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2



Acknowledgements
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à Paris. Bertha et Alexis, merci pour votre amitié et votre soutien malgré les distances qui
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Chapter 1

Introduction

” Là où il y a une volonté, il y a un chemin.”

Général Charles de Gaulle

If you ask people: what would you use a robot for? Some of them reply spontaneously:

”We do not want a robot!”. For others, the answer is obvious, cleaning the house, ironing,

cooking, house holding etc. According to the 2007 World Robotics survey presented by the

IFR (International Federation of Robotics) statistical department, up to 2006, about 3.5

million service robots for personnel/domestic use were sold. Such robots are mainly in the

areas of domestic vacuum cleaning , pool cleaning and lawn-mowing robots. About 40,000

service robots for professional use were also installed worldwide, i.e the unmanned aerial

and ground-based vehicles for military, demolition systems for the construction industry and

robot assisted surgery. Thus, it is clear that we are moving towards a world where intelligent

robots will be in every house just as televisions and personal computers. This is the rule of

supply and demand. But, what will be the implications of such intelligent robots develop-

ment on the world economy? Will the need for human labor disappear? Will people suffer

from unemployment? Or will the quality of life increase? Humans need for lodging affected

housing prices and lead to the actual world financial crisis. Will the need for robotics be

the next reason for a worldwide economic crisis? All these questions are beyond the scope of

this thesis. They are even beyond the scope of our lab and university. May be the robotics

society has an answer and may be they should start preparing financially for the robots era.

Regarding the needs and the existing technological level, a lot of work has to be done.

For example, robots for handicap assistance is still an active research area and applications

such as letting a robot get us a glass of water is still not simple to achieve. To ensure these

skills and to interact with a human’s world, robots must be capable of using their hands

proficiently. Since we are surrounded by objects specifically adapted to our hands shapes

and sizes, robots hands should resemble the most to ours in order to successfully handle
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such objects. Many companies were interested in constructing robotic hands that satisfy this

condition. The Shadow company hand is regarded as the most advanced robotic hand for its

ability to perform all 24 movements of the human hand. However, this is not sufficient for a

robot to autonomously manipulate objects. Even the forms of the most common objects are

infinite. Consequently, a robot will always encounter novel objects and should decide how to

use his hand in order to accurately grasp such objects and perform the required task.

Grasp synthesis is the central action of objects manipulation and this study will focus on

that phase. Grasp synthesis has to satisfy three main sets of constraints: constraints due to

the robotic hand which has a large number of degrees of freedom and its fingers capabilities,

constraints due to object geometric features and constraints due to task requirements. Hence,

elaborating a grasping approach that meets these constraints is extremely difficult and should

address the following questions:

• Where the hand should grasp a novel object?

• Is the chosen grasp stable?

• Is the grasp appropriate to successfully perform a task?

The first logical step in developing a grasping strategy described in the literature was to ex-

amine the stability of the grasp. Many analytical methods have addressed this problem and

concentrate on the development of stability criteria to compare grasps. These approaches

find stable grasps for pick and place operations but are unable to determine a suitable grasp

for object manipulation. Thus, the next step was to compute task oriented grasps. For this,

the proposed approaches take as input the task to perform and find a grasp suitable for it.

Modelling a task is complex and differs from one object to another. Empirical approaches

were introduced to the grasp synthesis problem to avoid analytical techniques computational

complexity. Empirical methods use learning algorithms to imitate human grasping strate-

gies. Since commonly used objects are from different shapes and sizes, generalizing these

techniques to novel objects is difficult. Thus, fully autonomous grasping of a previously un-

known object remains a challenging problem.

We intend to take this challenge and find appropriate grasps for novel objects. Grasp-

ing is not a new field to our research team. A former PhD student, Cedric Michel, has

addressed the grasp synthesis problem from a geometrical point of view. He proposed an

approach to grasp planning based on the Natural Grasping Axis. This axis is parallel to the

palm and surrounded by the thumb facing the other fingers. It characterizes human beings

hands shapes when approaching an object. Thus, Michel et al. [MRPD04] uses an analytical

method to extract such axis from the 3D object geometry. However, this approach identifies

[MRPD04] C. Michel, C. Rmond, V. Perdereau, and M. Drouin. A robotic grasping planner based on

the natural grasping axis. In Proceedings of the IEEE International Conference on Intelligent

Manipulation and Grasping, 2004.
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for one object, several axes and does not select the one that is best adapted to the required

task. This induces us to believe that analytical approaches cannot fulfill the challenge by

themselves and that they should mix up with knowledge based methods. We propose, in this

thesis, an hybrid approach combining empirical and analytical methods.

1.1 Claims of Originality and Thesis Overview
The main contributions of our research are:

• This thesis proposes a novel strategy that associates to each object a handle. This

permits to find, for an unknown object, a grasp in accordance with its corresponding

task. Identifying objects handles is performed by imitating humans.

• A new sufficient condition for computing force-closure grasps on the obtained handle is

also proposed. This method aims at reducing force-closure grasps computation time.

The following chapters will address in details all aspects of the proposed approach. Chap-

ter 2 reviews the current literature for analytical and empirical grasp synthesis strategies for

3D objects. It also shows that these approaches have two main difficulties: task modelling

and generalization of learned grasping skills to new objects. Chapter 3 introduces evidence

suggesting that a low-level vision, including object segmentation into single parts, provides a

useful prelude to object grasping and that a good grasp is the result of the object graspable

part identification. Once the object graspable part is selected, chapter 4 proposes a new con-

dition for force-closure grasps computation. Finally, a series of experiments are conducted

to test the proposed approach in chapter 5.
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Chapter 2

Grasp Synthesis for 3D Objects

”Aucune des minutes que nous vivons n’aurait existé sans les

millénaires qui l’ont précédée depuis la Création, et aucun de

nos battements de coeurs n’aurait été possible s’il n’y avait eu

les générations successives des âıeux, avec leurs rencontres, leurs

promesses, leurs unions conscarées, ou encore leurs tentations”

Extrait de Le Rocher de Tanios de Amin Maalouf

Grasp means take hold of or seize firmly. The study of this definition constitutes the

ground theory of grasping. Different approaches have been developed to achieve firm grasps.

However, when notions such as task requirements are involved, many constraints arise such

that finding suitable firm grasps becomes more difficult. When a robotic hand is considered,

a grasp has generally to satisfy three main sets of constraints: constraints due to the robotic

hand and its fingers capabilities, constraints due to object geometric features and constraints

due to task requirements. Determining a set of contacts on the surface of an object that meet

these constraints is called grasp synthesis. Grasp synthesis, has been tackled with two dif-

ferent approaches: analytical or empirical. Analytical approaches choose the finger positions

and the hand configuration with kinematical and dynamical formulations. Thus, they gener-

ally optimize an objective function such as the grasp stability or the task requirements. On

the other hand, empirical (knowledge-based) approaches use learning algorithms to choose

a grasp that depend on the task and on the object’s geometry. Different algorithms have

been developed in grasp planning for two-dimensional objects [Liu00, PF95]. However, grasp

synthesis for three-dimensional objects is still an active research area. This is mainly due to

the complex geometry and high dimensionality of the grasp space. This chapter introduces

[Liu00] Y.H. Liu. Computing n-finger form-closure grasps on polygonal objects. International Journal

of Robotics Research, 19:(2):149158, 2000.

[PF95] J. Ponce and B. Faverjon. On computing three finger force closure grasp of polygonal objects.

IEEE Transactions on Robotics and Automation, 11:(6):868881, 1995.
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first a description of a grasp along with the properties used to evaluate its suitability. Cur-

rent literature for analytical and empirical grasp synthesis strategies for 3D objects is then

reviewed.

2.1 Description of a Grasp
A grasp is defined as a system in which an object is gripped by the fingers of a robotic or

human hand. The configurations of the hand, the object and the contacts on the object have

an effect on the properties of the grasp. The foundation for the current research in this area

was laid out by Salisbury [SR82] . In his thesis he classified types of contacts between two

bodies. He also derived the grip transformation (also known as the grasp map) which relates

forces at the contacts points to overall object forces. Finally, he provided an analysis of the

desirable kinematic properties of an articulated robotic hand. The research that followed his

works developed new methods to synthesize grasps and new measures to analyze the quality

of a given grasp. This section summarizes significant grasp attributes. It first examines the

contact interface between the fingers and the object. The grip map and the main grasp

properties are then presented.

2.1.1 Contact Models

The contact model defines the connectivity at the contact point between a finger and the

grasped object. Three common models are: frictionless point contact, point contact with

friction (hard finger), and soft finger contact. The frictionless point contact model allows

the finger to exert a force on the object only in the direction of the object surface normal at

the contact point. The hard finger model adds tangential friction force components at the

contact point, limited by a friction coefficient, µ. The set of possible contact forces is defined

by a friction cone about the object surface normal. The soft finger model adds the ability

to generate a torque about the surface normal, limited by a torsional friction coefficient,

γ. Figure 2.1 illustrates each contact model and provides definitions of the wrench bases

and force constraints [MLS94]. The contact reference frame is chosen such that the z-axis is

collinear with the inward surface normal at the point of contact.

2.1.2 Grasp Wrench Space

Any force acting at a contact point on the object also creates a torque relative to reference

point r that can be arbitrary chosen. Often the center of mass is used as that reference point

to give it a physical meaning. These force and torque vectors are concatenated to a wrench.

A grasp wrench space (GWS) is characterized by the set of wrenches that can be applied to

[SR82] J.K. Salisbury and B. Roth. Kinematic and force analysis of articulated hands. ASME J. Mech.,

Transmissions, Automat.,Design, 105:33–41, 1982.

[MLS94] R.M. Murray, Z. Li, and S.S. Sastry. A mathematical introduction to robotic manipulation.

Orlando, FL: CRC, 1994.
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Figure 2.1: Common Contact Types [MLS94]

the target object from the contacts of a grasp, given certain limitations on applied forces. The

grasp wrench space is bounded by the convex hull of the contact wrenches formed from unit

applied forces at the contact of the grasp [FC92]. The length of applied forces is normalized

to a unit force as each finger is assumed to apply the same magnitude of force. Note that

only the contact model and contact locations on the object are factors in determining the

grasp wrench space. The configuration of the hand is not addressed and does not even need

to be defined.

2.1.3 The Goal of a Grasping Strategy

The first goal of every grasping strategy is to ensure stability. A grasp is stable if a small

disturbance, on the object position or finger force, generates a restoring wrench that tends

[FC92] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings of IEEE International

Conference on Robotics and Automation, 1992.
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to bring the system back to its original configuration [HK96, BDK98]. Nguyen [Ngu87]

introduces an algorithm for constructing stable grasps. Nguyen also proves that all 3D force-

closure grasps can be made stable. A grasp is force-closure when the fingers can apply

appropriate forces on the object to produce wrenches in any direction. In the literature,

this condition may be confused with form-closure. The latter induces complete kinematical

restraint of the object and is obtained when the positions of the fingers ensure object immo-

bility. Bicchi [Bic95] describes in detail these conditions.

Obviously, stability is a necessary but not a sufficient condition for a grasping strategy.

When we reach out to grasp an object, we have a goal in our mind or a task to accomplish.

Thus, in order to successfully perform the task, the grasp should also be compatible with

the task requirements. Computing task-oriented grasps is consequently crucial for a grasping

strategy.

Finally, because of the variety of objects shapes and sizes, a grasping strategy should

always be prepared to grasp new objects.

Figure 2.2: The ultimate goal of a grasping strategy.

[HK96] W.S. Howard and V. Kumar. On the stability of grasped objects. IEEE Transactions on

Robotics and Automation, 12(6):904917, 1996.

[BDK98] H. Bruyninckx, S. Demey, and V. Kumar. Generalized stability of compliant grasps. In

Proceedings of IEEE International Conference on Robotics and Automation, page 23962402,

1998.

[Ngu87] V.D. Nguyen. Constructing stable grasps in 3d. In Proceedings of IEEE International Conference

on Robotics and Automation, pages 234–239, 1987.

[Bic95] A. Bicchi. On the closure properties of robotic grasping. International Journal of Robotics

Research, 14:(4):319–334, 1995.
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Thus, a grasping strategy, as shown in (Fig. 2.2), should ensure stability, task compat-

ibility and adaptability to novel objects. In other terms, a grasp synthesis strategy should

always have an answer to the following question: where to grasp a novel object in order to

accomplish a task? Analytical and empirical approaches answer this question differently.

2.2 Analytical Approaches
Analytical Approaches consider the laws of physics, kinematics and dynamics in determining

grasps. The complexity of this computation arises from the number of conditions that must be

satisfied for a successful grasp. We previously showed that two main conditions identified in

the grasping bibliography are force-closure and task compatibility. The following paragraphs

present strategies developed to meet these conditions. The diagram of (Fig. 2.3) summarizes

these strategies. A quick look at this diagram shows that many works have been developed

to compute force-closure grasps but only few have addressed the problem of computing task

oriented ones. This is due to the difficulty of the latter. In the following, we present and

discuss some relevant works for generating force-closure and task-oriented grasps.

Figure 2.3: Analytical approaches for grasp synthesis of 3D objects.

2.2.1 Force-Closure Grasps

The works in this section present techniques for finding force-closure grasps for 3D objects.

For this purpose, two approaches may be considered: (1) analyzing whether a grasp, defined

by a set of contacts, is force-closure or not or (2) finding places to put the fingertips, such
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that the grasp is force-closure. The former considers force-closure necessary and sufficient

conditions and will be detailed in chapter 4. The latter is the force-closure grasp synthesis

problem and it is the one considered here. Given the quantity of relevant work in this field,

we divide them into the following groups: (1) force-closure grasps synthesis for 3D objects

and (2) optimal force-closure grasps synthesis according to a quality criterion.

2.2.1.1 Force-Closure Grasps Synthesis for 3D Objects

Depending on the object model, polyhedral or complex, different grasps synthesis strate-

gies have been proposed in the literature. We present first those dealing with polyhedral

objects. These objects are composed of a finite number of flat faces. Evidently, each face

has a constant normal and the position of a point on a face can be parameterized linearly

by two variables. Based on these properties, grasp synthesis approaches dealing with poly-

hedral objects reduce the force-closure condition to a test of the angles between the faces

normals [Ngu87] or use the linear model to derive analytical formulation for grasps charac-

terization [PSBM93, LDW99, DLSX00]. Thus, these approaches do not consider the issue

of selecting a grasping facet. An exhaustive search is performed instead. We present briefly

some of these methods.

Nguyen [Ngu87] : Nguyen developed efficient algorithms for constructing force-closure

grasps on polygons and polyhedra. His analysis concerned frictionless, hard-finger and soft-

finger contacts. He divided the force-closure problem into two independent sub-problems:

force-direction closure and torque closure. Force-direction condition depends on the angle

between the two planes of contacts. Thus, force-direction closure does not depend on the

contact points locations on the faces because the normals are constant on these faces. On

the other hand, Nguyen proved that, for soft contacts, torque closure condition depends on

the line joining contact points location in respect to the corresponding friction cones. This

condition was then extended to the hard and frictionless contacts case (Fig. 2.4).

Ponce et al. [PSBM93, PSSM97] : Ponce et al. characterized the force-closure

[Ngu87] V.D. Nguyen. Constructing stable grasps in 3d. In Proceedings of IEEE International Conference

on Robotics and Automation, pages 234–239, 1987.

[PSBM93] J. Ponce, S. Sullivan, J.D. Boissonnat, and J.P. Merlet. On characterizing and computing three-

and four-finger force-closure grasps of polyhedral objects. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 821–827, 1993.

[LDW99] Y.H. Liu, D. Ding, , and S. Wang. Constructing 3d frictional form-closure grasps of polyhedral

objects. IEEE Transactions on Robotics and Automation, page 19041909, 1999.

[DLSX00] D. Ding, Y. Liu, Y.T. Shen, and G.L. Xiang. An efficient algorithm for computing a 3d form-

closure grasp. In Proceedings of IEEE International Conference on Robotics and Automation,

page 12231228, 2000.

[PSSM97] J. Ponce, S. Sullivan, A. Sudsang, and J.P. Merlet. On computing four-finger equilibrium

and force-closure grasps of polyhedral objects. International Journal of Robotics Research,

16:(1):1135, 1997.
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Figure 2.4: Examples of force-closure grasps in 3D with three hard-finger contacts [Ngu87].

grasps of 3D polyhedral objects for hard finger contacts. Based on the property that each

point on a plane face can be parameterized linearly with two parameters, the authors for-

mulated necessary linear conditions for three and four-finger force-closure grasps (Fig. 2.5)

and implemented them as a set of linear inequalities in the contact positions. Finding all

force-closure grasps is thus set as a problem of projecting a polytope onto a linear subspace.

Figure 2.5: Four-finger force-closure grasps of a 18-sided polyhedron [PSSM97].

Liu et al. [LDW99] : Liu et al. discussed the force-closure grasp synthesis problem

for n fingers when n − 1 fingers have fixed positions and the grasp with the n − 1 fingers is

not force-closure. Using the linear parametrization of a point on an object facet, they search

locations on that facet for the nth finger that ensure force-closure. Grasp computation is

transformed to a problem of computing the convex cone of the primitive contact wrenches of

the n− 1 fingers and then checking the intersection between a circular region and a convex

polygon in a 2D space. The previous ideas are extended in [DLW00] to compute the loca-

tions of n−k fingers given the locations for k fingers that do not generate a force-closure grasp.

Ding et al. [DLSX00] : Ding et al. presented an algorithm to compute the positions

for n fingers to form a force-closure grasp from an initial random grasp. The algorithm first

arbitrarily chooses a grasp on the given faces of the polyhedral object. If the selected grasp is

not form-closure or in other words if the origin O of the wrench space lies outside the primi-

[DLW00] D. Ding, Y. Liu, and S. Wang. Conmputing 3-d optimal form-closure grasps. In Proceedings of

IEEE International Conference on Robotics and Automation, page 35733578, 2000.
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tives wrenches convex hull, the algorithm moves each fingertip position at a fixed step on its

corresponding face so that the convex hull moves towards the origin O and consequently the

form-closure property is ensured.

◮ The previous analysis were limited to polyhedral objects such as boxes. They

are efficient when the number of faces of the object is low. However, commonly

used objects like mugs or bottles are not necessarily polyhedral and can rarely be

modelled with a limited number of faces. Hence, when polyhedral grasp synthesis

approaches are applied to these objects, they need a huge computation effort to

study the combinations of their large number constituting faces. Thus, new tech-

niques are required for force-closure grasps synthesis. Such general approaches

are presented in the next paragraph [LLC03, DLW01]. No restrictions are placed

on the object model. The latter are modelled with a cloud of 3D points or a

triangular mesh.

Li et al. [LLC03] : The authors presented an algorithm for computing three finger

force-closure grasps for 2D and 3D objects. They assume hard-finger contacts. Based on

the intersection of the corresponding three friction cones, the authors compute three-finger

force-closure grasps of 2D objects. When dealing with 3D objects, the three contact fingers

constitute a contact plane. By taking into account this plane, the problem of computing

three-finger force-closure grasps for 3D objects is simplified to a 2D force-closure problem.

Ding et al. [DLW01] : The authors proposed an algorithm to synthesize force-closure

grasps with 7 frictionless contacts. The grasped object is discretized so a large cloud of

points pi as well as their normals ni is available. Then, a large collection of contact wrenches

gi can be obtained. The algorithm starts with an initial set of seven contacts randomly

chosen among the set of points. If the selected grasp is force-closure, the algorithm finishes.

Otherwise, the initial contacts are iteratively exchanged with other candidate locations until

a force-closure grasp is obtained. The previous heuristic algorithm is extended in [LLD04]

for any number of contacts with or without friction.

◮ Such methods find contact points on a 3D object surface that ensure force-

closure. But what about computing good force-closure grasps? For this purpose,

different quality criteria were introduced to the grasping literature. In the fol-

lowing, we present some relevant works on computing optimal grasps.

[LLD04] Y.H. Liu, M.L. Lam, and D. Ding. A complete and efficient algorithm for searching 3-d

form closure grasps in the discrete domain. IEEE Transactions on Robotics and Automation,

20:(5):805816, 2004.
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Figure 2.6: Moving the convex hull gradually closer and closer to the origin of the wrench

space O through an iterative process. (a) Form-closure grasp. (b) Non form-closure

grasp [LXL04].

2.2.1.2 Optimal Force-Closure Grasps on 3D Objects

Optimal force-closure grasps synthesis concerns determining the contact points locations so

that the grasp achieves the most desirable performance in resisting external wrench loads.

These approaches are tackled between optimizing and heuristical techniques. This paragraph

reviews first otpimizing techniques. These techniques compute optimal force-closure grasps

by optimizing an objective function according to a pre-defined grasp quality criterion. When

objects are modelled with a set of vertices, they search all their combinations to find the opti-

mal grasp [MC94]. On the other hand, for smoothed objects such as ellipsoids, the primitive

wrenches of the grasp are also smooth functions of the grasp configuration. Thus, a gradient

descent permit in these cases to compute optimal grasps [ZW03, ZD04].

Mirtich et al. [MC94] : Mirtich and Canny developed two optimality criteria and

used them to derive optimum two and three finger grasps of 2D objects and optimum three

fingers grasps of 3D polyhedra objects. Whether the first or the second criterion is used, the

maximum circumscribing or the maximum inscribing equilateral triangle defines the optimum

grasp of a 3D object (Fig. 2.7). The optimum grasp points must be vertices of the polyhedron.

Thus, if we dispose of a n-vertices polyhedron, testing all triples of vertices of the polyhedron

gives an O(n3) algorithm for finding the optimum three finger grasp of the polyhedron.

Zhu and Wang [ZW03] : Zhu and Wang proposed an algorithm to synthesize grasps

for any 3D object with smooth curved surfaces with any number of contacts. The algorithm

is based on the concept of the Q distance or Q norm. This norm quantifies the maximum

[MC94] B. Mirtich and J. Canny. Easily computable optimum grasps in 2d and 3d. In Proceedings of

IEEE International Conference on Robotics and Automation, 1:739–747, 1994.

