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Abstract

Error-Correcting Output Codes (ECOC) with sub-
classes reveal a common way to solve multi-class classi-
fication problems. According to this approach, a multi-
class problem is decomposed into several binary ones
based on the maximization of the mutual information
(MI) between the classes and their respective labels.
The MI is modelled through the fast quadratic mutual
information (FQMI) procedure. However, FQMI is not
applicable on large datasets due to its high algorith-
mic complexity. In this paper we propose Fisher’s Lin-
ear Discriminant Ratio (FLDR) as an alternative de-
composition criterion which is of much less compu-
tational complexity and achieves in most experiments
conducted better classification performance. Further-
more, we compare FLDR against FQMI over the Cohn-
Kanade facial expression recognition dataset.

1. Introduction

In the literature one can find various binary classifi-
cation techniques. However, in the real world the prob-
lems to be addressed are usually multi-class. In dealing
with multi-class problems we must use the binary tech-
niques as a leverage. This can be achieved by defin-
ing a method that decomposes the multi-class problem
into several binary ones, and combines their solutions to
solve the initial multi-class problem [1]. In this context,
the ECOC procedure emerged [4].

As proposed by Escalera et al., on the ECOC frame-
work we can apply the sub-class technique [5]. Accord-
ing to this technique, we group and split the classes into
subsets with respect to the improvement we obtain in
the training performance, resulting in more but easier to
solve binary problems.

In the resulting sub-ECOC technique, the decompo-
sition of the multi-class problem is achieved by max-
imizing the MI between the classes and their respec-
tive labels via the Sequential Forward Floating Search
(SFFS) algorithm [8]. The MI is computed through the
FQMI method [10]. However, FQMI is computation-
ally costly. In this paper we propose the FLDR as an al-
ternative optimization criterion in the SFFS algorithm,
which is of much less computational complexity and
achieves in most cases better classification performance
over a number of artificial, UCI machine learning repos-
itory [2] and the Cohn-Canade facial expression recog-
nition [6] multi-class datasets.

2. Sub-ECOC Framework

The ECOC consists of two separate steps: a) the
encoding and b) the decoding step [9]. In the en-
coding step, given a set of N classes, we assign a
unique binary string called codeword to each class. The
length n of each codeword represents the number of
bi-partitions (i.e., groups of classes) that are formed
and, consequently, the number of binary problems to
be trained. Each bit of the codeword represents the re-
sponse of the corresponding binary classifier and it is
coded by +1, 0 or -1, where 0 means that a certain
class is not considered by a specific binary classifier
[1]. The next step is to arrange all these codewords as
rows of a matrix obtaining the so-called coding matrix
M ∈ {−1, 0,+1}N×n. Each column of this matrix de-
fines a partition of classes, while each row defines the
membership of the corresponding class in the specific
binary problem.

The decoding step consists of applying the n differ-
ent binary classifiers to each data sample in the test set,
in order to obtain a code for this sample. This code
is then compared to all the codewords of the classes de-



fined in the coding matrix M and the sample is assigned
to the class with the closest codeword. The most fre-
quently used decoding methods are the Hamming and
the Euclidean decoding distances.

Additionally to the ECOC framework Pujol pro-
posed that we can use a ternary problem dependent de-
sign of ECOC, called discriminant ECOC (DECOC)
where, given a number of N classes, we can achieve a
high classification performance by training only N − 1
binary classifiers [9]. This can be achieved by finding
via the SFFS searching procedure an encoding matrix
M with high discriminative power. The SFFS algorithm
is described in Algorithm 1.

Algorithm 1 SFFS for Classes
1: Input:
2: Y = {yj |j = 1, . . . , Nc} // available classes
3: Output: // disjoint subsets with maximum MI between the features and their class labels
4: Xk = {xj |j = 1, . . . , k, xj ∈ Y }, k = 0, 1, . . . , Nc

5: X′
k′ = {xj |j = 1, . . . , k′, xj ∈ Y }, k′ = 0, 1, . . . , Nc

6: Initialization:
7: X0 := ∅, X′Nc

:= Y ; k := 0, k′ := Nc // k and k′ denote the number of classes

in each subset
8: Termination:
9: Stop when k = Nc and k′ = 0

10: Step 1 (Inclusion)
11: // x+ is the most significant class with respect to the group {Xk,X′

k′ }

12: x
+

:= arg max
x∈Y−Xk

J(Xk + x,X
′
k′ − x)

