
Mutual Information Measures for Subclass
Error-Correcting Output Codes Classification

Nikolaos Arvanitopoulos, Dimitrios Bouzas, and Anastasios Tefas

Aristotle University of Thessaloniki, Department of Informatics
Artificial Intelligence & Information Analysis Laboratory.

{niarvani,dmpouzas}@csd.auth.gr, tefas@aiia.csd.auth.gr

Abstract. Error-Correcting Output Codes (ECOCs) reveal a common
way to model multi-class classification problems. According to this state
of the art technique, a multi-class problem is decomposed into several
binary ones. Additionally, on the ECOC framework we can apply the
subclasses technique (sub-ECOC), where by splitting the initial classes
of the problem we aim to the creation of larger but easier to solve ECOC
configurations. The multi-class problem’s decomposition is achieved via a
searching procedure known as sequential forward floating search (SFFS).
The SFFS algorithm in each step searches for the optimum binary sepa-
ration of the classes that compose the multi-class problem. The separa-
tion decision is based on the maximization or minimization of a criterion
function. The standard criterion used is the maximization of the mutual
information (MI) between the bi-partitions created in each step of the
SFFS. The materialization of the MI measure is achieved by a method
called fast quadratic Mutual Information (FQMI). Although FQMI is
quite accurate in modelling the MI, its computation is of high algorith-
mic complexity, which as a consequence makes the ECOC and sub-ECOC
techniques applicable only on small datasets. In this paper we present
some alternative separation criteria of reduced computational complex-
ity that can be used in the SFFS algorithm. Furthermore, we compare
the performance of these criteria over several multi-class classification
problems.

Key words: Multi-class classification, Subclasses, Error-Correcting Out-
put Codes, Support Vector Machines, Sequential Forward Floating Search,
Mutual Information.

1 Introduction

In the literature one can find various binary classification techniques. However,
in the real world the problems to be addressed are usually multi-class. In dealing
with multi-class problems we must use the binary techniques as a leverage. This
can be achieved by defining a method that decomposes the multi-class problem
into several binary ones, and combines their solutions to solve the initial multi-
class problem [1]. In this context, the Error-Correcting Output Codes (ECOCs)

emerged. Based on the error correcting principles [2] and on its ability to cor-
rect the bias and variance errors of the base classifiers [3], this state of the art
technique has been proved valuable in solving multi-class classification problems
over a number of fields and applications.

As proposed by Escalera et al. [4], on the ECOC framework we can apply the
subclass technique. According to this technique, we use a guided problem de-
pendent procedure to group the classes and split them into subsets with respect
to the improvement we obtain in the training performance. Both the ECOC
and sub-ECOC techniques can be applied independently to different types of
classifiers. In our work we applied both of those techniques on Linear and RBF
(Radial Basis Function) SVM (Support Vector Machine) classifiers with vari-
ous configurations. SVMs are very powerful classifiers capable of materializing
optimum classification surfaces that give improved results in the test domain.

As mentioned earlier, the ECOC as well as the sub-ECOC techniques use
the SFFS algorithm in order to decompose a multi-class problem into smaller
binary ones. The problem’s decomposition is based on a criterion function that
maximizes or minimizes a certain quantity acording to the nature of the cri-
terion used. The common way is to maximize the MI (mutual information) in
both the bi-partitions created by SFFS. As proposed by Torkkola [5], we can
model the MI in the bi-partitions through the FQMI (Fast Quadratic Mutual
Information) method. However, although the FQMI procedure is quite accurate
in modelling the MI of a set of classes, it turns out to be computational costly. In
this paper we propose some novel MI measures of reduced computational com-
plexity, where in certain classification problems yield better performance results
than the FQMI. Furthermore, we compare these MI measures over a number of
multi-class classification problems in the UCI machine learning repository [6].

1.1 Error Correcting Output Codes (ECOC)

Error Correcting Output Codes is a general framework to solve multi-class prob-
lems by decomposing them into several binary ones. This technique consists of
two separate steps: a) the encoding and b) the decoding step [7].

a) In the encoding step, given a set ofN classes, we assign a unique binary string
called codeword 1 to each class. The length n of each codeword represents the
number of bi-partitions (groups of classes) that are formed and, consequently,
the number of binary problems to be trained. Each bit of the codeword
represents the response of the corresponding binary classifier and it is coded
by +1 or -1, according to its class membership. The next step is to arrange
all these codewords as rows of a matrix obtaining the so-called coding matrix
M, where M ∈ {−1,+1}N×n. Each column of this matrix defines a partition
of classes, while each row defines the membership of the corresponding class
in the specific binary problem.