[ZW03] X. Zhu and J. Wang. Synthesis of force-closure grasps on 3d objects based on the q distance.

IEEE Transactions on Robotics and Automation, 19:(3), 2003.

[ZD04] X. Zhu and H. Ding. Planning force-closure grasps on 3-d objects. In Proceedings of IEEE

International Conference on Robotics and Automation, 2004.
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Figure 2.7: A circumscribing prism for object O (point p3 and force f3 are hidden on the

back face) [MC94].

wrench that can be resisted in a predefined set of directions. Since the Q distance is dif-

ferentiable on the object surface, its derivative can be calculated and used for the gradient

descent minimization in the grasp configuration space to find an optimal grasp.

Zhu and Ding [ZD04] : Zhu and Ding proposed a similar algorithm. The grasp con-

figuration is denoted by u, which specifies the positions of the contact points. Moreover, the

authors assume that the object has smooth surface. Thus, the primitive wrenches can be

represented as smooth functions of the grasp configuration. f(u) is a function that provides

a measure on how far the grasp is from losing the closure property. Thus, a natural way to

compute the force-closure grasp is to minimize f(u). The optimization problem can be solved

by descent search.

◮ Searching the grasp solution space for an optimal grasp is a complex problem

requiring a large amount of computing time. Fast algorithms are required to

integrate grasp planners in on-line planning systems for robots. Hence, heuristic

approaches were applied to the grasp synthesis problem. These approaches gen-

erate first many grasps candidates, filtered them with a simple heuristic and then

choose the best candidate [FH97, BFH03, MKAC03]. However, such approaches

suffer from the local minima problem.

Fischer and Hirzinger [FH97] : Fischer and Hirzinger presented a simple heuristic

search to synthesize force-closure grasps with three fingers. A coordinate system with arbi-

trary origin and orientation is generated inside the bounding box of the object. Three rays

are generated in predefined directions from the origin of this frame (Fig. 2.8). If all the three

rays yield one penetration point, the set of intersection points with the object surface is a

grasp candidate. Grasp candidates are then filtered to exclude candidates which can not lead

[ZD04] X. Zhu and H. Ding. Planning force-closure grasps on 3-d objects. In Proceedings of IEEE

International Conference on Robotics and Automation, 2004.
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to feasible grasps. Candidate grasps passing the filters are ordered according to a quality

measure, and the algorithm finally chooses the best quality grasp within the initial candidate

grasps. This work is extended in [BFH99] to four-fingers grasps.

Figure 2.8: Generation of a grasp candidate [FH97].

Borst et al. [BFH03] : The authors generated grasp candidates randomly choosing

contacts on the object surface. The candidates are pre-filtered to discard those candidates

for which a computed external force fext breaks the grasp. Among the candidates passing

the pre-filtering stage, the force-closure grasp candidates are selected. The quality of these

candidates is measured according to the classical quality index presented in [FC92], which

quantifies the maximum wrench that the grasp can resist with independence of the wrench

direction. The algorithm finally chooses the best quality grasp. It is tested for 3, 4 and

5 fingers, and it is stated that the generated grasps have a quality similar to the expected

quality from a human grasp on the same objects.

Miller et al. [MKAC03] : By modelling an object as set of shape primitives such as

spheres, cylinders, cones and boxes, the authors defined a set of rules to generate a set of grasp

starting positions and pre-grasp shapes that can then be tested on the object model. The

best grasp in then determined according to the quality criterion of Ferrari and Canny [FC92].

[FC92] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings of IEEE International

Conference on Robotics and Automation, 1992.
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◮ All these approaches have studied stable grasps and developed various stability

criteria to find optimal grasps. But what really dictates the choice of a grasp?

After examining a variety of human grasps, the authors in [CW86] conclude

that the choice of a grasp was dictated by the tasks to be performed with the

object. Thus, finding a good stable grasp of an object is only a necessary but

not sufficient condition. Therefore, many researchers addressed the problem of

computing task-oriented grasps.

2.2.2 Task Compatibility

A good grasp should be task oriented. Few grasping works take the task into account. This

is due to the difficulties of modelling a task and providing criteria to compare the suitabil-

ity of different grasps to the task requirements. Works that addressed task-oriented grasps

computation are reviewed in this paragraph.

Li and Sastry [LS88] : Li and Sastry developed a grasp quality measure related to the

task to be performed. They showed that the choice of a task oriented grasp should be based

on the capability of the grasp to generate wrenches that are relevant to the task. Assum-

ing a knowledge of the task to be executed and of the workpiece geometry (Fig. 2.9), they

planned a trajectory of the object before the grasping action in order to model the task by

a six-dimensional ellipsoid in the object wrench space. The latter is then fitted to the grasp

wrench space. The problem with this approach is how to model the task ellipsoid for a given

task, which the authors state to be quite complicated.

Figure 2.9: Peg-in-hole task [LS88].

[LS88] Z. Li and S.S. Sastry. Task-oriented optimal grasping by multifingered robot hands. IEEE

Journal of Robotics and Automation, 4:(1), 1988.
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Pollard [Pol97] : Nancy Pollard designed a system that found grasps that were within

a certain percentage of the quality of a given prototype grasp. A grasp prototype is defined

as an example object and a high quality grasp of that object. A task is characterized as

the space of wrenches that must be applied to the object by the robot in order to complete

the task objective. Assuming that the probability for every wrench direction to occur as a

disturbance is equal, the task wrench space is modelled as a unit sphere. The grasp quality

measure used is the amount the robot has to squeeze the object in order to be capable of

resisting all task wrenches while maintaining the grasp. By accepting the reduced quality,

the contact points of the prototype grasp can be grown into contact regions. Pollard’s system

can be considered one of the more general grasp synthesis tools available, but it has a few

difficulties. While the prototypes allow her to greatly reduce the complexity of the search,

a system to choose the closest prototype grasp is not given. Thus, the computed grasps are

unlikely to be perfect for a given task or object.

Borst et al. [BFH04] : Pollard introduced the Object Wrench Space (OWS) which

incorporates the object geometry into the grasp evaluation. The OWS contains any wrench

that can be created by disturbance forces acting anywhere on the object surface (Fig. 2.10).

Borst et al. combined the idea of the task ellipsoid [LS88] with the concept of the OWS

to obtain a new description of the task wrench space (TWS). The latter is the 6D ellipsoid

circumscribing the OWS. The quality of a grasp is obtained by comparing the TWS (which

is no longer a sphere) with the Grasp wrench space (GWS) of the grasp that is actually

evaluated. In other words, for a given TWS, the largest scaling factor is searched to fit it

into a GWS.

Figure 2.10: Illustration of different force distributions that produce the wrench set of the

OWS. Each distribution contributes one single wrench to the OWS set. The length of all

force vectors sum to the unit length [BFH04].

Haschke et al. [HSSR05] : The authors proposed a method for computing a task

[Pol97] N.S. Pollard. Parallel algorithms for synthesis of whole-hand grasps. In Proceedings of IEEE

International Conference on Robotics and Automation, 1997.

[BFH04] Ch. Borst, M. Fischer, and G. Hirzinger. Grasp planning: How to choose a suitable task wrench

space. In Proceedings of IEEE International Conference on Robotics and Automation, 2004.

[HSSR05] R. Haschke, J.J. Steil, I. Steuwer, and H. Ritter. Task-oriented quality measures for dextrous



18 Grasp Synthesis for 3D Objects

oriented quality measure. The approach is based on a linear matrix inequality formalism,

treating friction cone constraints without the pyramidal approximation. It evaluates the grasp

for a given task wrench along a single direction and specifies the largest applicable wrench

along this direction (Fig. 2.11). Thus, It allows optimization of the maximal applicable

wrench for a given task wrench direction.

Figure 2.11: The proposed grasp quality measure µ(F̂t) maximizes the magnitude α of a

given task wrench F̂t in the grasp wrench space W [HSSR05].

Prats et al. [PSdP07] : Instead of finding a grasp and evaluating its suitability for the

desired task, the authors proposed an approach that takes the task into account from the

early grasp planning stages using hand-preshapes. They defined four hand preshapes along

with an approximation of their grasp wrench space (Fig. 2.12). The hook power preshape

is adapted for grasping handles and pushing along a known direction. The hook precision

has the same preshape as the hook power one but the contact is made with fingertips. The

precision preshape permit forces to be exerted along the two senses of a same direction which

enables turning a tap for example. In cylindrical preshape, the fingers enclose the object

and make force towards the palm. Thus, to accomplish a task, a robot has to align the

appropriate hand’s task frame with a target frame that is selected during task planning. The

hand preshape and its corresponding target frame are selected according to the task direction

and a simplified model of the manipulated object. Objects are modelled as hierarchy of boxes.

This algorithm was tested for accomplishing a common task, turning a door handle.

grasping. Proceedings IEEE International Symposium on Computational Intelligence in Robotics

and Automation, CIRA, pages 689–694, 2005.

[PSdP07] M. Prats, P.J. Sanz, and A.P. del Pobil. Task-oriented grasping using hand preshapes and task

frames. In Proceedings of IEEE International Conference on Robotics and Automation, 2007.
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Figure 2.12: Task frames for the hook power (top-left), hook precision (top-right), precision

(bottom-left) and cylindrical (bottom-right) preshapes [PSdP07].

◮ The task wrench space (TWS) models wrenches applied on the grasped object

in order to perform a task. Given an object and a task to be executed, Li and

Sastry proposed to represent the TWS as a six-dimensional ellipsoid. The latter

conforms well the task but its difficult to obtain. The authors were conducted to

pre-compute the trajectory followed by the object to accomplish the task. Obviously,

this approach is not adapted to new tasks nor to new objects, the whole computation

procedure will be repeated. Pollard models the TWS with a six-dimensional unit

sphere. Thus, it is assumed that the probability for every wrench direction to occur

is equal. This representation has no physical interpretation since wrenches occurring

at an object boundary are not uniform. Consequently, the TWS is not uniform as

well. Borst approximates the OWS with an ellipsoid in order to model the TWS.

This representation takes into account the object geometry and the wrenches it

may encounter. But since this representation accounts for different wrenches on the

whole object boundary, it does not consider task specific information. Thus, the

computed grasp is not the best adapted to a specific task. Haschke optimizes the

maximal applicable wrench for a given task wrench direction. However, the paper

does not include any information about the corresponding task wrench direction

computation. Prats approach is adapted for tasks occurring along a specific direction

such as opening a door or a drawer where it is easy to model objects with boxes

in order to determine their corresponding target frame. Such approach fails to

associate appropriate hand preshapes to more complex tasks.
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2.2.3 Discussion on Analytical Approaches

The analytical methods described in the previous sections concentrate on the analysis of

a particular grasp or the development of force-closure or task-oriented criteria to compare

grasps. The size of the grasp solution space is the most difficult obstacle to overcome in

optimizing the grasp. The presented criteria to compute force-closure grasps may yield to

optimal stable grasps adapted for pick and place operations (Fig. 2.13). However, physical

interaction through manipulation in our daily life, even for simple and common tasks, goes

beyond grasping for picking and placing. That’s why many researchers addressed the problem

of task-oriented grasping. The goal of task-oriented grasp planning is to solve the following

Figure 2.13: Analytical force-closure grasps synthesis ensure stability but not task-

compatibility. They are also not adapted to new objects. For each novel object, the complete

computation is repeated.

problem: given an object and a task, how to grasp the object to efficiently perform the task?

Two main problems are encountered when addressing this issue:

- The difficulty of modelling a task.

- The computational effort to find a grasp suitable for the corresponding task.

Different task-oriented criteria were introduced to the grasping literature and a task-oriented

grasp was obtained by generating and evaluating lots of grasps according to these criteria.

But all the proposed approaches could not overcome the problem of the task representation

and thus are computationally unaffordable (Fig. 2.14). There are also not adapted neither

for new tasks nor for new objects. While the selection of task-oriented optimal grasp is very

easy for a human hand, it is still a complicated process for a robot hand. Hence, there is

a need to a system that takes into account aspects of naturals grasps by imitating humans

rather than modelling tasks.

In order to avoid the computational complexity of analytical approaches, empirical tech-

niques were introduced to the grasping problem. By taking a further look at the diagrams

of (Fig. 2.3) and (Fig. 2.15), we notice that most recent works are based on empirical ap-

proaches. These techniques are detailed in the next paragraph.
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Figure 2.14: Analytical task-oriented grasps synthesis ensure stability and task-compatibility

but they are not adapted to new objects and suffers from task-modelling problem.

2.3 Empirical Approaches
Empirical grasping methods avoid the computational complexity of analytical techniques

by attempting to mimic human grasping strategies. Empirical strategies for grasp plan-

ning can be divided into two main kinds: (1) systems based on the observation of the ob-

ject to be grasped and (2) systems based on the observation of a human performing the

grasp (Fig. 2.15). The former techniques generally learn to associate objects characteristics

with a hand preshape, while in the latter, a robot observes a human operator performing

a grasp and try then to imitate the same grasp. This technique is called in the literature

learning by demonstration approach.

Figure 2.15: Empirical approaches for grasp synthesis of 3D objects.
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2.3.1 Systems based on humans observation: Learning By Demonstration

Different Learning-by-Demonstration frameworks, where the robot observes the human per-

forming a task and is afterwards able to perform the task itself were proposed in the literature.

One of the problems arising in human based learning settings is the one of measuring human

performance. Some researchers use datagloves, map human hand to artificial hand workspace

and learn the different joint angles [FdSH98, EK04], hand preshapes [KWSN05] or the cor-

responding task wrench space [AC08] in order to perform a grasp. Others use stereoscopy to

track the demonstrator’s hand performing a grasp [HBZ06] or try to recognize its hand shape

from a database of grasp images [RKK08]. Mirror neurones that fire not only when grasping

but also when observing an action were also introduced to the grasping problem [OA02]. The

following paragraphs discuss these approaches.

Aleotti and Caselli [AC08]: Aleotti and Caselli proposed a method for programming

task-oriented grasps by means of user-supplied demonstrations. The procedure is based on

the generation of a functional wrench space which is built by demonstration and interactive

teaching. The idea is to let an expert user demonstrate a set of task-appropriate example

grasps on a given target object, and to generate the associated functional wrench space as

the convex union of the single wrenches (Fig. 2.16). The grasp evaluation is obtained by

computing a quality metric Q, defined as the largest factor by which the grasp wrench space

(GWS) of the grasp to be evaluated can be scaled to fit in the demonstrated functional

wrench space (FWS). Functional wrench space Grasp demonstration is performed in virtual

reality by exploiting a haptic interface including a dataglove and a motion tracker for sensing

the configuration of human hand [AC07].

[FdSH98] M. Fischer, P. Van der Smagt, and G. Hirzinger. Learning techniques in a dataglove based

telemanipulation system for the dlr hand. In Proceedings of IEEE International Conference on

Robotics and Automation, 1998.

[EK04] S. Ekvall and D. Kragic. Interactive grasp learning based on human demonstration. In Proceed-

ings of IEEE/RSJ International Conference on Robotics and Automation, 2004.

[KWSN05] F. Kyota, T. Watabe, S. Saito, and M. Nakajima. Detection and evaluation of grasping positions

for autonomous agents. In International Conference on Cyberworlds, page 453460, 2005.

[AC08] J. Aleotti and S. Caselli. Programming task-oriented grasps by demonstration in virtual reality.

In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, WS

on Grasp and Task Learning by Imitation, 2008.

[HBZ06] M. Hueser, T. Baier, and J. Zhang. Learning of demonstrated grasping skills by stereoscopic

tracking of human hand configuration. In Proceedings of IEEE International Conference on

Robotics and Automation, 2006.

[RKK08] J. Romero, H. Kjellstrm, and D. Kragic. Human-to-robot mapping of grasps. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems, WS on Grasp and Task

Learning by Imitation, 2008.

[OA02] E. Oztop and M. A. Arbib. Schema design and implementation of the grasp-related mirror

neuron system. Biological Cybernetics, 87:(2):116–140, 2002.

[AC07] J. Aleotti and S. Caselli. Robot grasp synthesis from virtual demonstration and topology-

preserving environment reconstruction. In Proceedings of IEEE/RSJ International Conference
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Figure 2.16: The left column shows task oriented demonstrated examples grasps along with

the incremental FWS projected onto null torque space. The right column shows evaluation

of a good grasp (top row) and a low-quality grasp (bottom row) [AC08].

Fischer et al. [FdSH98] : The authors presented a setup to control a four-finger

anthropomorphic robot hand using a dataglove. In order to measure the finger tip positions

of an operator wearing a dataglove, the fingertips were marked with round colored pins. A

calibrated stereo camera setup was used to track the four color markers in real time, from

which the 3D positions of the color markers were computed. During the measurements, the

operators wrist was fixed while the fingers were moved. As the kinematics and configuration

spaces of a human hand and an artificial robotic hand are generally different, the fingertip

positions of the robotic hand cannot correspond exactly to the fingertip positions of the

human hand. A good mapping between the human and the artificial fingers positions is

required (Fig. 2.17). Thus, to be able to accurately use the dataglove a nonlinear learning

calibration using a novel neural network technique was implemented. Based on the dataglove

calibration, a mapping for human and artificial hand workspace can be realized enabling an

operator to intuitively and easily telemanipulate objects with the artificial hand.

Ekvall et al. [EK04] : A similar framework is proposed in [EK04]. The human and the

robot are both standing in front of a table, on which a set of objects are placed. The human

demonstrates a task to the robot by moving objects on the table. The robot recognizes

which object has been moved. Using magnetic trackers, the location and orientation of

the fingers and palm of the human hand are obtained. Then a mapping between human

and robot hand permits a robot to learn the different joint values while observing a grasp

execution (Fig. 2.18). Based on this data, the authors use Hidden Markov Models (HMM) to

on Intelligent Robots and Systems, 2007.



24 Grasp Synthesis for 3D Objects

Figure 2.17: Mapping the workspaces of a human finger (dark) to an artificial one [FdSH98].

enable recognition of four different grasp types. Thus, the robot is able to reproduce the task

performed by the human. Since objects may not be placed at the same location as during the

demonstration, more recently [EK07], the authors addressed the problem of grasp generation

and planning when the exact pose of the object is not available. Thus a method for learning

and evaluating the grasp approach vector was proposed so that it can be used in the above

scenario.

Figure 2.18: An example mapping of a human pointing grasp using the Robonaut

Hand [EK04].



2.3 Empirical Approaches 25

◮ Although magnetic trackers and datagloves deliver exact values of hand joints,

it is desirable from a usability point of view that the user demonstrates tasks to

the robot as naturally as possible; the use of gloves or other types of sensors may

prevent a natural grasp. This motivates the use of systems with visual input.

Hueser et al. [HBZ06] : The authors proposed a vision and audio based approach. The

scenario of learning by demonstration consists of a human demonstrator standing opposite

the service robot and a table that is placed between them. Several objects are placed on the

table. These objects are trained for recognition in advance and offline. The user demonstrates

a grasping skill by saying ”start” and reaching out his hand to the object he wants to

grasp. Then he grasps the object and says ”stop”. The robot stereoscopically tracks the

demonstrator’s hand several times to collect sufficient data (Fig. 2.19). However, the accuracy

of the visual tracking is limited by the camera’s resolution and the quality of the calibration

procedure. Additionally, every time a grasp is demonstrated, the user performs it differently.

To compensate for these inaccuracies, the measured trajectories are used to train a Self-

Organizing-Map (SOM). The SOMs give a spatial description of the collected data and serve

as data structures for a reinforcement learning (RL) algorithm which optimizes trajectories

for use by the robot. The authors, in [HZ08], applied a second learning stage to the SOM,

the Q-Learning algorithm. This stage accounts for changes in the robots environment and

makes the learned grasping skill adaptive to new workspace configurations.

Romero et al. [RKK08] : Another vision based Programming by Demonstration (PbD)

system is proposed in [RKK08]. The system consists of three main parts: The human grasp

classification, the extraction of hand position relative to the grasped object, and finally the

compilation of a robot grasp strategy. The hand shape is classified as one of six grasp

classes, labelled according to Cutkosky’s grasp taxonomy [CW86]. Instead of 3D tracking

of the demonstrator hand over time, the input data consists of a single image and the hand

shape is classified as one of the six grasps (Fig. 2.20) by finding similar hand shapes in a large

database of grasp images. From the database, the hand orientation is also estimated. The

recognized grasp is then mapped to one of three predefined Barrett hand grasps. Depending

on the type of robot grasp, a precomputed grasp strategy is selected. The strategy is further

[HBZ06] M. Hueser, T. Baier, and J. Zhang. Learning of demonstrated grasping skills by stereoscopic

tracking of human hand configuration. In Proceedings of IEEE International Conference on

Robotics and Automation, 2006.

[RKK08] J. Romero, H. Kjellstrm, and D. Kragic. Human-to-robot mapping of grasps. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems, WS on Grasp and Task

Learning by Imitation, 2008.

[CW86] M. Cutkosky and P. Wright. Modeling manufacturing grips and correlations with the design of

robotic hands. In Proceedings of IEEE International Conference on Robotics and Automation,

pages 1533–1539, 1986.
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Figure 2.19: Examples of the robot’s hand configuration selection: The tracked hand per-

forming different grasps is shown in (a) and (d). The weights computed from the tracking

algorithm are shown in (b) and (e). They are used to lead to the Barrett-Hand configurations

as shown in (c) and (f) [HBZ06].

parameterized by the orientation of the hand relative to the object.

◮ These approaches enable objects telemanipulation or grasp type recognition.

However, their learning data is based on the hand observation, i.e the joint angles,

the hand trajectory or the hand shape. Thus the learning algorithm do not take

into consideration the manipulated object properties. Consequently, these meth-

ods are not adapted to grasping previously unknown objects. In the remaining of

this paragraph, we present two learning approaches that take into account some

object features. The first work [OA02] roughly estimates the size and location

of the object and relate them to the hand properties. The second [KWSN05]

finds cylinder-likeness surfaces on the object and associate these surfaces with

different hand shapes.