13: Xk+1 := Xk + x+; X′
k′−1

:= X′
k′ − x+; k := k + 1, k′ := k′ − 1

14: Step 2 (Conditional exclusion)
15: // x− is the least significant class with respect to the group {Xk,X′

k′ }

16: x
−

:= arg max
x∈Xk

J(Xk − x,X
′
k′ + x)

17: if J(Xk − x−, X′
k′ + x−) > J(Xk−1, X′

k′+1
) then

18: Xk−1 := Xk−x−; X′
k′+1

:= X′
k′ +x−; k := k−1, k′ := k′+1

19: go to Step 2
20: else
21: go to Step 1
22: end if

On the DECOC procedure Escalera et al. proposed
that from an initial set of classes C of a given multi-class
problem, using a clustering method (e.g., K-means) we
can define a new set of classes C′, where |C′| > |C|,
obtaining a new configuration of binary problems that
are easier to solve [5]. In the resulting sub-ECOC pro-
cedure, we compare in each binary decomposition the
training performances of the created classifiers against a
user defined threshold θp, which denotes the maximum
training error the classifier addressing each binary de-
composition should attain. If θp is not satisfied, we split
the classes of the binary decomposition into subclasses.
The size (i.e., number of samples) of the created sub-
classes is compared against another user defined thresh-
old θs, which defines the minimum size of a sub-class.
If θs is satisfied, we create two new classifiers to address
the new created sub-problems. The performance of the
two new created classifiers is compared against a third
user defined threshold θi, which defines the improve-
ment we want to obtain in the training error with respect
to the initial classifier’s performance. If these thresh-
olds are satisfied, the new created pair of sub-problems

is accepted along with their new created binary classi-
fiers, otherwise they are rejected and we keep the initial
configuration with its respective binary classifier [5].

3. FQMI

Consider two random vectors x1 and x2 and let
p(x1) and p(x2) be their probability density functions
respectively. Then the MI of x1 and x2 can be regarded
as a measure of the dependence between them and is
defined as follows:

I(x1,x2) =

∫ ∫
p(x1,x2) log

p(x1,x2)

p(x1)p(x2)
dx1dx2 (1)

It is of great importance to mention that (1) can be
interpreted as a Kullback-Leibler divergence, defined as
follows:

K(f1, f2) =
∫
f1(x) log

f1(x)

f2(x)
dx (2)

where f1(x) = p(x1,x2) and f2(x) = p(x1)p(x2).
According to Kapur and Kesavan [7], if we seek

to find the distribution that maximizes or alternatively
minimizes the divergence, several axioms could be re-
laxed and it can be proven thatK(f1, f2) is analogically
related to D(f1, f2) =

∫
(f1(x) − f2(x))2dx. Conse-

quently, maximization of K(f1, f2) leads to maximiza-
tion ofD(f1, f2) and vice versa. Considering the above
we can define the quadratic mutual information as

IQ(x1,x2) =

∫ ∫
(p(x1,x2)− p(x1)p(x2))

2dx1dx2 (3)

The practical implementation of the FQMI computa-
tion is defined as follows: Let N be the number of pat-
tern samples in the entire data set, Ji the number of sam-
ples of class i, Nc the number of classes in the entire
data set, xi the ith feature vector of the data set, and xij

the jth feature vector of the set in class i. Consequently,
p(x), p(y = yi) and p(x|y = yi), where 1 ≤ i ≤ Nc

can be written as:

p(x) =
1

N

Ji∑
j=1

N (x− xj , σ
2I),

p(y = yi) =
Ji

N
,

p(x|y = yi) =
1

Ji

Ji∑
j=1

N (x− xij , σ
2I).

