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Abstract

Polar coding is a recently invented technique for communication over binary-
input memoryless channels. This technique allows one to transmit data at
rates close to the symmetric-capacity of such channels with arbitrarily high
reliability, using low-complexity encoding and decoding algorithms. As such,
polar coding is the only explicit low-complexity method known to achieve the
capacity of symmetric binary-input memoryless channels.

The principle underlying polar coding is channel polarization: recursively
combining several copies of a mediocre binary-input channel to create noiseless
and useless channels. The same principle can also be used to obtain optimal
low-complexity compression schemes for memoryless binary sources.

In this dissertation, the generality of the polarization principle is inves-
tigated. It is first shown that polarization with recursive procedures is not
limited to binary channels and sources. A family of low-complexity methods
that polarize all discrete memoryless processes is introduced. In both data
transmission and data compression, codes based on such methods achieve op-
timal rates, i.e., channel capacity and source entropy, respectively. The error
probability behavior of such codes is as in the binary case.

Next, it is shown that a large class of recursive constructions polarize mem-
oryless processes, establishing the original polar codes as an instance of a large
class of codes based on polarization methods. A formula to compute the er-
ror probability dependence of generalized constructions on the coding length
is derived. Evaluating this formula reveals that substantial error probabil-
ity improvements over the original polar codes can be achieved at large cod-
ing lengths by using generalized constructions, particularly over channels and
sources with non-binary alphabets.

Polarizing capabilities of recursive methods are shown to extend beyond
memoryless processes: Any construction that polarizes memoryless processes
will also polarize a large class of processes with memory.

The principles developed are applied to settings with multiple memoryless
processes. It is shown that separately applying polarization constructions to
two correlated processes polarizes both the processes themselves as well as the
correlations between them. These observations lead to polar coding theorems
for multiple-access channels and separate compression of correlated sources.
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ii Abstract

The proposed coding schemes achieve optimal sum rates in both problems.

Keywords: Polar codes, channel polarization, source polarization, capacity-
achieving codes, optimal compression, multiple-access channels, distributed
source coding, coding for ergodic channels and sources.



Résumé

Le codage polaire est une technique inventée récemment pour la communica-
tion sur des canaux sans mémoire avec entrées binaires. Cette technique per-
met de transmettre des données à des taux approchant la capacité symétrique
de tels canaux avec une fiabilité arbitrairement grande, tout en utilisant des
algorithmes de faible complexité pour l’encodage et le décodage. De fait, le
codage polaire est la seule méthode explicite connue de faible complexité qui
atteigne la capacité de canaux sans mémoire symétriques avec entrées binaires.

Le principe qui sous-tend le codage polaire est la polarisation de canal: en
combinant de manière récursive plusieurs copies d’un canal à entrées binaires,
on obtient des canaux qui sont soit sans bruit, soit inutiles. Le même principe
s’applique pour l’obtention de schémas de compression de faible complexité
pour des sources binaires sans mémoire.

Dans cette thèse, la généralité du principe de polarisation est étudiée. On
montre tout d’abord que la procédure récursive de polarisation ne s’applique
pas seulement aux canaux et sources binaires. Une famille de méthodes de
faible complexité qui polarisent tous les processus sans mémoire discrets est
introduite. Que ce soit dans le cas de la transmission ou de la compression de
données, les codes basés sur de telles méthodes atteignent des taux optimaux,
i.e., la capacité du canal ou l’entropie de la source, respectivement. Le com-
portement de la probabilité d’erreur de tels codes est semblable à celui obtenu
dans le cas binaire.

On montre ensuite qu’une grande classe de constructions récursives po-
larisent des processus sans mémoire, démontrant ainsi que les codes polaires
d’origine constituent un exemple particulier d’une grande classe de codes basés
sur des méthodes de polarisation. Une formule est dérivée pour le calcul de
la dépendance de la probabilité d’erreur de constructions généralisées en fonc-
tion de la longueur d’un code. En évaluant cette formule, on montre que
par rapport aux codes polaires d’origine, des améliorations substantielles de
la probabilité d’erreur peuvent être obtenues pour de longs codes en utilisant
des constructions généralisées, et ceci plus particulièrement pour des canaux
et des sources avec des alphabets non-binaires.

On montre également que la polarisation par des méthodes récursives s’étend
au-delà des processus sans mémoire. En particulier, on montre que toute con-
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iv Résumé

struction qui polarise un processus sans mémoire polarise également une grande
classe de processus avec mémoire.

Les principes développés dans cette thèse sont également appliqués à des
processus multivariés sans mémoire. On démontre qu’appliquer séparément
des techniques de polarisation à deux processus corrélés polarise non seulement
les processus eux-mêmes, mais aussi les corrélations entre ces deux processus.
Ces observations mènent à des théorèmes de codage polaire pour les canaux à
accès multiples et la compression de sources corrélées. Les schémas de codage
proposés atteignent des taux optimaux dans les deux cas.

Mots clés: Codes polaires, polarisation de canal, polarisation de source, codes
atteignant la capacité, compression optimale, canaux à accès multiples, codage
de source distribué, codage pour des canaux et des sources ergodiques.
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Résumé iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Extremal Distributions and Polarization . . . . . . . . . . . . 3

2 Polarization and Polar Codes 5
2.1 A Basic Transform . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 An Improved Transform and Coding Scheme . . . . . . . . . . 7
2.3 Recursive Construction: Polarization . . . . . . . . . . . . . . 9
2.4 Polar Channel Coding . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.A Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Memoryless Processes with Arbitrary Discrete Alphabets 21
3.1 Alphabets of Prime Size . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Rate of Polarization . . . . . . . . . . . . . . . . . . . 29

3.2 Arbitrary Finite Alphabets . . . . . . . . . . . . . . . . . . . . 33
3.3 How to Achieve Capacity . . . . . . . . . . . . . . . . . . . . . 38
3.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.A Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . . . . . 39
3.B A Family of Polarizing Transforms . . . . . . . . . . . . . . . 40
3.C An Alternative Proof of Polarization for Prime q . . . . . . . . 41

4 Generalized Constructions 47
4.1 Recursive Transforms . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Polarizing Matrices . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Rate of Polarization . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



viii Contents

4.3.1 Bounds on the Rate of Polarization . . . . . . . . . . . 53
4.4 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . 54

5 Processes with Memory 59
5.1 Problem Statement and Main Result . . . . . . . . . . . . . . 60
5.2 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Channels with Memory . . . . . . . . . . . . . . . . . . 68
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Joint Polarization of Multiple Processes 71
6.1 Joint Polarization . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 Rate Region . . . . . . . . . . . . . . . . . . . . . . . . 78
6.1.2 Processes with Different Alphabet Sizes . . . . . . . . . 79

6.2 Rate of Polarization . . . . . . . . . . . . . . . . . . . . . . . . 79
6.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Conclusion 85

Bibliography 91

Curriculum Vitae 93



Introduction 1
Figure 1.1 depicts the setting for the fundamental problem in communication
theory. A sender has K bits of information to send, which, after appropriate
processing, are transmitted through a noisy channel that accepts input sym-
bols one at a time and produces a sequence of output symbols. The task of
the communication engineer is to design an encoding/decoding scheme that
ensures that the K bits are (i) transmitted in as few uses of the channel as pos-
sible, and (ii) correctly reproduced at the receiver with as high a probability as
desired. In [1], Shannon showed that these seemingly conflicting requirements
can be met simultaneously so long as K and N (number of channel uses) are
large and K/N (called the rate of transmission) is below the capacity of the
channel.

K bits K bitsTransmitter ReceiverChannel

Figure 1.1

Shannon’s proof of the channel coding theorem shows not only that reli-
able communication at rates below capacity is possible, but also that almost
all encoding schemes, i.e., channel codes, with rates below channel capacity
will perform well as long as optimal decoders are used at the receiver. Unfor-
tunately, optimal decoding is in general prohibitively difficult—its complexity
grows exponentially in the coding length—and how to construct practical cod-
ing schemes, and especially low-complexity decoders, is not immediately clear
from Shannon’s coding theorem alone.

Significant progress has been made in the past sixty years toward develop-
ing practical and capacity-achieving coding methods. The bulk of the research
effort to this end can be broadly divided into two groups: algebraic coding and
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2 Introduction

iterative coding. Research in algebraic coding was grounded in the recognition
that the words of a code must be as different from each other as possible in
order to ensure their distinguishability at the receiver. Iterative codes (e.g.,
Turbo codes and LDPC codes) on the other hand are designed to work well
with a low-complexity decoding algorithm. Despite remarkable advances in
both fields, especially in iterative coding, finding codes that (i) operate at
rates close to capacity, (ii) have low computational complexity, and (iii) have
provable reliability guarantees was an elusive goal until recently.1

Polar codes, invented recently by Arıkan [3], have all of these desirable
properties. In particular,

• they achieve the symmetric capacity of all binary-input memoryless chan-
nels. Consequently they are capacity-achieving for symmetric channels,
which include several channel classes of practical relevance such as the
binary-input additive white Gaussian noise channel, the binary symmet-
ric channel, and the binary erasure channel.

• they are low-complexity codes, and therefore are practical: The time and
space complexities of the encoding/decoding algorithms Arıkan proposes
in [3] are O(N logN), where N is the blocklength.

• the block error probability of polar codes is roughly O(2−
√
N) [4]. This

performance guarantee is analytical, and is not only based on empirical
evidence.

• for symmetric channels, polar code construction is deterministic. That
is, the above statements are true not only for ensembles of codes, but
for individual polar codes. Further, construction of polar codes can be
accomplished with time complexityO(N) and space complexityO(logN)
[5].

The design philosophy of polar codes is fundamentally different from those
of both algebraic codes and iterative codes (although the codes themselves are
closely related to the algebraic Reed–Muller codes). It is interesting to note
that the invention of these codes is in fact the culmination of Arıkan’s efforts
to improve the rates achievable by convolutional codes and sequential decoding
[6], a decoding method developed in the late 1950s.

The technique underlying polar codes is ‘channel polarization’: creating
extremal channels—those that are either noiseless or useless—from mediocre
ones. Soon after the publication of [3], Arıkan showed that a similar technique
can be used to construct optimal source codes [7]—he calls this technique
‘source polarization’. It is clear in his work that a single polarization principle
underlies both techniques; channel polarization and source polarization are
specific applications of this principle.

1See [2] for a historical account of the development of coding theory in general.



1.1. Extremal Distributions and Polarization 3

1.1 Extremal Distributions and Polarization

Suppose we are interested in guessing (i.e., decoding) the value of a binary
N -vector UN

1 after observing a related random vector Y N
1 . Here, UN

1 may
represent a codeword chosen randomly from a channel code, and Y N

1 the output
of a channel when UN

1 is the input. Alternatively, UN
1 may be viewed as the

output of a random source, and Y N
1 as side information about UN

1 . In order to
minimize the probability of decoding error, one chooses the value of UN

1 that
maximizes2

p(uN1 | yN1 ) =
N∏
i=1

p(ui | yN1 , ui−11 ).

There are two extremal cases in terms of the probability of decoding error.
First, if UN

1 is a function of Y N
1 —i.e., if the above probability is either 0 or 1—

then its value can always be guessed correctly. Second, if UN
1 is independent

of Y N
1 and uniformly distributed, then all guesses are equally good and will be

correct with probability 1/2N . The first of these cases is trivial provided that
the function computations can be done easily, and the second is hopeless.

A more interesting extremal case is one in which the conditional distribu-
tion of UN

1 is neither {0, 1}-valued nor uniform, but it is polarized in the sense
that all distributions in the product formula above are either {0, 1}-valued or
uniform. One can view this as a case where all randomness in UN

1 is concen-
trated in a subset of its components. Clearly, one cannot in general correctly
decode such a random vector with high probability. On the other hand, de-
coding UN

1 again becomes trivial if one has prior knowledge of its random
component. The polarized structure in the probability distribution even sug-
gests that UN

1 can be decoded successively : Suppose, for the sake of argument,
that the odd-numbered factors in the product formula above are {0, 1}-valued
distributions whereas the even-numbered factors are uniform. Then, if one
has prior knowledge of the even indices of UN

1 , then the odd indices can be
determined in increasing order as follows. The decoder first computes U1 as a
function of Y N

1 , then produces U2 (which is already available to it) then uses
its knowledge of U1 and U2 to compute U3 as a function of (Y N

1 , U2
1 ), etc.

A realistic model of the input/output process of a noisy channel or the
output/side information process of a data source rarely fits this description.
On the other hand, one may attempt to transform the process in question into
one that does fit it. This is precisely the aim of Arıkan’s polarization tech-
nique. In its original form, this technique consists in combining two identi-
cally distributed binary random variables so as to create two disparate random
variables and repeating this operation several times to amplify the disparity,
eventually approaching a polarized set of random variables. A review of this

2Throughout, probability distributions will be denoted by p as long as their arguments
are lower case versions of the random variables they represent. For example we will write
p(x, y | z) for pXY |Z(x, y | z), denoting the joint distribution of X and Y conditioned on Z.



4 Introduction

technique along with its applications to channel and source coding is given in
Chapter 2.

The desirable properties of codes based on the polarization principle am-
ply motivate an investigation of this principle’s generality. This dissertation
is the outcome of one such investigation. We begin in Chapter 3 by studying
how discrete memoryless processes of arbitrary alphabet sizes, not just binary
ones, can be polarized by recursive transforms. We show that this can be ac-
complished through a linear transform similar to Arıkan’s when the alphabet
size is prime. Interestingly, linear transforms lose their ability to polarize all
stationary memoryless processes when the underlying alphabet size is not a
prime number. There are, however, non-linear transforms that do polarize all
stationary memoryless processes for all finite alphabet sizes. In Section 3.2
we provide sufficient conditions for a recursive transform to polarize all such
processes, and give an example of a family of transforms that satisfy these con-
ditions for all finite alphabet sizes. The complexity and the error probability
behavior of codes obtained by such transforms are as in the binary case.

While the error probability guarantees of polar codes are unprecedented,
it is of interest to know whether even stronger codes can be obtained by com-
bining more than two random variables in each recursion of a polarizing con-
struction. This study is undertaken in Chapter 4: We first show that a large
class of recursive linear transforms that combine several random variables at a
time polarize memoryless processes with prime alphabet sizes. We then char-
acterize how a single recursion of a given polarizing transform affects error
probability behavior, from which results on the large-blocklength behavior fol-
low easily. The implications of this characterization are of a mixed nature:
While in the binary case one cannot improve on the O(2−

√
N) error probabil-

ity decay by combining a small number of random variables at a time, strong
improvements become possible as the alphabet size grows.

Results in Chapters 3 and 4 provide extensive evidence that polarization
is a fairly general—in fact, almost inevitable—phenomenon. We further sub-
stantiate this claim in Chapter 5, where we show that recursive constructions
also polarize processes with memory.

In Chapter 6, we make use of the polarization theorems of earlier chapters
to study joint polarization of multiple processes. We show that recursive trans-
forms, applied separately to multiple processes, not only polarize the individual
processes, but the correlations between the processes are also polarized. These
results immediately lead to polar coding theorems for multi-user settings such
as the separate encoding of correlated sources and the multiple-access channel.



Polarization and Polar
Codes 2
In this chapter, we will review the polarization method for binary memoryless
processes and show how it can be used to obtain channel and source codes
that achieve optimal rates. Owing to the recursive nature of these codes, the
techniques for analyzing their performance (rate, error probability, complexity)
are fairly simple. In the subsequent chapters we will frequently invoke the
techniques discussed here. This chapter is based entirely on [3], [7], and [4].

Consider a pair of discrete random variables (X, Y ) with X ∈ {0, 1} and
Y ∈ Y . The alphabet Y and the joint distribution of (X, Y ) may be arbitrary.
Suppose we are given N independent copies (X1, Y1), (X2, Y2), . . . , (XN , YN)
of (X, Y ). We may view XN

1 as the output of a binary memoryless source,
and Y N

1 as side information about XN
1 . Alternatively, one may interpret XN

1

as independent and identically distributed (i.i.d.) inputs to a binary-input
memoryless channel, and Y N

1 as the corresponding output. We will initially
focus on the first of these interpretations and discuss the second shortly.

Suppose that a receiver observes Y N
1 and is interested in decoding XN

1 .
We know that in addition to Y N

1 , it is necessary and sufficient to provide the
receiver with approximately H(XN

1 | Y N
1 ) = NH(X1 | Y1) bits of information1

about XN
1 for it to decode with small error probability. As we mentioned in

the introduction, there are two cases where decoding is a trivial task: First,
if H(X1 | Y1) = 0, the receiver can decode XN

1 with no other information
than Y N

1 and make no errors. Second, if H(X1 | Y1) = 1, any strategy short
of providing XN

1 itself to the receiver—which would render the receiver’s task
trivial—will result in unreliable decoding.

Arıkan’s polarization technique is a method that transforms the XN
1 se-

quence so as to reduce the decoder’s task into a series of these two trivial

1Logarithms in this chapter are to the base 2, and thus entropies of binary random
variables are [0, 1]-valued.
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6 Polarization and Polar Codes

Y1

Y2

S1

S2

X1

X2

Figure 2.1: The first step of the recursive construction. The distribution on
(S1, S2) is induced by the distribution on (X2

1 , Y
2
1 ).

tasks. While any good source or channel code can in fact be thought of in
this way2, Arıkan’s technique yields low-complexity encoding and decoding
algorithms due to its recursive nature.

2.1 A Basic Transform

In this section we review a single step of the polarization technique. Although
the reader may find some of the details here trivial, we find it worthwhile to
go through them since most polarization ideas are contained in the one-step
construction.

Consider the case N = 2. Given (X1, Y1) and (X2, Y2), we define S1, S2 ∈
{0, 1} through the mapping (see Figure 2.1)

S1 = X1 +X2 and S2 = X2, (2.1)

where ‘+’ denotes modulo-2 addition. Notice that the correspondence between
S1, S2 and X1, X2 is one-to-one, and therefore the independence of (X1, Y1) and
(X2, Y2) implies

2H(X1 | Y1) = H(S2
1 | Y 2

1 ) = H(S1 | Y 2
1 ) +H(S2 | Y 2

1 S1).

It easily follows from (2.1) and the above equalities that

H(S2 | Y 2
1 S1) ≤ H(X1 | Y1) ≤ H(S1 | Y 2

1 ). (2.2)

Due to these entropy relations, one intuitively expects that observing (Y 2
1 S1)

yields a more reliable estimate of S2 (i.e., X2) than observing Y2 alone does.
(It is in fact clear that the ‘channel’ S2 → Y 2

1 S1 is upgraded with respect to
the channel X2 → Y2.) Similarly, observing Y 2

1 alone leads to a less reliable
estimate of S1. If we let Pe(X1 | Y1) denote the average error probability of
optimally decoding X1 by observing Y1, we indeed have

Pe(S2 | Y 2
1 S1) ≤ Pe(X1 | Y1) ≤ Pe(S1 | Y 2

1 ). (2.3)

The left-hand inequality above is obtained through the relations

Pe(S2 | Y 2
1 S1) ≤ Pe(S2 | Y2) = Pe(X1 | Y1)

2A brief discussion on this is offered on pages 47–48.



2.2. An Improved Transform and Coding Scheme 7

and the right-hand inequality through

Pe(X1 | Y1) = Pe(X1 +X2 | Y1X2)

= Pe(X1 +X2 | Y 2
1 X2)

≤ Pe(X1 +X2 | Y 2
1 ).

The second equality above is due to the Markov chain (X1 +X2)—Y1X2—Y2.
One can see the use of these relations in the following coding scheme: Upon

observing X2
1 , the encoder computes S2

1 and reveals S1 to the receiver. The
receiver then uses the optimal decision rule to decode S2 from (Y 2

1 S1), and
computes (X̂1, X̂2) = (S1 + Ŝ2, Ŝ2), where Ŝ2 is its estimate of S2.

This is in fact the simplest instance of polar source coding, with code
blocklength 2, rate 1/2, and average block error probability Pe(S2 | Y 2

1 S1).
Simple as it is, this scheme contains the essence of polarization and polar
coding ideas: Out of two identical entropy terms H(X1 | Y1) and H(X2 | Y2),
we have created two different entropies one of which is closer to 0 than the
original and the other closer to 1, thereby approaching (albeit not very closely)
the trivial cases we have mentioned above. By revealing to the decoder those
random variables with high conditional entropies, we can decode those that
have lower entropies with higher reliability.

2.2 An Improved Transform and Coding Scheme

Since the random variables S1 and S2 created by the above transform are
{0, 1}-valued, one can apply the same transform to these in order to enhance
the disparity between their entropies. In order to do so, let N = 4 and define,
in addition to S1, S2 in (2.1),

T1 = X3 +X4 and T2 = X4,

and also define Ỹ1 = Y 2
1 and Ỹ2 = Y 4

3 (see Figure 2.2). Observe that (S1, Ỹ1)
and (T1, Ỹ2) are i.i.d., just as were (X1, Y1) and (X2, Y2). It then follows simi-
larly to (2.2) that

H(T1 | Ỹ 2
1 , S1 + T1) ≤ H(S1 | Ỹ1) ≤ H(S1 + T1 | Ỹ 2

1 ). (2.4)

Similarly, defining Ȳ1 = (Y 2
1 S1) and Ȳ2 = (Y 4

3 T1) and noting that (S2, Ȳ1) and
(T2, Ȳ2) are also i.i.d., we have

H(T2 | Ȳ 2
1 , S2 + T2) ≤ H(S2 | Ȳ1) ≤ H(S2 + T2 | Ȳ 2

1 ). (2.5)

The relevance of the entropy terms above can be seen by an inspection of
Figure 2.2. In particular, we have

4H(X1 | Y1) = 2H(S2
1 | Y 2

1 )

= H(U4
1 | Y 4

1 )

= H(U1 | Y 4
1 ) +H(U2 | Y 4

1 U1) +H(U3 | Y 4
1 U

2
1 ) +H(U4 | Y 4

1 U
3
1 ).
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U1

U2

U3

U4

S1

T1

S2

T2

X1

X3

X2

X4

Y1

Y3

Y2

Y4

Figure 2.2

It is also easily seen that the last four entropy terms above are those appearing
in (2.4) and (2.5):

H(U1 | Y 4
1 ) = H(S1 + T1 | Ỹ 2

1 )

H(U2 | Y 4
1 U1) = H(T1 | Ỹ 2

1 , S1 + T1)

H(U3 | Y 4
1 U

2
1 ) = H(S2 + T2 | Y 4

1 S1T1) = H(S2 + T2 | Ȳ 2
1 )

H(U4 | Y 4
1 U

3
1 ) = H(T2 | Y 4

1 S1T1, S2 + T2) = H(T2 | Ȳ 2
1 , S2 + T2).

It follows from these relations, along with (2.4) and (2.5), that

H(U2 | Y 4
1 U1) ≤ H(S1 | Y 2

1 ) ≤ H(U1 | Y 4
1 )

H(U4 | Y 4
1 U

3
1 ) ≤ H(S2 | Y 2

1 S1) ≤ H(U3 | Y 4
1 U

2
1 ).

That is, from the two entropy terms H(S1 | Y 2
1 ) and H(S2 | Y 2

1 S1) we obtain
four new entropies that are separated from the original two as in the above
inequalities. Since H(S1 | Y 2

1 ) and H(S2 | Y 2
1 S1) were somewhat polarized

towards 1 and 0, the above inequalities say that the polarization effect is
enhanced by the second application of the transform.

Consider now the following source code of blocklength 4: We choose a set
A ⊂ {1, 2, 3, 4} with |A| = 4 − k. Upon observing X4

1 = x41, the encoder
computes U4

1 = u41 and sends all ui, i ∈ Ac to the decoder, therefore the rate
of the code is k/4 bits/symbol. The decoder outputs its estimate û41 of u41
successively as

ûi =


ui if i ∈ A
0 if i ∈ Ac and L(y41, û

i−1
1 ) > 1

1 otherwise

, (2.6)

where

L(y41, u
i−1
1 ) =

Pr[Ui = 0 | Y 4
1 = y41, U

i−1
1 = ûi−11 ]

Pr[Ui = 1 | Y 4
1 = y41, U

i−1
1 = ûi−11 ]

. (2.7)
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A sensible choice of set A that will yield a small error probability under
the above decoding scheme is

A =
{
i : Pe(Ui | Y 4

1 U
i−1
1 ) is among the k smallest

}
.