Oztop and Arbib [OA02] : The authors propose a grasping strategy based on mirror

neurones. The latter were identified within a monkey’s premotor area F5 and they fire not

only when the monkey performs a certain class of actions but also when the monkey observes

another monkey (or the experimenter) perform a similar action. It has been argued that

these neurons are crucial for understanding of actions by others. In a grasping context, the

role of the mirror system may be seen as a generalization from one’s own hand to an other’s

hand. Thus, in a biologically motivated perspective, the authors propose a very detailed
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Figure 2.20: The six grasps (numbered according to Cutkosky’s grasp taxonomy [CW86])

considered in the classification, and the three grasps for a Barrett hand, with human-robot

class mappings ((a,b,c,e)→(g), (d)→(h), (f)→(i)) shown. a) Large Diameter grasp, 1. b)

Small Diameter grasp, 2. c) Abducted Thumb grasp, 4. d) Pinch grasp, 9. e) Power Sphere

grasp, 10. f) Precision Disc grasp, 12. g) Barrett Wrap. h) Barrett Two-finger Thumb, i)

Barrett Precision Disc [RKK08].

model of the functioning of these neurones in grasp learning. They present a hand-object

state association schema (Fig. 2.21) that combines the hand related information as well as

the object information available. This method is capable of grasp recognition and execution

(pinch, precision or power grasp) of simple geometric object models. The only object features

used are the object size and location.

Kyota et al. [KWSN05] : Kyota et al. proposed a method for detection and evaluation

of grasping positions (Fig. 2.22). Their technique detects appropriate portions to be grasped

on the surface of a 3D object and then solves the problem of generating the grasping postures.

Thus, points are generated at random locations on the whole surface of the object. At

each point, the cylinder-likeness, that is the similarity with the surface of a cylinder, is

computed. Then, the detected cylindrical points are evaluated to determine whether they

are in a graspable portion or not. Once the graspable portions are identified, candidate hand

shapes are generated using a neural network, which is trained using a data glove. Grasps are

then evaluated using the standard wrench space stability criterion.
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Figure 2.21: The components of hand state F(t)=(d(t), v(t), a(t), o1(t), o2(t), o3(t), o4(t)).

Note that some of the components are purely hand configuration parameters (namely v, o3,

o4, a) while the others relate the hand to the object [OA02]

◮ Oztop and Arbib’s approach can determine the grasp type of simple geomet-

ric objects. When facing new objects, it will roughly estimate their sizes and

locations in order to identify the corresponding hand parameters and thus the

grasp type in order to pick them up. Kyota’s method finds different possible

grasping regions on the object surface. However, it does not take into account

object usage. Thus, these approaches can find stable grasps for pick and place

operations but are unable to determine a suitable grasp for object manipulation.

2.3.2 Systems based on the object observation

Grasping strategies based on the object observation analyze its properties and learn to asso-

ciate them with different grasps. Some approaches associate grasp parameters or hand shapes

to objects geometric features in order to find good grasps in terms of stability [PMAT04,

LFP07]. Other techniques learn to identify grasping regions in an object image [SDKN08,

[PMAT04] R. Pelossof, A. Miller, P. Allen, and T.Jebara. An svm learning appraoch to robotic grasping.

In Proceedings of IEEE International Conference on Robotics and Automation, 2004.

[LFP07] Y. Li, J.L. Fu, and N. Pollard. Data-driven grasp synthesis using shape matching and task-based

pruning. IEEE Transactions on Visualization and Computer Graphics, 13:(4):732–747, 2007.
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Figure 2.22: Grasping postures for a frying pan [KWSN05].

SLZS08]. These techniques are developed in the following.

Pelossof et al. [PMAT04] : Pelossof et al. used support vector machines to estimate

the quality of a grasp given a number of features describing the grasp and the object. The

machine learning algorithms used permit to build a regression mapping between object shape,

grasp parameters and grasp quality. Once trained, this regression mapping can be used very

efficiently to estimate the grasping parameters that obtain highest grasp quality for a new

query set of shape parameters. Once more, the authors use simple object representation in

their learning algorithm, such as spheres, cylinders etc. (Fig. 2.23). Since the grasp quality

metric used, determines the magnitude of the largest worst-case disturbance wrench that can

be resisted by a grasp of unit strength [FC92], the optimal grasps computed by the algorithm

are good stable grasps adapted for pick and place operations.

Saxena et al. [SDKN08] : A learning approach for robotic grasping of novel objects

is presented by Saxena et al. By novel objects, the authors mean ones that are being seen

for the first time by the robot. Based on the idea that there are certain visual features that

indicate good grasps, and that remain consistent across many different objects (such as coffee

mugs handles or long objects such as pens that can be grasped at their mid-point), a learning

approach that uses these visual features was proposed to predict good grasping points. The

[SDKN08] A. Saxena, J. Driemeyer, J. Kearns, and A.Y. Ng. Robotic grasping of novel objects using vision.

The International Journal of Robotics Research, 27(2):157–173, 2008.

[SLZS08] M. Stark, P. Lies, M. Zillich, and B. Schiele. Functional object class detection based on learned

affordance cues. Computer Vision Systems, pages 435–444, 2008.

[FC92] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings of IEEE International

Conference on Robotics and Automation, 1992.
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Figure 2.23: The GraspIt! simulator allows to import a robot hand model (here a Barrett

hand) and a object model. (a) This image shows one successful grasp of the object. (b)

and (c) For each object in the training set, 1600 grasp starting poses are generated and

evaluated [PMAT04].

algorithm predicts a point at which to grasp a 3D object as a function of 2D images. A

supervised learning is applied to identify images patches that contain grasping points. To do

so, a labelled training set of synthetic images of objects labelled with the 2D location of the

grasping point in each image is used (Fig. 2.24). The method starts by dividing the image

into small rectangular patches, and for each patch compute local image features and predict

if it is a projection of a grasping point onto the image plane. The chosen features represent

three types of local cues: edges, textures, and color. Thus given two (or more) images of an

object, the algorithm identify a few points in each image corresponding to good locations at

which to grasp the object. This set of points is then triangulated to obtain a 3D location at

which to attempt a grasp.

Figure 2.24: The images (top row) with the corresponding labels (highlighted in the bottom

row) of the five object classes used for training. The classes of objects used for training were

martini glasses, mugs, whiteboard erasers, books and pencils [SDKN08].
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Stark et al. [SLZS08] : In a similar approach, Stark et al. propose a system for the

detection of functional object classes, based on a representation of visually distinct hints

on object affordances (affordance cues). Objects are classify based on their affordances in

two categories: handle-graspable and sidewall-graspable (Fig. 2.25). Thus, the classification

itself determines how to grasp the object. First the authors determine the interaction region

as the set of object pixels that has been occluded by the human tutor in the course of an

interaction. Affordance cues representation is based on geometric features extracted from a

local neighborhood around that region. Using the affordance cue representation, an Implicit

Shape Model (ISM) serves as the basis for the functional object category detection system in

a 2D image. Once they are trained, these systems do not need any external help to perform

the grasp. The authors, however, do not explain how the grasping points are obtained.

Figure 2.25: Handle-graspable Vs sidewall-graspable objects. Interaction regions are given

in grey [SLZS08].

Li and Pollard [LFP07] : When a complete 3D model of the object is available, Li and

Pollard treated grasping as a shape matching problem. Based on the idea that many grasps

have similar hand shapes, they construct a database of grasp examples. Thus, given a model

of a new object to be grasped, shape features of the object are compared to shape features of

hand poses in the database in order to identify candidate grasps. These shape features capture

information about the relative configurations of contact positions and contact normals in the

grasp (Fig. 2.26). After shape matching, a number of grasps is obtained. Some of these

grasps may be inappropriate to the task. They may fail to support the object securely or

the main power of the grasp may be aligned in the wrong direction for the task. Thus, the

authors used a grasp quality that takes into account both the hand and the task requirements

to evaluate the computed grasps. By applying such a grasp quality, many grasps are pruned.

Even though, the authors stated that the user should select manually the desired grasp from

among the possibilities presented by the system because some of the grasps are unintuitive.

[SLZS08] M. Stark, P. Lies, M. Zillich, and B. Schiele. Functional object class detection based on learned

affordance cues. Computer Vision Systems, pages 435–444, 2008.

[LFP07] Y. Li, J.L. Fu, and N. Pollard. Data-driven grasp synthesis using shape matching and task-based

pruning. IEEE Transactions on Visualization and Computer Graphics, 13:(4):732–747, 2007.
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Thus a fully autonomous system that generates natural grasps should take into account

aspects other than ability to apply forces.

Figure 2.26: Hand pose for the mouse grasp. The figure shows contact points on the hand and

object, and contact normals on the object surface. Note that the inside surface of the hand

contains a great deal of information about the shape of the mouse. If similar features can be

found on a new object, it may be possible to use the same grasp for the new object [LFP07].

◮ All these approaches learn to use objects features in order to compute a corre-

sponding grasp. Thus, these approaches are capable to generalize to new objects.

But what kind of grasps these techniques ensure? Pelossof’s startegy can predict

the quality of a grasp according to a stability criterion. Saxena’s approach find

grasping points on mugs handles or on elongated objects mid-points. Such contact

points are adapted to some objects in terms of task-compatibility but when this

approach encounter elongated objects such as screw-drivers or bottles, it will also

identify a grasping region situated at these objects middles. Such grasps are not

necessarily adapted to such kinds of objects. Stark’s grasping strategy can only

distinguish between two objects classes: handle-graspable (adapted for mugs) and

side-graspable (adapted for bottles). This method does not take into account the

variety of objects shapes and thus the variety of possible grasps. Finally, Li and

Pollard strategy determine for one object different grasps and fail to choose the

one adapted to the task-requirements. In the following, we discuss in details the

limitations of the empirical approaches.

2.3.3 Discussion on Empirical Approaches

The main difficulty of analytical task-oriented approaches was task-modelling. Empirical

approaches based on a human demonstration can overcome this difficulty by learning the

task. For such approaches, when given an object and a task, the teacher shows how the

grasp should be exactly performed. The robot is able afterwards to perform the task for

the given object by itself. However, these systems are not fully autonomous when they face

a new object or a new task (Fig. 2.27). To ensure the latter ability, rather than trying

to reproduce humans grasping gesture, researchers developed systems that focus on objects

observation. These approaches learn to find good grasping region in an object image or
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Figure 2.27: Empirical grasp synthesis approaches based on human demonstration ensure

stability and task compatibility. However, they are not autonomous when facing new objects.

associate objects local features to different hand shapes. These systems can generalize to

new objects but they find either stable grasps or generate for one object different grasps

and fail to select automatically the one that best suits the task (Fig. 2.28). This selection

Figure 2.28: Empirical approaches based on objects observation ensure stability and adapt-

ability to new objects. These systems generate a lot of possible grasping positions and fail

to select the one that best suits the task.

is done manually or use a task-oriented quality criterion which is complicated to compute

(same problem as analytical task-oriented systems). Thus, much research remains to be done

to better understand human grasping and to develop algorithms that achieve natural grasps.

2.4 Conclusion
Generally, a grasp has to satisfy three main sets of constraints: constraints due to the robotic

hand and its fingers capabilities, constraints due to object geometric features and constraints

due to task requirements. Grasp synthesis involves determining a set of contacts on the
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surface of an object that meet these constraints. We have shown that in the literature, grasp

synthesis, has been tackled with two different approaches: analytical or empirical. We have

also shown that the ultimate goal of autonomous grasping strategy is to achieve stability

and task compatibility when grasping new objects. If we summarize the works presented in

the literature, we can conclude that: Force-closure analytical approaches can find stable but

not task-oriented grasps (Fig. 2.13). Task-oriented analytical approaches suffers from a ma-

jor problem: computational complexity when trying to model task requirements (Fig. 2.14).

Empirical systems based on the observation of humans overcome task modelling difficulty by

imitating humans grasping gesture. However, these systems are not fully autonomous when

they face an object completely new (Fig. 2.27). Empirical systems based on objects observa-

tion are adapted to new objects but generate a lot of possible grasping positions and fail to

select the one that best suits the task (Fig. 2.28). When trying to do this autonomously, they

encounter the same problem of analytical task-oriented methods, which is task modelling.

Consequently, we are standing in front of a loop!

How to break the loop? What grasping strategy can ensure stability, task compatibil-

ity and adaptability to new objects? Obviously, adaptability to new objects is ensured by

learning objects characteristics that are relevant to grasping. Stability can be obtained by

computing force-closure grasps. But what about the task requirements? On one hand, task

modelling is difficult. On the other hand, learning specific task/hand performance is possible

but works only on a particular object to perform a particular task. We believe that objects

are made specifically in a way to make their grasp easier. Thus, objects shapes contains valu-

able information about the task they are designated to. Identifying such characteristics in an

object may yield to find an appropriate grasp suitable to the required task. Consequently,

we propose a grasping strategy that is an hybrid of empirical and analytical approaches.

The empirical step will ensure task-compatibility by avoiding the analytical approaches task-

modelling complexity. The analytical step permits contact grasp points generation. The

following chapter details the proposed method.



Chapter 3

Grasping Objects By Components -

Between the Concept and the Technical

Approach

”Si nous prenons la nature pour guide, nous ne

nous égarerons jamais.”

Cicéron

The previous chapter shows that in order to ensure adaptability to new objects, a grasping

strategy should use learning algorithms. Existing learning algorithms find grasps adapted to

pick and place operations and fail to identify the grasp that human choose to pick a novel

object and thus that is compatible with the task requirements. Consequently, a strategy

that learns to associate a grasp to an unknown object/task is still an unsolved problem. We

intend to take this challenge. Grasping a novel object is a task we perform without thinking

about. Thus, what are the factors taken into consideration when choosing a specific grasp

configuration? What should the algorithm learns in order to pick a new object in the same

manner as humans? In other words, what parameters are relevant to new objects grasping?

Are these parameters related to the hand characteristics? Are they related to the object

features?

We show first, in this chapter, that from the neuroscience point of view, objects features are

used differently for recognition and for grasping. In a second time, we show that a low-level

part object representation provide a useful preliminary to its grasping. We emphasize then

the role of such representation in determining an unknown object good grasp.
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3.1 Grasping from the Neuroscience Point of View

Humans are capable of reaching and grasping objects with great dexterity. When we reach

out to pick up an unfamiliar object, the opening of our fingers and the orientation of our hand

reflect the size of the object and its orientation before we make contact with it [Jea88]. A

work with neurological patients has shown that the visual perception of object size, shape and

orientation depends on visual pathways in the cerebral cortex that are separate from those

mediating these same object properties in the control of goal directed grasping [GMJC91,

GMBR94]. The following paragraphs explain briefly experiments that lead to such results.

3.1.1 Separate pathways for perception and prehension

The study is conducted on two patients, DF and RV, with lesions in different parts of the

cerebral visual pathways. DF is a 34-year-old woman who developed visual-form agnosia

following anoxia from carbon monoxide poisoning. She’s unable to identify or recognize

familiar faces, line drawings of common objects or even simple geometric shapes. RV is a

55-year-old woman, who had sustained bilateral lesions of the occipitoparietal cortex. She

had no difficulty in discriminating between different objects shapes. Twelve different shapes

were used to compare DF’s and RV’s ability to discriminate between shapes and to use shape

information to control grasping. When DF and RV were presented with pairs of these shapes,

they showed different discrimination abilities: DF failed to perceive wether two objects had

the same or different shapes, RV had little difficulty in making such a discrimination. The

opposite pattern was observed when DF and RV were asked to pick up these objects. Even

though DF failed to discriminate between these different objects, she had no difficulty in

finding stable grasp points on the circumference of these objects. In contrast to DF, RV often

chose very unstable grasp points. This suggests that there are two cortical processing streams

operating on different coding principles for perception and for action [GMJC91, GMBR94].

Thus, object recognition and object grasping have different degrees of dependance on the

object features. In other words, these features are used differently for perception and for

action.

These two streams, called ventral and dorsal, were also identified in the macaque monkey by

Ungerleider and Mishkin [UM82]. The authors originally proposed that both streams have

their origins in the primary visual cortex V but one extends ventrally (from the visual cortex

to the inferior temporal cortex IT ) and is assumed to subserve object recognition. The other

[Jea88] M. Jeannerod. The neural and behavioral organization of goal directed movements. Oxford,

Clarendon Press, 1988.

[GMJC91] M.A. Goodale, A.D. Milner, L.S. Jakobson, and D.P Carey. A neurological dissociation between

perceiving objects and grasping them. Nature, pages 349:154–156, 1991.

[GMBR94] M.A. Goodale, J.P. Meenan, H.H. Blthoff, and C.I. Raciot. Separate neural pathways for the

visual analysis of object shape in perception and prehension. Current Biology, 4, 1994.

[UM82] L.G. Ungerleider and M. Mishkin. Two cortical visual systems. MIT Press, pages 549–585,

1982.
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Figure 3.1: Schematic diagram of the main routes whereby retinal inputs reach the dorsal

and ventral streams.

extends dorsally (from the visual cortex to posterior parietal cortex PP ) and is responsible

for localizing objects in visual space (Fig. 3.1).

3.1.2 Knowledge based grasping

Castiello and Jeannerod [CJ91] studied impairment of grasping in a patient (AT ) with a

lesion of the visual pathway that left the PP , IT , and the pathway V → IT relatively intact,

but impaired the pathway V → PP . This patient is, in some sense, the opposite of DF. She

can use her hand to pantomime the size of a cylinder, but cannot preshape appropriately

when asked to grasp it. When the stimulus used for the grasp was not a cylinder, but rather

a familiar object such as a lipstick which is a part of the subject’s knowledge, AT showed

a relatively adaptive preshape. In other words, the authors showed that previously learned

knowledge plays major role in visually guided grasping in humans and in monkeys. This

indicates that learning from previous knowledge is relevant for grasping novel objects.

3.1.3 Discussion

The previous two studies suggest that:

• Objects features are coded differently for their recognition and for their grasping.

• Knowledge or learning is relevant to objects grasping.

Thus, a grasping strategy should be able, using a learning algorithm, to grasp objects without

recognizing them. It’s obvious that if we are able to recognize objects, we will also be able to

associate a grasp to each object category. Because of the variety of objects shapes and sizes,

predicting every possible object the robot could encounter is impossible. Thus, a robot will

[CJ91] U. Castiello and M. Jeannerod. Measuring time to awareness. Neuroreport, 12:787800, 1991.
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certainly have to grasp non-identified objects and so are humans. In such situations, what

objects features may yield to a good grasp?

3.2 Recognition By Components
Humans can easily distinguish between things they have seen in the past and novel objects.

To account for this capacity, a theory of object recognition was put forth by Irving Bieder-

man [Bie87] which extended previous work of Marr and Nishihara [MN78].

3.2.1 RBC Theory

According to the Recognition By Components theory of Biederman, or RBC, we are able to

recognize objects by separating them into geons, or geometric ions. Geons are composed of

different shapes (i.e. cylinders, cones, etc.) that can be assembled in various ways to form an

unlimited amount of objects. These geons are derived qualitatively using four attributes of

generalized cylinders (Fig. 3.2). Three of the attributes describe characteristics of the cross

section: its shape, symmetry and size. The fourth attribute describes the shape of the axis.

In the following, we detail Biederman’s example of identifying a non-sense object.

Figure 3.2: Geons are defined by variation in three attributes of the cross-section: (i) curved

vs. straight edges; (ii) constant vs. expanded vs. expanded and contracted size; (iii) mirror

and rotational symmetry vs. asymmetrical and one of the axis shape (curved vs. straight

axis) [Bie87].

[Bie87] I. Biederman. Recognition-by-components: A theory of human image understanding. Psycho-

logical Review, 94:115–147, 1987.

[MN78] D. Marr and H.K. Nishihara. Representation and recognition of three dimensional shapes.

Proceedings of the Royal Society of London, Series B. 200:269–294, 1978.
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3.2.2 Identifying Unknown Objects

Biederman suggests that segmenting objects for their identification does not depend on our

familiarity with these objects. Thus, we conduct the same process for any object, whether

it is familiar or unfamiliar. Consider for example the object shown in Figure 3.3. Despite

its unfamiliarity, we are able to identify this object by segmenting it into parts at regions

of deep concavity. This object resembles a hot dog cart. We can see the large block as the

central food storage and cooking area, the rounded part underneath as a wheel, the large arc

on the right as a handle, the funnel as an orange juice squeezer and the various vertical pipes

as an umbrella supports. This object may not be a good cart, but we can see how it might

be related to one. Thus, Biederman concludes that even nonsense objects may be identified

Figure 3.3: Biederman’s nonsense object [Bie87].

by decomposing them into parts. But what about grasping an unfamiliar object? Does its

part decomposition emphasize a specific grasp?

3.2.3 Discussion

The RBC theory shows that we are able to identify many objects using combinations of a

modest number of primitives: the geons. But RBC theory is incomplete in that geons and

the relations between them fail to distinguish many real objects. For example, a well known

failure of the RBC theory is its inability to distinguish between a pear and an apple. The

latter are easily distinguished by humans but lack the corners and edges needed for RBC

theory to differentiate them. The reader should note that, from a grasping point of view,

one does not need to distinguish a pear from an apple. The two of them are grasped in the

same manner or more precisely by the same sub-part. This proves that grasping an object is

less-constrained than recognizing it. The following section details the extension of the RBC

theory to the Grasping By Components approach.
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3.3 Objects Decomposition in the Grasping Litera-

ture
Before detailing our Grasping By Components approach, we present briefly some works in

the grasping literature using objects decomposition into single parts.

Miller et al. [MKAC03] : The authors model objects as set of shape primitives such as

spheres, cylinders, cones and boxes. They define then rules to generate a set of grasp starting

positions and pre-grasp shapes that can then be tested on the object model. By using hand

preshapes, this method can limit the huge number of possible hand configurations for grasp

planning.

Goldfeder et al. [GALP07] : Miller’s planner required a manually constructed primi-

tive decomposition of the object. More recently, the authors removed the need for a manual

decomposition and introduced a multi-level superquadrics representation.