1 The codeword is a sequence of bits of a code representing each class, where each bit
identifies the membership of the class for a given binary classifier.

An extension of this standard ECOC approach was proposed by Allwein
et al. [1] by adding a third symbol in the coding process. The new coding
matrix M is now M ∈ {−1, 0,+1}N×n. In this approach, the zero symbol
means that a certain class is not considered by a specific binary classifier.
As a result, this symbol increases the number of bi-partitions to be created
in the ternary ECOC framework.

b) The decoding step of the ECOC approach consists of applying the n differ-
ent binary classifiers to each data sample in the test set, in order to obtain
a code for this sample. This code is then compared to all the codewords of
the classes defined in the coding matrix M (each row in M defines a code-
word) and the sample is assigned to the class with the closest codeword. The
most frequently used decoding methods are the Hamming and the Euclidean
decoding distances.

1.2 Sub-ECOC

Escalera et al. [4] proposed that from an initial set of classes C of a given multi-
class problem, we can define a new set of classes C′, where the cardinality of
C′ is greater than that of C, that is |C′| > |C|. The new set of binary problems
that will be created will improve the created classifiers’ training performance.
Additionally to the ECOC framework Pujol [8] proposed that we can use a
ternary problem dependent design of ECOC, called discriminant ECOC (DE-
COC) where, given a number of N classes, we can achieve a high classification
performance by training only N − 1 binary classifiers. The combination of the
above mentioned methods results in a new classification procedure called sub-
ECOC. The procedure is based on the creation of discriminant tree structures
which depend on the problem domain.

These binary trees are built by choosing the problem partitioning that maxi-
mizes the MI between the samples and their respective class labels. The structure
as a whole describes the decomposition of the initial multi-class problem into an
assembly of smaller binary sub-problems. Each node of the tree represents a
pair that consists of a specific binary sub-problem with its respective classifier.
The construction of the tree’s nodes is achieved through an evaluation proce-
dure described in Escalera et al. [4]. According to this procedure, we can split
the bi-partitions that consist the current sub-problem examined. Splitting can
be achieved using K-means or some other clustering method. After splitting we
form two new problems that can be examined separately. On each one of the new
problems created, we repeat the SFFS procedure independently in order to form
two new separate sub-problem domains that are easier to solve. Next, we eval-
uate the two new problem configurations against three user defined thresholds
{θp, θs, θi} described below. If the thresholds are satisfied, the new created pair
of sub-problems is accepted along with their new created binary classifiers, oth-
erwise they are rejected and we keep the initial configuration with its respective
binary classifier.

– θp: Performance of created classifier for newly created problem (after split-
ting).

– θs: Minimum cluster’s size.
– θi: Performance’s improvement of current classifier for newly created problem

against previous classifier (before splitting).

1.3 Loss Weighted Decoding Algorithm

In the decoding process of the sub-ECOC approach we use the Loss Weighted
Decoding algorithm [7]. As already mentioned, the 0 symbol in the decoding
matrix allows to increase the number of binary problems created and as a result
the number of different binary classifiers to be trained. Standard decoding tech-
niques, such as the Euclidean or the Hamming distance do not consider this third
symbol and often produce non-robust results. So, in order to solve the problems
produced by the standard decoding algorithms, the loss weighted decoding was
proposed.

The main objective is to define a weighting matrix MW that weights a loss
function to adjust the decision of the classifiers. In order to obtain the matrix
MW , a hypothesis matrix H is constructed first. The elements H(i, j) of this
matrix are continuous values that correspond to the accuracy of the binary
classifier hj classifying the samples of class i. The matrix H has zero values in
the positions which correspond to unconsidered classes, since these positions do
not contain any representative information. The next step is the normalization of
the rows of matrix H. This is done, so that the matrix MW can be considered as
a discrete probability density function. This is very important, since we assume
that the probability of considering each class for the final classification is the
same. Finally, we decode by computing the weighted sum of our coding matrix
M and our binary classifier with the weighting matrix MW and assign our test
sample to the class that attains the minimum decoding value.

