz(A71))71. To find the maximum singular value of
A~!, we need to calculate the maximum eigenvalue of
AL (A*I)T. Using the Gershgorin circle theorem [30] we

can find an upper bound: Apax (A’l (A’l)T < %. Com-
bining this with (25), we get [[(ATA)"1A|, < 4.

G. Proof of the Bound on the Number of Hops

We start by applying a bin-covering technique in a similar
way as in [31], [1], [2], but for a more general model where
there can be a detection failure. In this section, for simplicity,
we assume that the nodes are placed in a 3-dimensional space,

but analogous argument is true for d = 2 as well.

For each ordered pair of nodes (i, j) we are going to define
a corresponding d-dimensional space, which we call a ‘bin’
(see Figure 11). When two nodes are far apart, i.e. d; ; > R,
we define a ‘bin’ as

A= {Jc € [o, 1]3 | R—6 <d(z,x;) < R, L(zj—wi,z—x;) < 9}

where § and 6 are positive parameters which define the size
of the bin, and we specify their values later. Here, £(-,-) is
the angle between two vectors. We say a bin A; ; is occupied
if there is a node inside the bin that is detected by node ¢ (i.e.,
connected to node 7 in the graph G). We want § and 6 large
enough that all bins are occupied (with high probability), but
we want them to be small enough that the furthest distance
between two nodes in the same bin is small: this distance
bounds the maximum error we make in each bin.
Next, when (i, j) is close by, d; ; < R, we define a bin:

B;;={x € 0,1 | d(z,x;) < R, d(z,z;) < R} .

We say a bin B; ; is occupied if there is a node inside the
bin that is simultaneously detected by nodes ¢ and j. When n
nodes are deployed in [0, 1] uniformly at random, we want
to ensure that, with high probability, all bins are occupied for
appropriate choices of ¢ and 6 as functions of d, R, and po,
where pg is the minimum probability of detection. First when
d@ i > R,

P(Ai; occupied) =1 — H (1 — P(node | occupies A;;)) (26)
1%,

The above probability can be lower bounded as follows:

1 /9 rR n—2
(26) > 1 — (1 - = / / 2mr? sin(¢>)p0drd¢>)
4Jo JR-s

=1- (1 — %7‘(})0(1 — 005(9))%(1‘%3 —(R—- 6)3))

n—2

The factor 1/4 in the first line comes from the fact that, in
the worst case the intersection of A; ; and the 3-dimensional
cube [0, 1]? is at most a quarter of the bin A4; j, which happens
for instance if ; = [0,0,0] and z; = [1,0,0]. We choose 6
such that 1 — cos(f) = (§/R)?. Then using the facts that
1—2z <exp(—z)and 1 —(1—2)® > 2 for z € [0, 1], we have

P(A;; is occupied) > 1 — exp (—(7/6)pod®(n — 2)) ,

which is larger than 1 —1/n5 if we set § = (24logn/(po(n —
2)))1/3.

Next we consider the case when nodes ¢ and j are at
most R apart. Notice that nodes ¢ and j may not be directly
connected in the graph. The probability that they are not
directly connected is at least py, which does not vanish even
for large n. But we can show that nodes ¢ and j are at most
2 hops apart with overwhelming probability. Then,

P(B;,; is occupied) =1 — H (1 — P(node [ is detected by i and 7))
11,
>1—(1=V(Biy)po)" ™

>1—exp{-V(Bi;)ps(n—2)}, @7



where V(B ;) is the volume of B; ;, and we used the fact that
the probability of detection is lower bounded by py. V(B; ;)
is the smallest when nodes ¢ and j are distance R apart and
lie on one of the edges of the cube [0, 1]3. In a 3-dimensional
space, V(B; ;) > (1/4)(5/12)7R® > (1/4)R3. Substituting
these bounds in (27), we get

P(B; is occupied) > 1 —exp {—(1/4)pjR*(n — 2)} , (28)

which is larger than 1 — 1/n% for R > ((24logn)/((n —
2)p3)) ",

For each ordered pair (4, j), we are interested in the bin A; ;
ifd; ; > Rand B; ; if d; ; < R. Using the bounds in (27) and
(28) and applying union bound over n(n — 1) ordered pairs,
all bins are occupied with a probability larger than 1 — 1/n*.

