Optimizing Linear Discriminant Error
Correcting Output Codes Using Particle Swarm
Optimization

Dimitrios Bouzas, Nikolaos Arvanitopoulos, and Anastasios Tefas

Department of Informatics, Aristotle University of Thessaloniki
Box 451, 54124 Thessaloniki, Greece
{bouzas,niarvani}@ieee.org
tefas@aiia.csd.auth.gr

Abstract. Error Correcting Output Codes reveal an efficient strat-
egy in dealing with multi-class classification problems. According to this
technique, a multi-class problem is decomposed into several binary ones.
On these created sub-problems we apply binary classifiers and then, by
combining the acquired solutions, we are able to solve the initial multi-
class problem. In this paper we consider the optimization of the Linear
Discriminant Error Correcting Output Codes framework using Particle
Swarm Optimization. In particular, we apply the Particle Swarm Opti-
mization algorithm in order to optimally select the free parameters that
control the split of the initial problem’s classes into sub-classes. More-
over, by using the Support Vector Machine as classifier we can addi-
tionally apply the Particle Swarm Optimization algorithm to tune its
free parameters. Our experimental results show that by applying Particle
Swarm Optimization on the Sub-class Linear Discriminant Error Cor-
recting Output Codes framework we get a significant improvement in the
classification performance.

Keywords: Error Correcting Output Codes, Sub-classes, Particle Swarm
Optimization, Support Vector Machines

1 Introduction

Many real life classification problems are usually multi-class. However, many
powerful classifiers like Support Vector Machines (SVM) [4] or AdaBoost [14]
are capable of solving only binary classification problems. To deal with this
problem the Error Correcting Output Codes (ECOC) emerged [1]. Due to its
ability to correct the bias and variance errors of the base classifiers [5][11], the
ECOC procedure has been applied to a wide range of applications, such as face
recognition [16], face verification [10] and handwritten digit recognition [17].
On the ECOC framework Pujol et al. proposed that we can use a ternary
problem dependent design of ECOC, the so called Discriminant Error Correct-
ing Output Codes (DECOC) where, given a number of N, classes, we can achieve
a high classification performance by training only N, — 1 binary classifiers [13].

2 Dimitrios Bouzas, Nikolaos Arvanitopoulos, and Anastasios Tefas

Escalera et al. extended the DECOC algorithm with the use of sub-classes [7].
According to this technique we use a guided problem dependent procedure to
group the classes and split them into subsets with respect to the improvement
we obtain in the training performance. Recently, in [2] the use of the Fisher’s
Linear Discriminant Ratio (FLDR) was proposed as a problem decomposition
criterion in the DECOC framework, resulting in a new algorithm, the so called
Linear Discriminant Error Correcting Output Codes (Linear DECOC). The new
framework not only improves the classification performance, but it also reduces
significantly the running time of the algorithm. This fact enables the promis-
ing DECOC with sub-classes approach to be applied efficiently on large scale
datasets.

In the DECOC with sub-classes and consequently in the linear DECOC
frameworks the split of the initial multi-class problem’s classes into sub-classes is
controlled by a triplet of thresholds. However, these thresholds are chosen in an
arbitrary manner and thus, the risk of overtraining in the resulting classification
is high. In this work, we propose the use of the Particle Swarm Optimization
(PSO) algorithm to optimally select the values of these thresholds. Furthermore,
by using as classifier the SVM we can simultaneously apply the PSO algorithm
to select the values of the SVM’s free parameters. Our experimental results show
that by using PSO for tuning the values of the split control thresholds and of
the free parameters of the SVM classifier the generalization capabilities of the
linear DECOC classification algorithm are significantly increased.

2 Linear Discriminant Error Correcting Output Codes
Framework

In this section we give a brief description of the previously mentioned Linear
DECOC framework.