1.4 Sequential Forward Floating Search

The Floating search methods are a family of suboptimal sequential search meth-
ods that were developed as an alternative counterpart to the more computational
costly exhaustive search methods. These methods allow the search criterion to
be non-monotonic. They are also able to counteract the nesting effect by consid-
ering conditional inclusion and exclusion of features controlled by the value of
the criterion itself. In our approach we use a variation of the Sequential Forward
Floating Search (SFFS) [9] algorithm. We modified the algorithm so that it can
handle criterion functions evaluated using subsets of classes. We apply a number
of backward steps after each forward step, as long as the resulting subsets are
better than the previously evaluated ones at that level. Consequently, there are
no backward steps at all if the performance cannot be improved. Thus, back-
tracking in this algorithm is controlled dynamically and, as a consequence, no
parameter setting is needed.

The SFFS method is described in algorithm 1.

Algorithm 1 SFFS for Classes
1: Input:
2: Y = {yj |j = 1, . . . , Nc} // available classes
3: Output: // disjoint subsets with maximum MI between the features and their class labels
4: Xk = {xj |j = 1, . . . , k, xj ∈ Y }, k = 0, 1, . . . , Nc

5: X′
k′ = {xj |j = 1, . . . , k′, xj ∈ Y }, k′ = 0, 1, . . . , Nc

6: Initialization:
7: X0 := ∅, X′Nc

:= Y ; k := 0, k′ := Nc // k and k′ denote the number of classes in each subset
8: Termination:
9: Stop when k = Nc and k′ = 0

10: Step 1 (Inclusion)

11: x
+

:= arg max
x∈Y−Xk

J(Xk + x, X
′
k′ − x)

{
the most significant

class with respect to the group {Xk, X′
k′}

12: Xk+1 := Xk + x+; X′
k′−1 := X′

k′ − x+; k := k + 1, k′ := k′ − 1

13: Step 2 (Conditional exclusion)

14: x
−

:= arg max
x∈Xk

J(Xk − x, X
′
k′ + x)

{
the least significant class

with respect to the group {Xk, X′
k′}

15: if J(Xk − x−, X′
k′ + x−) > J(Xk−1, X′

k′+1) then

16: Xk−1 := Xk − x−; X′
k′+1 := X′

k′ + x−; k := k − 1, k′ := k′ + 1

17: go to Step 2
18: else
19: go to Step 1

20: end if

1.5 Fast Quadratic Mutual Information (FQMI)

Consider two random vectors x1 and x2 and let p(x1) and p(x2) be their proba-
bility density functions respectively. Then the MI of x1 and x2 can be regarded
as a measure of the dependence between them and is defined as follows:

I(x1,x2) =
∫ ∫

p(x1,x2) log
p(x1,x2)
p(x1)p(x2)

dx1dx2 (1)

Note that when the random vectors x1 and x2 are stochastically independent,
it holds that p(x1,x2) = p(x1)p(x2).

It is of great importance to mention that (1) can be interpreted as a Kullback-
Leibler divergence, defined as follows:

K(f1, f2) =
∫
f1(x) log

f1(x)
f2(x)

dx (2)

where f1(x) = p(x1,x2) and f2(x) = p(x1)p(x2).
According to Kapur and Kesavan [10], if we seek to find the distribution that

maximizes or alternatively minimizes the divergence, several axioms could be
relaxed and it can be proven that K(f1, f2) is analogically related to D(f1, f2) =∫

(f1(x) − f2(x))2dx. Consequently, maximization of K(f1, f2) leads to maxi-
mization of D(f1, f2) and vice versa. Considering the above we can define the
quadratic mutual information as follows

IQ(x1,x2) =
∫ ∫

(p(x1,x2)− p(x1)p(x2))2dx1dx2 (3)

Using Parzen window estimators we can estimate the probability density
functions in (3) and combining with Gaussian kernels the following property is
applicable: Let N (x,Σ) be a n-dimensional Gaussian function; it can be shown
that ∫

N (x− a1,Σ1)N (x− a2,Σ2)dx = N (a1 − a2,Σ1 −Σ2) (4)

and by the use of this property we avoid one integration.
In our case, we calculate the amount of mutual information between the

random vector x of the features and the discrete random variable associated to
the class labels created for a given partition (y). The practical implementation of
this computation is defined as follows: Let N be the number of pattern samples
in the entire data set, Ji the number of samples of class i, let Nc be the number
of classes in the entire data set, let xi be the ith feature vector of the data set,
and let xij be the jth feature vector of the set in class i. Consequently, p(y = yp)
and p(x|y = yp), where 1 ≤ p ≤ Nc can be written as:

p(y = yp) =
Jp

N
,

p(x|y = yp) =
1
Jp

Jp∑
j=1

N (x− xpj , σ
2I),

p(x) =
1
N

Jp∑
j=1

N (x− xj , σ
2I).