Lopez-Damian et al. [LDSA05] : The authors propose an iterative segmentation al-

gorithm for grasping non-convex objects. They compute first the inertial axes of the whole

object and used them to generate grasps on it. When failing to obtain valid grasps, the object

decomposition process starts. At each iteration of the decomposition step, two components

are obtained and the authors try to generate feasible grasps on them. The process is repeated

until a grasp is found or the decomposition terminates.

Discussion: Since the grasping problem induces a huge degrees of freedom number, all

these methods use object decomposition into parts to define a small search space that is

likely to contain many grasps. They do not attempt to find the grasp that human choose to

pick an object and that is consequently adapted to the task requirements.

3.4 Grasping By Components: the Concept
By taking inspiration from the RBC framework, we represent 3D objects as an assembly

of volumetric primitives. When considering objects we use for everyday tasks on a part-

representation level, we make the following assumptions:

[MKAC03] A.T. Miller, S. Knoop, P.K. Allen, and H.I. Christensen. Automatic grasp planning using shape

primitives. In Proceedings of IEEE International Conference on Robotics and Automation, 2003.

[GALP07] C. Goldfeder, P.K. Allen, C. Lackner, and R. Pelossof. Grasp planning via decomposition trees.

In Proceedings of IEEE International Conference on Robotics and Automation, 2007.

[LDSA05] E. Lopez-Damian, D. Sidobre, and R. Alami. Grasp planning for non-convex objects. 36th

International Symposium on Robotics, ISR, 2005.
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• Objects are equipped with a part designed specifically to make their grasp easier.

• Objects with similar components are grasped in the same manner.

• The relative sizes of object components is crucial for the graspable part selection.

All these elements conduct us to the elaboration of the ”Grasping By Components”

strategy. In the following, we detail each observation.

3.4.1 Every object has a handle

When considering commonly used objects on a part-representation level, we notice that they

are equipped with a part that facilitates their grasp. Figure 3.4 shows some familiar objects.

The black part indicates the component that humans choose to grasp these objects. Thus,

it is also the part that satisfies the task requirements. This part is what we call the object

natural grasping component or more simply the object handle. We all agree that the handle

Figure 3.4: Some objects used for everyday tasks. The black part indicates the object handle.

of a cup or a mug is its curved part and that the handle of a bottle, a pencil or a spoon is

their elongated parts. But what about the handle of an unknown object? Which part of the

object is there to facilitate its grasp? If we can determine the handle of an unknown object,

we can easily find a grasp of that object adapted to the task it is designated to.

3.4.2 Grasping Similarities

Many objects with similar components are grasped in the same manner. Bags, buckets,

mugs and cups are roughly composed of a cylinder and a curved cylinder. Even though the

arrangement of these components is different for these objects, they are all grasped by their

curved component (Fig. 3.5). Thus, the choice of an object graspable part is influenced by the

shape of its constituting single parts. Objects parts orientation is less relevant to that choice.
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Figure 3.5: The choice of an object graspable part is influenced by the shape of its constituting

parts, independently from their orientations, i.e: a) a mug, b) a bucket and c) a bag are all

grasped by their curved part.

3.4.3 Handle Vs. Relative Sizes

The relative sizes of object components is crucial for the graspable part selection. The ex-

ample presented here also shows how objects are designed in a way to make their grasp

easier and in accordance with their functions. Let us examine some alcohol glasses shapes

and sizes. More precisely, we consider wine, champagne and brandy glasses. Although, all

these glasses are composed of three parts: the bowl, the stem and the foot, they are grasped

differently (Fig. 3.6). Wine glasses are characterized by their wide bowl which gives the

Figure 3.6: Roughly approximation of: a) a wine glass, b) a champagne flute and c) a brandy

glass.

wine the chance to breathe. Champagne flutes are characterized by a narrow bowl on the

top. This is designed to keep sparkling wine desirable during its consumption. Wine and

champagne glasses are designed to be held by the stem to help prevent the heat from the

hand from warming the alcohol. On the other hand, brandy glasses have a short stem. They

are designed to be held by the bowl. The wide bowl of the brandy glass accommodates the

hand, which warms the brandy for drinking. Thus, the choice of the graspable component is

influenced by the objects parts relative sizes.

In summary, we can say that information about an unknown object parts shapes and sizes
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may emphasize a specific part for grasping. This leads to the ”Grasping By Components”

strategy.

3.4.4 Grasping By Components

The diagram below (Fig. 3.7) illustrates a description of the proposed grasping strategy [KSP07,

KS08a]. We have shown previously that by taking inspiration from the recognition by com-

ponents theory, we represent objects as a set of components in order to identify the graspable

one. Hence, objects are first decomposed into single parts. Since information about these

parts shapes and sizes are required, a geometrical description of these parts is crucial. This

is ensured by the approximation step. Consequently, the learning process disposes of a ge-

ometric representation of the object components and uses it to perform an analogue of the

human choice of the grasping component. Thus, our approach will learn to imitate humans

selection of the object natural graspable part. The different steps of the proposed approach

are the following:

Figure 3.7: The different steps of the proposed approach.

Part Segmentation: RBC proposes that objects be segmented into parts at surface of deep

concavities. The reason for this approach is that it conforms well with human intuition about

parts, and does not require a priori knowledge of part shapes even in the case of a nonsense

object. We use in our experiments synthetic (CAO models) and real objects (obtained from

[KSP07] S. El Khoury, A. Sahbani, and V. Perdereau. Learning the natural grasping component of an

unknown object. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 2957–2962, 2007.

[KS08a] S. El Khoury and A. Sahbani. Handling objects by their handles. IEEE/RSJ International

Conference on Intelligent Robots and Systems, WS - grasp and task learning by imitation, pages

58–64, 2008.
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a 3D laser scanner or from a 3D reconstruction using a vision system [WD08]) models. With

such models, object surface discontinuities can be easily obtained. A common 3D objects

segmentation technique is to compute surface features which contrast boundary and non-

boundary points and then to decompose the object into parts at boundary points. The key

issue here is how to reliably locate the part boundaries?

Shape Approximation: Once the object is decomposed into several parts, the problem of

shape approximation can be stated as follows: given a set of data points on a each part, find

a model which is the best description of that part. The question to be answered is: Which

model has to be used? Biederman used qualitative geons to represent objects parts. Is this

representation sufficient for the GBC method? We remind the reader that this step is crucial

for providing information about object parts shapes and sizes to the learning algorithm.

Learning: The learning step permits to learn the natural grasping component of an object

using information about its sub-parts shapes and sizes. This step is performed by imitating

humans choice of objects graspable parts. The difficulty here is to determine the training

data. What objects should be selected for training and is the algorithm capable to generalize

to novel objects?

Contact Points: Once the handle of an object is identified, a grasp is computed on that part.

How the contact points are determined? Is the grasp obtained stable?

In the following paragraphs, we particularly focus on two topics: (1) object modelling that

includes object part segmentation and volumetric part models choice and recovery and (2) the

Natural Grasping Component (NGC) learning. Computing contact points will be addressed

in details in the next chapter.

3.5 Object Modeling
Object modeling is obtained by segmenting a 3D object model into its meaningful parts

and by describing the shape of each part. To obtain such a description, we need to know:

what are the parts? and what is the model of each part? the former is the issue of object

segmentation, while the latter deals with object parts identification. These questions will be

addressed in the following two sections (Fig. 3.8).

3.5.1 Object Segmentation

The problem of 3D object segmentation into parts is to decompose the complete object

surface into different meaningful regions. The Recognition By Components theory proposes

that objects be segmented into parts at deep surface concavities which conforms well with

[WD08] G. Walck and M. Drouin. Reconstruction 3d progressive et rapide. MajecStic08, 2008.
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Figure 3.8: Object Modeling considers two main problems: object segmentation and object

parts identification.

human intuition about parts. But RBC uses line drawings of objects extracted from intensity

images by an edge detection operation to derive their segmentation. Since our input data

is a 3D mesh, we need a segmentation scheme that does the same in 3D and that does not

require a priori knowledge of part shapes. Within the literature of 3D mesh segmentation,

there are two main approaches that satisfy this condition, shape-based and boundary-based

approaches (Fig. 3.8).

3.5.1.1 Shape-Based Vs. Boundary-Based Approaches

This paragraph outlines shape and boundary based segmentation approaches. It also shows

that boundary-based techniques perform an object decomposition that conforms human vi-

sual perception of volumetric parts and thus will be used in our Grasping By Components

approach.

Shape-Based Approaches: Shape-based approaches, known also as primitive based ap-

proaches, decompose objects into parts according to similarity between the shapes of parts
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models and objects parts [SLM94, LJS97, GB93, DPR92, CJB03]. Before segmentation,

these approaches define a set of model shapes, S, such as a cylinder, a cuboid and a cone.

They generate then a hypothesis of the object representation as an assembly of shapes chosen

from S. A measure of similarity between the hypothesis and the real object shape is then

computed. If this measure is above a threshold, another hypothesis is generated. Otherwise,

the segmentation process is terminated and the desired part representation is obtained. This

kind of approach performs object segmentation into parts directly using part shapes as con-

straints. The advantage of such approaches is that part segmentation and part identification

are performed simultaneously. On the other hand, their main problem is the possible non-

uniqueness of the decomposition. For example, an object roughly shaped as a cylinder may

be represented as one cylinder or also as the assembly of two cylinders with the same diame-

ter. In contrast, boundary-based approaches are two-level methods: the first level deals with

determining different objects parts while their identification is of the second level concerns.

Boundary-Based Approaches: Boundary-based approaches find first object boundaries.

A common strategy in this kind of segmentation is to compute surface features which con-

trast boundary and non-boundary points and decompose the object into parts at boundary

points. While many researchers have addressed the problem of 3D model segmentation, to

our knowledge only three main features are used in all boundary-based approaches: sur-

face curvature, concaveness estimation and electrical charge physical features. The authors

in [WL97] presented a physics-based part segmentation approach. The novelty of this method

is that part boundaries are determined by using the idea of electrical charges instead of

traditional curvatures for each vertex. The disadvantage of this method is the high com-

putational cost involved in computing electrical charges. On the other hand, the curvature

estimation for 3D meshes is not a trivial operation, as it is mathematically defined for a

smooth surface only [MP77]. Most of the existing algorithms are computationally expen-

[SLM94] F. Solina, A. Leonardis, and A. Macerl. A direct part-level segmentation of range images

using volumetric models. In Proceedings of IEEE International Conference on Robotics and

Automation, pages 2254–2259, 1994.

[LJS97] A. Leonardis, A. Jaklic, and F. Solina. Superquadrics for segmentation and modeling range

data. IEEE Transactions on Pattern Anal Mach Intell., 19:12891295, 1997.

[GB93] A. Gupta and R. Bajcsy. Volumetric segmentation of range images of 3d objects using su-

perquadric models. CVGIP: Image Understanding, 58(3):302–326, 1993.

[DPR92] S.J. Dickson, A.P. Pentland, and A. Resenfeld. From volumes to views: An approach to 3d

object recognition. CVGIP: Image Understanding, 55(2):130–154, 1992.

[CJB03] L. Chevalier, F. Jaillet, and A. Baskurt. Segmentation and superquadric modeling of 3d objects.

Journal of WSCG, 11(1), 2003.

[WL97] K. Wu and M.D. Levine. 3d part segmentation using simulated electrical charge distributions.

IEEE Transactions On Pattern Analysis and Machine Intelligence, 19 No. 11:1223–1235, 1997.

[MP77] R.S. Millman and G.D. Parker. Elements of differential geometry. Prentice-Hall Inc, 1977.
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sive [MW99, PRF02, RB02, RKS00]. Zhang et al. [ZPKG02] proposed a simple segmentation

algorithm using Gaussian curvature analysis and more recently, a 3D mesh watershed-based

segmentation algorithm using Gaussian curvature and concaveness estimation have also been

proposed by Chen et al. [CG06].

We implemented the latter two approaches. In the following, we present them briefly

and discuss their limitations. Before detailing these approaches, we give a description of 3D

features used to detect boundaries between different object parts, i.e Gaussian curvature and

concaveness estimation.

3.5.1.2 Gaussian curvature and concaveness estimation for a boundary-based

segmentation

We previously outlined that boundary-based approaches will be used for objects segmenta-

tion. These approaches detect boundaries by estimating Gaussian curvature and concaveness

of the object vertices. This section details these 3D features extraction.

Gaussian curvature and Surface behavior: Curvature estimation is a fundamental tool

for analyzing and describing a surface’s behavior [MP77, Gra93]. The radius of an osculating

circle can be used to measure curvature of a line at a given point (Fig. 3.9). For each point

p on a surface, there are two principal osculating circles (Fig. 3.10), thus we obtain two

principal curvature radii k1 and k2. The gaussian curvature at p is defined as k = 1/k1k2.

To describe the geometric behavior of a surface, one can consider the gaussian curvature.

Given a surface S, a point p on S belongs to the following categories [MP77, Gra93]: elliptic

if k > 0; hyperbolic if k < 0; parabolic if k = 0 (Fig. 3.11). From this definition, we can

distinguish different surface regions using the gaussian curvature. A 3D mesh is composed

of distinct components. The points on each individual component have elliptic or parabolic

[MW99] A. Mangan and R. Whitaker. Partitioning 3d surface meshes using watershed segmentation.

IEEE Trans Vis Comput Graph, 5(4):308321, 1999.

[PRF02] S. Pulla, A. Razdan, and G. Farin. Improved curvature estimation for watershed segmentation

of 3-dimensional meshes. IEEE Transactions Vis Comput Graph, 2002.

[RB02] A. Razdan and M. Bae. A hybrid approach to feature segmentation of 3-dimensional meshes.

Computer-Aided Design, 2002.

[RKS00] C. Rossl, L. Kobbelt, and H.P. Seidel. Extraction of feature lines on triangulated surfaces using

morphological operators. Smart Graphics, AAAI Spring Symposium, Stanford University, pages

71–75, 2000.

[ZPKG02] Y. Zhang, J.K. Paik, A. Koschan, and D. Gorsich. A simple and efficient algorithm for part

decomposition of 3d triangulated models based on curvature analysis. International Conference

on Image Processing, (3):273276, 2002.

[CG06] L. Chen and N.D. Georganas. An efficient and robust algorithm for 3d mesh segmentation.

Multimedia Tools Appl., 29(2):109–125, 2006.

[Gra93] A. Gray. The gaussian and mean curvatures. Modern Differential Geometry of Curves and

surfaces, pages 279–285, 1993.
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Figure 3.9: Curvature = 1/(curvature radius)

Figure 3.10: Curvature = 1/(k1k2)

behavior. Therefore, we can divide the surface into disjunctive regions by detecting the

boundaries with hyperbolic behavior (k < 0). Considering a polygonal surface, curvature

estimation can be done using only the information that is given by that surface itself [Gra93].

Hence, given a vertex p on a polygonal mesh, the discrete gaussian curvature k(p) is defined

by (Fig. 3.12):

k(p) =
3(2π −∑N

i θi)
∑N

i Ai

(3.1)

where :

• N , number of triangles at p;

• θi, represents the interior angle of the triangle at p;

• Ai, represents the area of the corresponding triangle.

Therefore, we can easily determine if a vertex is hyperbolic or not by computing k(p).

[Gra93] A. Gray. The gaussian and mean curvatures. Modern Differential Geometry of Curves and

surfaces, pages 279–285, 1993.
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Figure 3.11: The first, the second, and the third patches show elliptic, parabolic and hyper-

bolic behavior. Thus they have positive, zero and negative Gaussian curvature respectively.

Figure 3.12: Discrete Gaussian curvature computation.

Concaveness estimation: Concave vertices are also pertinent to objects decomposition

into meaningful parts. In this section, we will estimate concaveness and convexity of the

vertices on a mesh.

In [SZL92], Schroeder et al. defined the average plane H of a vertex p by the normal vector

Np of p and a center point pc, and the distance d from p to H.

Np =
(
∑N

i niAi)
∑N

i Ai

pc =
(
∑N

i piAi)
∑N

i Ai

(3.2)

d = |−→ppc.Np| (3.3)

where Ai, pi and ni are the area, the vertex and the normal of the adjacent face around p,

respectively, and −→pcp denotes the vector from p to pc. The signed distance from p to H is

defined as follows:

ds = −→ppc.Np (3.4)

Based on the signed distance, the vertex p is defined as convex if ds ≤ 0, and as concave if

ds > 0. This can be shown in figure 3.13. If a vertex p is convex, the vectors −→ppc and Np are

[SZL92] W. Schroeder, J. Zarge, and W. Lorensen. Decimation of triangle meshes. Proc. SIGGRAPH,

Computer Graphics, 25(3):6570, 1992.
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Figure 3.13: Convex vertex to the left vs. concave vertex [CG06].

in roughly opposite directions, whereas if p is concave, these vectors are in roughly the same

direction.

3.5.1.3 First Segmentation Algorithm

Based on Gaussian curvature analysis, Zhang et al. [ZPKG02] proposed a simple segmenta-

tion algorithm that consists of three major steps: Gaussian curvature estimation, boundary

detection and region growing. In the following, we present briefly the approach and issues

encountered after its implementation.

The segmentation process: Beginning with a complete 3D object model composed of

triangle meshes, a Gaussian curvature is estimated for each vertex of a triangle mesh. A

specified threshold is then applied to label vertices as boundary or seed. Vertices of highly

negative curvature are labelled as boundaries between two parts while the rest are labelled

as seeds belonging to potential object parts. This threshold is determined in a heuristic

way depending on object and mesh resolution. After the vertices are labelled, a region-

growing operation is performed on each vertex labelled as seed. Region growing is performed

as follows. Starting from a seed vertex p, a unique region label is first assigned to the

vertex. Second, all the neighbors pi labelled as seeds initially are then labelled with the same

region number as the point p. The same labelling process is performed for each neighbor pi.

This process terminates when the grown region is surrounded by boundary vertices. This is

repeated for each seed vertex, but not for a vertex which has been grown and already labelled

uniquely. After the seed vertices are assigned new labels, a labelling process is needed for

[ZPKG02] Y. Zhang, J.K. Paik, A. Koschan, and D. Gorsich. A simple and efficient algorithm for part

decomposition of 3d triangulated models based on curvature analysis. International Conference

on Image Processing, (3):273276, 2002.
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each boundary vertex. Therefore, given a boundary point x, its mesh neighbors xi are first

sorted in ascending order based on their Euclidean distance to the point x. Next, the vertex

xk is selected from the ordered neighbors where xk is the first vertex in the list with a region

label and not a boundary label. The boundary vertex x is then labelled the same as the

vertex xk. Finally, almost every vertex should now have a region label and thus assigned to

different object parts. Remaining isolated vertices are assigned to their neighbors regions.

Discussion: This segmentation method works very well for low resolution objects. But

when dealing with high resolution objects models obtained for example from a 3D laser scan,

we encounter two major problems with this approach:

• Failure to determine accurately boundaries between different objects parts. When an

object model is densely represented with polygonal faces, its surface evolves continu-

ously. Consequently, boundary vertices will have an elliptic behavior rather than an

hyperbolic one. Thus, the algorithm will fail to identify these vertices as boundaries.

• Zhang segmentation has a problem dealing with high resolution objects models having

concave corners located between different boundaries. Figure 3.14 illustrates the exam-

ple of a high resolution union of three spheres. The lines in red represents boundaries

between these spheres. The latter are also surrounding a concave area. This area has

an elliptic behavior and will not be identified by the algorithm as a boundary region.

Thus, when the region growing process is activated, this area break the boundaries

and the different regions will be merged together. We note that when dealing with low

resolution objects, the latter concave area is reduced to one vertex. Zhang has solved

the problem of concave corners by merging isolated vertices with their corresponding

neighbors. Examples on decomposing objects with different resolutions are presented

in the experimental results chapter.

Figure 3.14: Concave area surrounded by three boundaries.
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3.5.1.4 Second Segmentation Algorithm

Chen et al. [CG06] segmentation algorithm is based on Gaussian curvature and concaveness

estimation. The authors use a watershed segmentation approach that consists of three steps,

minima detection, plateau erosion and region merging. In the following, we describe briefly

these steps.

The segmentation process: After the Gaussian curvature and the concaveness estimation

of each vertex on the 3D triangular mesh of the object model, vertices are labelled as boundary

or inner region vertices. A vertex p is a boundary vertex if it has an hyperbolic behavior

or is concave. The minima detection step finds then the local minima (the non-boundary

regions). The boundary regions are the plateaus. All the local minima are marked with a

unique label. Minima detection permits to define the basins which are the core areas of the

final regions. The next step is to segment the plateaus. Erosion starts at the boundaries

between plateaus and minima. It converts iteratively plateaus to their neighbor basins until

all the plateaus vertices are processed. Due to small details or noise on the polygonal surface,

the watershed transformation always yields an over-segmented result. Region merging is an

essential stage for watershed-based segmentation. Thus small regions are merged with bigger

regions. The destination adjacent region to which the small region will merge is determined

by the boundary length between the corresponding two regions.

Discussion: Chen segmentation algorithm overcomes Zhang approach weakness. In the

following we explain the advantages of this method:

• Chen method uses multi-ring neighborhood in order to compute a 3D object surface

features such as the gaussian curvature. Thus, when a model is densely represented with

polygonal faces, a multi-ring neighborhood permit to accurately catch their geometric

behavior. One should see the multi-ring behavior as a zoom out that gives more general

view of the local features behavior. Using multi-ring neighborhood resolves the first

drawback of Zhang method that uses only one ring neighborhood.

• Another advantage of this method is that it uses not only gaussian curvature for seg-

menting objects but also uses concaveness estimation. This is crucial for objects with

a concave area surrounded by boundaries (Fig. 3.14). In such cases, the concave area

will also be identified as a boundary. This induces a detection of the whole boundaries

between different objects parts.

This segmentation approach succeeds in decomposing high resolution 3D laser scanned ob-

jects. The corresponding results are presented in the last chapter.