By the expansion of (3) while using a Parzen esti-
mator with a Gaussian kernel N we get the following
equation:

IQ(x, y) = VIN + VALL − 2VBTW (4)



where

VIN =
∑
y

∫
x
p(x, y)2dx

=
1

N2

Nc∑
i=1

Ji∑
l=1

Ji∑
k=1

N (xil − xik, 2σ
2I) (5)

VALL =
∑
y

∫
x
p(x)2p(y)2dx

=
1

N2

Nc∑
i=1

(
Ji

N

)2 N∑
l=1

N∑
k=1

N (xl − xk, 2σ
2I) (6)

VBTW =
∑
y

∫
x
p(x, y)p(x)p(y)dx

=
1

N2

Nc∑
i=1

Ji

N

N∑
l=1

Ji∑
k=1

N (xl − xik, 2σ
2I) (7)

It is known that the FQMI requires many samples to
be accurately computed by Parzen window estimation.
Thus, we can assume that when the number of samples
N is much greater than their respective dimensionality
d (i.e., N >> d), the complexity of VALL, which is
O(NcN

2d2), is dominant for the equation (4).

4 FLDR

Let C1 and C2 be two classes of a binary classifica-
tion problem. The Fisher’s Linear Discriminant ratio is
defined as:

J(w) =
|m1 −m2|2

s21 + s22
(8)

where m1, m2 are the sample means and s1, s2 the
variances of classes C1 and C2 respectively. We define
the scatter matrices Sw and Sb as

Sw =
∑
x∈C1

(x−m1)(x−m1)
T +

∑
x∈C2

(x−m2)(x−m2)
T (9)

and
Sb = (m1 −m2)(m1 −m2)

T (10)

The matrix Sw is the within-class scatter matrix and
the matrix Sb is the between class scatter matrix. As a
result of the above, J(·) can be written as

J(w) =
wTSbw

wTSww
(11)

The within-class scatter matrix Sw can be considered
as a class density indicator and, as such, corresponds
to the VIN term in equation (5), which is a class density
measure as well. Furthermore, the between-class scatter
matrix Sb can be considered as a class location indicator
inversely analogue to the VBTW term in equation (7),
which is also a class similarity measure. Thus, we can
define the ratio

J ′ =
tr{Sb}
tr{Sw}

(12)

as an alternative maximization criterion function that
can be used in the SFFS procedure in similar manner to
FQMI.

As can be seen in equation (12), the FLDR runs in
linear time with respect to the number of the dataset
samples N (i.e., O(d2N)), where d denotes samples’
dimensionality. From the above it is obvious that FLDR
clearly outranks FQMI in terms of computational com-
plexity, making more appealing the use of the promising
sub-ECOC approach to large datasets.

5 Experimental Results

Datasets. We compared FQMI and FLDR using 7
datasets of the UCI Machine Learning Repository, 4 ar-
tificially created 2D datasets and the Cohn-Kanade Fa-
cial Expression Recognition Database. The characteris-
tics of each UCI dataset can be seen in Table 1. The 2D
artificial datasets are illustrated in Fig. 1.

Table 1. UCI Machine Learning Repository
Data Sets Characteristics

Database Samples Attributes Classes
Iris 150 4 3

Ecoli 336 8 8
Wine 178 13 3
Glass 214 9 7

Thyroid 215 5 3
Vowel 990 10 11

Balance 625 4 3
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Figure 1. Artificial Datasets

The Cohn-Kanade Facial Expression Database con-
sists of approximately 704 image sequences (40 × 30
pixels) from 100 subjects (mixed race, gender, appear-
ance) with 7 facial expressions (6 basic facial expres-
sions sad, happy, surprise, anger, fear, disgust and 1
neutral).

The features of the UCI datasets were scaled to
the interval [−1,+1], the artificial datasets to [0, 1],
whereas those of the Cohn-Kanade dataset where stan-
dardized to zero mean and unit variance. To evaluate
the test error on the various experiments we used 10-
fold cross validation.



Classifier. As a standard classifier for our experi-
ments we used the LIBSVM’s implementation of the
Support Vector Machine with linear and RBF kernels
[3]. SVMs are very powerful classifiers that give im-
proved results in the test domain. For both linear and
RBF SVM we fixed the SVM parameters to C = 100
and σ = 1 for the UCI datasets, to C = 1 and σ = 0.5
for the artificial 2D datasets and C = 100 and σ = 1/d
(where d = 1200 the dimensionality of the dataset) for
the Cohn-Kanade dataset.

Sub-ECOC configuration. The set of the threshold
parameters where fixed to the following values: θ =
{θp = 0%, θs = N

50 , θi = 5% } where N is the number
of samples in each dataset.

