Are Spatial and Global Constraints Really Necessary for Segmentation?

Many state-of-the-art segmentation algorithms rely on Markov or Conditional Random Field models designed to enforce spatial and global consistency constraints. This is often accomplished by introducing additional latent variables to the model, which can greatly increase its complexity. As a result, estimating the model parameters or computing the best maximum a posteriori (MAP) assignment becomes a computationally expensive task.


Publié dans:
2011 IEEE International Conference On Computer Vision (ICCV), 9-16
Présenté à:
IEEE International Conference on Computer Vision (ICCV), Barcelona
Année
2011
Publisher:
IEEE
Mots-clefs:
Laboratoires:




 Notice créée le 2011-09-29, modifiée le 2019-08-12

n/a:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)