[CG06] L. Chen and N.D. Georganas. An efficient and robust algorithm for 3d mesh segmentation.

Multimedia Tools Appl., 29(2):109–125, 2006.
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3.5.2 Object Parts Identification

Object segmentation produces a set of parts. The next task is to generate a description for

each part. This step is crucial as the learning algorithm needs a compact object description.

We represent objects as an assembly of superquadrics. To emphasize our choice, we give first

a brief review on part models used in the literature and then we discuss part models recovery.

3.5.2.1 Part Models

Part models are volumetric primitives which describes shapes of object parts. The volumetric

primitives developed in previous research can be categorized as qualitative or quantitative.

Qualitative models: Qualitative models provide characteristics which are useful for sym-

bolic object description. Biederman’s geons [Bie87] are qualitative part models. They are

thirty-six volumetric component shapes described in terms of four qualitative attributes.

Researchers have selected different numbers of geons to describe objects. The larger the

number of geons, the greater the descriptive power. Obviously, complexity increases with

a larger number. Dickinson et al. [DPR92] have defined ten qualitative primitives as part

models. Raja and Jain [RJ94] have employed 12 primitives. Ferrie and Levine [FL88] used

ellipsoids and cylinders as descriptions of object parts. Since only two shape types were used

for the part models, this approach produced only very limited object descriptions. Shapiro

et al. [SMHM84] have proposed sticks, plates and blobs as 3D part models. Sticks are long,

thin parts that have only one significant dimension. Plates are flat, they have two significant

dimensions. Blobs are parts that have all three significant dimensions.

Qualitative models may distinguish between two objects components shapes but fail to convey

quantitative information about their relative sizes. In our case, this is a problem since we

showed that information about objects parts shapes and sizes are crucial to the graspable

part selection. For example, consider the situation where the qualitative shape information

is the same for two objects. In this case, quantitative information such as the relative size of

the object parts or the specific curvature of the part axis have a great influence on the choice

of the object grasping part.

[Bie87] I. Biederman. Recognition-by-components: A theory of human image understanding. Psycho-

logical Review, 94:115–147, 1987.

[DPR92] S.J. Dickson, A.P. Pentland, and A. Resenfeld. From volumes to views: An approach to 3d

object recognition. CVGIP: Image Understanding, 55(2):130–154, 1992.

[RJ94] N.S. Raja and A.K. Jain. Obtaining generic parts from range data using a multi-view represen-

tation. CVGIP: Image Understanding, 60(1):44–64, 1994.

[FL88] F.P. Ferrie and M.D. Levine. Deriving coarse 3d models of objectsn. Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pages 345–353, 1988.

[SMHM84] L.G. Shapiro, J.D. Moriarty, R.M. Haralick, and P.G. Mulgaonkar. Matching three-dimensional

objects using a relational paradigm. Pattern Recognition, 17(4):385–405, 1984.
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Quantitative models: In contrast to qualitative models, quantitative models provide pa-

rameters to describe shapes and sizes. Binford [Bin71] proposed generalized cylinders as

object part models. Generalized cylinders can be modelled by defining a parametric curve

that acts as the axis of the cylinder and then defining a cross section that is swept along the

axis. However, generalized cylinders are not unique. There exists a large number of descrip-

tions corresponding to one volumetric shape, depending on how the axis and cross sections

are selected. Hyperquadrics [KHGB95] and fourth order polynomials [KCS94] employ para-

metric equations and thus can be used to describe a large number of volumetric shapes.

However, the parameters obtained are not intuitively related to the object shapes. The num-

ber of degrees of freedom associated with these two models induces their non uniqueness in

describing an object. Pentland [Pen86] has proposed the use of superquadrics. Superquadrics

are also defined parametrically. We use superquadrics for objects part identification, for their

ability to describe a large variety of solids with only few parameters.

3.5.2.2 Superquadrics for objects parts representation

Superquadrics are a family of geometric solids, which can be interpreted as a generalization

of basic quadric surfaces and solids. They have been considered as volumetric primitives

for shape representation in computer graphics [Bar81] and computer vision [Pen86]. Indeed,

from one hand, they are convenient part-level models that can further be deformed and

glued together to model articulated objects. From the other hand, with only few parameters,

superquadrics can represent a large variety of standard geometric solids as well as smooth

shapes.

Seven superquadrics shapes for objects parts representation: Similarly to Bieder-

man’s geons, Wu [WL95] proposed seven geons to describe objects. The choice of the geons

shapes was primarily motivated by the art of sculpture. From sculptors point of view, all

sculptures are composed of variations of five basic forms: the cube, the sphere, the cone,

the pyramid and the cylinder [Zor60]. Another important belief in the world of sculpture is

that each form originates either as a straight line or a curve [Zor60]. By generalizing the five

[Bin71] T.O. Binford. Visual perception by computer. IEEE Conference on Systems and Control, 1971.

[KHGB95] S. Kumar, S. Han, D. Goldgof, and K. Bowyer. On recovering hyperquadrics from range data.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(11):1079–1083, 1995.

[KCS94] D. Keren, D. Cooper, and J. Subrahmonia. Describing complicated objects by implicit polyno-

mials. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1):38–52, 1994.

[Pen86] A.P. Pentland. Perceptual organization and the representation of natural form. Artificial

Intelligence, 28:293–331, 1986.

[Bar81] A.H. Barr. Superquadrics and angle-perserving transformations. IEEE Comput. Graphics

Applicat., 1:11–23, 1981.

[WL95] Kenong Wu and Martin D. Levine. Segmenting 3d objects into geons. In ICIAP, pages 321–334,

1995.

[Zor60] W. Zorach. Zorach explains sculpture: What it means and how it is made. Tudor Publishing

Company, 1960.
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primitive shapes used in sculpture and adding two curved primitives, Wu et al. [WL95] arrive

at the following seven shapes: the ellipsoid, the cylinder, the cuboid, the tapered cylinder,

the tapered cuboid, the curved cylinder and the curved cuboid (Fig. 3.15).

Figure 3.15: Seven superquadrics for objects modeling: a) the cuboid, b) the ellipsoid, c) the

cylinder, d) the tapered cuboid, e) the tapered cylinder, f) the bent cuboid and g) the bent

cylinder.

Superquadrics formulation: A superquadric surface model is defined by the following

equation:

f(x, y, z) =

((

x

a1

)
2

ǫ2

+

(

y

a2

)
2

ǫ2

)

ǫ2

ǫ1

+

(

z

a3

)
2

ǫ1

= 1 (3.5)

Where:

• a1, a2 and a3, define the superquadric size;

• ǫ1 and ǫ2, determine the shape curvatures that define a smoothly changing family of

shapes from rounded to square.

This function determines where a given point P (x, y, z) lies relative to the superquadric

surface:

• If f(x, y, z) = 1, point P is on the surface of the superquadric;

• If f(x, y, z) < 1, the corresponding point lies inside the superquadric;
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• If f(x, y, z) > 1, the point lies outside the superquadric.

Based on this equation of the superquadric surface solina et al. [SB90] define the following

function:

F (x, y, z) = f ǫ1 (3.6)

Note that the additional exponent ǫ1 does not change the superquadric surface itself but is

necessary if the function is used for shape recovery with a least squares minimization method.

It ensures that, independent of the current value of ǫ1, points at the superquadric surface

have the same value of F (x). Otherwise, when ǫ1 ≪ 1, even very small deviations of a point

from the superquadric surface in the z coordinate are greatly amplified. This compact model

of superquadrics, defined by only five parameters, can model a large set of building blocks

like spheres, cylinders and boxes. When both ǫ1 and ǫ2 are 1, the surface vector defines

an ellipsoid or, if a1, a2, and a3 are all equal a sphere. When ǫ1 ≪ 1 and ǫ2 = 1, the

superquadric surface is shaped like a cylinder. Boxes are produced when both ǫ1 and ǫ2 are

≪ 1. Modelling capabilities of superquadrics can be enhanced by deforming them in different

ways. In order to increase the flexibility of the model (3.5), two deformations are added :

tapering and bending [SB90]. Tapering is performed along the z axis and is defined by two

parameters kx and ky. The bending operation is also applied along the z axis and is defined

with the two parameters k and α. k is the curvature parameter and α determines the bending

plane. Knowing these two parameters, the bending angle, γ, can be easily computed. Thus,

the model (3.5) is modified in order to take into account these deformations. More details

on the deformation parameters are provided in (Appendix A). If we take into account these

deformations, a superquadric can be modelled by 14 parameters; a1, a2, a3 define the su-

perquadric size; ǫ1, ǫ2 are for shape; kx, ky for tapering; γ for bending; φ, θ, ψ for orientation;

and px, py, pz for position in space. We will refer to the set of all model parameter values as:

λ = {a1, a2, a3....a15} (3.7)

Recovery of superquadrics models: Given a set of N 3D surface points, we want to

model them with a superquadric. We need to vary the 15 parameters aj , j = 1, . . . , 15

in (3.7) to get such values for aj that most of the 3-D points will lay on, or close to the

model surface. For this purpose, we use the recovery method explained in [SB90]. Finding

the model λ for which the distance from points to the model is minimal is a least-squares

[SB90] F. Solina and R. Bajcsy. Recovery of parametric models from range images: the case of su-

perquadrics with global deformations. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12(2):131–147, 1990.
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minimization problem [MNT04]. For each point, the following distance is calculated :

d = F − 1 (3.8)

This distance is then minimized for the N points:

min
N
∑

k=1

d2
k (3.9)

The minimization is performed with the Levenberg-Marquardt algorithm [MNT04] which

consists in a non-linear regression approach.

Discussion: Solina et al [SB90] perform superquadrics recovering using the Levenberg-

Marquardt minimization algorithm. A drawback of such an algorithm is that it may converge

to a local minimum. To overcome this difficulty, the authors initially estimate the set of model

parameters λ. They roughly estimate the 3D data position and orientation by computing

the matrix of central moments. They also estimate the size of the initial data with its

surrounding box. The model shape is always initialized to a non-deformed ellipsoid. With

this initialization, the approximation algorithm performs very well for many objects but we

identified the following problems:

Figure 3.16: Approximation results for some objects models.

• Some roughly rounded objects parts were approximated with squared shaped parts.

For example, the magenta and the blue parts respectively for objects (e) and (g) in

(Fig. 3.16) are approximated with squared shaped parts.

[MNT04] K. Madsen, H. Nielsen, and O. Tingleff. Methods for non-linear least squares problems. Technical

University of Denmark, 2004.



58
Grasping Objects By Components - Between the Concept and the Technical

Approach

• Failure to accurately approximate some strangely shaped curved parts, i.e examples (g)

and (h).

The first problem will not have any consequences on our learning algorithm. We remind the

reader that the approximation step is needed to convey information about objects sub-parts

shapes and sizes to the learning algorithm. The choice of the graspable part of the objects

used for the training data is the same whether the corresponding sub-parts are squared or

rounded. As for the second problem, we believe that a solution will be to include cavity

models. Objects, for which the approximation step does not perform well, weren’t taken into

account in our experimental tests.

3.6 Learning the Natural Grasping Component

By taking inspiration from the ”Recognition By Components” theory, we proposed to describe

objects as an assembly of parts and then proceed to the selection of the graspable part in

accordance with humans choice. The previous paragraphs detailed an object representation

as a set of superquadrics. Thus, the remaining issue is obviously to develop a learning

algorithm to select the graspable superquadric. This is difficult since objects are composed

of a variable number of parts which are of different shapes and sizes. The question that arise

is: What information about the objects is relevant to their grasping? Can this information

be reused to grasp novel objects? What could possibly be the training data? Evidently this

data should be reused to grasp novel unlearned objects. We already make the observation

that many objects with similar components are grasped in the same manner and the relative

sizes of object components is relevant for the graspable part selection. Our algorithm is

designed to meet these conditions. The following paragraphs will detail object coding, the

training data and the learning algorithm used.

3.6.1 Object Coding

We previously showed that the shape and the size of the object constituting parts are per-

tinent to the choice of its grasping component. Therefore, we are interested in coding these

parts characteristics. Objects are represented as an assembly of superquadrics. The latter

are completely described by 14 parameters (3.7). But only 8 parameters (e1, e2, a1, a2,

a3, kx, ky and γ) are sufficient to represent the shape and the size of a superquadric. The

other 6 parameters encodes the position and orientation of the superquadric. Therefore, a

8xS column vector V , where S is the object part number, represents the whole object. This

object representation is invariant to object translation and rotation. For a scale factor in-

variance, the size parameters of the object components are represented as the ratio of their

most important value.
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3.6.2 Training Data

The proposed learning algorithm should use object components shapes and sizes in order to

select the grasping part. We showed that an object sub-parts assembly is less relevant than

their shapes and sizes to the choice of the graspable part. Thus, we can consider multi-part

objects grasping as an extension of two-part objects grasping knowledge. This leads to a

training data constituted of two-part objects. At this level, two questions arise:

• Which two-part objects choose as training data?

• How can we obtain 3D objects models?

In learning algorithms, a large number of training examples is needed in order to have a

good generalization. Collecting real world data is cumbersome. Generating synthetic data is

easier and less-time consuming. Therefore, we use synthetic 3D objects models available on

Princeton Benchmark [SMKF04] and NTU 3D Model Benchmark [CTSO03] along with labels

indicating the grasping component. Since the learning algorithm should perform an analogue

of humans choice of the grasping component, different subjects were asked to identify the

grasping part of the corresponding objects.

Figure 3.17: Training objects set. The black part indicates the object handle.

As for the choice of the two-parts training objects, supervised learning requires a set of objects

that can potentially span the space of two superquadrics assembly. Therefore, the choice of

the training objects should effectively sub-sample this space. We mentioned previously that

7 superquadrics are used to model our objects. Thus, the training objects components are

chosen to span these 7 superquadrics shapes with different sizes. We use 12 objects for the

training set (Fig. 3.17). For more details on spanning the superquadrics shapes and sizes

space and the choice of the 12 two-part objects as training data, the reader should refer

[SMKF04] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The princeton shape benchmark. In

Proceedings of Shape Modelling International, 2004.

[CTSO03] D.Y. Chen, X.P. Tian, Y.T. Shen, and M. Ouhyoung. On visual similarity based 3d model

retrieval. Computer Graphics Forum (EUROGRAPHICS’03), 22(3):223–232, 2003.
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to Appendix B. Figure (3.18) shows the steps for generating the training data. It shows

first the initial object, its decomposition into single parts, the approximation of each part

with a superquadric and finally its corresponding grasping part according to humans choice.

Additionally, to increase the diversity in our data, once a synthetic model of the object has

been created, we vary some properties of the object components such as the size, the bending

angle or the tapering parameters without changing the whole appearance of the object. By

varying these properties, we generate 72 examples of each object. These examples are divided

into training data and testing data.

Figure 3.18: Some two-part objects used for generating the training set. (a) shows the

initial 3D object. (b) presents its segmentation into single parts. (c) shows the superquadric

approximation of each constituting part. (d) shows the natural grasping part.

3.6.3 Learning Algorithm

A multi-layer perceptron, with one hidden layer, is trained with a typical backpropagation

learning algorithm [Bis95] in order to select the grasping part of a two-component object.

We have shown previously that objects with similar components are grasped in the same

manner and that the choice of the graspable part is also influenced by the object components

relative sizes. However, this choice is less influenced by the object parts assembly. Thus, our

algorithm will use only information about objects parts shapes and sizes in order to identify

the graspable one. Eight parameters are sufficient to represent a component shape and size.

In the sequel, the first layer has sixteen inputs (training performed on two-parts objects).

On the other hand, the output layer represents whether the first or the second component of

the object is chosen as grasping part. Thus, the output is a one unit layer. As for the hidden

layer, 5 units were chosen empirically for obtaining a score of 99% for the training as well as

for the testing data.

For multi-part objects, the decision of the grasping component is taken by considering the

object parts two by two. In other words, the algorithm starts by choosing a grasping com-

ponent between two parts of the object. The chosen part is then compared with another

[Bis95] C.M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.
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component and so on until finding the handle of the multi-part object. Different experiments

were conducted to test the ability of the learning algorithm to generalize. These experiments

are detailed in chapter 5.

3.7 A Study Relating Object Sub-Part/Task
Recently, a study on demonstrated functional wrench space permits to reinforce our idea

of relating the task to an object sub-part. This work was presented in the previous chap-

ter [AC08]. The authors let different users grasp a target object in order to perform a specific

task. They compute then a task criterion to evaluate the adaptability of a new grasp to the

corresponding task. They tested their algorithm for two different tasks: grasping a ”T”

shaped object by its vertical handle and grasping an airplane by its fuselage. New grasps

were generated afterwards. Grasps of high quality were those generated on the appropriate

objects parts (the vertical handle and the fuselage). Grasps generated on the others objects

parts showed a low task criterion. Thus, objects sub-parts and tasks are closely related.

3.8 Conclusion
We took the challenge to associate a grasp to an unknown object/task. Our approach is

based on the following observation: commonly used objects are equipped with a part to

facilitate their grasp. But, what is the graspable part of an object? We define the handle or

the natural grasping component of an object as the part chosen by humans to pick this object

with. When humans reach out to grasp an object, It is generally in the aim of accomplishing

a task. Thus, the grasp they choose is related to the object task. Consequently, by learning

humans choice of the grasping component, the algorithm learns the grasp corresponding to

the object/task. That is how we fulfill the challenge. Thus, generating contact points on the

appropriate object sub-part is sufficient for ensuring task compatibility. This is the aim of

the next chapter.

[AC08] J. Aleotti and S. Caselli. Programming task-oriented grasps by demonstration in virtual reality.

In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, WS

on Grasp and Task Learning by Imitation, 2008.
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Chapter 4

From the Grasping Component to the

Grasping Points

”La difficulté n’est pas de comprendre les idées

nouvelles, mais d’échapper aux idées anciennes.”

John Maynard Keyne

At this point, we are able to identify, for an unknown object, its Natural Grasping Com-

ponent (NGC). The ultimate goal of a grasping strategy is to ensure stability and task

compatibility when grasping novel objects. The latter property is obtained by learning the

NGC of the object. The former is the issue of this chapter. It addresses calculating fingers

positions on the selected graspable part that ensure grasp stability.

Napier differentiates between two basic grasp types: power grasps and precision grasps [Nap56].

Power grasps induce large areas of contact between the fingers, the palm and the object.

Thus, this type is chosen when only grasp stability is required. When grasping dexterity is

desired, a precision grasp is chosen. In this case, the object is held with the fingertips and

consequently the grasp enables object manipulation. Our aim is to successfully use and ma-

nipulate objects. Thus, we are interested in computing precision grasps. In order to ensure

object immobility in front of external disturbances, these grasps should satisfy one of the

following properties: form-closure or force-closure [Bic95]. With the form-closure property,

object motion is prevented by the the contact points positioning. With the force-closure one,

the forces applied by the fingers ensure object immobility. When the task requires a robust

grasp not relying on friction, e.g. objects fixture, form-closure is used. When grasping and

manipulation of objects with a low number of frictional contacts is desired, force-closure is

[Nap56] J. Napier. The prehensile movements of the human hand. Journal of Bone and Joint Surgery,

38:B(4):902–913, 1956.

[Bic95] A. Bicchi. On the closure properties of robotic grasping. International Journal of Robotics

Research, 14:(4):319–334, 1995.
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employed. For this purpose, we propose a new sufficient condition for N-finger force-closure

grasps computation [KS08b]. We detail first some grasping basics necessary to understanding

existing works on force-closure grasps generation. This study is followed by our reformulation

of force-closure sufficient condition.

4.1 Grasping Basics
The stability of a grasp is characterized by force-closure property. This section includes basic

grasping terminologies necessary for force-closure test elaboration.

Definition 1: A grasp is a set of contacts.

Definition 2: A contact is a location where a finger meets the object surface. Thus,

information about contact type and number, and local object surface are required to deter-

mine a grasp (Fig. 4.1).

Figure 4.1: Information required to determine a grasp.

Definition 3: A grasp force fi is a force applied by each finger to the object.

In case of a frictionless contact, the grasp force is along the contact normal. Otherwise,

the grasp force fi must satisfy coulomb’s law [KKD97], to ensure nonslipping at the contact

[KS08b] S. El Khoury and A. Sahbani. A sufficient condition for computing n-finger force-closure grasps

of 3d objects. IEEE International Conference on Robotics, Automation and Mechatronics, 2008.

[KKD97] P.R. Kraus, V.I. Kumar, and P. Dupont. Analysis of frictional contact models for dynamic
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point, (4.1).

fix
2 + fiy

2 ≤ µ2fiz
2 (4.1)

where (fix
2, fiy

2, fiz
2) denotes x, y, z components of the grasp force fi in the object coordi-

nate frame and µ the friction coefficient.

Definition 4: The non linear constraint in (4.1) geometrically defines a cone called fric-

tion cone.

To simplify the problem, the friction cone is generally linearized by a polyhedral convex cone

with m sides.

Figure 4.2: The grasp force fi in a linearized friction cone

Under this approximation, the grasp force can be represented as:

fi =

m
∑

i=1

λijlij , λij ≥ 0 (4.2)

where lij represents the j-th edge vector of the polyhedral convex cone. Coefficients λij are

non negative constants.

Definition 5: A wrench, wi, is the combination of the force and torque corresponding

to the grasp force fi.

symulation. In Proceedings of IEEE International Conference on Robotics and Automation,

1997.
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wi =

(

fi

τi

)

=

(

fi

ri × fi

)

(4.3)

where ri denotes the position vector of the i− th grasp point in the object coordinate frame

origined at the center of mass.

Substituting (4.2) into (4.3) provides:

wi =
m
∑

j=1

λijuij (4.4)

where:

uij =

(

lij

ri × lij

)

(4.5)

Vectors uij are normalized as follows:

wij =
1

‖lij‖
uij (4.6)

The term ‖lij‖ denotes the L2 norm of vector lij. Vectors wij are called primitive contact

wrenches. Thus, N = mn is the total number of primitve contact wrenches applied at the

object by n fingers.