This choice can be justified by the following result:

Proposition 2.1. The average block error probability of the above coding
scheme is at most ∑

i∈A

Pe(Ui | Y 4
1 U

i−1
1 ). (2.8)

Proof. Consider a decoder with output ũN1 , whose decision rule for ũi is ob-
tained from (2.6) by replacing L(y41, û

i−1
1 ) with L(y41, u

i−1
1 ). This is a genie-aided

version of the original decoder: at each step of decoding, a genie provides the
decoder with the correct value of the previously decoded bits. Clearly, the av-
erage error probability of the ith constituent of this decoder is Pe(Ui | Y 4

1 U
i−1
1 ),

and therefore the block error probability is upper bounded by the expression in
(2.8). In order to conclude the proof, we will show that the block error events
for the original decoder described in (2.6)–(2.7) and its genie-aided version
are identical. To see the latter claim, note that û1 = ũ1 for each realization
(y41, u

4
1), as both decisions depend on L(y41) alone. Hence, if û1 = ũ1 = u1

(otherwise both decoders commit a block error in the first step), it then fol-
lows that û2 = ũ2, as both decisions are based on L(y41, u1). Continuing in this
manner, we see that at each step, either both decoders have already committed
an error, or their next decisions will be identical. This in turn implies that the
block error events (but not necessarily the bit error events) under the original
decoder and its genie-aided version are identical, yielding the claim.

Proposition 2.1 highlights two simple but important aspects of the design
and analysis of polar codes (of which the above code is an instance). First, the
block error probability behavior of these codes can be deduced from the error
behavior of the created ‘channels’ (e.g., channels Ui → Y 4

1 U
i−1
1 above), which

as we will see greatly simplifies error analysis. Second, minimizing the upper
bound in (2.8) amounts to finding a good code, as it consists in determining
the bit indices with the smallest probability of decoding error. This is one
of the several appeals of polar codes: their design and construction on one
hand and analysis on the other are closely linked and do not require separate
techniques.

2.3 Recursive Construction: Polarization

We saw the first two steps of Arıkan’s construction in the previous sections.
The recursive nature of this construction is evident: The second step merely
involves applying the transform in (2.1) to the random variables obtained in
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the first. Similarly, in the general form of this construction, each recursion
consists in applying (2.1) to the random variables obtained in the previous
one. For this technique to create the desired effect of driving the entropies
close to 0 and 1, it is therefore necessary that the basic transform in (2.1)
lead to a strict separation of entropies, i.e., that the inequalities in (2.2) be
strict, for otherwise the transform would have no effect. The following result
guarantees that this requirement is always met, except in trivial cases.

Lemma 2.1. Let α, β ∈ [0, 1] and also let (X1, Y1) and (X2, Y2) be independent
pairs of discrete random variables with X1, X2 ∈ {0, 1}, H(X1 | Y1) = α, and
H(X2 | Y2) = β. Then, the entropy H(X1 +X2 | Y 2

1 )

(i) is minimized when H(X1 | Y1 = y1) = α,H(X2 | Y2 = y2) = β for all
y1, y2 with p(y1), p(y2) > 0.

(ii) is maximized when H(X1 | Y1 = y1), H(X2 | Y2 = y2) ∈ {0, 1} for all
y1, y2 with p(y1), p(y2) > 0.

It also follows from (i) that if α, β ∈ (δ, 1−δ) for some δ > 0, then there exists
ε(δ) > 0 such that

H(X1 +X2 | Y 2
1 )−H(X1 | Y1) ≥ ε(δ).

Proof. See Appendix 2.A.

We can now describe the general form of the polarization construction:
Let (X1, Y1), (X2, Y2), . . . be an i.i.d. sequence as above. For n = 0, 1, . . . , let
N = 2n and define a sequence of transforms Gn : {0, 1}N → {0, 1}N recursively
through

G0(u) = u,

Gn(u1, u2) = πn
(
Gn−1(u1) +Gn−1(u2), Gn−1(u2)

)
n = 1, 2, . . .

where u = (u1, u2) and πn : {0, 1}N → {0, 1}N permutes the components of its
argument vector through

πn(u)2i−1 = ui

πn(u)2i = ui+N/2
, i = 1, . . . , N/2.

It is easy to show [3] that Gn is one-to-one and that G−1n = Gn. Now define

UN
1 = Gn(XN

1 ).

The general form of the transform Gn is shown in Figure 2.3. The inclusion
of πn in the definition of Gn is not necessary for the polarization technique to
work, but it will greatly simplify the notation. Observe that G1 and G2 are
equivalent to the transforms in the previous sections (Figures 2.1 and 2.2).

The main result in [3] and [7] is that as the construction size N grows, the
entropies H(Ui | Y N

1 U i−1
1 ) approach either 0 or 1:
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U1

U2

...

U2i−1

U2i

...

UN−1

UN

S1

...

Si
...

SN/2

T1

...

Ti
...

TN/2

X1

XN/2

XN/2+1

XN

Y1

YN/2

YN/2+1

YN

Gn−1

Gn−1

πn

Figure 2.3

Theorem 2.1. For all ε > 0,

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) > 1− ε
}∣∣∣ = H(X | Y ),

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) < ε
}∣∣∣ = 1−H(X | Y ).

In order to simplify the notation in the proofs, we will often use the fol-
lowing definition.

Definition 2.1. For i.i.d. (X1, Y1) and (X2, Y2) with H := H(X1 | Y1), we
define

H− := H(X1 +X2 | Y 2
1 ),

H+ := H(X2 | Y 2
1 , X1 +X2).

(2.9)

With the above definitions, we claim that

H(U1 | Y N
1 ) = H−···−−

H(U2 | Y N
1 U1) = H−···−+

H(U3 | Y N
1 U2

1 ) = H−···+−

...

H(UN−1 | Y N
1 UN−2

1 ) = H+···+−

H(UN | Y N
1 UN−1

1 ) = H+···++,

(2.10)

where the superscripts on the right-hand terms are of length n. These equiv-
alences can be verified by an inspection of Figure 2.3. In particular, let us
suppose that claim (2.10) holds for the entropy terms obtained after Gn−1, i.e.,
that for every 1 ≤ i ≤ N/2 there is a distinct s ∈ {−,+}n−1 such that H(Si |
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Y
N/2
1 Si−11 ) = Hs. Then, since the pairs (Si, Y

N/2
1 Si−11 ) and (Ti, Y

N
N/2+1T

i−1
1 )

in the figure are i.i.d., it is easily seen that H(U2i−1 | Y N
1 U2i−2

1 ) = H(Si |
Y
N/2
1 Si−11 )− = Hs−, and that H(U2i | Y N

1 U2i−1
1 ) = H(Si | Y N/2

1 Si−11 )+ = Hs+.
It follows that for every i ∈ {1, . . . , N} there is a distinct s ∈ {−,+}n such
that H(Ui | Y N

1 U i−1
1 ) = Hs. It also follows from the definition of the per-

mutation function πn that these equivalences are as in (2.10). Since we have
already seen in Section 2.1 that (2.10) holds for n = 1, it follows by induction
that it holds for all n.

In order to prove Theorem 2.1 we define an i.i.d. process B1, B2, . . . where
B1 is uniformly distributed over {−,+}. We then define a [0, 1]-valued random
process H0, H1, . . . recursively as

H0 = H(X1 | Y1),
Hn = HBn

n−1, n = 1, 2, . . .
(2.11)

As B1, . . . , Bn is uniformly distributed over {−,+}n, the equivalence of
entropies in (2.10) imply that for all n,

Pr[Hn ∈ I] =
1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) ∈ I
}∣∣∣

for any I ⊆ [0, 1]. Therefore, Theorem 2.1 is implied by

Theorem 2.1∗. Hn converges almost surely to a {0, 1}-valued random variable
H∞ with Pr[H∞ = 1] = 1− Pr[H∞ = 0] = H(X1 | Y1).

Proof. Definitions (2.9) and (2.11) imply that H−n + H+
n = 2Hn. It follows

that the process H1, H2, . . . is a bounded martingale and therefore converges
almost surely to a random variable H∞. As almost sure convergence implies
convergence in L1, we have E[|Hn+1−Hn|] = 1

2
E[H−n −Hn] + 1

2
E[Hn−H+

n ] =
E[H−n − Hn] → 0. Also since Lemma 2.1 implies that H−n − Hn > δ(ε) if
Hn ∈ (ε, 1 − ε), it follows that Hn → {0, 1} with probability 1, i.e., that H∞
is {0, 1}-valued. The claim on the distribution of H∞ then follows from the
relation E[H∞] = E[H0] = H(X1 | Y1).

This is the main polarization theorem. It states that Arıkan’s construction
distills the randomness in an i.i.d. binary process into a sequence of uniform
or constant binary random variables. Equivalently, this construction can be
interpreted as one that creates a sequence of noiseless and useless channels
Ui → Y N

1 U i−1
1 out of several copies of a memoryless channel X1 → Y1.

Theorem 2.1 can be exploited to construct entropy-achieving polar source
codes as follows: We fix δ, ε > 0, and find the set

A := {i : Pe(Ui | Y N
1 U i−1

1 ) ≤ ε}.

As H(Ui | Y N
1 U i−1

1 ) → 0 implies Pe(Ui | Y N
1 U i−1

1 ) → 0, it follows from Theo-
rem 2.1 that A must be of size at least (1 − H(X | Y ) − δ)N provided that
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the blocklength N is sufficiently large. The encoder observes XN
1 , computes

UN
1 = Gn(XN

1 ), and reveals Ui, i ∈ Ac to the receiver, i.e., the code is of rate
H(X | Y ) + δ. Upon observing Y N

1 and Ui, i ∈ Ac, the receiver decodes UN
1

successively as in (2.6) and (2.7). Similarly to the previous section, the block
error probability of this code is at most∑

i∈A

Pe(Ui | Y N
1 U i−1

1 ) ≤ εN.

This bound on the error probability is not very useful, however, as we have
chosen the threshold ε independently of N . Fortunately, the choice of set A in
the above scheme can be modified slightly to include a blocklength-dependent
ε, yielding codes with vanishing block error probability. More precisely, instead
of A consider the set

A′β := {i : Pe(Ui | Y N
1 U i−1

1 ) ≤ 2−N
β}

for some β > 0. Note that for large N we have A′β ⊂ A. The next result
states that as long as β < 1/2, the set difference A\A′β is negligibly small, in
the sense that |A′β|/|A| → 1. That is, at large blocklengths if the bit error

probability Pe(Ui | Y N
1 U i−1

1 ) is small, then it must indeed be exponentially
small in the square root of the blocklength.

Theorem 2.2. For all β < 1/2 and δ > 0, there exists No = No(β, δ) such
that

|A′β| > (1−H(X | Y )− δ)N

for all N ≥ No.

Corollary 2.1. For all β < 1/2 and rates strictly above H(X | Y ), the average
block error probability of the above source coding scheme is o(2−N

β
).

In order to prove Theorem 2.2 one needs to compute the Pe(Ui | Y N
1 U i−1

1 )
terms during the polarization process. The difficulty in doing so is that the
joint distributions of (Ui, Y

N
1 U i−1

1 ) become increasingly complex as the block-
length grows, and consequently the exact computation of error probabilities
becomes intractible. One may hope instead to find useful bounds on the error
probabilities that are also independent of the details of the joint distributions.
For this purpose, consider a [0, 1]-valued parameter Z(X | Y ) defined as

Z(X | Y ) = 2
∑
y∈Y

√
pXY (0, y)pXY (1, y).

Arıkan calls Z(X | Y ) the source Bhattacharyya parameter [7]. It is well-known
that the Bhattacharyya parameter upper bounds the error probability of the
optimal decision rule, and therefore may be used as a measure of reliability:

Proposition 2.2. Pe(X | Y ) ≤ Z(X | Y ).
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Proof.

Pe(X | Y ) ≤ pX(0)
∑
y

p(y | 0)1[p(0|y)≤p(1|y)] + pX(1)
∑
y

p(y | 1)1[p(1|y)≤p(0|y)]

≤ pX(0)
∑
y

p(0 | y)p(y)

pX(0)

√
p(1 | y)√
p(0 | y)

+ pX(1)
∑
y

p(1 | y)p(y)

pX(1)

√
p(0 | y)√
p(1 | y)

= 2
∑
y

√
p(0, y)p(1, y)

= Z(X | Y ).

As a measure of reliability, it would be natural for Z(X | Y ) to satisfy

Z(X | Y ) ≈ 1⇐⇒ H(X | Y ) ≈ 1,

Z(X | Y ) ≈ 0⇐⇒ H(X | Y ) ≈ 0.

The following relations show that this is indeed the case:

Proposition 2.3 ([7]).

Z(X | Y )2 ≤ H(X | Y )

H(X | Y ) ≤ log(1 + Z(X | Y )).

One may also expect to observe a disparity between the Bhattacharyya
parameters after one step of the polarization transform, similar to the disparity
between the entropies (2.2) and the error probabilities (2.3). We indeed have

Z(U2 | Y 2
1 U1) ≤ Z(X1 | Y1) ≤ Z(U1 | Y 2

1 ).

It can also be shown that these inequalities are strict unless Z(X1 | Y1) is
either 0 or 1. Clearly, the exact values of these parameters depend on the
details of the joint distribution of (X1, Y1). Nevertheless, there are bounds
on these that are distribution-independent and are also sufficiently good for
proving Theorem 2.2:

Lemma 2.2. For all (X1, Y1), we have

Z(U1 | Y 2
1 ) ≤ 2Z(X1 | Y1), (2.12)

Z(U2 | Y 2
1 U1) = Z(X1 | Y1)2. (2.13)
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Proof. First note that p(u1, u2, y1, y2) = pXY (u1 + u2, y1)pXY (u2, y2). The first
bound can be seen through the following inequalities:

Z(U1 | Y 2
1 ) = 2

∑
y21

[∑
u2

pXY (u2, y1)pXY (u2, y2)

·
∑
v2

pXY (1 + v2, y1)pXY (v2, y2)

]1/2
≤ 2

∑
y21 ,u2,v2

[
pXY (u2, y1)pXY (1 + v2, y1)pXY (u2, y2)pXY (v2, y2)

]1/2
= 2

∑
u2,v2

∑
y1

[
pXY (u2, y1)pXY (1 + v2, y1)

]1/2
·
∑
y2

[
pXY (u2, y2)pXY (v2, y2)

]1/2
The term inside the outermost summation is equal to p(u2)Z(X1 | Y1)/2 for
all u2, v2. This yields the first claim. To obtain the second claim we write

Z(U2 | Y 2
1 U1) = 2

∑
y21 ,u1

[
pXY (u1, y1)pXY (0, y2)pXY (u1 + 1, y1)pXY (1, y2)

]1/2
= 2

∑
u1

∑
y1

[
pXY (u1, y1)pXY (u1 + 1, y1)

]1/2
·
∑
y2

[
pXY (0, y2)pXY (1, y2)

]1/2
= 4

[∑
y

[
pXY (0, y)pXY (1, y)

]1/2]2
= Z(X1 | Y1)2.

In order to prove Theorem 2.2, we will define, similarly to the proof of
Theorem 2.1, a random process that mirrors the behavior of the Bhattacharyya
parameters obtained during the polarization construction. For this purpose,
we first let Z := Z(X1 | Y1) and define

Z− := Z(U1 | Y 2
1 ),

Z+ := Z(U2 | Y 2
1 U1).

We will see that bounds (2.12) and (2.13) on Z− and Z+ suffice to prove
Theorem 2.2. To get an initial idea about the reason for this, let us neglect, for
a moment, the factor 2 in the bound (2.12) on Z−. It is now easy to see that
on a ‘polarization path’ consisting of n consecutive ‘+’ and ‘−’ operations, the
resulting Z(Ui | Y N

1 U i−1
1 ) will be upper bounded by Z(X | Y )2

np
, where np is

the number of the occurrences of ‘+’. Since on a typical path the plus and
the minus operations occur with roughly the same frequency, i.e., np ≈ n/2,
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it follows that most Bhattacharyya parameters will be of the form Z(Ui |
Y N
1 U i−1

1 ) ≈ Z(X | Y )2
n/2

= Z(X | Y )
√
N , as claimed in Theorem 2.2.

The reason for us to resort to Bhattacharyya parameters instead of working
directly with error probabilities is the lack of useful bounds on the latter. More
precisely, although we have

Pe(U2 | Y 2
1 U1) ≤ Pe(X1 | Y1) ≤ Pe(U1 | Y 2

1 )

after the first step of polarization, how close these error terms are to each
other depends strongly on the distribution of (X1, Y1). In particular, it can
easily be verified that if X1 is uniformly distributed and Y1 is the output of
an arbitrary binary symmetric channel whose input is X1, then the left-hand
bound above is satisfied with equality. In other words, the tightest upper
bound on Pe(U2 | Y 2

1 U1) in terms of Pe(X1 | Y1) only (i.e., independent of the
particular distribution of X1 and Y1) is

Pe(U2 | Y 2
1 U1) ≤ Pe(X1 | Y1).

Comparing this with (2.13) reveals the advantage of the latter.

We will prove Theorem 2.2 as a corollary to Lemma 2.2 and the following
result.

Lemma 2.3. Let B1, B2, . . . be an i.i.d. binary process where B1 is uniformly
distributed over {−,+}. Also let Z0, Z1, . . . be a [0, 1]-valued random process
where Z0 is constant and

Zn+1 ≤

{
KZn if Bn = −
KZ2

n if Bn = +

for some finite K > 0. Suppose also that Zn converges almost surely to a {0, 1}-
valued random variable Z∞ with Pr[Z∞ = 0] = z. Then, for any β < 1/2,

lim
n→∞

Pr[Zn ≤ 2−2
nβ

] = z.

We defer the proof of Lemma 2.3 until Chapter 4, where we prove a more
general result. We are now ready to prove Theorem 2.2:

Proof of Theorem 2.2. We will show that for all δ > 0 and sufficiently large
N , the size of the set

A′′β :=
{
i : Z(Ui | Y N

1 U i−1
1 ) ≤ 2−N

β
}

is at least (1 −H(X | Y ) − δ)N , which will yield the lemma since the Bhat-
tacharyya parameter upper bounds the average error probability. For this
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purpose, observe that the Bhattacharyya parameters obtained along the po-
larization construction satisfy the equalities

Z(U1 | Y N
1 ) = Z−···−−

Z(U2 | Y N
1 U1) = Z−···−+

Z(U3 | Y N
1 U2

1 ) = Z−···+−

...

Z(UN−1 | Y N
1 UN−2

1 ) = Z+···+−

Z(UN | Y N
1 UN−1

1 ) = Z+···++,

(2.14)

for any N . As in the proof of Theorem 2.1, define an i.i.d. process B1, B2, . . .
with Pr[B1 = −] = Pr[B1 = +] = 1/2, and a [0, 1]-valued process Z0, Z1, . . .
with

Z0 = Z(X | Y )

Zn = ZBn
n−1, n = 1, 2, . . .

Observe that B1, B2, . . . induces a uniform distribution on Zn over the set{
Z−···−−, . . . , Z+···++

}
, and that Proposition 2.3 implies the almost sure con-

vergence of Zn to the set {0, 1} with Pr[limn→∞ Zn = 0] = 1−H(X | Y ). The
claim then follows follows from Lemma 2.3.

It is evident that the bounds in Lemma 2.2 are the only properties of the
polarization construction that have a bearing upon the above proof. This
brings out another technical appeal of polar codes: their large blocklength
behavior can be inferred directly from the effect of the underlying one-step
transformation on the Bhattacharyya parameters. This proves especially useful
when one considers polar codes based on combining more than two random
variables at a time. The recursive nature of such constructions ensure that the
error probability behavior of the resulting codes can be analyzed with relative
ease. We will discuss these constructions and their analysis in Chapter 4.

2.4 Polar Channel Coding

In the previous section, we saw an entropy-achieving source coding scheme
whose average error probability decays roughly exponentially in the square root
of the blocklength. We will now see that the techniques we have reviewed can
be used, almost verbatim, to obtain capacity-achieving codes for binary-input
symmetric memoryless channels. Consider a binary-input discrete memoryless
channel W : {0, 1} → Y . Let X1, . . . , XN be a sequence of i.i.d. inputs to
N uses of W , and let Y1, . . . , YN be the corresponding output (see Figure
2.4). Since the channel is memoryless and the inputs are i.i.d., the sequence
(X1, Y1), . . . , (XN , YN) is also i.i.d. This is exactly the same situation as in
the previous sections, and one can imagine the following transmission scheme,
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W

W YN

Y1

XN

X1

UN

U1

Gn

Figure 2.4

which mimics the techniques we have seen: To send the message corresponding
to XN

1 , the encoder first computes UN
1 = Gn(XN

1 ) and reveals the bits with
Pe(Ui | Y N

1 U i−1
1 ) ≥ 2−N

β
to the decoder, and sends XN

1 through the channel.
Upon receiving the channel output Y N

1 , the receiver decodes the unknown part
of UN

1 successively as in (2.6) and (2.7). It follows from Theorem 2.2 that the
average block error probability of this coding scheme is O(2−N

β
). Note that

while all length-N binary sequences are potential codewords in this scheme,
a codeword chosen in an i.i.d. fashion will belong to the ‘typical set’ of size
≈ 2NH(X) with high probability. Further, since approximately NH(X | Y )
bits of information are revealed to the receiver in advance, the effective rate
of this code is approximately I(X;Y ). Hence, by assigning the appropriate
distribution to X1, the capacity of the channel can be achieved.

The above coding argument is identical to the one in Section 2.3 but, while
it is mathematically correct, it is inadequate from a channel coding perspec-
tive: First, observe that in the channel coding problem, the distribution on
the channel inputs XN

1 is induced by the encoder’s choice of the distribution
on UN

1 . This is in contrast with the source coding case, where the distribution
of XN

1 is intrinsic to the source, and the distribution of UN
1 is induced by the

transformation Gn. The difficulty is that in order to generate i.i.d. inputs XN
1

to the channel, the encoder would have to choose UN
1 from a non-uniform dis-

tribution, conflicting with the common assumption that the sender’s messages
are uniformly distributed. Second, in the source coding problem the values of
the bits to be revealed to the receiver depend on the realization of the source
XN

1 . In channel coding, however, these values need to be revealed to the re-
ceiver prior to communication, and therefore cannot depend on the particular
message to be sent as proposed in the above scheme.

The first of these issues is of a somewhat technical nature, and can be dealt
with most easily by insisting on uniformly distributed channel inputs XN

1 since
this would impose a uniform distribution on UN

1 . One can also circumvent the
second issue by choosing the bits to be revealed in advance, and taking averages
over the values of these bits. To make these arguments precise, let us consider
the following coding scheme:
Code construction: Given a blocklength N = 2n, fix 0 < β′ < β < 1/2 and
find the set

Aβ := {i : Pe(Ui | Y N
1 U i−1

1 ) ≤ 2−N
β}.
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Choose Ui, i ∈ Acβ independently and uniformly at random, and reveal their
values to the receiver. The rate of the code will be |Aβ|/N .

Encoding: Given a uniformly distributed message M ∈ {0, 1}|Aβ | to be trans-
mitted, set UAβ = M . Transmit XN

1 = Gn(UN
1 ) over the channel.

Decoding: Upon receiving Y N
1 , the receiver decodes UN

1 successively as in (2.6)
and (2.7).

Rate and error probability: As XN
1 is i.i.d. uniform, we have H(X) = 1, and

therefore it follows from Theorem 2.2 that if N is sufficiently large, the rate of
the code is

|Aβ|/N > 1−H(X | Y )− δ = I(X;Y )− δ.

Note that I(X;Y ) here is the symmetric capacity of the channel X → Y , the
maximum rate achievable by binary codebooks with an equal fraction of zeros
and ones. Note also that this is the true capacity for symmetric channels. It
similarly follows from Theorem 2.2 and Proposition 2.1 that the block error
probability of the above scheme, averaged over all messages and values of

Ui, i ∈ Ac, is o(2−N
β′

). Therefore there exists at least one set of values of
bits Ui, i ∈ Ac (so-called the frozen bits) for which the average block error

probability of the resulting code is at most o(2−N
β′

).