By the expansion of (3) while using a Parzen estimator with symmetrical
kernel of width σ, we get the following equation:

IQ(x, y) = VIN + VALL − 2VBTW , (5)

where

VIN =
∑

y

∫
x

p(x, y)2dx =
1
N2

Nc∑
p=1

Jp∑
l=1

Jp∑
k=1

N (xpl − xpk, 2σ2I), (6)

VALL =
∑

y

∫
x

p(x)2p(y)2dx =
1
N2

Nc∑
p=1

(
Jp

N

)2 N∑
l=1

N∑
k=1

N (xl − xk, 2σ2I), (7)

VBTW =
∑

y

∫
x

p(x, y)p(x)p(y)dx =
1
N2

Nc∑
p=1

Jp

N

N∑
l=1

Jp∑
k=1

N (xl − xpk, 2σ2I). (8)

The computational complexity of (5) is comprised of the computational com-
plexity of (6) - (8) and is given in table 1. Furthermore, it is known that the
FQMI requires many samples to be accurately computed by Parzen window es-
timation. Thus, we can assume that when the number of samples N is much
greater than their respective dimensionality, that is, N >> d, the complexity of
VALL, which is quadratic with respect to N , is dominant for the equation (5).

Table 1. Computational Complexity for terms VIN , VALL, VBTW [Nc = classes #,
N = samples #, Jp = samples # in class p, d = samples’ dimension].

FQMI Terms Computational Complexity

VIN O(NcJ
2
pd

2)

VALL O(NcN
2d2)

VBTW O(NcNJ
2
pd

2)

2 Separation Criterions

The standard separation criterion for use in the SFFS algorithm, as proposed
by Escalera et al. [4], is the maximization of the Mutual Information between
the two created bi-partitions of classes and their respective class labels. That is,
in each iteration of the SFFS algorithm two partitions of classes are constructed
with labels {−1,+1} respectively. As already mentioned, the above procedure
is computationaly costly because the FQMI computation in each step of SFFS
is applied on all the samples of the considered bi-partitions. We reduce the
computational cost if we avoid the computation of FQMI for both of the bi-
partitions and apply it only on one of them in each step of SFFS. As can be seen
in table 1, another possibility is to avoid computing the term VALL which is of
quadratic complexity with respect to the number of samples N . By discarding
the computation of the VALL term in the FQMI procedure and considering a
Fisher like ratio with the available terms VIN and VBTW which are of lower
complexity, we can reduce significantly the running time. Finally, we can further
reduce the running time if in the Fisher like ratio mentioned, we consider only
a representative subset of classes’ samples.

Based on these ideas we propose three different variations of the standard
criterion {C1, C2, C3} which are outlined below:

– Criterion C1: In criterion C1 we apply the standard FQMI computation
only in the current subset of classes that are examined by SFFS in each
iteration step. That is, we do not consider in the computation the remaining
set of classes that do not belong in the current subset. In this case our goal is
to minimize the above measure. In particular, the criterion J(X,X ′) in the
lines 11, 14, 15 of the SFFS algorithm reduces to the criterion J(X). Here,
FQMI is evaluated between the subset X and the original class labels of
the samples that consist it. The computational complexity of this variation
remains quadratic with respect to the number of samples of the group in
which the FQMI is evaluated. The evaluation, though, is done using much
less data samples and consequently the running time is less than the original
approach.

– Criterion C2: In criterion C2 we consider the maximization of the ratio

C2 =
VIN

VBTW

where VIN and VBTW are computed as in equations (6) and (8). Here we omit
the costly computation of the quantity VALL. The resulting computational

complexity as can be seen from table 1 is quadratic to the number of samples
Jp of the binary group, that is p ∈ {−1,+1}.