Now assuming all bins are occupied, we first show that the
number of hops between two nodes ¢ and j is bounded by a
function F'(d; ;) that only depends on the distance between
the two nodes. The function F' : R* — R is defined as

F(z) = 2 if z< R,

T k42 ifzely forke{1,2,...},

where £;, denotes the interval (k(R — v/38) + /35, k(R —
V/36) + R]. Our strategy is to use induction to show that for
all pairs,

hij < F(d; ;) - (29)

First, assume nodes ¢ and j are at most R apart. Then, by the

assumption that B; ; is occupied there exists a node connected

to both 4 and j. Then the number of hops h; ; is at most two.
Next, assume that (29) is true for all (I, m) with

dim < V36 + k(R — V/36).

For two nodes 7 and j at distance d; ; € Ly, consider a line
segment ¢; ; in the 3-dimensional space with one end at z; and
the other at z;. Let y € R? be the point in the line segment
¢; ; that is at distance I from x;. We want to show that there
exists a node that is close to y and is connected to node i. By
definition, y is inside the bin A; ;. We know that the bin A, ;
is occupied by at least one node that is connected to node 3.
Let us denote one of these nodes by . Then d(y, z;) < /38
because

sup. d(z,y) = /62 + 2R(R — 6)(1 — cos(0)) < /36,

since we choose 1 — cos = (6/R)?.

We use the following triangular inequality: h; ; < h; ;+hy ;.
Since [ is connected to ¢ we have h;; = 1. By triangular
inequality, we also have d; ; < d(y, z;) + d(y, z;). It follows
from d(y,z;) = d; j — R and d(y,z;) < v/3§ that

dl,j < di}j — R+ \/55

Recall that we assumed d; ; < R+ k(R — V/36). Since we
assumed that (29) holds for d; ; < V38 + k(R — \/36), we
have h;; < k + 2, for all nodes ¢ and j such that d; ; <
R+k(R—- \/55) By induction, this proves that the bound in
(29) holds for all pairs (i, j).
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Fig. 12. Comparison of upper and lower bound of shortest paths {CZ% 4} with
respect to the correct distance {d; ;} under connectivity-based model.

We can upper bound F'(z) with a simple affine function:

1

where the last inequality is true for R > 2/35/(2 — v/3).
Together with (29) this finishes the proof of the lemma.
Figure 12 illustrates the comparison of the upper bounds
F(d; ;) and F,(d; ), and the trivial lower bound d; ; > d; ;
in a simulation with d = 2, n = 6000 and R = /64 logn/n.
The simulation confirms that the shortest paths lie between the
analytical upper and lower bounds. Although the gap between
the upper and lower bound is seemingly large, in the regime
where R = C+/logn/n with a constant C, the vertical gap
R vanishes as n grows large and the slope of the affine upper
bound can be made arbitrarily small by taking large enough C.

VII. CONCLUSION

In many applications of wireless sensor networks, it is
crucial to determine the location of nodes. For this matter,
numerous algorithms have been recently proposed where the
efficiency and success of them have been mostly demonstrated
by simulations. In this paper, we have investigated the cen-
tralized and distributed sensor localization problem from a
theoretical point of view and have provided analytical bounds
on the performance of such algorithms. More precisely, we
analyzed the MDS-MAP and HOP-TERRAIN algorithms
and showed that even when only the connectivity information
was given and in the presence of detection failure, the resulting
error of both algorithms is bounded and decays at a rate
inversely proportional to the detection range.
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