2.5 Complexity

An important practical issue that we did not discuss in this review is computa-
tional complexity. It is clear from the coding schemes we have seen that there
are three problems of complexity that need to be addressed: (i) complexity
of encoding, i.e., computing the function Gn, (ii) complexity of decoding, i.e.,
computing the probabilities appearing in equation (2.6), and (iii) complexity
of construction, i.e., determining the set of bit indices with small error proba-
bilities. Thanks to the recursive nature of the construction, all three tasks can
be broken down to similar tasks of smaller sizes. An O(N logN) (both time
and space complexities on a single-processor machine that performs infinite-
precision arithmetic in unit time) encoding and decoding algorithm that ex-
ploits this structure was proposed in [3]. Later, Tal and Vardy [5] proposed
an algorithm to determine the reliable bit indices, with time complexity O(N)
and space complexity O(logN). We refer the reader to these references for the
details.

In the next chapter, we will study polarization for memoryless processes
with arbitrary discrete alphabets. We will see that all such processes can be
polarized by a recursive application of an appropriately chosen transform.
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2.A Proof of Lemma 2.1

Let R1 and R2 be [0, 1/2]-valued random variables defined through

R1 = min{pX1|Y1(0 | y1), pX1|Y1(1 | y1)} whenever Y1 = y1,

R2 = min{pX2|Y2(0 | y2), pX2|Y2(1 | y2)} whenever Y2 = y2.

For a, b ∈ [0, 1] define

a ∗ b = a(1− b) + (1− a)b.

Also let h : [0, 1/2] → [0, 1] denote the binary entropy function. With these
definitions, we have

H(X1 +X2 | Y 2
1 ) = E[h(R1 ∗R2)].

Both claims of the lemma follow from the convexity of the function h
(
a∗h−1(t)

)
in t ∈ [0, 1/2], which was established in [8]. In particular, we have

H(X1 +X2 | Y 2
1 ) = E [h(R1 ∗R2)]

= E
[
E [h(R1 ∗R2)] | R1

]
= E

[
E
[
h
(
R1 ∗ h−1(h(R2))

)]
| R1

]
≥ E

[
h
(
R1 ∗ h−1(E [h(R2)])

)]
= E

[
h
(
R1 ∗ h−1(β)

)]
.

Applying the convexity of h(a ∗ h−1(t)) a second time we obtain

H(X1 +X2 | Y 2
1 ) ≥ E

[
h
(
R1 ∗ h−1(β)

)]
= E

[
h
(
h−1(h(R1)) ∗ h−1(β)

)]
≥ h

(
h−1(E [h(R1)]) ∗ h−1(β)

)
= h

(
h−1(α) ∗ h−1(β)

)
.

It is easy to see that the last term is the equal to H(X1 + X2 | Y 2
1 ) when

(X1, Y1) and (X2, Y2) are distributed as in (i), yielding the claim. To see the
second claim, note that the convexity of h

(
a ∗ h−1(t)

)
implies

h(a ∗ h−1(t)) ≤ th
(
a ∗ h−1(1)

)
+ (1− t)h(a ∗ h−1(0))

= t+ (1− t)h(a).

It then follows that

H(X1 +X2 | Y 2
1 ) = E

[
h
(
R1 ∗R2

)]
= E

[
h
(
R1 ∗ h−1(h(R2))

)]
≤ E [h(R1) + h(R2)− h(R1)h(R2)]

= E[h(R1)] + E[h(R2)]− E[h(R1)]E[h(R2)].

where the last equality follows from the independence between R1 and R2. A
simple calculation shows that the last term is equal to H(X1 +X2 | Y 2

1 ) when
(X1, Y1) and (X2, Y2) are distributed as in (ii), completing the proof.
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We saw in Chapter 2 that Arıkan’s recursive method creates random variables
with extremal entropies out of a binary memoryless process with moderate
entropy. The cause of this polarization effect is simple: If a memoryless process
(X1, Y1), (X2, Y2), . . . with binary X1 has moderate entropy H = H(X1 | Y1) ∈
(ε, 1− ε), then the entropies H− = H(U1 | Y 2

1 ) and H+ = H(U2 | Y 2
1 U1) of

U1 = X1 +X2 and U2 = X2 (3.1)

are strictly away from each other (Lemma 2.1), i.e.,

H+ + δ(ε) ≤ H ≤ H− − δ(ε) for some δ(ε) > 0. (3.2)

This is illustrated in Figure 3.1. If H− and H+ are also moderate, applying
(3.1) a second time will cause further separation in the resulting entropies.
Continuing in this fashion, we see that if the ‘entropy paths’ we create converge
at all—they indeed do—they can converge only to zero or to one, yielding
polarization. It is then clear that for polarization to take place, the only
requirement for a recursive transform and the underlying process is that the
resulting entropies satisfy (3.2) at each step. This raises the question with
which much of this thesis is concerned: What classes of processes can be
polarized recursively, and what types of transforms polarize these processes?

By the end of this monograph, it will become clear that polarization is a
fairly general phenomenon, taking place for a large class of processes, and under
a large class of constructions. We will begin demonstrating this generality by
showing how to polarize non-binary memoryless processes. Our motivation for
this study is simple: Several source and channel coding problems of practical
interest are in a non-binary setting. Perhaps the most prominent example is
the additive white Gaussian channel, where the coding gains achieved by using
non-binary inputs can be significant.

21
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H

H− −H+

0 1

H

1

H+

H−
H−−

H−+

H+−

H++

· · ·

1 2
n

Figure 3.1: (left) In the binary case, allowed values of the difference H− − H+

versus H are inside the shaded region, and are away from zero except at H = 0
and H = 1. (right) The entropy paths created by the recursive construction keep
bifurcating until they converge to zero or one.

As in the binary case, the memorylessness of the underlying processes will
allow us to focus our attention on one-step transforms; once the properties of
these are established, the large-blocklength behavior will readily follow. (We
will have to partially forgo this convenience when we study polarization for
processes with memory in Chapter 5.) We will first discuss processes with
prime alphabet sizes. As we will see, such processes can be polarized by a
simple extension of Arıkan’s original method. We will then establish sufficient
conditions for an Arıkan-like transform to polarize processes with arbitrary
alphabets, and provide an example of a transform family that satisfies these
conditions for all alphabet sizes. In all cases, the speed with which polarization
takes place will be as in the binary case. We will leave out the translation of
these results to low-complexity polar source and channel coding schemes, as
we hope that these will be evident from the exposition in Chapter 2.

Suppose (X1, Y1), (X2, Y2), . . . is an i.i.d. process, where X1 ∈ {0, . . . , q−1},
and q is an arbitrary integer. As in the binary case, Y1 takes values in a
finite but arbitrary set Y . We are interested in finding an invertible transform
G : X2

1 → U2
1 for which (3.2) holds for all joint distributions on (X1, Y1). Out

of the many possibilities, perhaps the simplest guess is to use (3.1) by replacing
the modulo-2 addition with a modulo-q addition. Before studying when this
transform polarizes memoryless processes, it is useful to consider the following
example, which shows when it does not :

Example 3.1. Let X1 be uniformly distributed over X = {0, 1, 2, 3} and let
Y1 ∈ {0, 1} be such that pY |X(0 | 0) = pY |X(0 | 2) = pY |X(1 | 1) = pY |X(1 |
3) = 1. Then,1

H(X1 | Y1) = 1/2.

1In this and the succeeding chapters, entropies will be computed with base-q logarithms,
and therefore will be [0, 1]-valued. Also, addition of q-ary random variables will be modulo-q
unless stated otherwise.
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Also let U1 = X1 + X2 and X2 = U2. Then, the pairs (X1, Y1), (U1, Y
2
1 ),

and (U2, Y
2
1 U1) are identically distributed (after appropriate grouping and la-

belling), and therefore

H(U2 | Y 2
1 U1) = H(X1 | Y1) = H(U1 | Y 2

1 ). (3.3)

That is, the transformation has no effect on the resulting distributions. Clearly,
this also implies that applying the same transform a second time (and further)
will have no effect on the distributions or on the entropies.

At a first look, the anomaly in the above example may seem artificial: it is
indeed easy to see that if we relabel the alphabet X by swapping 0 and 1, then
the equalities in (3.3) become strict inequalities. Nevertheless, renaming the
symbols alone may not be sufficient for polarization, as it may not guarantee
that the resulting distributions will lead to a strict separation of entropies in
the further steps of the construction.

The difficulty illustrated the above example is in fact common to all alpha-
bets X of composite size. It is not peculiar to the particular transform in (3.1)
either: Suppose that f is an operation for which the pair (X , f) is a group,
and consider the mapping (X1, X2)→ (U1, U2)

U1 = f(X1, X2), U2 = X2. (3.4)

Then we have

Proposition 3.1. If q = |X | is composite, then there exists an ε > 0 and a
distribution on (X1, Y1) for which H(X1, Y1) ∈ (ε, 1− ε) and

H(U2 | Y 2
1 U1) = H(X1 | Y1) = H(U1 | Y 2

1 ).

Proof. It is known [9, p. 28] that if q is composite, then the group (X , f) has
a proper nontrivial subgroup. That is, there exists a set S ( X with |S| > 1
such that (S, f) is a group. Now let Y1 be a constant random variable and X1

be uniformly distributed over S. It is easy to verify that this choice of (X1, Y1)
satisfies the claim.

While the relations in (3.1) (and more generally (3.4)) fail to describe all
one-to-one mappings on X 2, we will focus our attention to transforms of this
form. In view of Proposition 3.1, we will first restrict our attention to pro-
cesses with prime q = |X |. The reason for us to discuss the prime-q case before
considering arbitrary alphabet sizes is twofold: First, we will see that proving
polarization is relatively simple when the construction is based on (3.1). The
observations we will make to this end will also be helpful in identifying the nec-
essary properties of a transform to polarize processes over arbitrary alphabets.
Second, constructions based on (3.1) are linear. As we will see in Chapter 4,
generalizations of linear constructions are easy to analyze, and they can lead
to higher rates of polarization.
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3.1 Alphabets of Prime Size

Let (X1, Y1), (X2, Y2), . . . be an i.i.d. process with prime q = |X |. Define

U1 = X1 +X2 and U2 = X2, (3.5)

where the addition is modulo-q. Our first result states that the anomaly de-
scribed in Example 3.1 and Proposition 3.1 vanish when q is prime.

Lemma 3.1. For all δ > 0, there exists ε(δ) > 0 such that if (X1, Y1) and
(X2, Y2) are independent (but not necessarily identically distributed) pairs of
random variables, then

H(X1 | Y1), H(X2 | Y2) ∈ (δ, 1− δ)

implies

H(X1 +X2 | Y 2
1 ) ≥ max

{
H(X1 | Y1), H(X2 | Y2)

}
+ ε(δ),

provided that q = |X | is prime.

Before proving Lemma 3.1, let us describe the recursive construction and
show that Lemma 3.1 implies polarization. These will be exactly as in the
binary case: For n = 0, 1, . . . , let N = 2n and define a sequence of transforms
Gn : XN → XN recursively through

G0(u) = u

Gn(u) = πn
(
Gn−1(u1) +Gn−1(u2), Gn−1(u2)

)
n = 1, 2, . . .

where u = (u1, u2) and πn : {0, . . . , q − 1}N → {0, . . . , q − 1}N permutes the
components of its argument vector through

πn(u)2i−1 = ui

πn(u)2i = ui+N/2
, i = 1, . . . , N/2.

Now define

UN
1 = Gn(XN

1 ).

As in the binary case, the transform Gn polarizes the underlying process.

Theorem 3.1. For all ε > 0,

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) > 1− ε
}∣∣∣ = H(X1 | Y1),

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) < ε
}∣∣∣ = 1−H(X1 | Y1).
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For the proof of the above theorem, we set the notation

H(X1 | Y1)− := H(U1 | Y 2
1 ), H(X1 | Y1)+ := H(U2 | Y 2

1 U1),

similarly to the binary case. We also define a {−,+}-valued i.i.d. process
B1, B2, . . . with Pr[B1 = −] = 1/2, and a [0, 1]-valued process H0, H1, . . .
through

H0 = H(X1 | Y1)
Hn = HBi

n−1, n = 1, 2, . . .
(3.6)

Proof. It follows from the equivalences in (2.10) that

Pr[Hn ∈ I] =
1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) ∈ I
}∣∣∣

for all I ⊆ [0, 1]. It therefore suffices to show that for all ε > 0

lim
n→∞

Pr[Hn > 1− ε] = H(X1 | Y1),

lim
n→∞

Pr[Hn < ε] = 1−H(X1 | Y1).

We will show the stronger result that Hn converges almost surely (i.e., not only
in probability) to a random variable H∞ with Pr[H∞ = 1] = 1−Pr[H∞ = 0] =
H(X1 | Y1). To that end, observe that H−n +H+

n = 2Hn, from which it follows
that the process H0, H1, . . . is a bounded martingale and therefore converges
almost surely to a random variable H∞. As almost sure convergence implies
convergence in L1, we have E[|Hn+1−Hn|] = 1

2
E[H−n −Hn] + 1

2
E[Hn−H+

n ] =
E[H−n −Hn]→ 0. On the other hand, Lemma 3.1 implies that H−n −Hn > δ(ε)
if Hn ∈ (ε, 1 − ε), from which it follows that Hn → {0, 1} with probability 1,
i.e., that H∞ is {0, 1}-valued. The claim on the distribution of H∞ follows
from the relation E[H∞] = E[H0] = H(X1 | Y1).

The first proof of polarization for the non-binary case consisted in showing
that the source Bhattacharyya parameters (defined in the next section) polar-
ize, and that this convergence implies the convergence of the entropies. This
(somewhat convoluted) proof is included in Appendix 3.C for the interested
reader. The present proof is direct and simple once Lemma 3.1 is obtained, as
it is clearly a verbatim reproduction of Arıkan’s original proof. Note, however,
that Lemma 3.1 is weaker than Lemma 2.1, which identifies the distributions
that are extremal in terms of how much they are polarized. Our preliminary
studies suggest that such simple characterizations may not be possible in full
generality in the q-ary case.

3.1.1 Proof of Lemma 3.1

We will first prove the unconditional version of Lemma 3.1, the proof for the
conditional case will then follow easily. In particular, we will first show that if
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(1, 0, 0) (0, 1, 0)

(0, 0, 1)

PX1

PX1+X2

Figure 3.2: Cyclic convolution of two probability distributions over a ternary
alphabet. The corners of the triangle represent the unit mass distributions and the
center represents the uniform distribution.

X1 and X2 are independent random variables with moderate entropies, then
the entropy of X1 + X2 is strictly larger than the entropy of either random
variable (Lemma 3.4). To see why q has to be prime for this to hold, note that
pX1+X2 is obtained through a cyclic convolution, i.e., by taking a weighted sum
of the cyclic shifts of pX1 , where the weights are given by the coefficients of
pX2 (or vice versa, see Figure 3.2). These cyclic shifts are guaranteed to be
away from each other only if q is prime and H(X1) is not too large, which in
turn implies that H(X1 +X2) is strictly larger than H(X1).

We now obtain a few simple lemmas in order to formalize these arguments.
Some notation first: We let both H(p) and H(X) denote the entropy of a
random variable X ∈ X with probability distribution p. We let pi, i ∈ X
denote the cyclic shifts of p, i.e.,

pi(m) = p(m− i).

The cyclic convolution of probability distributions p and r will be denoted by
p ∗ r. That is,

p ∗ r =
∑
i∈X

p(i)ri =
∑
i∈X

r(i)pi.

We also let uni(X ) denote the uniform distribution over X .

We first show that the L1 distance of a distribution from the uniform one is
lower bounded by the corresponding Kullback–Leibler divergence. This result
partially complements Pinsker’s inequality.

Lemma 3.2. Let p be a distribution over X . Then,

‖p− uni(X )‖1 ≥
1

q log e
[1−H(p)].
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Proof.

1−H(p) =
∑
i∈X

p(i) log
p(i)

1/q

≤ log e
∑
i

p(i)

[
p(i)− 1/q

1/q

]
≤ q log e

∑
i

p(i)|p(i)− 1/q|

≤ q log e‖p− uni(X )‖1,

where we used the relation ln t ≤ t− 1 in the first inequality.

Note that Lemma 3.2 holds for distributions over arbitrary finite sets. That
|X | is a prime number has no bearing upon the above proof.

We next show that for prime q, if a distribution does not have too high an
entropy, then its cyclic shifts will be away from each other:

Lemma 3.3. Let p be a distribution over X . Then,

‖pi − pj‖1 ≥
1−H(p)

2q2(q − 1) log e
.

for all i, j ∈ X , i 6= j.

Proof. Given i 6= j, let m = j − i. We will show that there exists a k ∈ X
satisfying

|p(k)− p(k +m)| ≥ 1−H(p)

2q2(q − 1) log e
,

which will yield the claim since ‖pi − pj‖1 =
∑

k∈X |p(k)− p(k +m)|.
Suppose that H(p) < 1, as the claim is trivial otherwise. Let p(`) denote

the `th largest element of p, and let S = {` : p(`) ≥ 1
q
}. Note that S is a proper

subset of X . We have

|S|∑
`=1

[p(`) − p(`+1)] = p(1) − p(|S|+1)

≥ p(1) − 1/q

≥ 1

2(q − 1)
‖p− uni(X )‖1

≥ 1−H(p)

2q(q − 1) log e
.

In the above, the second inequality is obtained by observing that p(1) − 1/q
is minimized when p(1) = · · · = p(q−1), and the third inequality follows from
Lemma 3.2. Therefore, there exists at least one ` ∈ S such that

p(`) − p(`+1) ≥ 1−H(p)

2q2(q − 1) log e
.
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Given such an `, let A = {1, . . . , `}. Since q is prime, X can be written as

X = {k, k +m, k +m+m, . . . , k+m+ . . .+m︸ ︷︷ ︸
q−1 times

}

for any k ∈ X and m ∈ X\{0}. Therefore, since A is a proper subset of X ,
there exists a k ∈ A such that k +m ∈ Ac, implying

p(k)− p(k +m) ≥ 1−H(p)

2q2(q − 1) log e
,

which yields the claim.

We can now show that unless two independent random variables are both
uniformly distributed or are both constants, their modulo-q addition strictly
increases entropy:

Lemma 3.4. Let A,B ∈ X be two independent random variables. For all
δ > 0, there exists ε1(δ) > 0 such that

min{H(A), 1−H(B)} ≥ δ

implies

H(A+B) ≥ H(B) + ε1(δ).

Proof. Let p and r denote the probability distributions of A and B, respec-
tively, and let ei denote the distribution with a unit mass on i ∈ X . Since
H(p) ≥ δ > H(ei) = 0, it follows from the continuity of entropy that

min
i
‖p− ei‖1 ≥ µ(δ) (3.7)

for some µ(δ) > 0. On the other hand, since H(r) ≤ 1 − δ, we have by
Lemma 3.3 that

‖ri − rj‖1 ≥
δ

2q2(q − 1) log e
> 0 (3.8)

for all pairs i 6= j. Relations (3.7), (3.8), and the strict concavity of entropy
implies the existence of ε1(δ) > 0 such that

H(p ∗ r) = H

(∑
i

p(i)ri

)
≥
∑
i

p(i)H(ri) + ε1(δ)

= H(r) + ε1(δ).
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Proof of Lemma 3.1. Let P1 and P2 be two random probability distributions
on X , with

P1 = PX1|Y1(· | y1) whenever Y1 = y1,

P2 = PX2|Y2(· | y2) whenever Y2 = y2.

It is then easy to see that

H(X1 | Y1) = E[H(P1)],

H(X2 | Y2) = E[H(P2)],

H(X1 +X2 | Y 2
1 ) = E[H(P1 ∗ P2)].

Suppose, without loss of generality, that H(X1 | Y1) ≤ H(X2 | Y2). We need
to show that if E[H(P1)],E[H(P2)] ∈ (δ, 1 − δ) for some δ > 0, then there
exists an ε(δ) > 0 such that E[H(P1 ∗ P2)] ≥ E[H(P2)] + ε(δ). To that end,
define the event

C = {H(P1) > δ/2, H(P2) < 1− δ/2}.

Observe that

δ < E[H(P1)]

≤
(
1− Pr[H(P1) > δ/2]

)
· δ/2 + Pr[H(P1) > δ/2],

implying Pr[H(P1) > δ/2] > δ
2−δ . It similarly follows that Pr[H(P2) < 1 −

δ/2] > δ
2−δ . Note further that since Y1 and Y2 are independent, so are H(P1)

and H(P2). Thus, the event C has probability at least δ2

(2−δ)2 =: ε2(δ). On the
other hand, Lemma 3.4 implies that conditioned on C we have

H(P1 ∗ P2) ≥ H(P2) + ε1(δ/2) (3.9)

for some ε1(δ/2) > 0. Thus,

E[H(P1 ∗ P2)] = Pr[C] · E[H(P1 ∗ P2) | C] + Pr[Cc] · E[H(P1 ∗ P2) | Cc]

≥ Pr[C] · E[H(P2) + ε1(δ/2) | C]

+ Pr[Cc] · E[H(P2) | Cc]

≥ E[H(P2)] + ε1(δ/2)ε2(δ),

where in the first inequality we used (3.9) and the relation H(p ∗ r) ≥ H(p).
Setting ε(δ) := ε1(δ/2)ε2(δ) yields the result.

3.1.2 Rate of Polarization

We have seen that a similar construction to Arıkan’s polarizes q-ary memo-
ryless processes for prime q. We will now show that polarization takes place
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sufficiently fast—in fact as fast as in the binary case—so that source and chan-
nel codes based on such constructions have small error probability. We will do
so following the approach in the binary case. For this purpose, we first need
to define a reliability parameter, analogously to the Bhattacharyya parameter
defined in Chapter 2, whose behavior through the polarization process is easy
to track. For the q-ary case, a convenient choice turns out to be

Z(X | Y ) :=
1

q − 1

∑
x,x′∈X :
x 6=x′

∑
y

√
pXY (x, y)pXY (x′, y).

It is easy to see that this parameter takes values in [0, 1]. As a measure of
reliability, it is natural to expect that Z(X | Y ) upper bound the average error
probability of the optimal decoder, and that

Z(X | Y ) ≈ 1⇐⇒ H(X | Y ) ≈ 1,

Z(X | Y ) ≈ 0⇐⇒ H(X | Y ) ≈ 0.

The following propositions show that these requirements are indeed met:

Proposition 3.2. Pe(X | Y ) ≤ (q − 1)Z(X | Y ).

Proof. Let Pe,x denote the error probability of the optimal decision rule con-
ditioned on X = x. We have

Pe,x ≤
∑
y

p(y | x)1[x′ : pX|Y (x′|y)≥pX|Y (x|y)]

≤
∑
y

p(y | x)
∑

x′ : x′ 6=x

1[pX|Y (x′|y)≥pX|Y (x|y)]

≤
∑

x′ : x′ 6=x

∑
y

pX|Y (x | y)p(y)

p(x)

√
pX|Y (x′ | y)

pX|Y (x | y)

=
∑

x′ : x′ 6=x

∑
y

1

p(x)

√
pXY (x′, y)pXY (x, y).

Averaging the above relation over x yields the claim.

Proposition 3.3.

Z(X | Y )2 ≤ H(X | Y ) (3.10)

H(X | Y ) ≤ log(1 + (q − 1)Z(X | Y )). (3.11)

Proof. See Appendix 3.A.

Since the polarization construction is recursive as in the binary case, the
limiting behavior of the Z parameters along the polarization process is de-
termined by their one-step behavior. In particular, the following bounds will
suffice to conclude that polarization takes place fast:
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Lemma 3.5. Let f : X 2 → X be such that both functions f(x1, ·) : X → X
and f(·, x2) : X → X are invertible for all x1 and x2, respectively. Defining
V1 := f(X1, X2) and V2 := X2 we have

Z(V1 | Y 2
1 ) ≤ (q2 − q + 1)Z(X1 | Y1) (3.12)

Z(V2 | Y 2
1 V1) ≤ (q − 1)Z(X1 | Y1)2. (3.13)

Clearly, bounds that are relevant to the present case are obtained by taking
f to be the modulo-q addition. The reason for us to state these bounds in a
slightly more general setting will be evident when we consider polarization for
arbitrary alphabet sizes in the next section.

Proof. The assumptions on the function f imply that there exist q permuta-
tions πi : X → X , i = 0, . . . , q − 1 with

πi(x) 6= πj(x) for all i 6= j, x ∈ X

such that πi(j) = f(j, i). We therefore have

p(v1, v2, y1, y2) = pXY (π−1v2 (v1), y1)pXY (v2, y2).