As a clustering method we used the K-means algo-
rithm with the number of clusters K = 2 which obtains
similar results with other more sophisticated clustering
algorithms, such as hierarchical and graph cut cluster-
ing, but with much less computational cost [5].

In Tables 2 and 3 we present the classification per-
formances of our experiments in the UCI, artificial 2D
and Cohn-Canade datasets using the DECOC and the
sub-ECOC approaches.

Table 2. Artificial 2D Datasets
Linear SVM RBF SVM

FQMI FLDR FQMI FLDR
Database ECOC sub-ECOC ECOC sub-ECOC ECOC sub-ECOC ECOC sub-ECOC

A. D. 1 37.54% 68.34% 37.54% 76.35% 57.27% 68.23% 57.27% 77.52 %
(27 × 28.7) (10.8 × 9.8) (20.4 × 22.3) (11 × 10)

A. D. 2 40.45% 100% 44.91% 100% 97.99% 100% 98.32% 100%
(5 × 4) (5 × 4) (5 × 4) (4.5 × 3.5)

A. D. 3 65.65% 98.38% 65.65% 99.71% 86.31% 93.94% 86.31% 99.71%
(15.6 × 15.5) (7 × 6) (11.4 × 11.4) (7 × 6)

A. D. 4 88.54% 90.83% 88.54% 97.12% 99.83% 99.83% 99.83% 99.83%
(6.7 × 5.7) (5 × 4) (4 × 3) (4 × 3)

Table 3. UCI & Cohn-Kanade Datasets
Linear SVM RBF SVM

FQMI FLDR FQMI FLDR
Database ECOC sub-ECOC ECOC sub-ECOC ECOC sub-ECOC ECOC sub-ECOC

Iris 96% 96% 96% 96% 96% 96% 96% 96 %
(3 × 2) (3 × 2) (3 × 2) (3 × 2)

Ecoli 82.98% 80.22% 82.72% 81.51% 82.83% 83.42% 85.04% 85.04%
(11.1 × 12.7) (8.1 × 7.1) (11.8 × 13.4) (8.5 × 7.5)

Wine 95.52% 95.52% 96.6% 96.6% 97.74% 97.74% 97.74% 97.74%
(3 × 2) (3 × 2) (3 × 2) (3 × 2)

Glass 63.16% 67.04% 62.43% 65.34% 69.39% 70.76% 68.48% 68.48%
(14.6 × 15.9) (10.3 × 9.7) (7.6 × 7.3) (6.3 × 5.3)

Thyroid 96.77% 96.77% 96.67% 96.67% 95.33% 95.33% 95.35% 95.35%
(3.3 × 2.6) (3 × 2) (3.2 × 2.4) (3 × 2)

Vowel 73.43% 77.47% 75.56% 85.35% 99.09% 99.09% 98.99% 98.99%
(22.4 × 23.3) (20.9 × 19.9) (11 × 10) (11 × 10)

Balance 91.7% 89.31% 91.7% 89.6% 95.04% 95.04% 95.2% 95.2%
(44.3 × 51.7) (9.6 × 8.5) (3 × 2) (3 × 2)

Kanade 79.81% 79.81% 80.93% 80.93% 73.35% 73.35% 74.58% 74.58%
(7 × 6) (7 × 6) (7 × 6) (7 × 6)

In each column we illustrate the corresponding 10
fold cross-validation performance and in the case of the
sub-ECOC method the (mean number of rows × mean
number of columns) of the encoding matrices which are
formed in each fold.

From the results it is obvious that FLDR attains in
most cases better performance than the FQMI crite-

rion, whereas in terms of computational speed in the
largest of our datasets (i.e., Cohn-Kanade) FLDR trains
in less than one minute, while the FQMI trains in ap-
proximately 5 days. Moreover, FLDR over-fits less than
FQMI in the case where the use of sub-classes causes
overtraining.

6 Conclusion

Due to its high computational complexity FQMI
makes the use of the sub-ECOC technique impractical
for large classification problems. As it has been illus-
trated in our paper, we can substitute FQMI with the
FLDR which is of much less computational complex-
ity and attains in most cases better classification results.
This makes the promising sub-ECOC method applica-
ble in large datasets arising in applications such as Fa-
cial Expression Recognition, datamining (e.t.c).
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