As already mentioned, the idea that lies behind the ECOC is to decompose
the multi-class problem into several binary ones, and combine the resulting solu-
tions in order to solve the initial problem. We assume that the training dataset
contains N data samples {x;}¥; € R? that belong to N, different classes with
labels {y;}¥; € {1,...,N.}. The ECOC procedure consists of the coding and
the decoding step. In the coding step, the goal is to construct L binary classi-
fiers according to which, each class attains a distinct codeword comprised of the
outputs of these classifiers on the trained classes. A classifier contributes a zero
value to the codeword of a specific class if this class is not considered in the
training of the given classifier. Otherwise, a —1 or 41 value is contributed to the
codeword according to the classifier’s training partition this class belongs to. By
arranging these codewords as rows of a matrix we obtain the so called coding
matric M € {—1,0, +1}"<*L, The number of classifiers L depends strongly on
the coding strategy used, that is, the method which controls how to decompose
the problem and create the binary sub-problems. In the decoding step, each test
sample x is feeded into the L previously mentioned classifiers and a codeword
for this sample is obtained. The resulting codeword is then compared with all

Optimizing Linear Discriminant ECOC Using PSO 3

the codewords in the coding matrix M and the test sample is assigned to the
class that corresponds to the closest codeword according to a decoding measure.
Additionally to the ECOC framework, Pujol et al. proposed that we can use a
binary tree design of ECOC, the so called discriminant ECOC (DECOC) where,
given a number of N, classes, we can achieve a high classification performance by
training only N. — 1 binary classifiers [13]. On the resulting DECOC algorithm
Escalera et al. proposed that from an initial set of classes C of a given multi-
class problem, we can define a new set of classes C’, where the cardinality of C’
is greater than that of C, that is |C’| > |C| [7]. The new set of binary problems
that will be created will improve the created classifiers’ training performance.
In both the DECOC and DECOC with sub-classes procedures, the discrimi-
nant binary tree structure is built by choosing the partitioning that maximizes
the mutual information (MI) between the data samples and their respective
class labels. The structure as a whole describes the decomposition of the initial
multi-class problem into an assembly of smaller binary sub-problems. Each node
of the tree represents a pair that consists of a specific binary sub-problem with
its respective classifier. The construction of the tree’s nodes is achieved through
the Sequential Forward Floating Search (SFFS) algorithm [12]. On each step
of the DECOC with sub-classes tree creation procedure, we can split the bi-
partitions that consist the current sub-problem. The split can be achieved using
K-means or some other clustering method. After the split, two new problems
are formed that can be examined separately. The assignment of tree nodes to
these sub-problems, depends on the satisfaction of three user defined thresholds.
If these thresholds are satisfied, two new tree nodes are added to the overall tree
structure along with their respective binary classifiers. Otherwise, the split is
rejected and a tree node with its respective classifier is created assigned to solve
the previously unsplitted problem. The three thresholds are defined as follows:

1. Operg: Split the classes if the created classifier attains greater than Ope, %
training error.
. Bsize: Minimum cluster’s size of an arbitrary created sub-class.
3. Oimpr: Improvement in the training error attained by classifiers for the newly
created problems against previous classifier (i.e., before split).

[\

The computation of the MI in each step of the SFFS algorithm has com-
plexity proportional to O(d?N?) where d is the number of dataset’s attributes.
Hence, the DECOC algorithm can’t be applied on large datesets in reasonable
running time. In dealing with this problem The use of the FLDR as an alterna-
tive optimization criterion in the SFFS algorithm resulting in the so called linear
DECOC algorithm has been proposed in [2]. The resulting algorithm not only
reduces the computational complexity of the overall procedure but also displays
an improvement in the classification performance.

3 Particle Swarm Optimization

The PSO algorithm is a population-based search algorithm whose initial intent
was to simulate the unpredictable behavior of a bird flock [9]. In this context,

4 Dimitrios Bouzas, Nikolaos Arvanitopoulos, and Anastasios Tefas

a simple and efficient optimization algorithm emerged. Individuals in a particle
population called swarm emulate the success of neighboring individuals and their
own successes. A PSO algorithm maintains a swarm of these individuals called
particles, where each particle represents a potential solution to the optimization
problem. The position of each particle is adjusted according to its own experience
and that of its neighbors. Let p;(t) be the position of particle ¢ in the search
space at time step ¢t. The position of the particle is changed by adding a velocity
v;(t) to the current position. This update can be written as

pi(t +1) = pi(t) +vi(t +1) (1)

with p;(0) ~ U(Pmin, Pmaz), Where U denotes the uniform distribution.
In our approach, we implement the global best PSO algorithm, or gbest PSO.
The gbest PSO is summarized in Algorithm 1.