To obtain the first claim, we write

Z(V1 | Y 2
1 ) =

1

q − 1

∑
v1,v′1 :
v1 6=v′1

∑
y21

[
p(v1, y1, y2)p(v

′
1, y1, y2)

]1/2

=
1

q − 1

∑
v1,v′1 :
v1 6=v′1

∑
y21

[∑
v2

p(v1, v2, y1, y2)
∑
v′2

p(v′1, v
′
2, y1, y2)

]1/2

≤ 1

q − 1

∑
v1,v′1 :
v1 6=v′1

∑
y21

∑
v2,v′2

[
p(v1, v2, y1, y2)p(v

′
1, v
′
2, y1, y2)

]1/2
=

1

q − 1

∑
v2,v′2

∑
y2

[
pXY (v2, y2)pXY (v′2, y2)

]1/2
·
∑
v1,v′1 :
v1 6=v′1

∑
y1

[
pXY (π−1v2 (v1), y1)pXY (π−1v′2

(v′1), y1)
]1/2

.

Splitting the summation over (v2, v
′
2) into two parts v2 = v′2 and v2 6= v′2, and

considering the first part we have∑
v2=v′2

∑
y2

[
pXY (v2, y2)pXY (v′2, y2)

]1/2
· 1

q − 1

∑
v1,v′1 :
v1 6=v′1

∑
y1

[
pXY (π−1v2 (v1), y1)pXY (π−1v′2

(v′1), y1)
]1/2

.
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The sums on the second line above are equivalent to Z(X1 | Y1) for all v2 and
y2, and those on the first line add to 1. Therefore the above term is equal to
Z(X1 | Y1). On the other hand, when v2 6= v′2 we have

1

q − 1

∑
v2,v′2 :
v2 6=v′2

∑
y2

[
pXY (v2, y2)pXY (v′2, y2)

]1/2
·
∑
v1,v′1 :
v1 6=v′1

∑
y1

[
pXY (π−1v2 (v1), y1)pXY (π−1v′2

(v′1), y1)
]1/2

.

Here, the summation over y1 is upper bounded by 1, and the upper sums
are equal to Z(X1 | Y1). Therefore the above term is upper bounded by
q(q−1)Z(X1 | Y1). Combining this with the first part yields (3.12). To obtain
(3.13), we write

Z(V2 | Y 2
1 V1) =

1

q − 1

∑
v2,v′2 :
v2 6=v′2

∑
y21 ,v1

[
pXY (π−1v2 (v1), y1)pXY (v2, y2)

· pXY (π−1v′2
(v1), y1)pXY (v′2, y2)

]1/2
=

1

q − 1

∑
v2,v′2 :
v2 6=v′2

∑
y2

[
pXY (v2, y2)pXY (v′2, y2)

]1/2
·
∑
v1

∑
y1

[
pXY (π−1v2 (v1), y1)pXY (π−1v′2

(v1), y1)
]1/2

.

For all v2 6= v′2 and y2, the lower sums on the second line are upper bounded
by (q− 1)Z(X1 | Y1), and those on the first are equivalent to Z(X1 | Y1). This
yields the second claim.

We are now ready to state and prove the main result on the rate of polar-
ization:

Theorem 3.2. For all 0 < β < 1/2,

lim
n→∞

1

N

∣∣∣{i : Z(Ui | Y N
1 U i−1

1 ) ≤ 2−N
β}∣∣∣ = 1−H(X1 | Y1).

Proof. The proof is identical to that of Theorem 2.2: Set the shorthand nota-
tion

Z(X1 | Y1)− := Z(U1 | Y 2
1 ), Z(X1 | Y1)+ := Z(U2 | Y 2

1 U1).

Define a {−,+}-valued i.i.d. process B1, B2, . . . with Pr[B1 = −] = 1/2 and a
[0, 1]-valued process Z0, Z1, . . . with

Z0 = Z(X1 | Y1)
Zn = ZBn

n−1, n = 1, 2, . . .
(3.14)
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Then, the equivalences in (2.14) imply that

Pr[Zn ∈ I] =
1

N

∣∣∣{i : Z(Ui | Y N
1 U i−1

1 ) ∈ I
}∣∣∣

for all I ⊆ [0, 1]. Further, recall that the process H0, H1, . . . defined in (3.6)
converges almost surely to the set {0, 1} (see proof of Theorem 3.1). It then
follows from Proposition 3.3 that the process Z0, Z1, . . . also converges almost
surely to the set {0, 1} with Pr[limn→∞ Zn = 0] = 1−H(X1 | Y1). The claim
then follows from Lemma 2.3 by taking I = [0, 2−N

β
].

3.2 Arbitrary Finite Alphabets

We have seen in the previous section that the mapping (X1, X2) → (X1 +
X2, X2) fails to polarize certain processes whenever q = |X | is a composite
number (Example 3.1). We have also seen that the difficulty with such alpha-
bets persists so long as ‘+’ is replaced by any group operation over X (Propo-
sition 3.1). We are now interested in finding transforms (X1, X2) → (U1, U2)
that will polarize all i.i.d. processes over all finite alphabets. We will in par-
ticular study mappings of the form

U1 = f(X1, X2)

U2 = X2,
(3.15)

for some f : X 2 → X . While not all one-to-one mappings (X1, X2)→ (U1, U2)
can be reduced to this form, we restrict our attention to these due to their
relative simplicity.

Once we find an appropriate transform f , we will use it recursively as in
the binary case. That is, we will define for all n = 0, 1, . . . and N = 2n a
sequence of transforms Gn : {0, . . . , q − 1}N → {0, . . . , q − 1}N through

G0(u) = u

Gn(u) = πn

(
f
(
Gn−1(u1), Gn−1(u2)

)
, Gn−1(u2)

)
n = 1, 2, . . .

(3.16)

where u = (u1, u2), the action of f on its arguments is componentwise as in
(3.15), and the permutation πn is as in the previous sections. Let us now
introduce the notion of a polarizing mapping:

Definition 3.1. We call a mapping f : X 2 → X polarizing if

(p.i) for all x2 ∈ X , the mapping x1 → f(x1, x2) is invertible,

(p.ii) for all x1 ∈ X , the mapping x2 → f(x1, x2) is invertible,2 and

2In group theory, a pair (X , f) with f satisfying (p.i) and (p.ii) is known as a quasigroup.
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(p.iii) for all 2 ≤ K ≤ q − 1 and distinct a0, . . . , aK−1 ∈ X , the matrix

Bij = f(ai, aj), i, j = 0, . . . , K − 1

has at least K + 1 distinct entries.

Example 3.2. Consider a matrix F with Fij = f(i, j), i, j = 0, . . . q−1. (That
is, F is the Cayley table of f .) Then it is easy to see that, of the operations
corresponding to

F =

0 1 2
1 2 0
2 0 1

 , G =


0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

 ,
F is polarizing, whereas G is not, since G00 = G22 = 0 and G02 = G20 = 2,
violating (p.iii). Note that F and G correspond to modulo-3 and modulo-4
addition, respectively (see also Example 3.1).

In the rest of this section, we will give meaning to Definition 3.1 by showing
that the construction in (3.16) leads to polarization if f is a polarizing mapping:
(p.i) guarantees that the one-step transform in (3.15) is one-to-one, and (p.iii)
guarantees that anomalous distributions such as the one in Example 3.1 are
also polarized; it turns out that this is indeed the only type of irregularity
that needs handling. Condition (p.ii) is in fact not necessary for polarization
to take place, and can be relaxed. We include it Definition 3.1 only because
it helps simplify the proofs. This condition is also not a very restrictive one;
there are several simple families of mappings that satisfy (p.i)–(p.iii) for all
alphabet sizes. We give one example here:

Example 3.3. The mapping f(x1, x2) = x1 + π(x2), where π : X → X is the
permutation

π(x) =


bq/2c if x = 0

x− 1 if 1 ≤ x ≤ bq/2c
x otherwise

is polarizing for all q = |X |. A proof of this is given in Appendix 3.B. The
Cayley table of f is given below for q = 6.

3 0 1 2 4 5
4 1 2 3 5 0
5 2 3 4 0 1
0 3 4 5 1 2
1 4 5 0 2 3
2 5 0 1 3 4





3.2. Arbitrary Finite Alphabets 35

Before proceeding to the proof of polarization, let us introduce a definition
in order to capture the anomaly described in Example 3.1: Given a distribution
p over X , let ai, i = 0, . . . , q−1 be any labelling of the elements of X for which
p(a0) ≥ p(a1) ≥ . . . ≥ p(aq−1). For all ν > 0, let

Kν := min {i ≤ q − 2: ai − ai+1 > ν} ∪ {q − 1}

and define
Mp,ν := {a0, . . . , aKν}.

The general form of the anomaly described in Proposition 3.1 can be stated
as MpX1

,ν = MpX2
,ν for random variables X1 and X2. The next lemma shows

that a polarizing mapping will strictly increase entropy even under such irreg-
ularities:

Lemma 3.6. For all ε, ν > 0, there exists δ(ε, ν) > 0 such that if X1, X2 ∈ X
are independent random variables with H(X1), H(X2) ∈ (ε, 1−ε) and MpX1

,ν =
MpX2

,ν = M for some M with 1 ≤ |M | ≤ q−1, and if f is a polarizing mapping,
then

H(f(X1, X2)) ≥ H(Xi) + δ(ε, ν), i = 1, 2.

Proof. We will prove the claim for i = 2, the proof for i = 1 follows similarly
by the symmetry in the assumptions. It follows from (p.ii) that there exist q
distinct permutations πi : X → X , i = 0, . . . , q − 1 such that f(j, i) = πi(j).
Observe also that (p.i) implies

πi(x) 6= πj(x) for all i 6= j, x ∈ X . (3.17)

Defining probability distributions ri through ri(u) = pX2(π
−1
i (u)), we have

pf(X1,X2) =

q−1∑
i=0

pX1(i)ri. (3.18)

It suffices to show that there exist a, b ∈ X for which

(i) pX1(a), pX1(b) ≥ η(ε, ν) for some η(ε, ν) > 0, and

(ii) ‖ra − rb‖1 ≥ ν,

since the claim will then follow immediately from (3.18), the strict concavity
of entropy, and that H(ri) = H(X2) for all i.

First consider the case M = {a} for some a ∈ X , and observe that H(X1) >
ε implies pX1(a) ≥ pX1(b) ≥ η(ε) for some b 6= a and η(ε) > 0, satisfying (i).
It also follows from (3.17) that ra(πa(a)) − rb(πa(a)) = pX1(a) − pX1(c) for
some c 6= a, implying (ii) since the latter difference is at least ν, and therefore
yielding the claim.

Suppose now that 2 ≤ |M | ≤ q − 1. Define, for all x ∈ X and T ⊂ X , the
sets

Sx,T = {i : π−1x (i) ∈ T},
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and observe that (p.iii) implies that

∀T ⊂ X , 2 ≤ |T | ≤ q − 1, ∃a, b ∈ T such that Sa,T 6= Sb,T . (3.19)

Now let a, b ∈M be such that Sa,M 6= Sb,M . It then follows from the definition
of M that there exists x ∈ X for which |ra(x) − rb(x)| ≥ ν, satisfying (ii).
That (i) is also satisfied can be seen by noting that |M | ≤ q − 1 and a, b ∈M
imply pX2(a), pX2(b) ≥ ν. This concludes the proof.

We are now ready to prove the main result of this section, which will lead
to a polarization theorem for arbitrary discrete alphabets.

Theorem 3.3. For all ε > 0, there exists δ(ε) > 0 such that if (X1, Y1), (X2, Y2)
are i.i.d. random variable pairs with H(X1 | Y1) ∈ (ε, 1−ε), and if f : X 2 → X
is a polarizing mapping, then

H(f(X1, X2) | Y 2
1 ) ≥ H(X1 | Y1) + δ(ε).

Proof. Let H1, H2 and Hu be [0, 1]-valued random variables with

H1 = H(X1 | Y1 = y1)

H2 = H(X2 | Y2 = y2)

Hu = H(f(X1, X2) | Y1 = y1, Y2 = y2)

whenever (Y1, Y2) = (y1, y2). Clearly, H1 and H2 are i.i.d. with

E[H1] = E[H2] = H(X1 | Y1).

Suppose first that Pr[H1 ≤ ε/2],Pr[H1 ≥ 1 − ε/2] ≥ ε/2(2− ε). Then, the
event

A =
{
y1, y2 : H1 ≤ ε/2, H2 ≥ 1− ε/2

}
has probability at least

[
ε/2(2− ε)

]2
. Further, as both functions x1 → f(x1, x2)

and x2 → f(x1, x2) are invertible for all x2 and x1 respectively, we have
Hu ≥ H1, H2 for all (Y1, Y2) = (y1, y2). Thus,

H(f(X1, X2) | Y1Y2) = E[Hu]

= Pr[A] · E[Hu | A] + Pr[Ac] · E[Hu | Ac]
≥ Pr[A] · E[H2 | A] + Pr[Ac] · E[H1 | Ac]
≥ Pr[A] · E[H1 + 1− ε | A] + Pr[Ac] · E[H1 | Ac]

≥ E[H1] +
[

ε
2(2−ε)

]2
(1− ε)

= H(X1 | Y1) +
[

ε
2(2−ε)

]2
(1− ε),

yielding the claim.
Now suppose instead that Pr[H1 ≤ ε/2] < ε

2(2−ε) . Then, since

Pr[H1 ≥ 1− ε/2] ≤ E[H1]

1− ε/2
≤ 2− 2ε

2− ε
,
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it follows that

Pr[H1 ∈ (ε/2, 1− ε/2)] ≥ ε

2(2− ε)
. (3.20)

A similar argument shows that the above inequality also holds when Pr[H1 ≥
1 − ε/2] < ε

2(2−ε) . We will now show that the conditions of Lemma 3.6 hold

with positive probability whenever we have (3.20). For that purpose, note that
it follows from Lemma 3.2 that for all ε > 0, there exists ν(ε) > 0 for which
H(V ) ≤ 1 − ε/2 implies |MpV ,ν | ≤ q − 1. Given such a ν, let S1 ⊂ X and
S2 ⊂ X be random sets with

S1 = MpX1|Y1=y1 ,ν
whenever Y1 = y1

S2 = MpX2|Y2=y2 ,ν
whenever Y2 = y2.

As S1 and S2 are independent and identically distributed, it follows from (3.20)
and the above argument that there exists S ⊂ X with 1 ≤ |S| ≤ q − 1 such
that the event

B = {y1, y2 : S1 = S2 = S}

has probability at least [ε/2q(2− ε)]2. It then follows from Lemma 3.6 that
Hu ≥ H1 + δ(ε, ν(ε)) for some δ(ε, ν(ε)) > 0 whenever y1, y2 ∈ B. Therefore

E[Hu] = Pr[B] · E[Hu | B] + Pr[Bc] · E[Hu | Bc]

≥ Pr[B] · E[H1 + δ(ε, ν(ε)) | B] + Pr[Bc] · E[H1 | Bc]

= E[H1] +
[
ε/2q(2− ε)

]2 · δ(ε, ν(ε)),

completing the proof.

We can now state the polarization theorem for arbitrary finite alphabets.
Let (X1, Y1), (X2, Y2), . . . be a discrete, i.i.d. process with |X | < ∞. Also let
f be a polarizing mapping, and define

UN
1 = Gn(XN

1 ),

where Gn is as in (3.16). We have

Theorem 3.4. For all ε > 0,

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) > 1− ε
}∣∣∣ = H(X1 | Y1),

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) < ε
}∣∣∣ = 1−H(X1 | Y1).

Proof. The proof follows from Theorem 3.3, and is identical to those of Theo-
rems 2.1 and 3.1.

The rate of polarization for the construction in (3.16) is also as in the
binary case:
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Theorem 3.5. For all 0 < β < 1/2,

lim
n→∞

∣∣∣{i : Z(Ui | Y N
1 U i−1

1 ) ≤ 2−N
β}∣∣∣ = 1−H(X1 | Y1).

Proof. The proof follows from Lemma 3.5 and is identical to that of Theo-
rem 3.2.

3.3 How to Achieve Capacity

Polarization results in this chapter immediately yield polar source coding meth-
ods that compress any discrete memoryless source to its entropy. Recall from
the discussion in Section 2.4, however, that translating polarization results to
channel coding schemes becomes trivial only for uniformly distributed channel
inputs. Clearly, this statement is equally valid for channels with non-binary
input alphabets. Therefore one can achieve the symmetric capacity of discrete
memoryless channels with the methods discussed so far, as opposed to the
true capacity. In channels where the gap between these two rates is signifi-
cant, one can use the following generic method, discussed in [10, p. 208], to
approach the true capacity: Given a channel W : X → Y , one can construct a
new channel W ′ : X ′ → Y with |X ′| ≥ |X |, where W ′(y | x′) = W (y | f(x′))
and f : X ′ → X is a deterministic map. Note that the mutual informations
I(X;Y ) and I(X ′;Y ) developed across W and W ′ respectively are identical
for any distribution on input X ′ to W ′ and the induced distribution on X. Ob-
serve further that if X ′ is uniformly distributed, then one can induce, using an
appropriate mapping f , any distribution pX on X with pX(x) = kx/|X ′|, where
kx’s are integer-valued. Consequently, one can approach the true capacity of
any discrete memoryless channel W by choosing f so as to approximate the
capacity-achieving input distribution of this channel, and using a symmetric
capacity-achieving polar code for the created channel W ′.

3.4 Complexity

Non-binary codes based on the polarization transforms discussed in this chap-
ter will have low-complexities like their binary counterparts. In particular,
if one assumes that the computation of a one-step polarizing mapping takes
one unit of time, then the time and space complexity of encoding these codes
will be O(N logN) in the blocklength. Similarly, it readily follows from the
results in [3] that successive cancellation decoding with such codes can be per-
formed with O(q2N logN) time and O(qN logN) space complexities. Also by
a straightforward extension of the algorithm proposed in [5], these codes can
be constructed with O(q2N) time and O(q logN) space complexities.

In the next chapter, we will continue studying the universality of polariza-
tion. In particular, we will show that memoryless processes can be polarized by
generalizations of Arıkan’s construction. As we will see, such generalizations
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can produce substantial gains in error probability without too much added
complexity.

3.A Proof of Proposition 3.3

Proof of (3.10): The proof of this inequality was given in [7] for the binary
case; the proof of the q-ary version is identical. We nevertheless include it here
for completeness.

The Rényi entropy of order α of a random variable X is defined as

Hα(X) =
1

1− α
log
∑
x

p(x)α

for all α > 0, α 6= 1. (The logarithm is taken to the base q.) It is known that
Hα(X) is decreasing in α and that limα→1Hα(X) = H(X). We thus have

H(X | Y = y) ≤ H1/2(X | Y = y) = log
[∑

x

√
p(x | y)

]2
= log

[
1 + (q − 1)Z(X | Y = y)

]
,

where we define Z(X | Y = y) = 1
q−1
∑

x 6=x′
√
p(x | y)p(x′ | y). The desired

inequality is obtained by averaging the above relation over y and using the
concavity of t→ log(1 + (q − 1)t).

Proof of (3.11): We define two new random variables S and T with
p(x, y, s, t) = p(x)p(y | x)p(s, t | x), where

p(s, t | x) =


1

2(q−1) if s = x, t 6= x
1

2(q−1) if s 6= x, t = x

0 otherwise

.

Note that the conditional probability p(x, y | s, t) is defined only if s 6= t and
is non-zero only if x = s or x = t. Therefore, if we define for s 6= t

Zs,t(X | Y ) =
∑
y

√
pXY |ST (s, y | s, t)pXY |ST (t, y | s, t),

we have from Proposition 2.3 that

H(X | Y, S = s, T = t) ≥ [2Zs,t(X | Y )]2.
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The proof then follows from the relations

H(X | Y ) ≥ H(X | Y ST )

≥
∑
s,t :
s 6=t

p(s, t)[2Zs,t(X | Y )]2

=
∑
s,t :
s 6=t

p(s, t)

[
2
∑
y

(pXY (s, y)pST |X(s, t | s)
pST (s, t)

)1/2

·
(pXY (t, y)pST |X(s, t | t)

pST (s, t)

)1/2]2
≥
[∑
s,t :
s 6=t

p(s, t)2
∑
y

(pXY (s, y)pST |X(s, t | s)
pST (s, t)

)1/2

·
(pXY (t, y)pST |X(s, t | t)

pST (s, t)

)1/2]2
=

[∑
s,t :
s 6=t

∑
y

1

q − 1

[
pXY (s, y)pXY (t, y)

]1/2]2
= Z(X | Y )2.

In the above, the second inequality follows from the convexity of the function
x→ x2.

3.B A Family of Polarizing Transforms

Here we show that for all q = |X |, the function f : X 2 → X , f(x1, x2) →
x1 + π(x2) with

π(x) =


bq/2c if x = 0

x− 1 if 1 ≤ x ≤ bq/2c
x otherwise

is polarizing (see Definition 3.1). That (p.i) and (p.ii) are satisfied readily
follows from π being a permutation. It remains to show (p.iii), i.e., that for
all 2 ≤ K ≤ q − 1 and a0 < a1 < . . . < aK−1 in X , the matrix

Bij = ai + π(aj), i, j = 0, . . . , K − 1

has at least K + 1 distinct entries. We will consider two cases:
K ≥ 3: We will show, by contradiction, that the sets {Bi1} and {Bi(K−1)}

are not identical, which leads to the claim. For this purpose, note first that
1 ≤ a1 < aK−1. Also, since Bi1 = ai + π(a1) and Bi(K−1) = ai + π(aK−1), it
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follows that if {Bi1} = {Bi(K−1)}, then there exists an L ≤ K and distinct
i1, . . . , iL ∈ {0, 2, 3 . . . , K − 1} such that

B1(K−1) = Bi11

Bi1(K−1) = Bi21

...

BiL−1(K−1) = BiL1

BiL(K−1) = B11.

This implies

π(aK−1)− π(a1) = ai1 − a1 (3.21)

= ai2 − ai1
...

= a1 − aiL .

Since the terms on the right-hand side above sum to 0, we have L[π(aK−1)−
π(a0)] = 0. As ai1 , . . . , aiL 6= a1, this implies that L divides q, which in turn
implies

max
i=0,...,K−1

(ai − ai−1) ≤ bq/2c (3.22)

(where a−1 = aK−1) and thus

aK−1 − a0 ≥ bq/2c.

We therefore have 1 ≤ a1 ≤ bq/2c < aK−1. It then follows from (3.21) that
ai1 − a1 = aK−1 − a1 + 1, i.e., ai1 = aK−1 + 1, a contradiction.

K = 2: Suppose, contrary to the claim, that {B00, B10} = {B01, B11}. This
implies B01 = B10, i.e.,

a1 − a0 = π(a0)− π(a1). (3.23)

A similar reasoning to the one for the case K ≥ 3 also yields (3.22). Since
K = 2, it follows that a1− a0 = bq/2c. On the other hand, it follows from the
definition of π that

a1 − a0 = bq/2c implies π(a0)− π(a1) 6= bq/2c,

contradicting (3.23). This completes the proof.

3.C An Alternative Proof of Polarization for
Prime q

One can prove Theorem 3.1 by first showing that the Z parameters polarize
through Arıkan’s construction, which by Proposition 3.3 implies the polariza-
tion of entropies.
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For this purpose, let us first define, for d = 1, . . . , q − 1, the parameters

Zd(X | Y ) :=
∑
x

∑
y

√
p(x, y)p(x+ d, y).

It is easy to verify that Zd(X | Y ) takes values in [0, 1]. Clearly, Z(X | Y ) is
the mean of Zd’s:

Z(X | Y ) =
1

q − 1

∑
d 6=0

Zd(X | Y ).

We also define
Zmax(X | Y ) := max

d 6=0
Zd(X | Y ).

We will show that the Zmax’s created by Arıkan’s construction converge to 0
or 1. In order to translate this to a polarization result for entropies, we need
Zmax to satisfy

Zmax(X | Y ) ≈ 1⇐⇒ H(X | Y ) ≈ 1

Zmax(X | Y ) ≈ 0⇐⇒ H(X | Y ) ≈ 0.