Definition 6: The wrench matrix, W , is a 6 × nm matrix (for 3D objects) where its

column vectors are the primitive contact wrenches.

W =

(

l11 . . . l16 . . . lnm

r1 × l11 . . . r1 × l16 . . . rn × lnm

)

Definition 7: According to the definition of Salisbury and Roth [SR82], a grasp is force-

closure if and only if any external wrench can be balanced by the wrenches at the fingertips.

Proposition 1: Salisbury and Roth has also showed that a necessary and sufficient con-

dition for force-closure is that the primitive contact wrenches resulted by contact forces at

the contact points positively span the entire 6-dimensional wrench space. This condition is

equivalent to that the origin of the wrench space lies strictly inside the convex hull of the

[SR82] J.K. Salisbury and B. Roth. Kinematic and force analysis of articulated hands. ASME J. Mech.,

Transmissions, Automat.,Design, 105:33–41, 1982.
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primitive contact wrenches [MSS87, MLS94, Mon91].

Proof. for a proof, the reader should refer to [SR82]. �

4.2 Reformulation of the Force-Closure problem
Works on force-closure received a lot of attention during the last two decades. After the

pioneering works of Salisbury and Roth [SR82], several force-closure necessary and suffi-

cient conditions were proposed in the literature, but only few concerns 3D objects due

to their complicated geometry and high dimension of the grasp space. This section re-

views the main related works (Fig. 4.3). Some researchers considered polyhedral 3D ob-

jects [Ngu87, PSBM93], others smooth curved surfaces [ZW03] or objects modelled with a

set of points [Liu99, LLC03, BSZ08].

Figure 4.3: Force-Closure grasps conditions for 3D objects.

[MSS87] B. Mishra, J.T. Schwartz, and M. Sharir. On the existence and synthesis of multifinger positive

grips. Algorithmica, Special Issue: Robotics, 2:541–558, 1987.

[MLS94] R.M. Murray, Z. Li, and S.S. Sastry. A mathematical introduction to robotic manipulation.

Orlando, FL: CRC, 1994.

[Mon91] D.J. Montana. The condition for contact grasp stability. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 412–417, 1991.

[Ngu87] V.D. Nguyen. Constructing stable grasps in 3d. In Proceedings of IEEE International Conference

on Robotics and Automation, pages 234–239, 1987.

[PSBM93] J. Ponce, S. Sullivan, J.D. Boissonnat, and J.P. Merlet. On characterizing and computing three-

and four-finger force-closure grasps of polyhedral objects. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 821–827, 1993.

[ZW03] X. Zhu and J. Wang. Synthesis of force-closure grasps on 3d objects based on the q distance.

IEEE Transactions on Robotics and Automation, 19:(3), 2003.

[Liu99] Y.H. Liu. Qualitative test and force optimization of 3d frictional form closure grasps using linear

programming. IEEE Transactions on Robotics and Automation, 15:(1), 1999.

[LLC03] J.W. Li, H. Liu, and H.G. Cai. On computing three-finger force-closure grasps of 2d and 3d

objects. IEEE Transactions on Robotics and Automation, 19:(1), 2003.

[BSZ08] B. Bounab, D. Sidobre, and A. Zaatri. Central axis approach for computing n-finger force-closure

grasps. In Proceedings of IEEE International Conference on Robotics and Automation, 2008.
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Nugyen [Ngu87] : Nguyen studied force-closure grasps of polyhedral objects and pro-

posed the following necessary and sufficient condition:

Figure 4.4: Grasp with two soft contact points [Ngu87].

Proposition 2: A grasp with 2 soft-finger contacts is force-closure if and only if the

segment P1P2, or P2P1, joining the two points of contact P1 and P2, points strictly into and

out of the friction cones respectively at P1, P2 (Fig. 4.4).

Another important result proposed by Nguyen is:

Proposition 3: A grasp with at least two distinct soft-finger contact is force-closure if it

achieves non-marginal equilibrium.

Definition 8: A n-finger is said to achieve non-marginal equilibrium when there exists a

set of forces in the open friction cones at the fingertips such that the sum of the associated

wrenches is zero.

Ponce et al. [PSBM93] : Ponce et al. extended the work of Nguyen [Ngu87] to the case

of 3 fingers (proposition 4). They also gave a new geometric characterization of force-closure

of 3D polyhedral objects with three (propositions 5 and 6) and four (propositions 7 and 8)

fingers. Assuming hard-finger contact and coulomb friction, the authors show that:

Proposition 4: In the presence of friction, a sufficient condition for three-dimensional,

n-finger force-closure with n ≥ 3 is non-marginal equilibrium.

Proposition 5: A necessary condition for three points to form a force-closure grasp is

that there exists a point in the intersection of the plane formed by the three contact points

with the double-sided friction cones at these points (Fig. 4.5).

Proposition 6: A sufficient condition for three points to form a force-closure grasp is

that there exists a point in the intersection of the three open internal friction cones with the

triangle formed by these contact points (Fig. 4.5).

Proposition 7: A necessary condition for four points to form a force-closure grasp is

that there exist four lines in the corresponding double-sided friction cones that intersect in

a single point, form two flat pencils having a line in common but lying in different planes, or

[PSBM93] J. Ponce, S. Sullivan, J.D. Boissonnat, and J.P. Merlet. On characterizing and computing three-

and four-finger force-closure grasps of polyhedral objects. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 821–827, 1993.

[Ngu87] V.D. Nguyen. Constructing stable grasps in 3d. In Proceedings of IEEE International Conference

on Robotics and Automation, pages 234–239, 1987.
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Figure 4.5: Grasping a polyhedron with three frictional fingers [PSBM93].

form a regulus (Fig. 4.6).

Proposition 8: A sufficient condition for four points to form a force-closure grasp is

Figure 4.6: Four-finger grasps. (a) four intersecting lines. (b) two flat pencils of lines having

a line in common. (c) a regulus [PSBM93].

that there exists a point in the intersection of the four open internal friction cones with the

tetrahedron formed by these points.

Zhu and Wang [ZW03] : Zhu and Wang proposed an algorithm to synthesize grasps for

any 3D object with smooth curved surfaces and with any number of contacts. The algorithm

constitutes a numerical test for the force-closure property based on the concept of the Q

distance (or Q norm). The Q norm (||.||Q), or gauge function, is a grasp quality measure

defined for a convex compact set Q ⊂ Rm which contains the origin of the reference system

in Rm:

gQ(a ∈ Rm) = inf
a∈γQ,γ>0

γ

The Q distance is the minimum scale factor required for the set Q to contain a given point a,

i.e. it quantifies the maximum wrench that can be resisted in a predefined set of directions,

[ZW03] X. Zhu and J. Wang. Synthesis of force-closure grasps on 3d objects based on the q distance.

IEEE Transactions on Robotics and Automation, 19:(3), 2003.
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given by the set Q. Let p ∈ Rm andA ⊂ Rm be a point and a convex polyhedron, respectively;

the Q+ distance is defined as:

d+

Q(p,A) = min
a∈A
||a− p||Q

This distance can be interpreted as the radius of the smallest ||.||Q sphere in contact with

A− {p}.
Proposition 11: A grasp with primitive contact wrench matrix G achieves force-closure

only if d+

Q(O,CH(G)) = 0.

However, this is a necessary but not sufficient force-closure condition. This makes necessary

the definition of the distance d−Q as:

d−Q(p,A) = − min
∂a∈A

||a− p||Q

Where ∂a denotes the boundary set of A. The distance d−Q(p,A) has a geometric inter-

pretation: it is the radius of the largest sphere contained in A − {p}. Assuming that the

grasped object is piecewise smooth, and each finger is placed at one of the smooth surfaces,

it can be stated that the primitive contact wrenches depend on the grasp configuration u, i.e.

G = (g11(u), ..., gnm(u)). Therefore, if the definition of d−Q is used with p = 0, A = CH(G(u)),

the following sufficient and necessary condition is obtained:

Proposition 12: a grasp is force-closure if and only if d−Q(u) < 0.

◮ Testing a grasp for force-closure with the previously presented approaches

yields solving a system of linear inequalities [Ngu87, PSBM93] or computing the

Q distance [ZW03] which are both stated to be computationally complex. The

latter requires smooth objects which is not the case of many real objects. The

other approaches are only adapted to polyhedral objects composed of a limited

number of planar faces, where searching for force-closure grasps induce all faces

combinations. Works dealing with more general objects representation are next

detailed.

Liu [Liu99] : Liu has developed a qualitative test algorithm of n-finger force-closure

grasp. By introducing the polyhedral approximation of the non-linear friction cone, he has

reformulated the force-closure condition given by [SR82] as a ray-shooting problem and he

solved it by a linear programming method. In detail, Liu first find an interior point P of the

convex hull H(W ) and then detect the intersection Q of the convex hull with the ray from

the interior point P to the origin O of the wrench space. If the distance between points P

and O is strictly smaller than that between points P and Q, the origin is an interior point of

[Liu99] Y.H. Liu. Qualitative test and force optimization of 3d frictional form closure grasps using linear

programming. IEEE Transactions on Robotics and Automation, 15:(1), 1999.

[SR82] J.K. Salisbury and B. Roth. Kinematic and force analysis of articulated hands. ASME J. Mech.,

Transmissions, Automat.,Design, 105:33–41, 1982.
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the convex hull so that the grasp is a force-closure grasp. Otherwise, the origin is not inside

the convex hull so that the grasp does not form a force-closure (Fig. 4.7).

Figure 4.7: A force-closure grasp (a) and a non force-closure grasp (b) [Liu99].

Li et al. [LLC03] : Li et al. extended the work of Ponce et al. [PF95] for polygonal

objects and put forward necessary and sufficient conditions for 3-fingered force-closure test

of 2D objects. They decompose the problem of three-finger 3D grasps to that in the contact

plane (as a planar grasp problem) and that in the direction perpendicular to the plane. Thus

the 3D problem is dealt with as a reduced 2D problem. Since three-finger grasp that achieves

non-marginal equilibrium also achieves force closure, the authors propose that (Fig. 4.8):

Proposition 9: A necessary and sufficient condition for the existence of three nonzero

contact forces, not all of them being parallel, which achieve equilibrium for 2D objects is

that there exist three forces in the friction cones at contact points which positively span the

plane and whose lines of action intersect at some point.

Proposition 10: A three-finger 3D grasp achieves force closure if and only if: 1) there

exist contact plane S and contact unit vectors n11, n12, n21, n22, n31 and n32 that are the

intersection of the three friction cones with S; 2) the contact unit vectors construct a 2D

force-closure grasp in S.

Bounab et al. [BSZ08] : Very recently, Bounab et al. developed a new necessary and

sufficient condition for n-finger grasps to achieve force-closure. Based on Poinsot’s theorem:

”Every collection of wrenches applied to a rigid body is equivalent to a force applied along a

[LLC03] J.W. Li, H. Liu, and H.G. Cai. On computing three-finger force-closure grasps of 2d and 3d

objects. IEEE Transactions on Robotics and Automation, 19:(1), 2003.

[PF95] J. Ponce and B. Faverjon. On computing three finger force closure grasp of polygonal objects.

IEEE Transactions on Robotics and Automation, 11:(6):868881, 1995.

[BSZ08] B. Bounab, D. Sidobre, and A. Zaatri. Central axis approach for computing n-finger force-closure

grasps. In Proceedings of IEEE International Conference on Robotics and Automation, 2008.
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Figure 4.8: Three-finger grasps. (a) Equilibrium but not force-closure grasp. (b) Non-

marginal equilibrium and thus, force-closure grasp. (c) Not equilibrium grasps [LLC03].

fixed axis and a torque around the same axis”, the authors proposed:

Proposition 13: A 3D (resp. 2D) n-finger grasp is force-closure if and only if w.r.t one

arbitrary contact point (e.g c1):

1) The torque applied by the n fingers positively span R3 (resp. R2) at c1.

2) All grasp wrench central axes at c1 positively span R3 (resp. R2).

◮ The paper of [BSZ08] does not include any computation time. But since the

approach requires solving a system of linear inequalities, we can say that its

computation time is similar to the classic convex-hull method. The ray-shooting

problem is a typical problem in computational geometry, which is dual to linear

programming because a convex hull is dual to a convex polytope [Liu99]. The

author stated that the test has a real time efficiency. Similarly, the force-closure

test in [LLC03] is adapted for real time applications. However, finding good

force-closure grasps with these approaches induce a large computation time.

4.3 A Sufficient Condition for 3D Force-Closure Grasps
We propose a sufficient but not necessary method to compute force-closure grasps of 3D

objects. Our approach works with general objects and with any number n of contacts (n ≥ 4).

4.3.1 Motivation

Generating good force-closure grasps with the previously detailed force-closure necessary and

sufficient conditions require considerable computation time. In order to find such grasps, they

perform an exhaustive search for the best n-finger force-closure grasp of an object modelled

by N points which would take time in the order of O(Nn). Thus, heuristic approaches were
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proposed to improve performance [BFH03, FH97, NS07]. These approaches are detailed in

Chapter 2. They generate many grasp candidates by selecting contacts on the object surface.

Then, these grasps are filtered with a necessary but not sufficient force-closure tests. The

grasps that pass the filter may or may not be force-closure. In other words the filter reports

false positive but not false negative force-closure grasps. The selected grasps are tested af-

terwards for force-closure. Another way to improve performance, proposed in the literature,

is to use a simplified version of the object’s geometry consisting only of shape primitives

such as spheres, cylinders, cones and boxes. Then, for each shape, define a set of grasping

strategies [MKAC03]. This also reduces the number of grasps tested for force-closure.

Our work is an hybrid solution to the force-closure grasp synthesis. The number of grasps

tested for force-closure is reduced since we do not consider the object as a whole but we are

interested in generating force-closure grasps only on the object natural grasping component.

We also propose a new sufficient but not necessary force-closure test. Thus, grasps that

pass the filter ensure necessarily force-closure. Our heuristic is original in the sense that it

permits simultaneously fast computation and good quality force-closure grasps generation.

We believe that the quality of a n-finger grasp depends on the quality of the first n − 1

fingers locations as well as the placement of the nth finger. Thus, instead of performing an

exhaustive search for n-finger force-closure grasps, we introduce a criterion for the generation

of these n − 1 fingers. The next paragraph details the problem statement and justifies the

choices we made for objects modelling and contacts type and number.

4.3.2 Problem Statement

Our objective is to find as fast as possible force-closure grasps. In order to determine a grasp,

information about contact type and number, and local object surface are required.

An important aspect of the proposed approach is that it is adapted to complex 3D ob-

jects. Most works in the literature assume some geometrical model of the objects being

grasped [Ngu87, PSBM93, ZW03]. This allows an analytical formulation for characterizing

grasps. For example, algorithms assuming that an object should be modelled with a poly-

hedron may work acceptably when the polyhedron faces number is low (objects presented

are seldom composed of no more than 20 faces [BFH03]). Many real world objects are not

polyhedral and thus are modelled with a large number of faces. This increases the complexity

[BFH03] Ch. Borst, M. Fischer, and G. Hirzinger. Grasping the dice by dicing the grasp. In Proceedings

of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.

[FH97] M. Fischer and G. Hirzinger. Fast planning of precision grasps for 3d objects. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems, page 120126, 1997.

[NS07] N. Niparnan and A. Sudsang. Positive span of force and torque components of four-fingered

three-dimensional force-closure grasps. In Proceedings of IEEE International Conference on

Robotics and Automation, 2007.

[MKAC03] A.T. Miller, S. Knoop, P.K. Allen, and H.I. Christensen. Automatic grasp planning using shape

primitives. In Proceedings of IEEE International Conference on Robotics and Automation, 2003.
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of such algorithms. Our approach assumes no explicit model of the object being grasped.

Objects are modelled with a set of points together with their corresponding normals.

As for contact type, one should take into account wether a finger is hard or soft. A hard

finger implies that a contact is modelled as a point while a soft finger allows a face contact.

Since objects are modelled as a set of points, hard fingers are considered.

Concerning the contacts number, works on grasping have studied the bound required

for satisfying grasping properties. This number depends on the type of contact between

the fingertips and the object. The earliest contribution in this field can be traced to

Reuleaux [Reu63] who showed that in the frictionless case, a minimum of four friction-

less contacts are required to achieve force-closure of a planar object. When considering 3D

objects, Somoff [Som00] and much later Lakshminarayana [Lak78] showed that seven fric-

tionless point contacts are necessary for force-closure. Mishra, Schwartz and Sharir [MSS87]

have shown that six (resp. tweleve) fingers are always sufficient for ensuring force-closure

of 2D (resp. 3D) objects without rotational symmetries. Markenscoff et al. [MP89] proved

that four contact points and seven contact points are sufficient for force-closure of respec-

tively 2D and 3D non-rotationally objects. An object with rotational symmetry does not

have a force-closure grasp with frictionless contacts. They have also shown that in presence

of friction, three fingers are sufficient in the 2D case and four fingers are sufficient in the

3D case for any object. These bounds were lowered by one contact each by Mirtich and

Canny [MC94] who assumed rounded finger tips to provide continuity to the contact normals

around the boundary of the object. For grasping and manipulation of objects, a low number

of contacts is required thus we assume frictional contacts. Since we want an approach that

works with any object geometry even ones with rotational symmetry, we are interested in

generating at least 4-finger force-closure grasps. Consequently, our approach can be stated

as follows (Fig. 4.9):

Given a set of N points along with their normals, we have to compute, as fast as possible,

n-finger (n ≥ 4) force-closure grasps assuming hard-finger frictional contacts.

4.3.3 Preliminaries

This section presents definitions, theorems and notations necessary for our force-closure test

elaboration. First, we remind that Salisbury and Roth [SR82] has showed that a necessary

and sufficient condition for force-closure is that the primitive contact wrenches resulted by

contact forces at the contact points positively span the entire wrench space.

[SR82] J.K. Salisbury and B. Roth. Kinematic and force analysis of articulated hands. ASME J. Mech.,

Transmissions, Automat.,Design, 105:33–41, 1982.
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Figure 4.9: Our goal is to compute n-finger (n ≥ 4) force-closure grasps assuming hard-finger

frictional contacts on 3D objects described as a set of discrete points.

◮ Definition 9: A set of vectors , {vi} where i ∈ I, positively span a vector space if any

vector v in this space can be written as a positive linear combination of vi, namely :

v =
∑

i∈I

αivi, αi ≥ 0 (4.7)

◮ Proposition 14: For any n-dimensional Euclidean space En, n+1 vectors are necessary

to positively span En.

Proof. for a proof, the reader should refer to the relative linear algebra results presented

by Goldman and Tucker [GT56]. �

◮ Lemma 1: Given a set of n+ 1 vectors, v1, v2, ...., vn+1, in Rn, such that v1, v2, ...., vn

are linearly independent and :

vn+1 =
n
∑

i=1

αivi, αi < 0 (4.8)

Then each vi, i = 1, ..., n + 1, is a unique negative linear combination of the other n vec-

tors [WZG95].

[GT56] A.J. Goldman and A.W. Tucker. Polyhedral convex cones. Princeton University Press, 1956.

[WZG95] R. Wagner, Y. Zhuang, and K. Goldberg. Fixturing faceted parts with seven modular struts.

IEEE International Symposium on Assembly and Task Planning, 1995.
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Proof. It is obviously true for vn+1. for any vi, i=1,...,n, if we solve (C.7) for vi, we have:

vi =
1

αi
vn+1 −

n+1
∑

j=1,j 6=i

αj

αi
vj (4.9)

It is clear by (4.9) that vi, i=1,...,n, is a unique negative linear combination of the other n

vectors. �

◮ Proposition 15: A set of n+ 1 vectors v1, v2, ...., vn+1 in Rn positively span En if and

only if vn+1 is a unique linear combination of vi, i = 1, ..., n and all coefficients are strictly

negative [WZG95].

Proof. (⇒) Assume that v1, v2, ...., vn+1 positively span Rn. Then −vn+1 can be written

as a positive linear combination of vi:

−vn+1 =

n+1
∑

i=1

αivi, αi ≥ 0 (4.10)

By solving (4.10), they can get the following:

vn+1 =
n
∑

i=1

αi

(−1− αn+1)
vi (4.11)

Obviously (4.11) shows that vn+1 is a negative linear combination of v1, v2, ...., vn.

(⇐) Assume that vn+1 is a unique linear combination of v1, v2, ...., vn with all coefficients

strictly negative, then v1, v2, ...., vn are linearly independent due to uniqueness. Thus, for

any vector v in Rn, they can write it as a linear combination of v1, v2, ...., vn+1:

v =

n+1
∑

i=1

αivi (4.12)

If all αi, i = 1, ...., n+1, are non-negative, its is done. If not, without loss of generality, assume

α1 < 0. By Lemma(1), v1 can be written as a negative linear combination of v2, ...., vn+1 as

follows:

v1 =
n+1
∑

i=2

βivi, βi < 0 (4.13)

By substituting (4.13) to (4.12), they eliminate the negative term α1v1. If there is more than

one negative term in (4.12), they simply repeat this elimination for each, until v is a positive

linear combination of v1, v2, ...., vn+1.�

An example of this condition in a 2-dimensional space is shown in (Fig. 4.10) . V1 and

V2 are non-collinear vectors in R2, thus form a basis of this space. V3 can be written as a

[WZG95] R. Wagner, Y. Zhuang, and K. Goldberg. Fixturing faceted parts with seven modular struts.

IEEE International Symposium on Assembly and Task Planning, 1995.
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unique negative linear combination of V1 and V2. Therefore, these three vectors positively

span E2.

Figure 4.10: Three vectors V1, V2 and V3 that positively span E2

◮ All the previous propositions show that in order to ensure force-closure or

determine grasp wrenches that positively span the entire 6-dimensional wrench

space, one needs to find: (1) primitive wrenches that constitute a 6D basis and

(2) a primitive wrench that can be expressed as a negative linear combination

of that basis. But, in which case wrenches associated to hard contact points

may form a basis of the wrench space? May a representation in the 3D space of

6D wrenches facilitate the problem? Plücker coordinates represents 6D wrenches

as lines and Grassmann algebra studies the rank of such lines. We use these

two studies to prove that wrenches, associated to any three non-aligned contact

points of 3D objects, form a basis of the 6D wrench space (proposition 19). In

the following, we present briefly Plücker coordinates and the results we use from

Grassmann algebra.