Algorithm 1 gbest PSO

1: Create and initialize an np-dimensional swarm;

2: repeat
3: for each particle i =1,...,ns do
4: {set the personal best position}
9: if f(p;) < f(y:) then
6: Yi = Ps;
7 end if
8: {set the global best position}
9: if f(yi) < /(3) then
10: y=yi;
11: end if
12: end for
13: for each particle i =1,...,ns; do
14: update the velocity using (2)
15: update the position using (1)

16: end for

17: until stopping criterion is true

In this algorithm, the neighborhood for each particle is the entire swarm. For
gbest PSO, the velocity of particle ¢ is calculated as

vi(t+1) = vi(t) + a1 (t)[yi(t) — pi(t)] + cor2(D)[y(t) — pi(t)] (2)

where v;(t) is the velocity of particle i at time step ¢, p;(¢) is the position
of particle i at time step ¢, ¢c; and ¢y are positive acceleration coefficients, and
ri(t), ra(t) ~ U(0,1) are random vectors with elements in the range [0, 1], sam-
pled from a uniform distribution. These vectors introduce a stochastic element
to the algorithm.
The personal best position y; associated with particle ¢ is the best posi-
tion the particle has visited since the first time step. Considering minimization
problems, the personal best position at the next time step ¢ + 1 is calculated as

_ _ yi(t) i f(pi(t+1)) = f(yi(t))
yl“*”‘{pi(m) if 7(pi(t +1)) < £(y:(t)) ®)

Optimizing Linear Discriminant ECOC Using PSO 5

where f : R" — R is the fitness function. This function measures how close the
corresponding solution is to the optimum.
The global best position y(¢) at time step ¢ is defined as

y(&) € {yo(), -, yn,)} f(¥(2)) = min f(yo(?)), .., f(yn,(t)) (4)

where n; is the total number of particles in the swarm.

Using the standard ghest PSO algorithm, we observe that the velocity of the
particles quickly explodes to very large values and as a result the swarm diverges
from the optimal solution. In order to control this phenomenon we use the so-
called Velocity clamping in our approach [6]. That is, we used the classical gbest
PSO algorithm that integrates an inertia weight w [15]. This weight w controls
the momentum of the particle by weighing the contribution of the previous
velocity. So, the equation of the gbest PSO becomes

vi(t +1) = wvi(t) + cir1()]yi(t) — pi(t)] + cor2() [y (¢) — pi(t)] (5)

The value of w is extremely important to ensure convergent behavior of the
algorithm. For w > 1, velocities increase over time, accelerating towards the
maximum velocity and the swarm diverges. For w < 1, particles decelerate until
their velocities become zero.

The previously mentioned, user defined thresholds of the linear DECOC with
sub-classes approach are clearly problem-dependent. As a result, due to the fact
that we have no a priori knowledge about the structure of the data, we are in
no position to efficiently select their values. Therefore, we purpose the use of the
PSO algorithm in order to tune the thresholds {Ope,, Osize, Oimpr }- Additionally,
if we choose to use SVM as classifier in the linear DECOC technique, we proposed
the use of the PSO for selecting simultaneously optimal values for the SVM
classifier’s free parameters (i.e., the cost parameter C' and, in the case of an
RBF kernel SVM, the kernel’s o). In this case, the PSO algorithm searches in a
5-dimensional swarm in order to find the optimal solution.

4 Experimental Results

For our experiments we used eight datasets of the UCI Machine Learning Repos-
itory [8]. The features of each dataset were scaled to the interval [—1, +1]. The
characteristics of each dataset can be seen in Table 1.