The second of these relations is evident, since Z(X | Y ) ≤ Zmax(X | Y ) ≤
(q−1)Z(X | Y ). The following lemma implies that the first relation also holds
when q is prime:

Lemma 3.7. For all prime q and δ > 0, there exists η(δ, q) > 0 such that
Zmax(X | Y ) ≥ 1− η(δ, q) implies Z(X | Y ) ≥ 1− δ.

Proof. Let d be such that Zd(X | Y ) = Zmax(X | Y ). Since q is prime, X can
be written as

X = {ai : ai = x+ id, i = 0, . . . , q − 1}

for all x ∈ X . Setting ζx,x′ :=
∑

y

√
p(y | x)p(y | x′) we thus have

Zd(X | Y ) =

q−1∑
i=0

√
pX(ai)pX(ai+1) · ζai,ai+1

It is easily verified that Zd(X | Y ) is strictly concave in pXY , attaining its
maximum when pX is the uniform distribution, and ζai,ai+1

= 1 for all i. It
then follows that there exists ν(δ) such that Zd(X | Y ) ≥ 1− η(δ) implies

(i) pX(x) ≥ 1/q − ν(δ) for all x,

(ii) ζai,ai+1
≥ 1− ν(δ) for all i,

where ν → 0 as η → 0. Now define

by =
√
p(y | ai)−

√
p(y | ai+1),

cy =
√
p(y | ai+1)−

√
p(y | ai+2).
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for all y ∈ Y . The triangle inequality states that(∑
y

(by + cy)
2

)1/2
≤

(∑
y

b2y

)1/2
+

(∑
y

c2y

)1/2
,

or equivalently, that√
1− ζai,ai+2

≤
√

1− ζai,ai+1
+
√

1− ζai+1,ai+2

≤ 2
√
ν(δ).

Applying the above inequality repeatedly yields√
1− ζx,x′ ≤ (q − 1)

√
ν(δ)

for all x, x′ ∈ X , which implies

Z(X | Y ) =
1

q − 1

∑
x,x′:x 6=x′

√
p(x)p(x′) · ζx,x′

≥ [1− qν(δ)][1− (q − 1)2ν(δ)],

yielding the claim.

Proposition 3.4. If (X1, Y1) and (X2, Y2) are i.i.d., then

Zmax(X1 +X2 | Y 2
1 ) ≤ (q − 1)(q2 − q + 1)Zmax(X1 | Y1)

Zmax(X2 | Y 2
1 , X1 +X2) = Zmax(X1 | Y1)2.

Proof. The first claim follows from (3.12):

Zmax(X1 +X2 | Y 2
1 ) ≤ (q − 1)Z(X1 +X2 | Y 2

1 )

≤ (q − 1)(q2 − q + 1)Z(X1 | Y1)
≤ (q − 1)(q2 − q + 1)Zmax(X1 | Y1).

To obtain the second claim we write

Zd(X2 | Y 2
1 , X1 +X2) =

∑
x2

∑
u,y1,y2

[
pXY (x2, y2)pXY (x2 + d, y2)

]1/2
·
[
pXY (u− x2, y1)pXY (u− x2 − d, y1)

]1/2
=
∑
x2,y2

[
pXY (x2, y2)pXY (x2 + d, y2)

]1/2
·
∑
u,y1

[
pXY (u− x2, y1)pXY (u− x2 − d, y1)

]1/2

Observing that both of the summations above are equal to Zd(X1 | Y1), we
have Zd(X2 | Y1, Y2, X1 + X2) = Zd(X1 | Y1)2. This implies the claim since
t→ t2 is increasing for non-negative t.
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Lemma 3.8. Suppose B1, B2, . . . are i.i.d., {−,+}-valued random variables
with

P (B1 = −) = P (B1 = +) = 1
2

defined on a probability space (Ω,F , P ). Set F0 = {φ,Ω} as the trivial σ-
algebra and set Fn, n ≥ 1 to be the σ-field generated by (B1, . . . , Bn).

Suppose further that two stochastic processes {In : n ≥ 0} and {Tn : n ≥ 0}
are defined on this probability space with the following properties:

(i.1) In takes values in the interval [0, 1] and is measurable with respect to Fn.
That is, I0 is a constant, and In is a function of B1, . . . , Bn.

(i.2) {(In,Fn) : n ≥ 0} is a martingale.

(t.1) Tn takes values in the interval [0, 1] and is measurable with respect to Fn.

(t.2) Tn+1 = T 2
n when Bn+1 = +.

(i&t.1) For any ε > 0 there exists δ > 0 such that In ∈ (ε, 1 − ε) implies Tn ∈
(δ, 1− δ).

Then, I∞ := limn→∞ In exists with probability 1, I∞ takes values in {0, 1},
and P (I∞ = 1) = I0.

Proof. The almost sure convergence of In to a limit follows from {In} being
a bounded martingale. Once it is known that I∞ is {0, 1}-valued it will then
follow from the martingale property that P (I∞ = 1) = E[I∞] = I0. It thus
remains to prove that I∞ is {0, 1}-valued. This in turn is equivalent to showing
that for any η > 0,

P
(
I∞ ∈ (η, 1− η)

)
= 0.

Since for any 0 < ε < η, the event
{
I∞ ∈ (η, 1− η)

}
is included in the event

Jε :=
{
ω : there exists m such that for all n ≥ m, In ∈ (ε, 1− ε)

}
,

and since by property (i&t.1) there exists δ > 0 such that Jε ⊂ Kδ where

Kδ :=
{
ω : there exists m such that for all n ≥ m, Tn ∈ (δ, 1− δ)

}
,

it suffices to prove that P (Kδ) = 0 for any δ > 0. This is trivially true for
δ ≥ 1/2. Therefore, it suffices to show the claim for 0 < δ < 1/2. Given such a
δ, find a positive integer k for which (1− δ)2k < δ. This choice of k guarantees
that if a number x ∈ [0, 1 − δ] is squared k times in a row, the result lies in
[0, δ).

For n ≥ 1 define En as the event that Bn = Bn+1 = · · · = Bn+k−1 = +, i.e.,
En is the event that there are k consecutive +’s in the sequence {Bi : i ≥ 1}
starting at index n. Note that P (En) = 2−k > 0, and that {Emk : m ≥ 1}
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is a collection of independent events. The Borel–Cantelli lemma thus lets us
conclude that the event

E = {En occurs infinitely often}
= {ω : for every m there exists n ≥ m such that ω ∈ En}

has probability 1, and thus P (Kδ) = P (Kδ ∩ E). We will now show that
Kδ ∩ E is empty, from which it will follow that P (Kδ) = 0. To that end,
suppose ω ∈ Kδ ∩E. Since ω ∈ Kδ, there exists m such that Tn(ω) ∈ (δ, 1− δ)
whenever n ≥ m. But since ω ∈ E there exists n0 ≥ m such that Bn0+1 =
· · · = Bn0+k−1 = +, and thus Tn0+k(ω) = Tn0(ω)2

k ≤ (1 − δ)2
k
< δ which

contradicts with Tn0+k(ω) ∈ (δ, 1− δ).

Proof of Theorem 3.1. Let B1, B2, . . . be an i.i.d. binary process with Pr[B1 =
+] = 1/2. Define H0, H1, . . . and Z0, Z1, . . . as in (3.6) and (3.14), respectively.
We will show that the conditions of Lemma 3.8 are satisfied if In and Tn are
replaced with Hn and Zn, respectively: That (i.1), (i.2) and (t.1) are satisfied
is clear by the definitions of Hn and Zn, (t.2) is established in Proposition 3.4,
and (i&t.1) follows from Proposition 3.3 and Lemma 3.7. The claim is then a
corollary to Lemma 3.8.





Generalized Constructions 4
In the preceding chapters, polarization was achieved using a fixed recipe:
Choose a transform that acts on two random variables, and use it recursively.
For prime alphabet sizes, an appropriate choice of mapping was (X1, X2) →
(X1 +X2, X2), or equivalently

[U1 U2] = [X1 X2]

[
1 0
1 1

]
.

Some thought reveals that an n-fold application of this mapping to a block of
N = 2n symbols XN

1 is equivalent to [3]

UN
1 = XN

1

[
1 0
1 1

]⊗n
Bn,

where ‘⊗n’ is the nth Kronecker power of a matrix, and Bn is an N ×N per-
mutation matrix known as the bit-reversal operator. (Recall that the inclusion
of the permutation matrix Bn is out of notational convenience only.) In this
chapter, we will study generalizations of this method.

Finding transformations that polarize memoryless processes becomes an
easy task if one completely disregards complexity issues. In fact, almost all
invertible binary matrices polarize such processes. This is most easily seen in
the following case. Consider an i.i.d. process (X1, Y1), (X2, Y2), . . . where X1

is uniformly distributed on {0, 1}, and Y1 is the output of a symmetric binary-
input memoryless channel with input X1. One can think of XN

1 as codewords
obtained through

XN
1 = UN

1 GN

where UN
1 is uniformly distributed over {0, 1}N , and GN is an invertible {0, 1}-

matrix. Suppose that GN is chosen through the following procedure: The

47
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bottom R = 1−H(X1 | Y1)− ε fraction of the rows are chosen independently
and uniformly at random from {0, 1}N . These rows will be linearly independent
with high probability. The remaining 1−R fraction of the rows are then chosen
in any manner that ensures the invertibility of GN . We know from [10, Section
6.2] that with high probability, the code generated by the bottom R fraction
of the rows will have exponentially small error probability (in the blocklength)
over the channel X1 → Y1. This means, by virtue of Fano’s inequality, that
H(UN

N(1−R)+1 | Y N
1 U

N(1−R)
1 ) can be made arbitrarily small as N grows without

bound, i.e.,

H(Ui | Y N
1 U i−1

1 )→ 0 for all i > N(1−R).

It also follows from the above relation and H(UN
1 | Y N

1 ) ≥ NH(X1 | Y1) that
almost all of the conditional entropies H(Ui | Y N

1 U i−1
1 ) that are not close to

zero must be close to one. That is, a typical random matrix generated in
this fashion will polarize the underlying process. On the other hand, such
matrices will typically have no useful structure, and thus one may not be able
to find low-complexity algorithms to decode the generated codes. The decoding
complexity of such codes will typically be exponential in the blocklength.

The above argument can be stated more generally. Observe that in a
channel code with messages UNR

1 , codewords XN
1 , channel outputs Y N

1 and
small block error probability, the entropy

H(UNR
1 | Y N

1 ) =
NR∑
i=1

H(Ui | Y N
1 U i−1

1 )

is also small. That is, almost all terms on the right-hand side of the above
are close to 0. Hence, any good code can be thought of as one which polar-
izes the resulting process of channel inputs and outputs. A similar statement
also holds for good source codes. Polarization, if defined as the creation of
extremal entropies from mediocre ones, is then not peculiar to polar codes,
but is common to all good codes. The main virtue of polar codes is not that
they polarize processes, but that they do so in a recursive fashion. It is this
recursive structure that enables their good performance under low-complexity
successive cancellation decoding.

4.1 Recursive Transforms

In view of the above discussion, it is reasonable to restrict the search for meth-
ods of polarization to recursive ones. We will focus on the easiest way of
obtaining such transforms: replacing the matrix [ 1 0

1 1 ] in the original construc-
tion with another square matrix, possibly of a larger size. More precisely, we
will assume that the process (X1, Y1), (X2, Y2), . . . is i.i.d. and X1 takes values
over a finite field Fq of prime size, and we will study transforms of the form

UN
1 = XN

1 G
⊗nBn, (4.1)
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where N = `n, matrix multiplication is over Fq, and G is an ` × ` Fq-matrix
with ` ≥ 2. The N × N permutation matrix Bn is defined analogously to
the bit-reversal operation in the original construction: It corresponds to the
permutation f(i) = r`(i−1) + 1, i = 1, . . . , N , where r`(i) = j for i and j with
`-ary expansions bn . . . b1 and b1 . . . bn, respectively.

In addition to their low encoding and decoding complexity, codes based
on recursive transforms are also amenable to error analysis. As in Arıkan’s
original construction, the large blocklength behavior of recursive transforms is
dictated by certain properties of the basic transform G, and therefore several
useful conclusions can be drawn simply by establishing these properties. We
will in particular study the following questions: (i) What choices of G yield
polarizing transforms? (ii) What is the error probability behavior of such
codes? We will see that the answers to both questions are fairly simple.

4.2 Polarizing Matrices

We will say that a matrix G is a polarizing matrix if it is invertible and a
recursive application of it as in (4.1) yields

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) > 1− ε
}∣∣∣ = H(X1 | Y1)

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) < ε
}∣∣∣ = 1−H(X1 | Y1)

for all ε > 0 and all i.i.d. processes (X1, Y1), (X2, Y2), . . . , exactly as in the
original construction. Note that the invertibility of a matrix implies that the
set of its non-zero entries includes a permutation. We will therefore assume
throughout, and without loss of generality, that all of the diagonal entries of
G are non-zero (for otherwise it can be reduced to this form by permuting
its columns). Recall that a necessary condition for polarization is that the
‘entropy paths’ generated along the recursion always fork until they converge
to 0 or 1 (see Figure 3.1), i.e., that at least one of the created entropies at each
step be different from the others. This requirement is met by a large class of
matrices:

Lemma 4.1. Let S`1 = X`
1G for some invertible matrix G.

(i) If G is upper-triangular, then H(Si | Y `
1 S

i−1
1 ) = H(X1 | Y1) for all

i = 1, . . . , `.

(ii) If G is not upper-triangular, then for every ε > 0 there exists δ(ε) > 0
and i ∈ {1, . . . , `} such that

H(X1 | Y1) ∈ (ε, 1− ε)

implies
H(Si | Y `

1 S
i−1
1 )−H(X1 | Y1) > δ(ε).
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Proof. Let gij denote the (i, j)th entry of G. If G is upper-triangular, H(Si |
Y `
1 S

i−1
1 ) can be written as

H(Si | Y `
1 S

i−1
1 ) = H

( i∑
j=1

gjiXj |Y `
1 , g11X1, g12X1 + g22X2, . . . ,

i−1∑
j=1

gjiXj

)
.

Since G is invertible, its first i − 1 columns are linearly independent, and
therefore the above can be rewritten as

H(Si | Y `
1 S

i−1
1 ) = H

( i∑
j=1

gjiXj |Y `
1 , X

i−1
1

)
= H(Xi | Yi),

proving (i). If on the other hand G is not upper-triangular, then let i ∈
{1, . . . , `} be the smallest index for which the ith column of G has at least
two non-zero entries gki and gli below and including the diagonal. (Such an i
always exists.) Since (X1, Y1), . . . , (X`, Y`) are independent, and since summing
independent random variables increases entropy, we have

H
(
Si | Y `

1 S
i−1
1

)
= H

(∑̀
j=1

gjiXj |Y `
1 S

i−1
1

)
≥ H

(
gkiXk + gliXl | Y `

1 S
i−1
1

)
= H

(
gkiXk + gliXl | YkYl

)
,

where the second equality is due to the definition of i. Observe now that the
last entropy term can be written as H(X̃k + X̃l | Yk, Yl), where X̃k and X̃l are
appropriately permuted versions of Xk and Xl, respectively. The claim then
follows from Lemma 3.1.

The following polarization result can be proven as a corollary to the above
lemma, using the standard martingale argument (see proofs of Theorem 2.1,
3.1, or 3.4).

Theorem 4.1. For all prime q, an invertible Fq-matrix is polarizing if and
only if it is not upper-triangular.

The above theorem says that the class of polarizing matrices is large. One
may therefore hope to find, in this large class, matrices that yield better codes
than the original polar codes in terms of their error probabilities. We study
this problem next.

4.3 Rate of Polarization

Recall that for constructions based on combining two random variables at a
time, convergence of the Bhattacharyya parameters was exponential roughly
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in the square root of the blocklength, i.e., we had

lim
n→∞

1

N

∣∣∣{i : Z(Ui | Y N
1 U i−1

1 ) < 2−N
β
}∣∣∣ = 1−H(X1 | Y1)

for all β < 1/2. Let us recall the reason behind this behavior: Throughout the
recursion, a Bhattacharyya parameter is (roughly) squared in approximately
half of the recursions, and is unaffected (i.e., raised to power 1) in the remain-
ing recursions. Since each recursion also doubles the blocklength, a simple
calculation shows that the exponent of a typical Bhattacharyya parameter Z
is roughly 1

2
log2 2 + 1

2
log2 1 = 1

2
, i.e., Z ≈ 2−N

1/2
. (Note that these statements

still need proof, as they neglect the multiplicative constants appearing in the
bounds on the Bhattacharyya parameters. See the discussion on page 15.) It is
also intuitively evident that the same argument can be made for any recursive
construction: If an ` × ` matrix G creates ` Bhattacharyya parameters that
are roughly equal to Z(X1 | Y1)a1 , . . . , Z(X1 | Y1)a` , then after many recur-
sions the exponent of a typical Bhattacharyya parameter would be given by
E = 1

`
log` a1 + . . .+ 1

`
log` a`, i.e., Z ≈ 2−N

E

. That is, the large scale behavior
of the Bhattacharyya parameters—and therefore of the error probability—
is determined by their one-step evolution. It thus suffices to study how the
underlying matrix G transforms the Bhattacharyya parameters in a single re-
cursion. It turns out that this transformation is determined largely by the
partial distances of G−1:

Definition 4.1. Let G be an `×` matrix with rows g1, . . . , g` ∈ F`q. The partial
distances D1, . . . , D` of G are defined as

Di = dH (〈gi〉, 〈gi+1, . . . , g`〉) ,

where 〈a〉 denotes the vector space spanned by a, and

dH(〈a〉, 〈b〉) := min
x∈〈a〉,y∈〈b〉

x 6=0

dH(x, y)

where dH(x, y) denotes the Hamming distance between vectors x and y.

Proposition 4.1. Let S`1 = X`
1G, and let D1, . . . , D` be the partial distances

of G−1. We have

Z(Si | Y `
1 S

i−1
1 ) ≤ q3`Z(X1 | Y1)Di , i = 1, . . . , `. (4.2)

Proof. Note first that

pSi1Y `1 (si1, y
`
1) =

∑
s`i+1

pS`1Y `1 (s`1, y
`
1) =

∑
s`i+1

∏̀
i=1

pXY
(
[s`1G

−1]i, yi
)
.
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We have

Z(Si |Y `
1 S

i−1
1 )

=
1

q − 1

∑
s 6=s′

∑
y`1,s

i−1
1

[
pSi1Y `1

(
(si−11 , s), y`1

)
pSi1Y `1

(
(si−11 , s′), y`1

)]1/2
=

1

q − 1

∑
s 6=s′

∑
y`1,s

i−1
1

[∑
v`i+1

∏
i

pXY
(
[(si−11 , s, v`i+1)G

−1]i, yi
)

·
∑
w`i+1

∏
i

pXY
(
[(si−11 , s′, w`i+1)G

−1]i, yi
)]1/2

≤ 1

q − 1

∑
s 6=s′

∑
y`1,s

i−1
1

∑
v`i+1,w

`
i+1

[∏
i

pXY
(
[(si−11 , s, v`i+1)G

−1]i, yi
)

· pXY
(
[(si−11 , s′, w`i+1)G

−1]i, yi
)]1/2

.

(4.3)

Observe that for all si−11 , v`i+1, and w`i+1 we have

dH
(
(si−11 , s, v`i+1)G

−1, (si−11 , s′, w`i+1)G
−1) ≥ Di,

and therefore∑
y`1

[∏
i

pXY
(
[(si−11 , s, v`i+1)G

−1]i, yi
)

· pXY
(
[(si−11 , s′, w`i+1)G

−1]i, yi
)]1/2

≤
[
(q − 1)Z(X1 | Y1)

]Di .
Combining this relation with (4.3) yields the claim.

We can now characterize the error probability behavior of general recursive
polar codes. For this purpose, we first define the exponent E(G) of a matrix
G, through the partial distances D1, . . . , D` of G−1:

E(G) :=
1

`

∑̀
i=1

log`Di. (4.4)

Theorem 4.2. Let G be an ` × ` polarizing matrix and UN
1 be defined as in

(4.1). Then,

lim
n→∞

1

N

∣∣∣{i : Z(Ui | Y N
1 U i−1

1 ) < 2−N
β
}∣∣∣ = 1−H(X1 | Y1)

for all β < E(G).

We defer the proof of Theorem 4.2 to Section 4.4.
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4.3.1 Bounds on the Rate of Polarization

The importance of Proposition 4.1 and Theorem 4.2 is in identifying through
E(G) the exponential dependence between the error probability and the block-
length. This significantly simplifies the search for good recursive constructions
since E(G) is an easy-to-calculate algebraic quantity. One can also use the
existing results on the minimum distance of codes to find useful bounds on the
best possible E(G) for a given size, i.e., on

E` := max
G∈F`×`q

E(G).

It is useful to note that recursive constructions may not be of much practical
value for large values of `: It can indeed be verified easily that the decod-
ing complexity of codes based on a general ` × ` recursion is O(q`N logN).
We can therefore restrict our attention to small `, for which one can either
exactly compute or bound E`. Conveniently, even the simplest bounding tech-
niques provide useful information at small sizes. The following upper and
lower bounds on the partial distances—based on sphere packing and Gilbert–
Varshamov type constructions, respectively—were given in [11] for the binary
case:

Proposition 4.2.

1

`

∑̀
i=1

log` D̃i ≤ E` ≤
1

`

∑̀
i=1

log` D̂i,

where

D̂i = max

{
D :

bD−1
2
c∑

j=0

(
`

j

)
≤ qi−1

}
and D̃i = max

{
D :

D−1∑
j=0

(
`

j

)
< qi

}
.

An improved version of these bounds, along with the exponents of a BCH
code-based construction (both given in [11]) are plotted for q = 2 in Figure
4.1. These results are of a somewhat negative nature, as they show that the
original exponent 1/2 of Arıkan’s construction cannot be improved with at
small recursion sizes. It was in fact shown in [11] that E` ≤ 1/2 for ` < 15,
and that E16 ≈ 0.51. Nevertheless, it follows from the above bounds that one
can attain ‘almost exponential’ error probability decay with the blocklength if
the size of the recursion is sufficiently large:

Proposition 4.3 ([11]). For all prime q, lim`→∞ E` = 1.

The case for generalized constructions is stronger in non-binary settings.
The reason is that for a fixed matrix size, larger alphabet sizes allow for better
separation (in the Hamming distance) between the rows of a matrix, yielding
better exponents at any fixed `. A simple evidence of this is given in the
following result.
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`
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8 16 240 32

Figure 4.1: The solid and the dashed curves represent lower and upper bounds
on E` (in the binary case), respectively. The dots show the exponents of a BCH
code-based construction (see [11]).

Theorem 4.3. For ` ≤ q, E` = 1
`

log`(`!).

Proof. Observe first that Di ≤ i for any invertible matrix. To see this, note
that the invertibility of a matrix G with rows g1, . . . , g` implies that gi+1, . . . , g`
have ` − i linearly independent columns, and thus span F`−iq at the locations
corresponding to these columns. Therefore, gi can at most be at a distance i
from 〈gi+1, . . . , g`〉.

To prove the claim, we only need to find a matrix with Di = i. To that
end, let ω be an arbitrary element of Fq other than the identity, and let G be
the matrix with rows

gi =
[
1, ωi, ω2i, . . . , ω(`−1)i]

That is, G is the generator matrix of a Reed–Solomon code of rate 1. It is
known that the minimum distance of the code 〈gi, . . . , g`〉 is i [12, Ch. 10.2],
and therefore

Di = dH
(
〈gi〉, 〈gi+1, . . . , g`〉

)
≥ i.

The above theorem implies that for q ≥ 5, we have E2 = 0.5, E3 ≈ 0.54,
E4 ≈ 0.57, and E5 ≈ 0.59. Compare these with the upper bounds given in
Figure 4.1 for the binary case.

4.4 Proof of Theorem 4.2

We will not provide the proof in full, since it is an almost identical reproduction
of the proof of Theorem 2.2 once we obtain the following result.