Plücker coordinates: Let L be a line in the 3D space. Let u be the unit line direction and

P a point chosen on L. The direction vector along with its cross product with P are known

as Plücker coordinates and are denoted by (u;P ×u). These 6 coordinates represent L in 3D

space [VY10, Cra73]. Consequently a primitive contact wrench, defined as wi = (fi; ri × fi)

can also be seen as a representation of the line of action Lfi of the force fi applied at the

point ri. The 6 coordinates (wi1, wi2, ..., wi6) of wi are called the Plücker coordinates of the

line of action of fi.

[VY10] O. Veblen and J.W. Young. Projective geometry. the Athenaeum press, 1910.

[Cra73] H. Crapo. A combinatorial perspective on algebraic geometry. Colloquio Int. sulle Teorie

Combinatorie, 1973.
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The Plücker coordinates are homogenous coordinates for a projective space of dimension 5,

P 5: the wrenches wi and λwi, with λ 6= 0 both represent the same line Lfi. Then every line

Lfi in the 3D space corresponds exactly to one point in P 5. The set of lines form a quadric,

called the Grassmannian, defined by w1w4 + w2w5 + w3w6 = 0 in this projective space. At

this point, we have defined a one-to-one relation between the set of lines in the 3D space and

points in P 5. The rank of this mapping is 6.

Grassmann algebra : Grassmann studied manifold of lines which rank ranges varies from

0 to 6. The purpose of this study was to find geometric characterization of each variety. We

are going to use two main results of this study. For a proof of these results, the reader should

refer to [Dan84].

◮ Proposition 16: All lines through one point are of rank 3.

◮ Proposition 17: When all lines meet one special line, they are of rank 5.

4.3.4 A new sufficient condition for n-finger force-closure grasps

At this point, we showed that a 6D contact wrench can be represented by the line of action

of its corresponding force. We use this mapping to prove that wrenches associated to three

non-aligned contact points are of rank 6. This result induces the formulation of a sufficient

condition for n-finger (n ≥ 4) force-closure grasps.

◮ Proposition 18: Wrenches associated to 3 aligned contact points are at most of rank 5.

Proof. A 6D contact wrench can be represented by the line of action of its corresponding

force. The lines of action of forces applied at a contact point pass through that point. Thus

wrenches associated to 3 aligned contact points meet one line, the one joining the 3 contact

points. Consequently, from proposition 17, these wrenches are at most of rank 5. �

◮ Proposition 19: The 6 lines on the sides of a tetrahedron are independent, and thus

form a basis of R6, (Fig. 4.11).

Proof. To deal with lines in 3D-space, we need a 4-dimensional linear space. For a basis

of this space we can either take a point, O and 3 vectors e1, e2, e3 or 4 points (p0, p1, p2, p3).

We can relate these by:

[Dan84] A. Dandurand. The rigidity of compound spatial grid. Structural topology, 10, 1984.
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Figure 4.11: The 6 lines on the sides of a tetrahedron are independent.

p1 = O

p2 = O + e1

p3 = O + e2

p4 = O + e3

Any point can be written as a linear combination of these 4 points, for example:

Pa = a1p1 + a2p2 + a3p3 + a4p4

Pb = b1p1 + b2p2 + b3p3 + b4p4

where the ai and bi are scalars and the sums of the ai and bi are unity.

Lines are represented in Grassmannian terms by exterior products of points. Hence from

these 4 independent basis points we can construct 6 independent lines which intersect to

form a tetrahedron :

L1 = p1 ∧ p2

L2 = p1 ∧ p3

L3 = p1 ∧ p4

L4 = p2 ∧ p3

L5 = p2 ∧ p4

L6 = p3 ∧ p4

Any line L is now able to be represented as a linear combination of these 6 basis lines. We

can explicitly display this by multiplying out and simplifying the exterior product of two

points Pa and Pb on the chosen line:
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L = Pa ∧ Pb

= (a1p1 + a2p2 + a3p3 + a4p4) ∧ (b1p1 + b2p2 + b3p3 + b4p4) �

◮ Proposition 20: Wrenches associated to 3 non-aligned contact points are of rank 6.

Figure 4.12: The wrenches of rank 3 associated to the frictional contact points p1, p2 and

p3.

Proof. Let p1, p2 and p3 be 3 non-aligned contact points. Consider the friction cone

associated to p1, called CP1 (Fig. 4.12). Let {m1, m2, m3} be three points chosen on any

3 non-coplanar lines of this cone. The lines {l1 = p1 ∧ m1, l2 = p1 ∧ m2, l3 = p1 ∧ m3}
are of rank 3, (from proposition 16). Thus any line that passes through p1 can be ex-

pressed as a linear combination of these 3 lines. Similarly, {e1, e2, e3} and {h1, h2, h3},
are associated respectively to the friction cones CP2, CP3 at p2, p3. In the same manner,

{l4 = p2 ∧ e1, l5 = p2 ∧ e2, l6 = p2 ∧ e3} and {l7 = p3 ∧ h1, l8 = p3 ∧ h2, l9 = p3 ∧ h3} are

either of rank 3. Let p4 be a point non-coplanar with p1, p2, p3, so these 4 points constitute

a tetrahedron.

The lines (p1 ∧ p2), (p1 ∧ p3) and (p1 ∧ p4) can be expressed as a linear combination of

{p1 ∧m1, p1 ∧m2, p1 ∧m3} since they all pass through p1, thus:
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p1 ∧ p2 =

3
∑

i=1

αi(p1 ∧mi) =

3
∑

i=1

αili (4.14)

p1 ∧ p3 =

3
∑

i=1

βi(p1 ∧mi) =

3
∑

i=1

βili (4.15)

p1 ∧ p4 =
3
∑

i=1

γi(p1 ∧mi) =
3
∑

i=1

γili (4.16)

In the same manner, the lines (p2∧p3) and (p2∧p4) can be expressed as a linear combinations

of {p2 ∧ e1, p2 ∧ e2, p2 ∧ e3} since they pass through the contact point p2. Finally the line

(p3∧p4) passes through p3 and thus can be expressed as a linear combination of {p3∧h1, p3∧
h2, p3 ∧ h3}.

p2 ∧ p3 =
3
∑

i=1

β
′

i(p2 ∧ ei) =
3
∑

i=1

β
′

ili+3 (4.17)

p2 ∧ p4 =
3
∑

i=1

γ
′

i(p2 ∧ ei) =
3
∑

i=1

γ
′

ili+3 (4.18)

p3 ∧ p4 =
3
∑

i=1

γ
′′

i (p3 ∧ hi) =
3
∑

i=1

γ
′′

i li+6 (4.19)

Where αi, βi, γi, α
′

i, γ
′

i, and γ
′′

i ∈ R.

Since the lines of the tetrahedron are of rank 6 (from proposition 19), they form a basis of

R6:

∀v ∈ R6, ∃ δk, k = {1, ...6}, ∈ R such as

v = δ1(p1 ∧ p2) + δ2(p1 ∧ p3) + δ3(p1 ∧ p4)

+ δ4(p2 ∧ p3) + δ5(p2 ∧ p4) + δ6(p3 ∧ p4) (4.20)

Using equations (4.14) to (4.19) in (4.20) gives:

v = δ1(
3
∑

i=1

αili) + δ2(
3
∑

i=1

βili) + δ3(
3
∑

i=1

γili)

+ δ4(
3
∑

i=1

β
′

ili+3) + δ5(
3
∑

i=1

γ
′

ili+3) + δ6(
3
∑

i=1

γ
′′

i li+6) (4.21)
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By regrouping similar terms, we obtain:

v =

3
∑

i=1

(δ1αi + δ2βi + δ3γi)li +

3
∑

i=1

(δ4β
′

i + δ5γ
′

i)li+3 +

3
∑

i=1

δ6γ
′′

i li+6 (4.22)

The equation 4.22 shows that the lines of the tetrahedron can be expressed as a linear com-

bination of the 9 lines li. Thus these 9 lines, associated to the 3 friction cones, are also of

rank 6. Consequently, a 6-dimensional basis can be extracted from these 9 lines. We remind

the reader that the choice of 3 lines among the m sides of each linearized friction cone is due

to the fact that these m lines are of rank 3, (from proposition 16).�

◮ Proposition 21: Assume that the grasp of n − 1 non-aligned fingers is not force-

closure. Suppose that {bi}i=1..k is the k-dimensional (where k = 6) basis associated to their

corresponding contact wrenches. A sufficient condition for a n-finger force-closure grasp is

that there exists a contact wrench γ such that:

• γ is inside the linearized friction cone

of the nth finger (4.23)

• γ =

k
∑

i=1

βibi, βi < 0

⇒ γ = Bβ ⇒ β = B−1γ (4.24)

where B = [b1, b2, ..., bk ] is a k× k matrix and β = [β1, β2, ..., βk ]T is a k× 1 strictly negative

vector. Thus, a simple multiplication by B−1 permits to test if a contact wrench γ, and

consequently the location of the kth contact point, ensures a force-closure grasp.

Proof. A necessary and sufficient condition for force-closure is that the primitive con-

tact wrenches resulted by contact forces at the contact points positively span the entire

k-dimensional wrench space, (from proposition 1). A set of k + 1 vectors in Rk positively

span Ek if and only if the (k + 1)th vector is a unique linear combination of the other k

vectors and all coefficients are strictly negative, (from proposition 15). The k + 1 vectors

{γ, b1, b2, .., bk} satisfy these conditions and thus positively span Rk. �

P.S: Note that our reformulation of the force-closure problem occurs from proposition 18 till

proposition 21. Is it a simple coincidence? or did the force-closure problem really reach maturity with

the proposition 21?

The next sections will detail force-closure grasps synthesis based on proposition 21.
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4.4 n-Finger Force-Closure Grasps Synthesis

To achieve force-closure, the grasp matrix should positively span the wrench space (proposi-

tion 1). For this purpose, we propose a two-steps method: (1) we generate randomly locations

of n − 1 fingers and (2) we test for force-closure with a chosen nth finger. We showed that

wrenches associated to any three non-aligned contact points of 3D objects form a basis of

their corresponding wrench space (proposition 19). Thus, we can find 6-dimensional basis

from the wrenches associated to these n− 1 contacts. A position of the nth finger is located

such that an associated contact wrench can be uniquely expressed as a strictly negative linear

combination of such basis (proposition 21). This approach permits to compute grasp points

on the object for the nth finger to achieve force-closure grasp with the other n− 1 fingers.

◮ The proposed algorithm

This paragraph presents the different steps of the algorithm for computing force-closure

grasps of a 3D object.

Require: - 3D points representing the object

- Linearized friction cone at each point and corresponding wrenches

Ensure: - n fingers force-closure grasp

1: L = Rand Na Fingers(n-1)

2: ntry ← 0

3: r basis = Find Basis (L wrenches)

4: vertex = Rand Finger(1)

5: FC = Force Closure Test(vertex, r basis)

6: ntry ← ntry+1

7: if (!FC) and (ntry ≤ nmax) then

8: Go to step 4

9: else

10: Go to step 1

11: end if

Given a representation of an object along with normal directions and a friction coefficient,

wrenches associated to each of its vertices are firstly computed. In order to obtain n-finger

force-closure grasps, the function Rand Na Fingers generates randomly, locations of non-

aligned n − 1 fingers on the object surface. A 6-dimensional basis from the wrenches as-

sociated to these n − 1 contacts are determined by Find Basis. An object vertex is then

randomly chosen by Rand Finger and tested for ensuring a n-finger force-closure grasp with

Force Closure Test. A position of the nth finger ensures force-closure if an associated con-

tact wrench can be uniquely expressed as a strictly negative linear combination of the 6-

dimensional basis. We choose the wrench associated to the normal force on the nth contact.

If the n-finger grasp ensures force-closure the algorithm ends. Otherwise, a parameter ntry
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permits to quantify the number of the nth fingers tested for force-closure with the first gen-

erated n − 1 fingers. If this number is lower than a threshold, nmax, another object vertex

is tested for force-closure. We generate novel n−1 fingers locations in the other case. Notice

that nmax/ntry is a good estimation of the randomly n− 1 generated fingers quality. When

ntry reaches the threshold, the corresponding quality is equal to 1. It means that no n-finger

force-closure grasp was found with the chosen n − 1 fingers. When ntry is lower than the

threshold, nmax/ntry is more than unity. In other words, a small value of ntry means that

a force-closure grasp was easily obtained for the generated n − 1 fingers. These approaches

are detailed and discussed in the last chapter of experimental results.

4.5 Optimal n-Finger Force-Closure Grasps Synthe-

sis
Previously, we developed a sufficient condition for force-closure and presented an algorithm

that permits the generation of n-fingers locations satisfying that condition. Our objective is

to ensure fast robust force-closure grasps generation. In our case, force-closure grasps fast

computation and robustness are strongly linked. In order to understand how the two latter

are tied together, one should notice that generating a n-finger good grasp will depend on

the generation of the first n-1 fingers. A good choice of their locations will induce on one

hand robust grasps and on the other hand more locations for the nth finger on the object

surface guaranteing force-closure and consequently fast computation. Thus, we need to find

a criterion that quantifies a good placement of the n − 1 first fingers. We present in the

following different force-closure quality measures proposed in the literature. We propose

then a method that generates simultaneously force-closure and good quality grasps.

4.5.1 Existing Force-Closure Quality Criteria

Different grasps quality measures were proposed in the literature. They are generally associ-

ated with fingers locations, task requirements or with the robotic hand kinematics. We focus

here on those that measure force-closure performance. In other words, we focus on grasps

criteria that measure how well a grasp can stand external disturbances. A review on the

quality measures proposed in the grasp literature can be found in [SRC06]. These measures

do not assume a priori knowledge of disturbance, they assume that an external wrench is

uniformly distributed in every direction. We present in the following some of the most used

criteria.

Criterion of the largest ball: The most popular quality metric is the one that deter-

mines the magnitude of the largest worst-case disturbance wrench that can be resisted by a

[SRC06] R. Suarez, M. Roa, and J. Cornella. Grasp quality measures. Technical Report, Universitat

Politecnica De Catalunya, 2006.



4.5 Optimal n-Finger Force-Closure Grasps Synthesis 85

grasp of unit strength. This measure has been proposed in several forms [KMY92], but it is

best described by Ferrari and Canny [FC92]. The quality of a grasp is equal to the distance

from the origin to the closest facet of the convex hull of the grasp wrenches. Thus an optimal

grasp is the one that maximizes the radius of the largest ball inscribed in the convex hull.

Although this measurement is not invariant to the choice of the wrench space origin (since

wrenches contain torques depending on the origin choice), it is used in many works such

as [BFH03, MC94, MKAC03].

Volume of the ellipsoid in the wrench space: A measure that is invariant to a

change in the torque reference system is proposed in [LS88]. The authors map a sphere of

unitary radius in the force domain into an ellipsoid in the wrench space. The quality measure

proposed considers the contribution of all the contact forces by measuring the volume of this

ellipsoid. This measure must be maximized to obtain the best grasp.

Distance between the centroid of the grasp polygon and the center of mass of

the object: The effect of the gravitational forces is reduced when the distance between the

center of mass of the object and the center of the contact polygon or polyhedron is reduced.

This measure is used in several works [PF95, DLW00].

Isotropy index: This criterion looks for a uniform distribution of the contact forces to

the total wrench exerted on an object, hence it is called isotropic. It is defined in [KOYS01]

as being the fraction of the minimum to the maximum singular values of the grasp matrix

G.

[KMY92] D. Kirkpatrick, B. Mishra, and C. Yap. Quantitative steinitzs theorem with applications to

multi-fingered grasping. Discr. Comput. Geom., 7:(3):295–318, 1992.

[FC92] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings of IEEE International

Conference on Robotics and Automation, 1992.

[BFH03] Ch. Borst, M. Fischer, and G. Hirzinger. Grasping the dice by dicing the grasp. In Proceedings

of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.

[MC94] B. Mirtich and J. Canny. Easily computable optimum grasps in 2d and 3d. In Proceedings of

IEEE International Conference on Robotics and Automation, 1:739–747, 1994.

[MKAC03] A.T. Miller, S. Knoop, P.K. Allen, and H.I. Christensen. Automatic grasp planning using shape

primitives. In Proceedings of IEEE International Conference on Robotics and Automation, 2003.

[LS88] Z. Li and S.S. Sastry. Task-oriented optimal grasping by multifingered robot hands. IEEE

Journal of Robotics and Automation, 4:(1), 1988.

[PF95] J. Ponce and B. Faverjon. On computing three finger force closure grasp of polygonal objects.

IEEE Transactions on Robotics and Automation, 11:(6):868881, 1995.

[DLW00] D. Ding, Y. Liu, and S. Wang. Conmputing 3-d optimal form-closure grasps. In Proceedings of

IEEE International Conference on Robotics and Automation, page 35733578, 2000.

[KOYS01] B. Kim, S. Oh, B. Yi, and I.H. Suh. Optimal grasping based on non-dimensionalized perfor-

mance indices. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 949–956, 2001.
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Q distance: We previously defined the d−Q distance. This distance is also equivalent to

largest ball criterion.

Existing force-closure grasps quality criteria permit to select an optimal grasp among a set

of stable grasps. Thus, one should generate first several force-closure grasps, compute their

corresponding quality to finally choose a good one. For example, the most used criterion that

maximizes the radius of the largest ball inscribed in the convex hull is meaningful when the

origin is inside the convex-hull of the contact wrenches, thus when the grasp is a force-closure

one. We showed that, in our case, computing a good grasp depends on a good placement

of the n − 1 first fingers that are not in force-closure as much as the placement of the nth

finger. Consequently, a quality metric should be associated to the locations of these n − 1

fingers. Hence, a new criterion is needed.

4.5.2 Quality criterion of the n− 1 fingers locations

This section details the criterion introduced to measure the quality of the first generated

n − 1 fingers in the case of a 2D object and its extension to 3D objects. Force-closure is

obtained by choosing a wrench basis associated to the first n − 1 fingers and then find the

nth finger such that an associated contact wrench can be uniquely expressed as a strictly

negative linear combination of that wrench basis. In a 2D case, a wrench basis is represented

by three points in the 3D space that constitute with the wrench space origin a tetrahedron.

A wrench that ensures force-closure grasp is a wrench that can be uniquely expressed as a

strictly negative linear combination of the 3D basis. Thus, the larger the tetrahedron, the

more choices we have for such a wrench. In the following, this idea is detailed more formally.

4.5.2.1 2D criterion

We prove in the following that, in a 2D case, the largest ball criterion is obtained when the

wrenches associated to the two-finger contact points form a regular tetrahedron.

2D grasps wrenches In 2D, a hard finger in contact with an object at a point x exerts

a grasp force f with a corresponding torque τ = det(x, f). Force and torque are combined

into a 3D wrench w = (f, τ). Thus the wrench space is of rank 3.

2D force-closure grasps quality Let A and B be two contact points on the boundary of a

planar object. fA1, fA2 and fB1, fB2 represent their corresponding friction cones boundaries

(Fig. 4.13). The wrenches associated to these grasp forces are represented respectively by the

four 3D points, wA1, wA2, wB1 and wB2. Note that these wrenches can also be associated to

any two forces inside the corresponding friction cones.

◮ Proposition 22: Wrenches associated to any two contact points of 2D objects form a

3D basis.
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Proof. Immediate when one notes that if we select any two wrenches, there exists a third one

that is not a linear combination of the other two. �

Figure 4.13: fA1, fA2 and fB1, fB2 represent the 2D friction cones boundaries.

Any chosen 3 wrenches from the 4 wrenches associated to the two contact points A and

B are of rank 3. Consider for example wA1, wA2 and wB1, they form a 3D basis. A sufficient

condition for a third finger to ensure 2D force-closure grasp is that its corresponding wrench,

w4, is a strictly negative linear combination of the 3D basis (proposition 21). The convex

hull of wA1, wA2, wB1 and w4 is a tetrahedron T . Thus one grasp quality corresponds to the

largest ball centered at the origin and inscribed in T [FC92]. The best quality is obtained

when T is a regular one. Consequently, the best locations of the contact points A and B is

obtained when the tetrahedron constituted by normalized wA1, wA2, wB1 and the origin O,

approximates a regular one.

Tetrahedra quality measure Different tetrahedron quality measures were proposed in

the literature especially in the field of mesh optimization. One of the most used quality is

Q = V
h3

max

[ZBD95], where V is the volume of the tetrahedron and hmax is its maximal edge

length. Q is maximal when the corresponding tetrahedron is regular. Using this criterion,

the quality of the locations of the two contact points A and B is given by:

Q(A,B) = max
i,i=1..nb

Vi

h3
i max

(4.25)

where nb is the number of tetrahedra constituted by the origin and the wrenches associated

to the two contact points. In other words, nb is the number of 3D basis associated to the

contact wrenches, (in 2D, nb = 4).

A 2D quality criterion The reader should keep in mind that we are interested in finding

a criterion to the locations of the n−1 fingers to ensure robust 3D force-closure grasps. Thus,

[FC92] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings of IEEE International

Conference on Robotics and Automation, 1992.

[ZBD95] P.D. Zavattieri, G.C. Buscaglia, and E.A. Dari. Finite element mesh optimization in three

dimensions. 1995.
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in the following, we reformulate (4.25) to be extensible to 3D grasps. As a matter of fact,

the volume V of a tetrahedron can be expressed as [RR93]:

V = δ
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(4.26)

where δ is a constant, it is equal to 1/6. xj, yj , zj are the coordinates of a tetrahedron vertex.