– Criterion C3: The computational cost of FQMI is mostly attributed to the
number of samples N . Thus, if we reduce the number of samples we can
achieve a drastic reduction of the computational complexity. To this end we
can represent each class by only one sample. This sample can be a location
estimator such as the mean or the median. We propose the use of the mean
vector as the only representative of each class and the criterion C2 reduces
to minimizing of VBTW where in this case VBTW is given by:

VBTW =
1
N2

c

Nc∑
i=1

Nc∑
j=1

N (x̃i − x̃j , 2σ2I)

where x̃i is the mean vector of class i.
The new variation has quadratic complexity with respect to the number of
classes Nc of the bipartition, since the computation of the mean vectors takes
linear time with respect to number of samples in each class Jp.

3 Experimental Results

Datasets. We compared the proposed criteria using eight datasets of the UCI
Machine Learning Repository. The characteristics of each dataset can be seen
in table 2. All the features of each dataset were scaled to the interval [−1,+1].
To evaluate the test error on the different experiments, we used 10-fold cross
validation.

Sub-class ECOC configuration. The set of parameters θ = {θp, θs, θi} in
the subclass approach were fixed in each dataset to the following values:

– θp = 0%, split the classes if the classifier does not attain zero training error.
– θs = |J|

50 , minimum number of samples in each constructed cluster, where |J |
is the number of features in each dataset.

– θi = 5%, the improvement of the newly constructed binary problems after
splitting.

Furthermore, as a clustering method we used the K-means algorithm with the
number of clusters K = 2. As stated by Escalera et al. [4], the K-means algorithm
obtains similar results with other more sophisticated clustering algorithms, such
as hierarchical and graph cut clustering, but with much less computational cost.

In the tables 3 and 4 we present the results from our experiments in the
UCI datasets using the DECOC and sub-ECOC approaches. In each column
we illustrate the corresponding 10 fold cross-validation performance and in the
case of the sub-ECOC method the (mean number of rows × mean number of
columns) of the encoding matrices which are formed in each fold.

Table 2. UCI Machine Learning Repository Data Sets Characteristics

Database Samples Attributes Classes

Iris 150 4 3
Ecoli 336 8 8
Wine 178 13 3
Glass 214 9 7

Thyroid 215 5 3
Vowel 990 10 11

Balance 625 4 3
Yeast 1484 8 10

Table 3. UCI Repository Experiments for linear SVM C=100.

FQMI Criterion 1 Criterion 2 Criterion 3

Database ECOC sub-ECOC ECOC sub-ECOC ECOC sub-ECOC ECOC sub-ECOC

Iris 97.33% 97.33%
97.33% 97.33%

97.33% 97.33%
97.33% 97.33%

(3.3 × 2.3) (3.3 × 2.3) (3.3 × 2.3) (3.3 × 2.3)

Ecoli 82.98% 80.71%
84.85% 84.85% 78.21% 78.21% 83.01% 80.63%

(10.2 × 10.6) (8.2 × 7.2) (8 × 7) (8.4 × 7.6)

Wine 96.07% 96.07% 96.07% 96.07%
96.73% 96.73% 96.07% 96.07%

(3 × 2) (3 × 2) (3 × 2) (3 × 2)

Glass 63.16% 66.01% 60.58% 63.64% 61.07% 59.78% 60.97% 62.85%
(13 × 14.3) (7.1 × 6.1) (7 × 6) (9.4 × 8.8)

Thyroid 96.77% 96.77%
96.77% 96.77% 90.26% 94.89%

96.77% 96.77%
(3.3 × 2.6) (6 × 7.1) (5.9 × 7.6) (3 × 2)

Vowel 73.94% 77.47% 50.91% 52.73% 46.26% 45.35% 72.73% 86.57%
(27.2 × 29) (18.1 × 16.9) (15.1 × 14) (23.1 × 22)

Balance 91.7% 83.56%
91.7% 89.31%

91.7% 75.71%
91.7% 88.65%

(54.3 × 64.6) (26.4 × 27) (416 × 508) (9.5 × 8.4)

Yeast 56.6% 53.49% 39.36% 39.36% 42.37% 42.63% 47.18% 36.23%
(29.5 × 36.7) (10 × 9) (10.2 × 9.2) (15.7 × 17)

SVM configuration. As a standard classifier for our experiments we used the
libsvm [11] implementation of the Support Vector Machine with linear and RBF
kernel. For both linear and RBF SVM we fixed the cost parameter C to 100 and
for the RBF SVM we fixed the σ parameter to 1.

Table 4. UCI Repository Experiments for RBF SVM C=100, σ = 1.