Lemma 4.2. Let B1, B2, . . . be an i.i.d. process where B1 is uniformly dis-
tributed over {1, 2, . . . , `}. Also let Z0, Z1, . . . be a [0, 1]-valued random process
where Z0 is constant and

Zn+1 ≤ KZDi
n whenever Bn = i
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for some K > 0 and 2 ≤ D1 ≤ ` and 1 ≤ D2, . . . , D` ≤ `. Suppose also
that Zn converges almost surely to a {0, 1}-valued random variable Z∞ with
Pr[Z∞ = 0] = z. Then, for any β < E where

E =
1

`

∑
i

log`Di

we have

lim
n→∞

Pr[Zn ≤ 2−`
βn

] = z.

Remark 4.1. Note that the definition of the process Z0, Z1, . . . reflects the
transformation of Bhattacharyya parameters in a single recursion (4.2): All
partial distances D1, . . . , D` of a polarizing matrix are ≥ 1 (since the matrix
is invertible), with at least one partial distance ≥ 2 (since the matrix is not
upper-triangular).

This result was originally proven for ` = 2 by Arıkan and Telatar in [4].
We will provide the general proof in full for completeness, although it is a
straightforward extension of the bounding technique given in [4]. As the tech-
nique is slightly intricate, it is useful to briefly explain the ideas contained in
it: Note first that for K ≤ 1 the result is a simple corollary to the weak law of
large numbers: In a sufficiently long sequence B1, . . . , Bn, each exponent Di

appears nearly n/` times with high probability, and thus a typical Zn is less
than

Z
∏
iD

n/`
i

0 = (1/Z0)
−`nE .

It can easily be seen that this method does not yield a useful bound when
K > 1. The proof given below is instead based on the following observations:
Whenever Zn converges to zero, there must be a finite point n0 for which the
sequence Zn, n > n0 stays below a given positive threshold ε (Lemma 4.4).
This threshold can be chosen sufficiently small so that if Zn ≤ ε, then KZd

n

is approximately the same as Zd
n if d > 1, i.e., multiplying Zn with K has

negligible effect compared with exponentiating it. Once this is established,
one can again appeal to the law large numbers as in the case K ≤ 1 to obtain
the result.

Lemma 4.3. Let a0, a1, . . . be a sequence of numbers satisfying

ai+1 = bi+1ai +K, i = 0, 1, . . .

where K > 0 and bi ≥ 1 for all i. Then,

an ≤ (a0 +Kn)
n∏
i=1

bi.



56 Generalized Constructions

Proof. A straightforward computation shows that

an = a0

n∏
i=1

bi +K

n∑
i=1

∏
j>i

bj

from which the claim follows trivially.

Lemma 4.4. For every ε > 0, there exists an m(ε) such that

Pr[Zn ≤ 1/K`+1 for all n ≥ m(ε)] > z − ε.

Proof. Let Ω = {ω : Zn(ω)→ 0}, and note that Pr[Ω] = z. Also observe that
since Zn is non-negative, Ω can be written as

Ω =
{
ω : for all k ≥ 1 there exists n0(ω)

such that Zn(ω) < 1/k for all n ≥ n0(ω)
}

=
⋂
k≥1

⋃
n0≥0

An0,k,

whereAn0,k = {ω : Zn(ω) < 1/k for all n ≥ n0}. (Note that n0 in the definition
of An0,k is independent of ω.) Since the sets An0,k are increasing in n0, for all
ε > 0 there exists an m(ε) for which Pr[Am(ε),k] > Pr[∪n0≥0An0,k]− ε, and thus
taking k = K`+1 we have

Pr[Am(ε),K`+1 ] > Pr[∪n0≥0An0,K`+1 ]− ε ≥ Pr[Ω]− ε,

yielding the claim.

Lemma 4.5. For all ε > 0, there exists an n(ε) such that

Pr[logK Zn < −n/4`] > z − ε

for all n ≥ n(ε).

Proof. Given ε > 0, choose m and Am,K`+1 as in the proof Lemma 4.4. Observe
that inside the set Am,K`+1 we have, conditioned on Bn = i,

Zn+1 ≤ KZDi
n

≤ K1−(Di−1)(`+1)Zn

≤

{
K−`Zn if Bn = 1

KZn if Bn = 2, . . . , `
,

or equivalently

logK Zn+1 ≤ logK Zn − ` if Bn = 1

logK Zn+1 ≤ logK Zn + 1 if Bn = 2, . . . , `.
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This implies that inside the set Am,K`+1

logK Zn ≤ logK Zm + (n−m)(1− α(`+ 1))

where α is the fraction of 1’s in the sequence Bm, . . . , Bn. Let T nm,α denote
the event that the sequence Bm, . . . , Bn contains at least an α fraction of each
letter k ∈ {1, . . . , `}. Now choose n0 ≥ 2m such that Pr[T nm,α] > 1 − ε for
all n ≥ n0 with α = (2`+ 1)/[(2` + 2)`]. Note that such an n0 exists since
α < 1/`. Then we have inside the set Am,K`+1 ∩ T nm,α

logK Zn ≤ logK Zm − n
2
(1− α(`+ 1))

≤ −n/4`.

Observing that Pr[Am,K`+1 ∩ T nm,α] ≥ z − 2ε yields the claim.

Proof of Lemma 4.2. We only need to prove the claim for K > 1. Given ε > 0,
choose α < 1/` and γ < 1 such that αγ` > 1 − ε. Also let n be sufficiently
large so that n1 := log`(2nK)8K/Eα n2 := n1/8`K satisfy

(i) n1 > max(n0, 8`), where n0 is as in Lemma 4.5,

(ii) Pr[T n1+n2
n1,α

] > 1−ε, where T n1+n2
n1,α

is defined as in the proof of Lemma 4.5,

(iii) Pr[T nn1+n2,α
] > 1− ε, and

(iv) n− (n1 + n2) ≥ γn.

Conditions (i)–(iii) imply that the probability of the set

A = {logK Zn1 ≤ −n1/4`} ∩ T n2
n1,α
∩ T nn1+n2,α

is at least z − 3ε. Observe also that the process Ln = logK Zn satisfies

Ln+1 ≤ DiLn +K if Bn = i.

Since inside the set A we have Bn = i for at least an α fraction of Bn, it follows
from Lemma 4.3 that

Ln1+n2 ≤ (−n1/4`+ n2K)

n1+n2∏
m=n1

DBm

≤ −
n1+n2∏
m=n1

DBm

≤ −
∏̀
i=1

Dαn2
i

= −`E`αn2 .



58 Generalized Constructions

Similarly bounding Ln we obtain

Ln ≤ (Ln2 + [n− n1 − n2]K)
n∏

m=n1+n2

DBm

≤ (−`E`αn2 + nK)
n∏

m=n1+n2

DBm

≤ (−`Eαn1/8K + nK)
n∏

m=n1+n2

DBm

≤ (−`Eαn1/8K/2)
n∏

m=n1+n2

DBm

≤ −
n∏

m=n1+n2

DBm

≤ −
∏̀
i=1

D
α(n−n1−n2)
i

= −`E`α(n−n1−n2)

≤ −`E`αγn

≤ −`En(1−ε)

which implies that with probability at least z − 3ε

Zn ≤ K−`
(1−ε)En

= 2−`
[(1−ε)E−log`(log2K)/n]n

,

yielding the claim.



Processes with Memory 5
We have seen in Chapters 3 and 4 that memoryless processes with finite alpha-
bets can be polarized by recursive transforms, generalizing Arıkan’s results on
binary channel and source polarization to all stationary memoryless processes.
In this chapter, we will see that the boundaries of this generality extend beyond
memoryless processes. We will show in particular that any recursive transform
that polarizes memoryless processes can also be used, as is, for polarizing a
large class of processes with memory.

In order to keep the notation simple, we will restrict our attention to trans-
forms that combine two random variables at a time, although the results in
this chapter apply also to more general transforms. Recall once again that
all that is required of a transform (X1, X2) → (f(X1, X2), X2) to polarize a
memoryless process is the strict separation of the created entropies, i.e., that
the function f be such that

H(X1 | Y1) ≤ H(f(X1, X2) | Y 2
1 ) (5.1)

holds strictly for all i.i.d. (X1, Y1) and (X2, Y2) with moderate conditional
entropy H(X1 | Y1) (see Lemma 3.1). The nature of the recursive construction
then ensures that the random variables combined at each step are i.i.d. and thus
satisfy (5.1) with strict inequality unless they already have extremal entropies.

Unfortunately, the above argument does not hold in the presence of mem-
ory in the underlying process, as the strictness of the inequality in (5.1) relies
strongly on the independence assumption. Not only (5.1) may hold with equal-
ity for such a process, but it may also not hold at all. On the other hand, for
polarization to take place it suffices that the inequality be strict eventually at
every step of the construction and for almost all random variables, ensuring
the bifurcation of the entropy paths. We will prove polarization by showing
that this requirement is fulfilled by a large class of processes.

59
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5.1 Problem Statement and Main Result

Suppose (X1, Y1), (X2, Y2), . . . is a stationary and ergodic (i.e., positive recur-
rent and aperiodic), Markov process of order κ <∞, taking values in a finite
set X ×Y . We will let HX|Y denote the entropy rate of X1, X2, . . . conditioned
on Y1, Y2, . . . , i.e.,

HX|Y = lim
N→∞

1

N
H(XN

1 | Y N
1 ) = lim

N→∞
H(XN |XN−1

1 Y N
1 ).

Let f : X 2 → X be a polarizing mapping (see Definition 3.1). For all n and
N = 2n let Gn : XN → XN be the recursive mapping defined via f (i.e.,
equations (3.16)), and let

UN
1 = Gn(XN

1 ).

As the invertibility of Gn implies

N∑
i=1

H(Ui | Y N
1 U i−1

1 ) = H(XN
1 | Y N

1 ),

we have

lim
n→∞

1

N

N∑
i=1

H(Ui | Y N
1 U i−1

1 ) = HX|Y . (5.2)

We will show that if Gn is a polarizing transform for memoryless processes,
then it also polarizes Markov processes of arbitrary finite order:

Theorem 5.1. For all ε > 0,

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) > 1− ε
}∣∣∣ = HX|Y ,

lim
n→∞

1

N

∣∣∣{i : H(Ui | Y N
1 U i−1

1 ) < ε
}∣∣∣ = 1−HX|Y .

(5.3)

The remainder of this chapter is devoted to the proof of Theorem 5.1. We
will prove the result for prime q = |X | and take f to be the modulo-q addition.
The proof in the composite case follows similar arguments but is more tedious.

The techniques we will use for proving Theorem 5.1 are similar to those
in the memoryless case. As we have discussed above, however, the memory in
the underlying processes introduces several technical difficulties to be handled.
It is therefore useful to construct the proof through a number of intermediate
lemmas that resolve each of these difficulties. Let us first outline the basic
ideas: For notational convenience, we will define

V N
1 = Gn(X2N

N+1).

Our aim is to show that for large N , the inequality

H(Ui | Y N
1 U i−1

1 ) ≤ H(Ui + Vi | Y 2N
1 U i−1

1 V i−1
1 ) (5.4)
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holds strictly for almost all i’s for which H(Ui | Y N
1 U i−1

1 ) is moderate. For this
purpose, first observe that since the process (X1, Y1), (X2, Y2), . . . is stationary,
there is vanishing amount of per-letter dependence between non-overlapping
blocks of it. That is, for large N ,

1

N
I(UN

1 ;V N
1 | Y 2N

1 ) =
1

N
I(XN

1 ;X2N
N+1 | Y 2N

1 ) ≈ 0,

from which we will conclude that for almost all i, Ui and Vi are almost inde-
pendent given their past, i.e.,

I(Ui;Vi | Y 2N
1 U i−1

1 V i−1
1 ) ≈ 0.

Thus, the conditional distribution of Ui + Vi will be approximately equal to
the convolution of the two distributions. This alone does not suffice to yield
(5.4), however: Although we have seen in Lemma 3.4 that modulo-q addition
of independent, moderate-entropy random variables strictly increases entropy,
a conditional version of this statement is not true in general. This can be seen
in the following example.

Example 5.1. Let X1, X2 ∈ {0, . . . , q−1} and Y ∈ {0, 1} be random variables
with

p(x1, x2 | y) =


1/q2 if y = 0

1 if y = 1 and x1 = x2 = 0

0 otherwise

.

Note that X1 and X2 are i.i.d. conditioned on Y . It is also easy to see that
H(X1 +X2 | Y ) = H(X1 | Y ) = pY (0).

The above example illustrates the only case where a modulo-q addition of
conditionally independent random variables does not increase entropy: the case
in which X1 and X2 are simultaneously constant or simultaneously uniform
for all realizations of Y . We now proceed to the proof of Theorem 5.1, by
first showing that a conditional version of Lemma 3.4 holds excluding this
anomalous case. We will later see that the nature of ergodic Markov processes
precludes this anomaly in a polarization construction.

Given X1, X2 ∈ X and Y , let Hi denote the random variable that takes the
value H(Xi | Y = y) whenever Y = y. Given 0 < δ < 1

2
, define two random

variables S1, S2 ∈ {0, 1, 2} through

Si =


0 if Hi ∈ [0, δ)

1 if Hi ∈ [δ, 1− δ]
2 if Hi ∈ (1− δ, 1]

, i = 1, 2.

Note that the irregularity described in Example 5.1 corresponds to the case
where S1 = S2 ∈ {0, 2} with probability 1.
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Lemma 5.1. If

(i) I(X1;X2 | Y ) ≤ ε2, and

(ii) Pr[S1 = S2 ∈ {0, 2}] < 1− η for some η > 0,

then there exist µ(δ, η) > 0 and ν(ε2) such that

H(X1 +X2 | Y ) ≥ min
i∈{1,2}

H(Xi | Y ) + µ(δ, η)− ν(ε2),

where ν(ε2)→ 0 as ε2 → 0.

Proof. We have

I(X1;X2 | Y ) =
∑
y∈Y

PY (y)D
(
PX1X2|Y=y‖PX1|Y=y · PX2|Y=y

)
≤ ε2.

Therefore, the set

C =
{
y : D

(
PX1X2|Y=y‖PX1|Y=y · PX2|Y=y

)
≤
√
ε2
}

has probability at least 1−√ε2. Also, Pinsker’s inequality implies that

‖PX1X2|Y=y − PX1|Y=y · PX2|Y=y‖ ≤ 2ε
1/4
2 (5.5)

for all y ∈ C. Let X̃1 and X̃2 be random variables with

PX̃1,X̃2|Y (x1, x2 | y) = PX1|Y (x1 | y)PX2|Y (x2 | y).

Since H(X1 + X2 | Y = y) is continuous in PX1X2|Y=y, (5.5) implies that for
all y ∈ C we have

H(X1 +X2 | Y = y) ≥ H(X̃1 + X̃2 | Y = y)− ε(ε2),

where ε(ε2)→ 0 as ε2 → 0. We can then write

H(X1 +X2 | Y ) =
∑
y∈Y

p(y)H(X1 +X2 | Y = y)

≥
∑
y∈C

p(y)H(X1 +X2 | Y = y)

≥
∑
y∈C

p(y)H(X̃1 + X̃2 | Y )− ε(ε2). (5.6)

Next, note that the event
{
y : S1 = S2 ∈ {0, 2}

}c
is identical to{

y : min{H1(y), 1−H2(y)} > δ or min{H2(y), 1−H1(y)} > δ
}
.
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We can assume, without loss of generality, that condition (ii) of the lemma
then implies that the event

D =
{
y : min{H2(y), 1−H1(y)} > δ

}
has probability at least η/2, and therefore

Pr[C ∩D] ≥ η/2−
√
ε2.

It then follows from Lemma 3.4 that

H(X̃1 + X̃2 | Y = y) ≥ H(X1 | Y = y) + ε1(δ)

for all y ∈ C ∩ D, where ε1(δ) > 0. Since we also have H(A + B) ≥
max{H(A), H(B)} for independent random variables A and B, We can con-
tinue (5.6) as

H(X1 +X2 | Y ) ≥
∑
y∈C

p(y)H(X̃1 + X̃2 | Y = y)− ε(ε2)

≥
∑

y∈C∩Dc
p(y)H(X1 | Y = y)

+
∑

y∈C∩D

p(y)[H(X1 | Y = y) + ε1(δ)]− ε(ε2)

=
∑
y∈C

p(y)H(X1 | Y = y)

+ Pr[Y ∈ C ∩D]ε1(δ)− ε(ε2)
≥ H(X1 | Y )− Pr[Y /∈ C] + [η/2−

√
ε2]ε1(δ)− ε(ε2)

≥ H(X1 | Y ) + η
2
ε1(δ)− 2

√
ε2 − ε(ε2).

Defining µ(δ, η) := η
2
ε1(δ) and noting that 2

√
ε2 + ε(ε2) → 0 as ε2 → 0 yields

the claim.

We next show (Lemma 5.4) that there is sufficient independence between
the pasts of Ui and Vi, i.e., between (Y N

1 U i−1
1 ) and (Y 2N

N+1V
i−1
1 ) to satisfy

condition (ii) of Lemma 5.1: For this purpose, we will let Hu,i denote the
random variable that takes the value H(Ui | Y N

1 = yN1 , U
i−1
1 = ui−1) whenever

(Y N
1 U i−1

1 ) = (yN1 u
i−1), similarly to Hi above. Also analogously to the above,

we define a sequence of random variables Su,i through

Su,i =


0 if Hu,i ∈ [0, δ/2)

1 if Hu,i ∈ [δ/2, 1− δ/2]

2 if Hu,i ∈ (1− δ/2, 1]

, i = 1, . . . , N. (5.7)

Similarly define random variables Hv,i and Sv,i by replacing the U ’s with V ’s
above.
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Lemma 5.2. Let (X1, Y1), (X2, Y2) . . . be as before, and let S = f(XN
1 , Y

N
1 )

and T = f(X2N
N+1, Y

2N
N+1) for some (possibly probabilistic) mapping f . Then,

H(S | T ) +H(T | S) ≥ H(S)− I(Xκ+1
1 Y κ+1

1 ;XN
N−κY

N
N−κ).

We will use the following inequality in the proof of Lemma 5.2.

Lemma 5.3. For random variables A, B, and C, we have

H(A | B) +H(A | C) ≥ H(A)− I(B;C).

Proof.

H(A)−H(A | B) = I(A;B)

≤ I(AC;B)

≤ H(AC)−H(C | B)

= H(A | C) + I(B;C).

Proof. The conditions of the lemma, in addition to the stationarity of {Xi, Yi}
imply that (S,Xκ+1

1 , Y κ+1
1 ) and (T,XN+κ+1

N+1 , Y N+κ+1
N+1 ) are identically distributed,

and that S—XN
N−κY

N
N−κ —XN+κ+1

N+1 Y N+κ+1
N+1 —T is a Markov chain. We there-

fore have

H(S | T ) +H(T | S) ≥ H(S | XN
N−κY

N
N−κ) +H(T | XN+κ+1

N+1 Y N+κ+1
N+1 )

= H(S | XN
N−κY

N
N−κ) +H(S | Xκ+1

1 Y κ+1
1 )

≥ H(S)− I(Xκ+1
1 Y κ+1

1 ;XN
N−κY

N
N−κ),

where the second inequality follows from Lemma 5.3.

Lemma 5.4. For any δ > 0, there exists N0(δ) and η(δ) > 0 such that when-
ever N > N0(δ), H(Ui | Y N

1 U i−1
1 ) ∈ (δ, 1− δ) implies

Pr
[
Su,i = Sv,i ∈ {0, 2}

]
< 1− η(δ).

Proof. Note first that when H(Ui | Y N
1 U i−1

1 ) ∈ (δ, 1− δ), there exists ε(δ) > 0
such that if H(Su,i) < ε, then Pr[Su,i = 1] > ε. The latter inequality would
then yield the claim. If, on the other hand H(Su,i) > ε, then we have from
Lemma 5.2 that

max{H(Su,i | Sv,i),H(Sv,i | Su,i)}
≥ 1

2
[H(Su,i)− I(Xκ+1

1 Y κ+1
1 ;XN

N−κY
N
N−κ)]

≥ 1
2
[ε− I(Xκ+1

1 Y κ+1
1 ;XN

N−κY
N
N−κ)]

≥ 1
4
ε,

where the last inequality is obtained by choosing N sufficiently large, and
by noting that aperiodic and positive recurrent Markov processes are mixing,
from which it follows that I(Xκ+1

1 Y κ+1
1 ;XN

N−κY
N
N−κ)→ 0. The lemma is then

an easy corollary to the last inequality.



5.2. Proof of Theorem 5.1 65

5.2 Proof of Theorem 5.1

Following the proof of polarization in the memoryless case, we first define a
{−,+}-valued i.i.d. process B1, B2, . . . with Pr[B1 = −] = 1/2, and associate
to it a [0, 1]-valued process H0, H1, . . . through

H0 = H(X1 | Y1)
Hn = HBn

n−1, n = 1, 2, . . .

where we define for every N

H(Ui | Y N
1 U i−1

1 )− := H(Ui + Vi | Y 2N
1 U i−1

1 V i−1
1 )

H(Ui | Y N
1 U i−1

1 )+ := H(Vi | Y 2N
1 U i−1

1 V i−1
1 , Ui + Vi)

It suffices to show that Hn converges almost surely to a {0, 1}-valued random
variable. To that end, we first write

H(Ui | Y N
1 U i−1

1 )− +H(Ui | Y N
1 U i−1

1 )+

= H(UiVi | Y 2N
1 U i−1

1 V i−1
1 )

≤ H(Ui | Y N
1 U i−1

1 ) +H(Vi | Y 2N
N+1V

i−1
1 )

= 2H(Ui | Y N
1 U i−1

1 ) (5.8)

In the above, the last equality is due to the stationarity assumption. Since Hn

takes values in [0, 1], it follows from (5.8) that the process {Hn} is a bounded
supermartingale, and therefore converges almost surely to a random variable
H∞. Since almost sure convergence implies convergence in probability, we
conclude that the limit

lim
n→∞

Pr[Hn(δ, 1− δ)]

exists. We will obtain the claim if we can show that this limit is equal to zero
for all δ > 0. This is equivalent to showing that for all δ, ε > 0, there exists n0

such that

Pr[Hn ∈ (δ, 1− δ)] < ε (5.9)

for all n > n0. We do this next: Note first that

1
2
E
[
|H−n −Hn|

]
≤ 1

2
E
[
|H−n −Hn|

]
+ 1

2
E
[
|H+

n −Hn|
]

= E [|Hn+1 −Hn|]→ 0,

where the convergence to zero is due to the almost sure convergence of Hn. It
then follows that for all ζ > 0, there exists n1(ζ) such that

Pr
[
|H−n −Hn| ≤ ζ

]
≥ 1− ε

4
for all n ≥ n1(ζ). (5.10)
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Now take η = η(δ/2) as in Lemma 5.4 and µ(δ/2, η) as in Lemma 5.1, and let
ζ = µ(δ/2, η). Then, (5.10) implies that the set

Mn :=
{
i :
∣∣H(Ui | Y N

1 U i−1
1 )− −H(Ui | Y N

1 U i−1
1 )

∣∣ < µ(δ/2, η)
}

satisfies

|Mn|
N
≥ 1− ε

4
(5.11)

for all n ≥ n1 (µ(δ/2, η)). We will prove (5.9) by contradiction. To that end,
define the set

Ln :=
{
i : H(Ui | Y N

1 U i−1
1 ) ∈ (δ, 1− δ)

}
and suppose, contrary to (5.9), that there exists n > n1 (µ(δ/2, η)) for which

|Ln|
N
≥ ε. (5.12)

Define λ := κ log(|X ||Y|) and the sets

Kn :=
{
i : I(Ui;Vi | Y 2N

1 U i−1
1 V i−1

1 ) ≤
√
λ/N

}
,

Jn,1 :=
{
i : I(Ui;Y

2N
N+1V

i−1
1 | Y N

1 U i−1
1 ) ≤

√
λ/N

}
,

Jn,2 :=
{
i : I(Vi;Y

N
1 U i−1

1 | Y 2N
N+1V

i−1
1 ) ≤

√
λ/N

}
,

Jn := Jn,1 ∩ Jn,2.