Table 1. UCI Machine Learning Repository Data Sets Characteristics

Database Samples Attributes Classes
Iris 150 4 3
Ecoli 336 8 8
Wine 178 13 3
Glass 214 9 7
Thyroid 215 5 3
Vowel 990 10 11
Balance 625 4 3
Yeast 1484 8 10

6 Dimitrios Bouzas, Nikolaos Arvanitopoulos, and Anastasios Tefas

In our experimental configuration we proceeded as follows: We split randomly
the datasets into two sets, a training and a test set. The training set contained
approximately 60% of the whole data samples, and the test set the remaining
40%. As an objective function f in our PSO algorithm we used the 10-fold cross
validation error of our classifier in the training set.

The respective PSO parameters used were the following;:

— Inertia weight: w(0) = 0.9, w(n;) = 0.4
— Number of particles: 20

— Number of iterations: 100

— Additional stopping criterion:

LS50 — xi()] < tol (6)
p“

where tol = 1073
— Acceleration coefficients: ¢i maer = €2,maz = 2.5 and ¢1 min = €2,min = 0.5

After the termination of the optimization procedure, we obtained as an out-
put three optimized thresholds {Oper s, size, Gimpr} and also the optimized pa-
rameters of the SVM, C and in the case of RBF SVM also the width o of the
kernel function. Finally, we evaluated the optimized classifier in the test set
by computing the resulting test error in each dataset. It is worth noting that
no information about the test data was used during the parameters optimiza-
tion. That is, the 10-fold cross validation inside the training set provided all the
information needed for optimizing the parameters. We note this because it is
common practice for many researchers to report optimized parameters in the
test set without proposing a procedure on how someone can find these optimal
parameters.

The PSO resulting splitting parameters were compared with the set of default
parameters 0 = {Oper s, Osize, Gimpry which were fixed for each dataset to the
values as proposed in [7]:

— Operr = 0%, i.e., split the classes if the classifier does not attain zero training
€rITOr.

— Ogize = %, minimum number of samples in each constructed cluster, where
|J| is the number of features in each dataset.

— Oimpr = 5%, the improvement of the newly constructed binary problems
after splitting.

Furthermore, as a clustering method we used the K-means algorithm with the
number of clusters K = 2. As stated by Escalera et al. [7], the K-means algorithm
obtains similar results with other more sophisticated clustering algorithms, such
as hierarchical and graph cut clustering, but with much less computational cost.

As a standard classifier for our experiments we used the LIBSVM [3] im-
plementation of the Support Vector Machine with linear and RBF kernel. We

Optimizing Linear Discriminant ECOC Using PSO 7

compared our optimized classifier against the default classifier used in the LIB-
SVM package, that is a linear SVM with C' = 1 and an RBF SVM with C =1
and o = 1/attributes,,, where attributes,, is the number of features in each

dataset.

The resulting classification accuracies obtained are shown in Table 2. we also
give the (number of rows x number of columns) of the encoding matrices formed
as a measure of the split.

Table 2. UCI Repository Experiments for Linear and RBF SVM.

Linear SVM RBF SVM

atabase efault efault
Iris 97% 96.67% 98.3% 96.67 %
(3x4) (3x4) (3x4) (3x4)

Ecoli 84.14% 54.48% 84.83% 22.76%
(13 x 15) | (15 x 17) (14 x 17) | (13 x 17)

Wine 95.71% 94.29% 98.57% 97.14%
(3x4) (3x4) (3x4) (3x4)

Glass 55.81% 52.53% 61.63% 54.65%
(8 x 10) (6 x 5) (6 x 5) (6 x 5)

Thyroid 95.24% 92.06% 93.65% 84.13%
(3x2) (3x2) (3x2) (4x4)

Vowel 50.43% 46.75% 57.14% 51.08%
(27 x 31) | (37 x 46) (11 x 10) | (15 x 15)

Balance 92.4% 49.2% 98.8% 46.8%
(21 x 26) | (59 x 67) (3x2) (3x2)

Yeast 53.20% 38.38% 57.07% 34.68%
(11 x 10) | (11 x 10) (10 x 9) (17 x 21)