FQMI Criterion 1 Criterion 2 Criterion 3

Database ECOC sub-ECOC ECOC sub-ECOC ECOC sub-ECOC ECOC sub-ECOC

Iris 96% 96%
96% 96%

96% 96%
96% 96 %

(3 × 2) (3 × 2) (3 × 2) (3 × 2)

Ecoli 82.83% 82.56%
85.10% 85.13% 84.08% 84.08% 85.04% 85.04%

(13.1 × 16) (8.6 × 7.6) (8.1 × 7.1) (8.1 × 7.1)

Wine 97.74% 97.74%
97.74% 97.74% 97.18% 97.18%

97.74% 97.74%
(3 × 2) (3 × 2) (3 × 2) (3 × 2)

Glass 69.39% 70.78%
69.39% 69.39% 64.77% 64.77% 68.48% 68.48%

(7.9 × 7.6) (6 × 5) (6 × 5) (6 × 5)

Thyroid 95.35% 95.35% 95.35% 95.82%
97.21% 95.32% 95.35% 95.35%

(3.2 × 2.4) (3.8 × 3.4) (5 × 5.4) (3 × 2)

Vowel 99.09% 99.09%
99.09% 99.09% 98.59% 98.59% 98.99% 98.99%

(11 × 10) (11 × 10) (11 × 10) (11 × 10)

Balance 95.04% 95.04% 95.04% 95.04%
95.51% 95.51% 95.04% 95.04%

(3 × 2) (3 × 2) (3 × 2) (3 × 2)

Yeast 58.6% 55.44% 56.66% 56.66% 54.95% 52.75% 56.18% 52.04%
(27.3 × 33.4) (10 × 9) (10.5 × 9.5) (20.7 × 22.1)

From the experiments it is obvious that the proposed criteria attain sim-
ilar performance in most cases with the FQMI criterion whereas, in terms of
computational speed we found that for the tested databases C1 and C2 run ap-
proximately 4 times faster and criterion C3 runs approximately 100 times faster.
Moreover, FQMI cannot be applied to databases having a great number of sam-

ples. However, the proposed criterion C3 can be used in very large databases
arising in applications such as Data Mining.

4 Conclusion

Although FQMI is a quite accurate method for modeling the MI between classes,
its computational complexity makes it impractical for real life classification prob-
lems. FQMI’s inability to address large datasets makes the ECOC - sub-ECOC
methods also impractical. As it has been illustrated in our paper, we can substi-
tute FQMI with other MI measures of less computational complexity and attain
similar or even in quite a few cases better classification results. These novel MI
measures proposed, make the ECOC and sub-ECOC methods applicable in large
real-life datasets.

References

1. Allwein, E.L., Schapire, R.E., Singer., Y.: Reducing multi-class to binary: A unify-
ing approach for margin classifiers. Journal of Machine Learning Research 1 (2002)
113–141

2. Dietterich, T.G., Bakiri., G.: Solving multi-class learning problems via error-
correcting output codes. Journal of Machine Learning Research 2 (1995) 263–282

3. Kong, E., Dietterich., T.: Error-correcting output coding corrects bias and vari-
ance. Proc. 12th Intl Conf. Machine Learning (1995) 313–321

4. Escalera, S., Tax, D.M., Pujol, O., Radeva, P., Duin., R.P.: Subclass problem-
dependent design for error-correcting output codes. IEEE Transactions on Pattern
Analysis and Machine Intelligence 30(6) (June 2008) 1041–1054

5. Torkkola., K.: Feature extraction by non-parametric mutual information maxi-
mization. Journal of Machine Learning Research 3 (March 2003) 1415–1438

6. Asuncion, A., Newman, D.: Uci machine learning repository. (2007)
7. Escalera, S., Pujol, O., Radeva., P.: Loss-weighted decoding for error-correcting

output coding. Proc. Int’l Conf. Computer Vision Theory and Applications 2 (June
2008) 117–122

8. Pujol, O., Radeva, P., Vitria., J.: Discriminant ecoc: A heuristic method for appli-
cation dependent design of error correcting output codes. IEEE Transactions on
Pattern Analysis and Machine Intelligence 6 (June 2006) 1001–1007

9. Pudil, P., Ferri, F., Novovicova, J., Kittler., J.: Floating search methods for fea-
ture selection with non-monotonic criterion functions. Proc. Int’l Conf. Pattern
Recognition 3 (March 1994) 279–283

10. Kapur, J., Kesavan., H.: Entropy Optimization principles with Applications. (1992)
11. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. (2001)