Note that for all N = 2n we have

λ

N
≥ 1

N
I(XN

1 Y
N
1 ;X2N

N+1Y
2N
N+1)

≥ 1

N
I(XN

1 ;X2N
N+1Y

2N
N+1 | Y N

1 )

=
1

N
I(UN

1 ;Y 2N
N+1V

N
1 | Y N

1 )

=
1

N

N∑
i=1

I(Ui;Y
2N
N+1V

N
1 | Y N

1 U i−1
1 )

≥ 1

N

N∑
i=1

I(Ui;Y
2N
N+1V

i
1 | Y N

1 U i−1
1 )

≥ 1

N

N∑
i=1

[
I(Ui;Y

2N
N+1V

i−1
1 | Y N

1 U i−1
1 )

+I(Ui;Vi | Y 2N
1 U i−1

1 V i−1
1 )

]
.

This in particular implies that

|Jn,1 ∩ Kn|
N

≥ 1−
√
λ/N.
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By swapping the U ’s with the V ’s above, one also obtains |Jn,2|
N
≥ 1−

√
λ/N .

Hence,

|Jn ∩ Kn|
N

=
|Jn,1 ∩ Jn,2 ∩ Kn|

N
≥ 1− 2

√
λ/N. (5.13)

Take n > max{n0(δ), n1 (µ(δ/2, η))} (where n0(δ) is as in Lemma 5.4) such
that √

λ/N <
δ

2
, (5.14)

2
√
λ/N <

ε

2
, (5.15)

ν
(√

λ/N
)

+
√
λ/N ≤ µ(δ/2, η)

2
.

Observe that for such n and for all i ∈ Jn ∩ Ln, relation (5.14) implies

H(Ui | Y 2N
1 U i−1

1 V i−1
1 ), H(Vi | Y 2N

1 U i−1
1 V i−1

1 ) ∈ (δ/2, 1− δ/2),

Now let H̃u,i be a random variable that takes the value

H(Ui | Y 2N
1 = y2N1 U i−1

1 V i−1
1 = ui−1vi−1)

whenever (Y 2N
1 U i−1

1 V i−1
1 ) = (y2N1 ui−1vi−1) and define

S̃u,i =


0 if H̃u,i ∈ [0, δ/2)

1 if H̃u,i ∈ [δ/2, 1− δ/2]

2 if H̃u,i ∈ (1− δ/2, 1]

.

Also define H̃v,i and S̃v,i analogously. It can easily be shown that for i ∈ Jn, the
joint distribution of the pair (S̃u,i, S̃v,i) approaches that of (Su,i, Sv,i) (defined
in (5.7)) as n grows. It then follows from Lemma 5.4 that for sufficiently large
n we have

Pr
[
S̃u,i = S̃v,i ∈ {0, 2}

]
< 1− η/2.

For such n, and for all i ∈ Jn ∩ Kn ∩ Ln, it is easily seen that (Y 2N
1 U i

1V
i
1 ),

along with S̃u,i and S̃v,i satisfy the conditions of Lemma 5.1 with

X1 = Ui, X2 = Vi, Y = (Y 2N
1 U i−1

1 V i−1
1 ),

S1 = S̃u,i, S2 = S̃v,i, ε2 =
√
λ/N, η = η/2.

Consider now i ∈ Jn ∩ Kn ∩ Ln. We have

H(Ui | Y N
1 U i−1

1 )− −H(Ui | Y N
1 U i−1

1 )

= H(Ui + Vi | Y 2N
1 U i−1

1 V i−1
1 )−H(Ui | U i−1

1 Y N
1 )

≥ H(Ui + Vi | Y 2N
1 U i−1

1 V i−1
1 )

−H(Ui | Y 2N
1 U i−1

1 V i−1
1 )−

√
λ/N

≥ µ(δ/2, η)− ν
(√

λ/N
)
−
√
λ/N

≥ µ(δ/2, η)

2
,
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from which we obtain

Jn ∩ Kn ∩ Ln ∩Mn = ∅.

This, in addition to (5.12), (5.13) and (5.15), implies

ε

2
≤ |Jn ∩ Kn ∩ Ln|

N

=
|Jn ∩ Kn ∩ Ln ∩Mc

n|
N

≤ |M
c
n|

N
,

which contradicts (5.11), yielding the claim.

5.2.1 Channels with Memory

Unlike in the memoryless case, it may not be immediately obvious how Theo-
rem 5.1 translates to a channel polarization result; memory in discrete channels
is typically modeled through a channel state sequence, which is absent from
the above model. More precisely, a finite state channel is defined through the
set of joint probability distributions on its inputs xN1 ∈ XN , outputs yN1 ∈ YN ,
and states sN0 ∈ SN with |S| <∞,

p(yN1 , x
N
1 , s

N
1 | s0) = p(xN1 )

N∏
i=1

p(yi, si | xi, si−1),

where s0 is the initial channel state. In certain channel models (e.g., if the
channel is indecomposable [10]) assigning a finite order ergodic Markov distri-
bution on the input sequence X1, X2, . . . induces a similar distribution on the
sequence (X1, Y1, S1), (X2, Y2, S2), . . . . It is then easy—after minor modifica-
tions to the proof of Theorem 5.1—to obtain

Theorem 5.2. Let UN
1 = Gn(XN

1 ). Then for all δ > 0,

lim
n→∞

1

N

∣∣∣{i : I(Ui;Y
N
1 | U i−1

1 ) ∈ (δ, 1− δ)
}∣∣∣ = 0.

5.3 Discussion

Results in this chapter complement previous polarization theorems (Theorems
2.1 and 3.4), showing that Arıkan-like constructions are fairly universal in
distilling randomness, that is, in transforming a stochastic process into a set
of uniform random variables and constants. Although the main result is stated
only for finite-memory processes, we believe that this restriction is an artifact
of our proof technique, and is not necessary for polarization to take place.
In fact, one can check that most of the crucial steps in the proofs remain
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valid without the finite-memory assumption. We conjecture that Arıkan’s
construction polarizes all mixing processes with finite alphabets.

The practical importance of the result presented here is perhaps less obvious
than its theoretical relevance. The main practical appeal of polar codes for
memoryless channels and sources is due to (i) their low encoding/decoding
complexity, (ii) the ease with which they can be constructed, and (iii) their
‘exponentially’ decaying error probability. All of these desirable properties
owe much to the ‘tree structure’ in the probability distributions induced by
the polarization transform, which breaks down when the underlying process
has memory. A problem of interest in this direction is to determine whether
previous results on error probability and complexity can be generalized to such
processes.





Joint Polarization of
Multiple Processes 6
We have by now established that a large class of discrete stochastic processes
can be polarized by a large class of recursive procedures. In memoryless
cases, these procedures yield low-complexity point-to-point channel codes as
well as source codes that achieve optimal rates, i.e., symmetric capacity and
source entropy, respectively. Our aim in this chapter is to apply the prin-
ciples developed so far in order to obtain joint polarization results for mul-
tiple sequences. In particular, we will consider i.i.d. processes of the form
(W1, X1, Y1), (W2, X2, Y2), . . . where W1 ∈ W , X1 ∈ X , and Y1 ∈ Y for finite
sets W , X and Y . The joint distribution of (W1, X1, Y1) will be arbitrary.

Polarizing such a process may be understood in several ways. One may
for instance ask whether a block (WN

1 , X
N
1 ) can be transformed such that the

result (UN
1 , V

N
1 ) ∈ WN ×XN is polarized in the sense that

H(UiVi | Y N
1 U i−1

1 V i−1
1 ) ≈ 0 or ≈ 1 for almost all i’s. (6.1)

If no constraints are imposed on this transformation, then it is indeed easy
to attain polarization: In light of the results in Chapter 3, this can be done
simply by viewing (W1, X1) as a single W × X -valued random variable, and
using a polarizing transform for the alphabet W ×X . Naturally, then, such a
definition of joint polarization is not very interesting.

In order to obtain a more useful definition, let us first place the underlying
process (W1, X1, Y1), (W2, X2, Y2), . . . in an operational context. As in single
source/channel polarization, two simple interpretations are possible:

Separate encoding of correlated sources: In this setting, WN
1 and XN

1

can be viewed as the outputs of two correlated i.i.d. sources, which are ob-
served by separate source encoders. The sequence Y N

1 can be thought of as

71
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side information about the source output, available to the decoder. The out-
put sequences are encoded separately by their respective encoders, and are
subsequently estimated by the decoder. It was shown by Slepian and Wolf [13]
that the set of all achievable rate pairs (RW , RX) in this setup is characterized
by the bounds

RW ≥ H(W1 | Y1X1)

RX ≥ H(X1 | Y1W1)

RW +RX ≥ H(W1X1 | Y1).

Optimal points in this region can be achieved by employing a single-source
polar code at each encoder. To see how this can be accomplished, consider
first a corner point of the above region, with RW = H(W1 | Y1) and RX =
H(X1 | Y1W1), and the following scheme:
Encoding: The encoders for W and X each choose a polarizing transform for
alphabet sizes |W| and |X | respectively and compute the sets

AW = {i : Z(Ui | Y N
1 U i−1

1 ) ≈ 0}

and
AX = {i : Z(Vi | Y N

1 WN
1 V

i−1
1 ) ≈ 0}.

Here UN
1 (respectively, V N

1 ) is the result of the polarizing transform for W
(respectively, X). Upon observing their corresponding source outputs WN

1

and XN
1 , both encoders apply their transforms to obtain UN

1 and V N
1 , and

send UAcW , and VAcX to the decoder.
Decoding: The decoder first estimates WN

1 from UAcW and Y N
1 using the succes-

sive cancellation (SC) decoder for the sequence (W1, Y1), (W2, Y2), . . . . (That
is, it ignores its knowledge of VAcX .) It then assumes that its estimate ŴN

1 is

correct and therefore that ŴN
1 is identically distributed as WN

1 , and uses the
SC decoder for the sequence (X1, (Y1W1)), (X2, (Y2W2)), . . . to estimate XN

1

from VAcX and (Y N
1 ŴN

1 ).
Rate: It follows from single-source polarization theorems that |AcW | ≈ NH(W1 |
Y1) and |AcX | ≈ NH(X1 | Y1W1), i.e., that the above scheme operates approx-
imately at a corner point of the achievable region.
Error probability: A decoding error occurs if at least one of the two constituent
SC decoders errs. The probability of this event can be upper bounded by
the sum of the error probabilities of each decoder. (The proof of this fact
is identical to that of Proposition 2.1.) It follows from previous results that
each of these average block error probabilities, and thus also their sum, is
approximately 2−

√
N .

Multiple-access channel: Recall that the capacity region of a multiple-
access channel is the convex hull of⋃

W,X

RW,X
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where

RW,X =
{

(R1, R2) : RW ≤ I(W ;Y X)

RX ≤ I(X;YW )

RW +RX ≤ I(WX;Y )
}
.

Here W and X are independently distributed inputs to the channel, and Y is
the output. The sequence (W1, X1, Y1), (W2, X2, Y2), . . . naturally fits in such
a setting. This is best seen by considering the case in which W1 and X1 are
uniformly and independently distributed inputs to the channel, and Y1 is the
output. The region corresponding to this case is described by the rate bounds

RW ≤ 1−H(W1 | Y1X1)

RX ≤ 1−H(X1 | Y1W1)

RW +RX ≤ 2−H(W1X1 | Y1).
(6.2)

Corner points of this region can be achieved by the following coding scheme,
which is similar to the one for the source coding case:
Code construction: The encoders for W and X each choose a polarizing trans-
form GW and GX for alphabet sizes |W| and |X | respectively, and compute
the sets

AW = {i : Z(Ui | Y N
1 U i−1

1 ) ≈ 0}
and

AX = {i : Z(Vi | Y N
1 WN

1 V
i−1
1 ) ≈ 0}.

where UN
1 = GW (WN

1 ) and V N
1 = GX(XN

1 ) are the respective outputs of these
transforms. The senders choose Ui, i ∈ AcW and Vi, i ∈ AcX independently and
uniformly at random and reveal their values to the receiver.
Encoding: Given uniformly distributed messages MW ∈ W |AW | and MX ∈
X |AX |, the receivers respectively set UAW = MW and VAX = MX and transmit
G−1W (UN

1 ) and G−1X (V N
1 ) over the channel.

Decoding: The decoder first decodes UAW from UAcW and Y N
1 using the SC

decoder for the sequence (W1, Y1), (W2, Y2), . . . and produces M̂W = GW (ŴN
1 )

as its estimate of the message MW . It then assumes that this estimate is cor-
rect, and uses the SC decoder for the sequence (X1, (Y1W1)), (X2, (Y2W2)), . . .
to decode VAX from VAcX and (Y N

1 ŴN
1 ), and produces M̂X = GX(X̂N

1 ) as its
estimate of MX .
Rate: It follows from previous results that |AW | ≈ N(1 − H(W1 | Y1)) and
|AX | ≈ N(1 − H(X1 | Y1W1)), i.e., that the above scheme operates near a
corner point of the region given in (6.2).
Error probability: The block error probability is as in the source coding case,
i.e., ≈ 2−

√
N averaged over all message pairs and all pairs of frozen vectors Ui,

i ∈ AcX and Vi, i ∈ AcX . It thus follows that there exists at least one frozen

vector pair for which the average block error probability is ≈ 2−
√
N .
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The above coding schemes are obtained by reducing the corresponding
multi-user problem into two single-user problems, for which devising polar
coding schemes is easy. Arbitrary points in the achievable rate region in each
problem can be achieved via the ‘rate splitting’ technique of [14]. (In the
multiple-access problem, one can also use the technique discussed in Section 3.3
to achieve rate regions with non-uniform inputs.) Clearly, these schemes can be
generalized to settings with more than two users. They also yield an alternative
polar coding method for single-sources and point-to-point channels when the
source/channel-input alphabet size is a composite number. To see this, con-
sider the sequence (X1, Y1), (X2, Y2), . . . with X1 ∈ X and |X | = q1 · q2 . . . · qk.
To polarize X1, X2, . . . , one may—instead of applying a polarizing transform
for the alphabet X directly—view X1 as a collection of random variables
(X(1), . . . , X(k)) taking values in X (1) × . . . × X (k), with |X (i)| = qi. This
decomposition can be made in an arbitrary manner. Considering the expan-
sion

H(X1 | Y1) = H(X
(1)
1 , . . . , X

(k)
1 | Y1)

= H(X
(1)
1 | Y1) + . . .+H(X

(k)
1 | Y1, X(1)

1 , . . . , X
(k−1)
1 ),

one easily sees that long blocks of each component X(i) can be polarized sepa-
rately as above, and can then be decoded in the order X(1), X(2),. . . ,X(k), using
the appropriate SC decoder in each step. Such a scheme also achieves optimal
rates in both channel and source coding, with error probabilities comparable
to those of direct polarization schemes.

Our aim here is not just to find polar coding schemes for multi-user set-
tings. Instead, we would also like to know whether one can polarize multiple
processes jointly in the sense that (a) polarization is achieved by applying
a separate transform to the underlying sequences, and that (b) the result-
ing random variables ((Ui, Vi) above) are extremal conditioned on their past
(U i−1

1 , V i−1
1 ), in the sense that they consist only of deterministic and/or uni-

formly random parts. Observe that our first definition of joint polarization in
(6.1) meets requirement (b) but not (a), since a polarizing transform for a single
sequence may not necessarily be decomposed into two separate transforms on
the constituent sequences. On the other hand, the second polarization method
we discussed does meet (a), as it achieves polarization through separately ap-
plying a transform to each sequence. However, it is not clear at this point
that it meets requirement (b), since the joint distributions pUiVi|Y N1 U i−1

1 V i−1
1

one

obtains by this method may not be extremal. (We will see that they indeed
are.)

This aim can be motivated analogously to single source/channel polariza-
tion: In the single-user case, an extremal channel is one whose input is either
determined by or independent of its output. In a multi-user setting, a channel
may be called extremal if this property holds for all of its inputs: Some are de-
termined by the output, others are independent of it. In the two-user case, this
is equivalent to saying that an extremal channel (or equivalently, an extremal
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joint source) is one for which the entropies H(W1 | Y1X1) and H(X1 | Y1W1)
are {0, 1}-valued, and H(W1X1 | Y1) is {0, 1, 2}-valued. It can easily be seen
that there are five possible extremal channels/sources with these properties,
the rate regions (6.2) associated with such channels are depicted in Figure 6.1.
It is also easily seen that reliable communication over extremal channels is
trivial, as in the single-user case. Our aim is to polarize several copies of a
mediocre multiple-access channel (respectively, joint source) to a set of ex-
tremal ones, thereby simplifying the transmission (respectively, compression)
task.

0
0 R1

R2

(000)
0

0

1

R1

R2

(011)
0 1

0 R1

R2

(101)

0 1
0

1

R1

R2

(001)
0 1

0

1

R1

R2

(112)

Figure 6.1: Rate regions of the extremal multiple-access channels (Achievable
source coding rate regions for extremal sources are analogous to these.) (000) is a
channel whose inputs are independent from its output, (011) and (101) are channels
in which one input is determined by the output and the other is independent from it,
(001) is one in which either of the inputs, but not both, can be determined from the
output, and (112) is a noiseless multiple-access channel whose inputs are functions
of the output.

6.1 Joint Polarization

Consider an i.i.d. process (W1, X1, Y1), (W2, X2, Y2), . . . as above. For nota-
tional convenience, we will assume in this section that W = X and later
discuss how the results here apply to processes with different alphabet sizes.
We will be interested in determining how the entropies

H[1] := H(W1 | Y1X1)

H[2] := H(X1 | Y1W1)

H[12] := H(W1X1 | Y1),



76 Joint Polarization of Multiple Processes

which define the achievable rate regions evolve in the course of a joint polar-
ization process. For this purpose, we first choose a polarizing mapping, which
we will denote by the generic symbol ‘+’, and apply it separately to (W1,W2)
and (X1, X2) to obtain

U1 = W1 +W2 V1 = X1 +X2

U2 = W2 V2 = X2.

We also set the following shorthand notation for the resulting entropy terms
of interest

Hb[1] := H(U1 | Y 2
1 V1) Hg[1] := H(U2 | Y 2

1 U1V1V2)

Hb[2] := H(V1 | Y 2
1 U1) Hg[2] := H(V2 | Y 2

1 U1V1U2)

Hb[12] := H(U1V1 | Y 2
1 ) Hg[12] := H(U2V2 | Y 2

1 U1V1)

If one applies this transform to both sequences recursively in the usual manner,
one obtains after n recursions UN

1 = GN(WN
1 ) and V N

1 = GN(XN
1 ), where

again N = 2n and GN represents n recursions of the polarizing transform. Our
aim is to show that the resulting random variable triples (Ui, Vi, (Y

N
1 U i−1

1 V i−1
1 ))

are polarized in the sense that for all ε > 0, we have

H(i)[1] := H(Ui | Y N
1 U i−1

1 V i−1
1 Vi) /∈ (ε, 1− ε)

H(i)[2] := H(Vi | Y N
1 U i−1

1 V i−1
1 Ui) /∈ (ε, 1− ε)

H(i)[12] := H(UiVi | Y N
1 U i−1

1 V i−1
1 ) /∈ (ε, 1− ε) ∪ (1 + ε, 2− ε),

(6.3)

for almost all i ∈ {1, . . . , N}, provided that N is sufficiently large. This
is equivalent to saying that the entropy triples

(
H(i)[1], H(i)[2], H(i)[12]

)
for

almost all i’s is close to one of the five extremal values

(0, 0, 0), (0, 1, 1), (1, 0, 1), (0, 0, 1), (1, 1, 2).

As in the previous chapters, the main ingredient of the proof of this polarization
statement is a result on the single-step evolution of entropies H[1], H[2], and
H[12]:

Lemma 6.1. For every ε > 0, there exists δ > 0 such that

Hb[12]−H[12] ≤ δ

implies

(i) Hb[1]−H[1] ≤ δ and Hb[2]−H[2] ≤ δ,

(ii) H[1], H[2] /∈ (ε, 1− ε),

(iii) H[12] /∈ (2ε, 1− ε) ∪ (1 + ε, 2− 2ε).
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Proof. We have

δ ≥ Hb[12]−H[12]

= H(W1 +W2, X1 +X2 | Y 2
1 )−H(W1X1 | Y1)

= H(W1 +W2 | Y 2
1 )−H(W1 | Y1)

+H(X1 +X2 | Y 2
1 ,W1 +W2)−H(X1 | Y1W1)

(6.4)

Note that both entropy differences in (6.4) are non-negative, and thus are at
most δ, implying Hb[2] − H[2] ≤ δ. Swapping the W ’s and the X’s in the
above relations also yields Hb[1] − H[1] ≤ δ, proving (i). One can continue
(6.4) as

δ ≥ H(W1 +W2 | Y 2
1 )−H(W1 | Y1)

+H(X1 +X2 | Y 2
1 W

2
1 )−H(X1 | Y1W1).

(6.5)

For sufficiently small δ, it follows from (6.5) and Theorem 3.3 that H(W1 |
Y1) /∈ (ε, 1− ε), and H(X1 | Y1W1) = H[2] /∈ (ε, 1− ε). Further, since

H(W1X1 | Y1) = H(W1 | Y1) +H(X1 | Y1W1),

it follows that H(W1X1 | Y1) = H[12] /∈ (2ε, 1 − ε) ∪ (1 + ε, 2 − 2ε), yielding
(iii). By swapping the X’s with the W ’s in the above chain of inequalities one
also obtains H(X1 | Y1) /∈ (ε, 1 − ε) and H(W1 | Y1X1) = H[1] /∈ (ε, 1 − ε),
completing the proof.

This lemma suffices to show the main polarization result of this chapter,
which was also obtained independently by Arıkan (in an unpublished version
of [7]).

Theorem 6.1. Let M := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (0, 0, 1), (1, 1, 2)}, and

d(a,M) := max
b∈M
‖a− b‖, a ∈ R3.

For all ε > 0, we have

lim
n→∞

1

N

∣∣∣{i : d((H(i)[1], H(i)[2], H(i)[12]),M
)
≥ ε
}∣∣∣ = 0.

Proof. The proof is similar to those of previous polarization theorems: Let
B1, B2, . . . be an i.i.d. process with Pr[B1 = b] = Pr[B1 = g] = 1/2. Define a
process (H0[1], H0[2], H0[12]), (H1[1], H1[2], H1[12]), . . . with

H0[k] = H[k],

Hn[k] = HBn
n−1[k], n = 1, 2, . . .

for k = 1, 2, 12. Observe that

Hb[12] +Hg[12] = H(U1V1 | Y 2
1 ) +H(U2V2 | Y 2

1 U1V1)

= H(W 2
1X

2
1 | Y 2

1 )

= 2H[12],
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therefore the process H0[12], H1[12], . . . is a bounded martingale and converges
almost surely to a [0, 2]-valued random variable H∞[12]. It then follows from
(i) in Lemma 6.1 that processes H0[1], H1[1], . . . and H0[2], H1[2], . . . also con-
verge almost surely to [0, 1]-valued random variables H∞[1] and H∞[2], re-
spectively. It further follows from (ii) in Lemma 6.1 that H∞[1] and H∞[2] are
{0, 1}-valued, and from (iii) that H∞[12] is {0, 1, 2}-valued, i.e., that the pro-
cess (H0[1], H0[2], H0[12]), (H1[1], H1[2], H1[12]), . . . converges almost surely to
a random vector taking values in the set M . The claim then follows from the
equivalence between the probability distribution of (Hn[1], Hn[2], Hn[12]) and
the distribution of (H(i)[1], H(i)[2], H(i)[12]), i = 1, . . . , N .

6.1.1 Rate Region

We have seen that separately applying a polarizing transformation to two
i.i.d. processes polarizes them jointly, i.e., the resulting joint distributions ap-
proach one of five extremal distributions as the construction size grows. We
now consider the rate region obtained by this procedure. We will discuss the
multiple-access channel interpretation of the result.

Let R denote the rate region defined by the bounds in (6.2). Also let
Rb and Rg denote the rate regions obtained after the first polarization step,
i.e., those with entropies (H[1], H[2], H[12]) in (6.2) replaced respectively by
(Hb[1], Hb[2], Hb[12]) and (Hg[1], Hg[2], Hg[12]). One can similarly define the
regions Rs, s ∈ {b, g}n obtained after n polarization steps. Note that

2H[1] = H(W 2
1 | Y 2

1 X
2
1 )

= H(U2
1 | Y 2

1 V
2
1 )

≤ H(U1 | Y 2
1 V1) +H(U2 | Y 2

1 U1V1V2)

= Hb[1] +Hg[1].