From the results, it is obvious that the optimized linear DECOC using PSO
always outperforms the default classifiers in all of the experiments conducted.
The improvement is attributed to the fact that PSO finds the optimum values
for the thresholds that control the resulting number of sub-classes. Furthermore,
by finding via PSO optimum values for the SVM parameters (i.e., C and o), the
classification performance is further improved. In certain datasets the thresholds
returned by PSO do not result in the creation of any sub-classes. In this case,
PSO reveals that, in the specific dataset, it is highly probable that the use
of sub-classes will lead to over-fitting. We can also see that in the RBF SVM
the performance improvement is more significant than in the Linear SVM. This
can be associated to the major role the o parameter plays in the classification
performance of the RBF SVM.

5 Conclusion

In this paper we used PSO in order to optimize the linear DECOC framework.
As was shown, PSO can be a reliable method for choosing optimal values for the
free parameters that control the split of the initial multi-class problem’s classes
into sub-classes resulting in improved classification performance.

Dimitrios Bouzas, Nikolaos Arvanitopoulos, and Anastasios Tefas

References

1.

o

%

10.

11.

12.

13.

14.

15.

16.

17.

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing Multi-class to
Binary: A Unifying Approach for Margin Classifiers. Journal of Machine Learning
Research, 1:113-141, 2002.

. N. Arvanitopoulos, D. Bouzas, and A. Tefas. Subclass Error Correcting Output

Codes Using Fisher’s Linear Discriminant Ratio. In Pattern Recognition (ICPR),
2010 20th International Conference on, pages 29532956, 2010.

Chih Chung Chang and Chih Jen Lin. LIBSVM: a library for support vector
machines, 2001.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20:273-297, 1995. 10.1007/BF00994018.

Thomas G. Dietterich and Ghulum Bakiri. Solving Multi-class Learning Problems
via Error-Correcting Output Codes. Journal of Machine Learning Research, 2:263—
282, 1995.

Russell C. Eberhart and Yuhui Shi. Computational intelligence, 2007.

Sergio Escalera, David M.J. Tax, Oriol Pujol, Petia Radeva, and Robert P.W. Duin.
Subclass Problem-Dependent Design for Error-Correcting Output Codes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(6):1041-1054, June
2008.

A. Frank and A. Asuncion. UCI Machine Learning Repository, 2010.

J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Proceedings of
IEEE international conference on meural networks, volume 4, pages 1942-1948.
Perth, Australia, 1995.

J. Kittler, R. Ghaderi, T. Windeatt, and J. Matas. Face verification using er-
ror correcting output codes. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, 2001.
E.B. Kong and T.G. Dietterich. Error-Correcting Output Coding Corrects Bias
and Variance. In Proceedings of the 12th International Conference on Machine
Learning, pages 313-321, 1995.

P. Pudil, F.J. Ferri, J. Novovicova, and J. Kittler. Floating Search Methods for
Feature Selection with Non-monotonic Criterion Functions. In Proceedings of the
International Conference on Pattern Recognition, volume 3, pages 279-283, March
1994.

Oriol Pujol, Petia Radeva, and Jordi Vitria. Discriminant ECOC: A Heuristic
Method for Application Dependent Design of Error Correcting Output Codes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:1001-1007,
June 2006.

Cynthia Rudin, Ingrid Daubechies, and Robert E. Schapire. The Dynamics of
Adaboost: Cyclic Behavior and Convergence of Margins. J. Mach. Learn. Res.,
5:1557-1595, December 2004.

Y. Shi and R.C. Eberhart. Empirical study of particle swarm optimization. In
Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on,
1999.

T. Windeatt and G. Ardeshir. Boosted ECOC ensembles for face recognition. In
Visual Information Engineering, 2003. VIE 2003. International Conference on,
pages 165-168, 2003.

Jie Zhou and Ching Y. Suen. Unconstrained Numeral Pair Recognition Using En-
hanced Error Correcting Output Coding: A Holistic Approach. Document Analysis
and Recognition, International Conference on, 0:484-488, 2005.