It similarly follows that

2H[2] ≤ Hb[2] +Hg[2]

2H[12] = Hb[12] +Hg[12], (6.6)

and therefore the set

1
2
Rb + 1

2
Rg =

{
1
2
a+ 1

2
b : a ∈ Rb, b ∈ Rg

}
is a subset of R. It is easy to find examples where this inclusion is strict.
Nevertheless, due to equality in (6.6) and the polymatroidal nature ofR, 1

2
Rb+

1
2
Rg and R share points on their dominant faces (see Figure 6.2). Polarizing

the resulting regions Rb and Rg further will similarly lead to a loss of overall
rate region, i.e., for all n

1

N

∑
s∈{b,g}n

Rs ⊂ R
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R1

R2

Figure 6.2: The average of the rate regions after n polarization steps (the shaded
region) is a subset of the original region, but contains points on the dominant face
of the latter.

although the regions on either side of the last relation will share at least one
point on their dominant faces. Note that the situation here is in contrast with
point-to-point channel polarization, where no rate penalty is incurred by the
construction.

6.1.2 Processes with Different Alphabet Sizes

We have so far assumed that the processes we polarize jointly have identical
alphabet sizes. However, this restriction is only for notational convenience, and
is not necessary for polarization to take place. It can indeed be seen easily that
the proofs given above are equally valid when the alphabet sizes of the processes
differ, and the resulting random variables are still either uniformly random or
deterministic. If one computes entropies with base-|W||X | logarithms, then
the extremal values for (H[1], H[2], H[12]) become

(0, 0, 0), (0, log|X |, log|X |) (log|W|, 0, log|W|), (log|W|, log|X |, 1),

corresponding respectively to the previous cases (000), (011), (101), (112). The
case (001) is precluded from this setting. To see the reason for this, suppose
that random variables (W,X, Y ) with |W| < |X | satisfy the conditions of the
case (001): X is uniformly distributed conditioned on Y , but is a function of
(W,Y ), i.e., H(X | Y ) = log|X | and H(X | YW ) = 0. This would imply
I(W ;X | Y ) = log|X |, an impossibility since I(W ;X | Y ) ≤ log|W|. Con-
sequently, the rate region obtained by polarization is rectangular (i.e., it has
a single point on the dominant face of the original region) when the alphabet
sizes differ.

6.2 Rate of Polarization

Our purpose in this section is to give operational meaning to the rate region ob-
tained after polarization. We will do so by describing a channel coding scheme
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that achieves the corresponding rate region—the source coding counterpart
is similar. We will restrict our attention to processes with prime alphabet
sizes, and will assume that the polarizing mapping ‘+’ for each alphabet is the
corresponding modulo-addition operation.

Suppose W1,W2, . . . and X1, X2, . . . are i.i.d., uniformly distributed inputs
to a multiple-access channel, and Y1, Y2, . . . is the output. Let GX and GW

be two polarizing transforms as above, and UN
1 = GW (WN

1 ), V N
1 = GX(XN

1 )
their outputs. Fix ε > 0, and define the set

Pε(a, b, c) :=
{
i :
∥∥∥(H(i)[1], H(i)[2], H(i)[12])− (a, b, c)

∥∥∥ < ε
}

for (a, b, c) ∈ R3. Let AW , AX ⊂ {1, . . . , N} denote sets of indices over which
the users transmit their data, and choose these sets as follows:

(i.a) If i ∈ Pε(0, 0, 0), then set i ∈ AW , i ∈ AX ,

(i.b) else if i ∈ Pε(0, 1, 1), then set i ∈ AW , i /∈ AX ,

(i.c) else if i ∈ Pε(1, 0, 1), then set i /∈ AW , i ∈ AX ,

(i.d) else if i ∈ Pε(0, 0, 1), then set either i ∈ AW , i /∈ AX or i /∈ AW , i ∈ AX ,

(ii) else, set i /∈ AW , i /∈ AX .

The senders set Ui, i ∈ AW and Vi, i ∈ AX to be the uniformly distributed data
symbols. Symbols in AcW and AcX are frozen, i.e., they are chosen uniformly at
random and revealed to the receiver. It follows from previous results that for
all δ > 0 there exists N0 such that |AW |+ |AX | > N(2−H(W1X1 | Y1)) for all
N ≥ N0, i.e., that the operating point of this scheme is close to the dominant
face of the original region. The whole dominant face of the region obtained by
polarization can be spanned by varying the sizes of the data sets AW and AX
through (i.d).

Decoding is performed successively as in the single-user case, in the order
(U1, V1), (U2, V2), . . . (UN , VN): In decoding (Ui, Vi) the receiver first sets the
frozen symbol (if there is one), say Ui, to its known value, and decodes Vi
using the optimal decision rule for the channel Vi → Y N

1 U i−1
1 V i−1

1 Ui. If neither
Ui nor Vi is frozen, then they are decoded in an arbitrary order, also using the
optimal decision rules for the corresponding channels. Since these channels
have the same recursive structure as in the single-user case, the complexity of
the described decoding operation is O(N logN). The error probability of this
scheme can similarly be bounded by those of the resulting channels:

Pe ≤
∑

i∈Pε(0,0,0)

[
Z(Ui | Y N

1 U i−1
1 V i−1

1 ) + Z(Vi | Y N
1 U i−1

1 V i−1
1 )

]
+

∑
i∈Pε(0,1,1)

Z(Ui | Y N
1 U i−1

1 V i−1
1 ) +

∑
i∈Pε(1,0,1)

Z(Vi | Y N
1 U i−1

1 V i−1
1 )

+
∑

i∈Pε(0,0,1)

max
{
Z(Ui | Y N

1 U i−1
1 V i−1

1 Vi), Z(Vi | Y N
1 U i−1

1 V i−1
1 Ui)

}
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Note that the Bhattacharyya parameters on the first two lines of the above
sum are larger than those of the corresponding channels, since they each ignore
the knowledge of one symbol (Ui or Vi) available at the output. We will see
that this relaxation greatly simplifies error probability proofs. In particular,
we will see that almost all Bhattacharyya parameters in the above sum are
‘exponentially small’, and therefore one can make the sum vanish by freezing
a negligible fraction of the data symbols in both codes:

Lemma 6.2. Define Z ′(A | B) := Z(A | Y N
1 U i−1

1 V i−1
1 B). There exists an

ε > 0 such that for all β < 1/2,

lim
n→∞

1

N

∣∣∣{i ∈ Pε(0, 0, 0) : Z ′(Ui) + Z ′(Vi) ≥ 2−N
β
}∣∣∣ = 0,

lim
n→∞

1

N

∣∣∣{i ∈ Pε(0, 1, 1) : Z ′(Ui) ≥ 2−N
β
}∣∣∣ = 0,

lim
n→∞

1

N

∣∣∣{i ∈ Pε(1, 0, 1) : Z ′(Vi) ≥ 2−N
β
}∣∣∣ = 0,

lim
n→∞

1

N

∣∣∣{i ∈ Pε(0, 0, 1) : max
{
Z ′(Ui | Vi), Z ′(Vi | Ui)

}
≥ 2−N

β
}∣∣∣ = 0.

Proof. It is easy to see that

(i) i ∈ Pε(0, 0, 0) implies Z ′(Ui), Z
′(Vi) ≤ δ(ε),

(ii) i ∈ Pε(0, 1, 1) implies Z ′(Ui) ≤ δ(ε),

(iii) i ∈ Pε(1, 0, 1) implies Z ′(Vi) ≤ δ(ε),

(iv) i ∈ Pε(0, 0, 1) implies Z ′(Ui | Vi), Z ′(Vi | Ui) ≤ δ(ε),

where δ(ε)→ 0 as ε→ 0. Therefore, the proof will be complete once we show
that whenever the above Bhattacharyya parameters are close to 0, they are
exponentially small in the square root of the blocklength. For this purpose, we
will define stochastic processes that mirror the behavior of the Bhattacharyya
parameters of interest, in the now-customary manner: We first define the
Bhattacharyya parameters

Zb(W1 | Y1) := Z(W1 +W2 | Y 2
1 )

Zg(W1 | Y1) := Z(W2 | Y 2
1 ,W1 +W2, X1 +X2),

obtained from Z(W1 | Y1) after the first polarization step. Also define an i.i.d.
process B1, B2, . . . with Pr[B1 = g] = Pr[B1 = b] = 1/2, and the processes

Z0 = Z(W1 | Y1)
Zn = ZBn

n−1, n = 1, 2, . . .
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It suffices to characterize the one-step evolution of the Bhattacharyya parame-
ters, the rest of the proof being identical to previous ones (e.g., Theorem 3.2):
Observe that

Zb(W1 | Y1) = Z(W1 | Y1)−

Zg(W1 | Y1) ≤ Z(W2 | Y 2
1 ,W1 +W2) = Z(W1 | Y1)+,

where Z− and Z+ are defined as in the single-user case. Consequently, when-
ever Zn converges to 0, it does so at least as fast as in single-user polarization.
That is, whenever Z ′(Ui) is close to 0, it is almost surely exponentially small
in the square root of the blocklength. By symmetry, a similar statement also
holds for Z ′(Vi). This yields the first three claims.

The last claim is trivial when |W| 6= |X |, since we then have

lim
n→∞

1
N
|Pε(0, 0, 1)| = 0.

(See Section 6.1.2.) For the case |W| = |X |, we will prove that the claimed
rate of convergence holds for the Bhattacharyya parameter Z ′(Ui + αVi), for
some α ∈ W ∈ \{0} from which the result will follow since

Z ′(Ui | Vi) = Z ′(Ui + αVi | Vi) ≤ Z ′(Ui + αVi).

Consider the one-step evolution of the entropy H(W1 + αX1 | Y1). We have

Hb(W1 + αX1 | Y1) := H
(
(W1 + αX1) + (X2 + αW2) | Y 2

1

)
= H(W1 + αX1 | Y1)−

and

Hg(W1 + αX1 | Y1) := H(W2 + αX2 | Y 2
1 ,W1 +W2, X1 +X2)

≤ H
(
W1 + αX1 | Y 2

1 , (W1 +W2) + α(X1 +X2)
)

= H
(
W1 + αX1 | Y 2

1 , (W1 + αX1) + (W2 + αX2)
)

= H(W1 + αX1 | Y1)+.

If one defines an entropy process H0, H1, . . . that tracks the evolution of
H(W1 + αX1 | Y1) in the course of the polarization procedure, then it can
be shown using the above relations that H0, H1, . . . is a supermartingale and
converges almost surely to a {0, 1}-valued random variable. Moreover, it is
easily seen that the above chain of relations also holds with entropies replaced
by the Bhattacharyya parameters, and thus we have

Zb(W1 + αX1 | Y1) = Z(W1 + αX1 | Y1)−

Zg(W1 + αX1 | Y1) ≤ Z(W1 + αX1 | Y1)+.

Defining once again a Bhattacharyya process Z0, Z1, . . . in the usual manner,
it follows that whenever Zn converges to 0, it does so at least as fast as in the
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single-user case. It further follows from Lemma 6.3 in Appendix 6.A that for
sufficiently large N ,

i ∈ Pε(0, 0, 1) implies Z ′(Ui + α Vi) ≤ δ(ε) for some α ∈ W\{0},

where δ(ε)→ 0 as ε→ 0. We therefore have,

lim
n→∞

1

N

{
i ∈ Pε(0, 0, 1) : Z ′(Ui + αVi) ≥ 2−N

β
}

= 0

for sufficiently small ε > 0 and all β < 1/2, completing the proof.

Corollary 6.1. The average block error probability of the coding scheme de-
scribed above is o(2−N

β
) for all β < 1/2.

6.A Appendix

Lemma 6.3. Let W,X, Y be random variables with W,X ∈ W = Fq. There
exists δ > 0 such that

(i) H(W | Y ) > 1−δ, H(X | Y ) > 1−δ, H(W | Y X) < δ, H(X | YW ) < δ
and

(ii) H(W + αX | Y ) /∈ (δ, 1− δ) for all α ∈ W\{0},

imply
H(W + α′X | Y ) < δ

for some α′ ∈ W.

Proof. Let π be a permutation on W , and let

pπ(w, x) =

{
1
q

if w = π(x)

0 otherwise
.

Note that H(W ) = H(X) = 1 and H(W | X) = H(X | W ) = 0 whenever the
joint distribution of (W,X) is pπ. We claim that for every π, there exists an
απ ∈ W\{0} such that

H(W + απX) < 1− c(q),

where c(q) > 0 depends only on q. To see this, given a permutation π, let

απ := π(0)− π(1) (6.7)

Clearly, απ 6= 0. It is also easy to check that with these definitions we have

Pr[W + απX = π(0)] ≥ Pr[(W,X) = (π(0), 0)] + Pr[(W,X) = (π(1), 1)] = 2
q
,
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which yields the claim. It also follows from the continuity of entropy in the L1

metric that

‖pWX − pπ‖ ≤ o(δ) implies H(W + απX) ≤ 1− c(q) + o(δ).

We claim that the conditions of the lemma imply that with high probability
(on Y ) the distance

‖pWX|Y=y − pπ‖ is small for some π. (6.8)

Note first that

δ > 1−H(W | Y ) =
∑
y

p(y)[1−H(W | Y = y)]

=
∑
y

p(y)D
(
pW |Y=y‖uni(W)

)
≥
∑
y

p(y)1
2
‖pW |Y=y − uni(W)‖2,

where the last relation is a consequence of Pinsker’s inequality. It then follows
that the set

G =
{
y : ‖pW |Y=y − uni(W)‖ < δ1/4

}
has probability at least 1− 2δ1/4. Further, as

δ > H(X | WY ) =
∑
y

pY (y)H(X | W,Y = y),

the set B = {y : H(X | W,Y = y) ≤
√
δ} has probability at least 1 −

√
δ.

Hence, set S = G ∩ B has probability at least 1 − 2δ1/4 −
√
δ. Note that for

all y ∈ S we have for any w, |1
q
− pW |Y=y(w)| < o(δ), and pX|WY (x | w, y) 6∈

(o(δ), 1− o(δ)), and thus

min
π
‖pWX|Y=y − pπ‖ < o(δ),

yielding the claim in (6.8). In particular, this implies that there exist π′ and
S ′ ⊂ S with pY (S ′) ≥ pY (S)/q! such that

‖pWX|Y=y − pπ′‖ < o(δ)

for all y ∈ S ′. Choosing α′ = απ′ as in (6.7), we obtain

H(W + α′X | Y ) ≤ pY (S ′)(1− c(q) + o(δ)) + pY (S ′c)

= 1− c2 + o(δ)

where c2 > 0 depends only on q. Since H(W + α′X | Y ) /∈ (δ, 1 − δ) by
assumption, and we see that if δ is sufficiently small, then H(W +α′X | Y ) ≤
δ.
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We conclude with a summary of our results and complementary remarks:

In Chapter 3, we showed that discrete memoryless processes with prime al-
phabet sizes can be polarized by a recursive linear transform similar to the orig-
inal one for binary processes. We saw that linear transforms fail to polarize all
memoryless processes with composite alphabet sizes. We then demonstrated a
family of non-linear transforms that polarize stationary memoryless processes
with arbitrary discrete alphabets. The crucial property of all basic polarizing
transforms is their ability to create a high- and a low-entropy random variable
out of two moderate-entropy ones, irrespective of the distribution of the latter.
We also derived ‘exponential’ error probability bounds for channel codes (re-
spectively, source codes) based on the proposed transforms, establishing their
capacity-achieving (respectively, entropy-achieving) properties. Let us note
that since the results here hold for codes on all discrete alphabets, one can
approach the capacity of any memoryless channel with continuous inputs by
approximating its capacity-achieving input distribution through the method
discussed in Section 3.3.

In Chapter 4 we first showed that processes with prime alphabet sizes
can be polarized by any linear transform whose matrix representation is not
upper-triangular. This also implies that given any invertible and non-trivial
transform, one can find a decoding order (i.e., a permutation of the columns
of the transform) under which the resulting random variables are polarized.
We observed that the exponential error probability behavior of recursive polar
codes is closely related to the distance properties of a single recursion. We
derived a simple formula that characterizes this behavior. Although we only
provided upper bounds on the error probability in terms of this formula, one
can in fact show that the minimum distance behavior of polar codes is given
by the same formula, and conclude that successive cancellation decoding of

85
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polar codes achieves optimal performance in the exponential sense. We also
saw that the error probability improvements afforded by general constructions
over Arıkan’s original construction is significant especially for larger alphabet
sizes. One should note, however, that our results on the error probability are
asymptotic, as are the results in [4], and are not very informative about the
performance of short polar codes. Two problems of interest in this direction are
to determine whether generalized transforms yield stronger codes at practically
relevant lengths, and to determine whether reliability gains can be attained by
using non-binary polar codes over binary channels. To that end, one can use
a generalized version of the algorithm given in [5] to evaluate the performance
of various polar code constructions on various channels, although it is also
of interest to develop a theory of polar code design for practically relevant
blocklengths.

In Chapter 5, we extended the polarization results of the previous chap-
ters to processes with memory, showing that such processes can be polarized
by recursive transforms that polarize memoryless processes. These results are
perhaps most relevant in the context of robustness of polar codes against mem-
ory in the channel or source, as memorylessness assumptions are used heavily
in the proofs of polarization in Chapters 2–4 and it is not immediately clear
whether these proofs hold without it. Crucial to our proof in Chapter 5 is the
observation that a polarization transformation creates ‘almost memoryless’
distributions after sufficiently many recursions. One should note that the re-
sults here do not immediately lead to practical coding theorems by themselves,
and need to be complemented by error probability bounds and low-complexity
decoding algorithms. These results should therefore be seen as a first step to-
ward showing the robustness of polar coding against memory. A natural next
step in this direction is to investigate how a memoryless process’s set of ‘good
indices’ varies when a small amount of memory structure is imposed on the
process, and also to determine the behavior of the Bhattacharyya parameters
under such variations.

Robustness against uncertainty in the channel is also often studied as a
compound channel problem, where the task is to design a code that will perform
well over all memoryless channels in a given class. Polar coding for compound
channels was considered in [15] by Hassani et. al., where it was shown that over
a compound channel that includes the binary symmetric and binary erasure
channels with equal capacities, polar codes achieve strictly smaller rates than
the compound channel capacity under SC decoding. In Appendix 7, it is shown
that this gap to capacity is indeed due to the suboptimality of the SC decoder,
and can be closed by employing optimal decoders at the receiver. An open
problem of interest is to determine whether polar codes achieve compound
channel capacity under low-complexity decoding algorithms.

In Chapter 6 we considered polarization for multi-user coding settings. We
first showed that all optimal rates for multiple-access channels and the dis-
tributed source coding problems can be achieved using polar codes at each
user. We then showed that applying polarizing transforms to multiple pro-
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cesses separately not only polarizes the processes, but the correlations are also
polarized. We saw that coding schemes exploiting this joint polarization phe-
nomenon achieve some, but not always all, optimal points in the rate regions
of the mentioned problems, with error probabilities comparable to those of
single-user polar coding schemes. One should note that the unachievability of
certain rate points by this scheme is not due to the way that the processes are
polarized—they are indeed polarized using the same transform as in the first
method discussed above—but rather to the proposed decoding order, which
does not fully exploit the resulting probability structure. This rate loss is a
good example that illustrates the strong dependence of polarization on how
the probability structure in a process is decomposed through the choice of the
decoding algorithm.

Although we have demonstrated that polarization is a fairly general phe-
nomenon, the extent of the practical and the theoretical implications of this
generality is largely unknown. We leave this problem for future study.

Appendix

Here we show that many good codes for a given binary symmetric channel also
perform well over symmetric binary-input channels with higher capacities. In
order to do so, we first prove that the binary symmetric channel is the least
capable among all symmetric channels with a given capacity. Recall that a
channel W : X → Y is said to be more capable [16, p. 116] than V : X → Z if

I(X;Y ) ≥ I(X;Z)

for all joint distributions pXY Z(x, y, z) = p(x)W (y | x)V (z | x).

Lemma 7.1. The binary symmetric channel with capacity C is the least ca-
pable among all symmetric binary-input channels with capacity at least C.

Proof. Let h : [0, 1/2] → [0, 1] denote the binary entropy function. Recall
that any symmetric binary-input channel can be written as one with input
X ∈ {0, 1}, output (T, Y ) ∈ [0, 1/2]× {0, 1}, and

p(x, t, y) = p(x)p(t)p(y | x, t)

with

p(y | x, t) =

{
t if y 6= x

1− t if y = x
. (7.1)

That is, any symmetric channel is a combination of binary symmetric channels.
It suffices to prove the claim for symmetric channels with capacity C, since

channels with higher capacities are upgraded with respect to these. To that
end, let ε be the crossover probability of a binary symmetric channel with
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capacity C, i.e. C = 1−h(ε). Now note that with input distribution pX(0) = q,
the mutual information developed across a binary symmetric channel with
capacity C is

h(q ∗ ε)− h(ε).

where a ∗ b := a(1− b) + (1− a)b. On the other hand, the mutual information
developed across a symmetric channel W with capacity C under the same
input distribution is

I(X;Y T ) = H(Y T )−H(Y T | X)

= H(T ) +H(Y | T )−H(T | X)−H(Y | TX)

= H(Y | T )−H(Y | TX)

= H(Y | T )−H(Y +X | T )

= E[h(q ∗ T )]− h(ε),

where the third equality follows from the independence of T and X, and the
last equality follows from (7.1) and the relation H(Y + X | T ) = E[h(T )] =
1 − C = h(ε). It is known that the function h(a ∗ h−1(t)) is convex in t [8],
and thus we can continue the above chain of equalities as

I(X;Y T ) = E[h(q ∗ T )]− h(ε)

= E
[
h
(
q ∗ h−1(h(T ))

)]
− h(ε)

≥ h(q ∗ h−1(E[h(T )]))− h(ε)

= h(q ∗ ε)− h(ε)

completing the proof.

We next show that the performance of a code over a channel W cannot be
much worse than its performance over a less capable channel V . This and the
above result will imply that a sequence of codes with sublinear error probability
decay (in the blocklength) over a binary symmetric channel will have vanishing
error probability over any symmetric channel with a higher capacity. It will
also follow that the error probability of polar codes designed for a binary
symmetric channel is roughly O(2−

√
N) when used over a symmetric channel

with higher capacity, provided that the code is decoded optimally.

Proposition 7.1. Let Pe,W denote the average error probability of a code C
of length N over a binary-input channel W , under optimal decoding. If W is
more capable than V , then

Pe,W ≤ NPe,V + h(Pe,V ).

Proof. Let XN
1 denote a randomly chosen codeword from C. Let Y N

1 and ZN
1

denote the outputs of channels W and V , respectively, with input XN
1 . Fano’s

inequality states that

H(XN
1 | ZN

1 ) ≤ NPe,V + h(Pe,V ).
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Since W is more capable than V we also have [16, p. 116] H(XN
1 | Y N

1 ) ≤
H(XN

1 | ZN
1 ), from which it follows that

H(XN
1 | Y N

1 ) ≤ NPe,V + h(Pe,V ).

The claim is then a corollary to Lemma 7.2 below, which states that

Pe,W ≤ 1− e−H(XN
1 |Y N1 ),

and to the relation 1− e−H(XN
1 |Y N1 ) ≤ H(XN

1 | Y N
1 ).

The following lemma is an upper bound on the error probability of optimal
decoding in terms of conditional entropy, and is a variant of the one in [10,
Problem 4.7]:

Lemma 7.2 ([17]). Let X be a discrete random variable and Y an arbitrary
random variable. The average error probability of optimally decoding X upon
observing Y satisfies

Pe ≤ 1− e−H(X|Y ).

Proof. Let
xy := arg max

x
p(x | y)

and let Pe(y) denote the probability of a decoding error conditioned on Y = y.
We have

Pe(y) = 1− p(xy | y)

= 1−
∏
x∈X

p(xy | y)p(x|y)

≤ 1−
∏
x∈X

p(x | y)p(x|y)

= 1− e−H(X|Y=y)

Then,

Pe =

∫
y

p(y)Pe(y)dy ≤ 1−
∫
y

p(y)e−H(X|Y=y)dy ≤ 1− e−H(X|Y ),

where the last inequality is due to the convexity of the function t→ e−t.
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E. Şaşoğlu, E. Telatar, E. Yeh, “Polar codes for the two-user multiple-access
channel,” Proc. IEEE Inform. Theory Workshop, Cairo, January 2010.
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