Since the origin O is one of the vertices (i.e x4 = y4 = z4 = 0), by substituting (4.26) in

(4.25) we obtain:

Q(A,B) = max
i,i=1..nb
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(4.27)

Q(A,B) is maximal when the corresponding tetrahedron is regular. The volume of a

regular tetrahedron is
√

2a3/12, where a is its edges length. For such a tetrahedron, hmax = a,

thus Q(A,B)max is
√

2/12. A normalized criterion will be:

Q(A,B) = max
i,i=1..nb

12.δ.det(wi
1 , w

i
2, w

i
3)√

2h3
i max

(4.28)

In order to show the efficiency of the proposed quality criterion, locations of two contact

fingers are randomly generated on a 2D object. Using equation (4.28), the quality of the

generated fingers, noted Qfg, is computed. All the 2D object vertices are then tested for

force-closure. For all force-closure grasps reported, we calculate the classical grasp quality

measure based on the largest ball criterion. The latter is noted Qcl. Figure (4.14) shows the

average of Qcl of all force-closure grasps found as a function of Qfg attributed to the fingers,

(mean(Qcl) = f(Qfg)). This figure demonstrates that we are dealing with an increasing

function: it means that our criterion and the classical one evolve in the same way. We notice

that after a threshold = 0.5, the force-closure quality obtained is above 0.1. In other words,

when the tetrahedron constituted with the 3D wrench basis and the origin is half-regular,

the quality of the force-closure grasps obtained is half-optimal, since the largest ball is of

radius ρ = 0.2041. This value is computed as follows [RR93]:

ρ = 3.
V

S
= 3.

√
2

12.
√

3
= 0.2041

Where V is the volume of the tetrahedron of unit length and S the sum of its 4 faces surfaces.

[RR93] P. Robert and A. Roux. Influence of the shape of the tetrahedron on the accuracy of the estimate

of the current density. Proceedings of ESA START Conference, 1993.
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Figure 4.14: The n-finger force-closure grasps quality according to the largest ball criterion

as a function of the quality measure attributed to the n-1 fingers locations.

4.5.2.2 A 3D quality criterion

Dealing with 3D objects grasps involves 6D wrenches. Thus, instead of computing 3D tetra-

hedra volumes, we are conducted to calculate volumes of 6D hypertetrahedra. Equation

(4.28) introduced in the case of 2D grasps could be extended to 3D grasps as follows (com-

putation of a 6-volume hypertetrahedron could be viewed as a determinant calculation):

Q(C,D,E) = max
i,i=1..nb

β.det(wi
1, w

i
2, w

i
3, w

i
4, w

i
5, w

i
6)

h6
i max

(4.29)

Where {wi
j}j=1..6 is a 6D wrench basis. Note that nb is the number of 6D basis chosen among

the (n− 1)m wrenches, (corresponding to the n− 1 fingers). This quality measure is used to

generate the first n − 1 contact fingers locations on 3D objects and its efficiency is verified

in the experimental results.

◮ At this point, we defined a quality criterion for the first generated n − 1 fingers. The

latter is expressed as the volume of their corresponding 6D wrench basis. Thus, in this case,

a good quality criterion induces a large 6D wrench basis volume yielding more possibilities

for placing the nth finger. This, evidently, decreases force-closure grasps computation time

and increases their quality. In the following, we present the algorithm taking into account

this quality measure for generating robust force-closure grasps:

Require: - 3D points representing the object

- Linearized friction cone at each point and corresponding wrenches

Ensure: - n fingers force-closure grasp

1: L = Rand Na Fingers(n-1)

2: ntry ← 0

3: L basis = Find Basis (L wrenches)

4: q L=quality(L basis)
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5: if q L <threshold then

6: Go to step 1

7: end if

8: vertex = Rand Finger(1)

9: ntry ← ntry+1

10: FC = Force Closure Test(vertex, r basis)

11: if (!FC) and (ntry ≤ nmax ) then

12: Go to step 8

13: else

14: or Go to step 1

15: end if

Given a representation of an object along with normal directions and a friction coefficient,

wrenches associated to each of its vertices are firstly computed. In order to obtain n-finger

force-closure grasps, the function Rand Na Fingers generates randomly, locations of non-

aligned n − 1 fingers on the object surface. A number L basis of 6-dimensional basis from

the wrenches associated to these n−1 contacts are determined by Find Basis. The quality of

these basis is computed with quality function. If the latter is below a threshold, we proceed

at the generation of other n− 1 fingers locations. If the quality of at least one of the L basis

is above the specified threshold, an object vertex is then randomly chosen by Rand Finger

and tested for ensuring a n-finger force-closure grasp with Force Closure Test. If the n-finger

grasp ensures force-closure the algorithm finishes. Otherwise, ntry permits to choose between

generating novel n−1 fingers locations or testing another object vertex for force-closure with

the basis of the same n − 1 fingers. Note that the choice of the threshold and nmax is

crucial for the algorithm force-closure grasps computation time. The threshold value cannot

be determined analytically. It varies with the object shape and thus is chosen empirically.

As for nmax, the following chapter discusses in detail its influence on the rapidity of the

algorithm.

4.6 Conclusion

This chapter presents an important contribution to existing force-closure grasps computation

procedures. It proposes a new sufficient condition for generating n-finger force-closure grasps.

Furthermore, contrarily of current works in the literature that generate many grasps and

then rank them in order to find the best one, we introduce a quality criterion to the first

generated n − 1 fingers permitting to ensure simultaneously force-closure and good quality

grasps according to the classical largest ball criterion. Our quality measure permits also

to reduce force-closure grasps computation time. The next chapter details corresponding

experimental results.



Chapter 5

Experimental Results

”Quoi que vous pensiez ou croyiez pouvoir faire,

faites-le. L’action porte en elle la magie, la grâce

et le pouvoir.”

Goethe

The previous chapters detail our grasping strategy that occurs in two steps. First, an

algorithm that predicts grasp as a function of the object’s sub-parts is presented. Starting

with a 3D model of the object, a segmentation step decomposes it into single parts. Each part

is fitted with a geometric model. A learning step permits then to imitate the human choice

of the object’s natural grasping component. In a second time, a new sufficient condition

for computing n-finger force-closure grasps on the obtained graspable part is proposed. This

chapter aims at testing the proposed approach in a series of experiments. The first experiment

quantifies how well learned grasping skills generalize to new objects. Thus, an algorithm is

trained to grasp a small set of objects and tested on a much larger set of everyday items.

In a second experiment, two aspects of the force-closure sufficient conditions are studied:

completeness and rapidity. The efficiency of the proposed method is tested by comparing it

to the classical convex-hull one [MKAC03].

5.1 Learning the Natural Grasping Component
We proposed a grasping strategy that describes objects as an assembly of parts and then

proceeds to the identification of the handle or the Natural Grasping Component (NGC) in

accordance with humans choice. This section aims at testing the ability of our learning al-

gorithm to generalize. For this purpose, different experiments were conducted. We begin

[MKAC03] A.T. Miller, S. Knoop, P.K. Allen, and H.I. Christensen. Automatic grasp planning using shape

primitives. In Proceedings of IEEE International Conference on Robotics and Automation, 2003.
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by validating the learning algorithm model. Two generalization experiments were then per-

formed. The first one tests the algorithm on objects belonging to the same categories as

the training data but of different shapes and sizes. The second one considers objects that

are completely different from those of the training set. We use for our tests synthetic 3D

objects models available on Princeton Benchmark [SMKF04] and NTU 3D Model Bench-

mark [CTSO03] (Fig. 5.1). We also tested the algorithm on real objects models obtained

from a 3D laser scanner and from 3D reconstruction using a vision system. A crucial step

of the approach is decomposing objects into parts. Two segmentation algorithms were im-

plemented. Thus, before detailing our learning algorithm results, we compare these two

segmentation methods.

Figure 5.1: Synthetic objects used for testing the algorithm ability to generalize.

[SMKF04] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The princeton shape benchmark. In

Proceedings of Shape Modelling International, 2004.

[CTSO03] D.Y. Chen, X.P. Tian, Y.T. Shen, and M. Ouhyoung. On visual similarity based 3d model

retrieval. Computer Graphics Forum (EUROGRAPHICS’03), 22(3):223–232, 2003.
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5.1.1 Objects Segmentation

In order to decompose objects into parts, we implemented two approaches [ZPKG02, CG06].

Zhang’s method decomposes objects into parts based on the Gaussian curvature for detecting

boundries. In chpater 3, we discussed Zhang’s method limitations and showed how Chen’s

approach can overcome them. We remind the reader of the two limitations identified:

• Problems when dealing with high resolution objects models having concave corners

located between different boundaries.

• Failure to determine accurately boundaries between different objects parts when an

object model is densely represented with polygonal faces.

Chen’s algorithm succeeds to segment high resolution models. In addition to Gaussian cur-

vature, it uses concaveness estimation for detecting boundaries between different sub-parts.

Another advantage of the method is that local features are computed using multi-ring neigh-

borhood, contrarily to Zhang’s method that uses only one-ring neighborhood. In the follow-

ing, we perform segmentation on a synthetic 3D model with different resolutions in order

to illustrate the previously stated limitations. We finally test the chosen algorithm on real

objects obtained from a 3D laser scanner and a vision system.

Limitation due to concave corners: The first example illustrates three spheres union.

Their intersection is a concave corner. This area has an elliptic behavior. For a high resolu-

tion model, the boundaries between the three spheres will be broken at this region. Figure 5.2

shows Zhang’s method segmentation results with different resolutions. The algorithm per-

forms well for low resolution models. It fails to decompose the high resolution one into

parts. On the other hand, we tested Chen’s method with the latter model. Only one-ring

neighborhood was chosen for computing local objects features. Figure 5.3 illustrates the cor-

responding decomposition. This proves that concaveness estimation is crucial when dealing

with concave corners objects.

Limitation due to densely distributed polygons: This experiment aims at studying

the ability of the segmentation algorithms to decompose high resolution 3D models. For

this purpose, we tested the algorithms on real objects models obtained from a 3D laser

scanner. The reflective objects surfaces was treated with a matt spray. A turning table

permitted then to acquire 3D objects models. The latter are presented in (Fig. 5.4). Zhang’s

algorithm fails to decompose these objects into parts. One part was obtained with this

method. On the other hand, figure 5.5 illustrates objects decomposition obtained with Chen’s

segmentation algorithm. One-ring neighborhood is sufficient for computing local features and

[ZPKG02] Y. Zhang, J.K. Paik, A. Koschan, and D. Gorsich. A simple and efficient algorithm for part

decomposition of 3d triangulated models based on curvature analysis. International Conference

on Image Processing, (3):273276, 2002.

[CG06] L. Chen and N.D. Georganas. An efficient and robust algorithm for 3d mesh segmentation.

Multimedia Tools Appl., 29(2):109–125, 2006.
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Figure 5.2: Segmentation of three spheres union with different resolutions using Zhang’s

method: (a) model represented with 2524 points (b) 5091 points and (c) 19020 points.

Figure 5.3: Segmentation of the three spheres model represented with 19020 points using

Chen’s method.

segmenting low resolution objects models, but when dealing with laser scanned objects 6-ring

neighborhood was used. The champagne glass is modelled with 137421 vertices, while the

mug, the shampoo and bottle are modelled respectively with 183534 and 122307 vertices.

Another example illustrating the advantage of using a multi-ring neighborhood is illus-

trated in (table 5.1). Notice that the object obtained through a vision system is modelled

with 7360 vertices. This corresponds to a low resolution model in comparison to the laser

scanned objects. Thus, a 1-ring neighborhood should be sufficient for segmenting such an ob-

ject. But considering the coarse surface of the reconstructed object, a better decomposition

is obtained with a 3-ring neighborhood.

These results show that Chen’s algorithm is adapted for segmenting low and high reso-

Table 5.1: Segmenting an object model obtained using vision.

One-ring neighborhood 3-ring neighborhood
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Figure 5.4: Preparing objects to the scanning procedure.

Figure 5.5: Segmentation of real 3D laser scanned objects.

lution models. Thus, It will be used in the following experiments.

5.1.2 Validation of the Learning Algorithm Model

After segmenting objects into parts, each component is fitted with a superquadric. Thus,

our learning algorithm uses objects sub-parts sizes and shapes in order to select the grasping

component. For this purpose, a multi-layer perceptron with sixteen inputs, one output

and one hidden layer is trained with a typical backpropagation learning algorithm. We

use 12 two-parts objects for training. In order to increase diversity of our training data,

we vary some objects properties such as sub-components sizes, bending angles or tapering

parameters without changing the whole appearance of the object. We generate 72 examples

for each object. A 10-fold cross validation procedure is then employed to validate the learning

algorithm. Thus, our training data is divided randomly into 10 parts. In a first step, the first

part is taken apart and used for test data while the 9 remaining parts are used for training

data. In a second step, the second part is considered as testing data while the remaining 9

parts are considered as training data. This procedure is repeated ten times. The advantage

of this method over repeated random sub-sampling is that all observations are used for both

training and validation, and each observation is used for validation exactly once. The 10

results from the folds are then averaged to produce a single score estimation of the training

and testing data. We have an average of 99.45% for the training data and of 98.97% for

testing data.
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5.1.3 First Generalization Test

First, we tested the algorithm on multi-part objects, selected from the database, belonging to

the same categories as the training data but of different shapes and sizes. These objects are

such as bottles, spoons, knifes, pencils etc. Some of these objects along with their obtained

grasping part are shown in (Fig. 5.6). This figure illustrates objects decomposition as well as

their graspable part in black. The motivation behind this experiment is that if our algorithm

does not work on multi-part objects similar to the training data, then we must conclude that

our feature set is not sufficiently discriminative. We use for this test 17 objects. For such

Figure 5.6: Some objects belonging to the same categories as the objects of the training data.

The black part indicates the grasping part identified by the algorithm.

objects, the algorithm generalizes very well and was capable of finding each time the handle

that human choose to grasp the corresponding object.

5.1.4 Second Generalization Test

In a second time we tested the algorithm on 54 objects that are completely different from

those of the training set. This experiment is useful to test the algorithm ability to generalize

to completely novel objects. Seven subjects were asked to grasp these objects in order to

accomplish a task. We do not specify the task that should be performed. The subjects

were supposed to identify objects graspable parts whether they recognize the object or not.

Twenty seven objects, AO (Agreed Objects), were grasped by the same manner. On the

other hand, the remaining 27 objects, CO (Confusing Objects), induced confusion and the

seven subjects chose different parts to grasp them. We remind the reader that our aim is to
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imitate humans choice of the graspable part. The distinction between AO and CO objects

is necessary for measuring our algorithm performance. Their success grasp rate is computed

differently.

5.1.4.1 Success Grasp Rate for Agreed Objects

The seven subjects totally agreed on the Agreed Objects handles. Thus, for AO objects,

whenever the algorithm selects for grasping a part different from the one identified by the

seven subjects, it is considered a failure. Some of the AO objects are shown in (Fig. 5.7)

along with the graspable part identified by the algorithm in black. Objects parts that are

marked with a cross are the ones corresponding to humans choice.The system succeeds to

find the correct graspable parts for 22 AO objects, which corresponds to a successful grasp

rate of 81%. This rate shows that features such as sizes and shapes of novel objects subparts

are about 81% discriminative to determine the object natural grasping part. An interesting

Figure 5.7: Examples of AO objects. The black part indicates the corresponding object

graspable part identified by the algorithm. The crossed part indicates the one chosen by

humans.

analysis can also be done when computing the grasping rate on objects that the subjects

could not identify. This rate will show the ability of the algorithm to imitate humans when

grasping unknown objects to them. Figure (5.8) illustrates these objects. Objects b, c, d and
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Table 5.2: Success Grasp Rate for AO.

AO objects

Known Unknown

Grasp rate computed on the basis of All people

Total number 27

Number 23 4

Number grasped successfully 18 4

Success Grasp Rate 78% 100%

e are AO objects. Table (5.2) shows the grasp rate obtained. We have in our database only

4 unknown AO objects. This number may seem insufficient for computing a corresponding

grasp rate. But, the reader should notice that is hard to find unknown objects. Constructing

arbitrary objects may induce unknown objects, however it is contradictory to the basic idea

of our grasping strategy, i.e objects are made specifically in a way that makes their grasp

easier. Thus, constructing useless objects is not a solution. The algorithm score is of 78% and

100% for known and unknown objects respectively. This result proves that our algorithm

completely succeeds in imitating humans choice of novel objects graspable part. In other

words, features such as sizes and shapes of an unknown object subparts are discriminative

to determine unknown objects natural grasping parts.

Figure 5.8: Unknown objects grasping. The black parts indicate the ones selected by the

algorithm. Objects b, c, d and e are AO objects. Objects a, f, g, h, k, l and m are CO objects.

5.1.4.2 Success Grasp Rate for Confusing Objects

The seven subjects chose different parts to grasp Confusing Objects. Since humans grasp

these objects in various ways, two successful rate may be computed: a successful grasp may
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be a grasp that identifies the object part chosen by most people, or a successful grasp may

be a grasp that identifies a part chosen by at least one person. Otherwise, failure occurs.

Figure (5.9) shows some examples of CO objects. The black part indicates the one chosen

by the system and the cross-marked part is the one corresponding to most people choice.

The algorithm succeeds to find, for 15 CO objects, the part selected by most people. This

corresponds to a successful grasp rate of 55%. When considering a grasp rate on the basis

of ”at least chosen by one person”, the algorithm perform well for 23 CO objects which

corresponds to a rate of 85%. Table (5.3) shows the grasp rate obtained when dividing CO

Figure 5.9: Examples of CO objects. The black part indicates the system choice. The

cross-marked parts indicate most humans choice.

objects into known and unknown objects. On the basis of ”at least one person grasp it this

way”, the algorithm score is of 100% for unknown objects. These objects are illustrated

in (Fig. 5.8).

5.1.5 Discussion and Limitations of the GBC Strategy

The previous two experiments test the ability of the learning algorithm to generalize. The

first experiment tests the algorithm on multi-part objects from the same type of those of the

training set. The algorithm performs very well on such objects (success rate of 100%). This

shows that our feature set is sufficiently discriminative. Thus, the algorithm can be tested
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Table 5.3: Success Grasp Rate for CO objects.

CO objects

Known Unknown

Grasp rate computed on the basis of MP ALO MP ALO

Total number 27

Number 20 7

Number grasped successfully 10 16 5 7

Success Grasp Rate 50% 80% 71% 100%

on objects completely different from those of the training data. These objects were divided

into AO and CO objects whether humans agreed or not on their graspable part. When a

success grasp rate was computed on the basis of ”at least one person grasp it this way”, our

algorithm have a success rate of about 80% for known objects and 100% for unknown objects.

These results show that Humans use indeed unknown objects subparts shapes and sizes in

order to grasp them. However, the proposed algorithm fails to determine the graspable part

chosen by most people for objects such as those shown in Figure (5.10). These examples

illustrates the two limitations of the algorithm:

Figure 5.10: Some objects for which the algorithm fails to select the graspable part that most

people choose. The black part indicates the one selected by the algorithm. The cross-marked

part indicates the part chosen by most people.

• Failing to grasp objects with holey parts such as keys or compasses is due to modelling

capabilities limitation. Thus, a solution is to enhance objects modelling by adding

toroid shaped superquadrics that in many cases are relevant to the grasping problem.

• Objects with similar components are grasped in the same manner. That was the basic

idea of the algorithm. But, although some objects are similar from a geometric point of
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view, we grasp them differently. This is the case of the baseball bat. When represented

as an assembly of superquadrics, a baseball bat can also be viewed as a screwdriver.

This explains the graspable part chosen by the algorithm. To overcome this failure,

other features about the object should be included such as its color or material etc.

The limitations described above constitute the two main failure reasons of the proposed

approach. Thus, they represent the 20% of objects. The algorithm succeeds to identify the

natural grasping component of the other 80% objects as shown previously.

5.2 From the Grasping Component to the Grasping

Points
At this point, we are able to identify an unknown object handle. This section aims at

computing contact points on the corresponding handle that ensure stability. The force-

closure property guarantees stability. It is well known that to achieve force-closure, the

grasp matrix should positively span the wrench space (Chapter4:proposition 1). Our method

generates first, randomly, locations of n − 1 fingers. We showed that wrenches associated

to any three non-aligned contact points of 3D objects form a basis of their corresponding

wrench space (Chapter4:proposition 19). Thus, we can find 6-dimensional basis from the

wrenches associated to these n − 1 contacts. A position of the nth finger is located such

that an associated contact wrench can be uniquely expressed as a strictly negative linear

combination of such basis (Chapter4:proposition 21). We choose the wrench associated to the

normal force on the nth contact. We compare our method with the classical complete method

based on the construction of a 6D convex hull [MKAC03]. The latter involves approximating

the contact friction cones as a convex sum of a finite number of force vectors around the

boundary of the cone, computing the associated object wrench for each force vector, and

then finding the convex hull of this set of wrenches. If the origin is contained within this

space, the grasp have force-closure. Otherwise, there exists some set of disturbance wrenches

that cannot be resisted by the grasp.

We accomplish tests on a sphere model, represented by its 762 vertices and its respective

normal directions. Two experiments are performed in order to show the efficiency of the

proposed approach. The first test aims at studying the completeness of the approach. The

purpose of the second test is to compare the force-closure grasp computation time of our

approach to that of the convex hull. Since these two methods require the cone to be linearized

and since all lines through one point are of rank 3 (from Chapter4:proposition 16), without

loss of generality, we use a 3-sided pyramid to represent a linear model of a cone. With the

latter model of the friction cone, the maximal number of basis computed from the wrenches

associated to the 3 fingers is 84. The friction coefficient is set to 0.5 (corresponds to the

[MKAC03] A.T. Miller, S. Knoop, P.K. Allen, and H.I. Christensen. Automatic grasp planning using shape

primitives. In Proceedings of IEEE International Conference on Robotics and Automation, 2003.
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coefficient between glass and metal). The experiments were run on Pentium Core duo machine

with 2GB memory and a CPU at 2.13 GHz . The program is implemented in C++.

5.2.1 Completeness Test

The completeness test aims at computing all possible n-finger force-closure grasps on a 3D

object with our method and that of the convex-hull. The algorithm below details the steps

of the completeness test. The corresponding experimental results are shown in (table 5.4).

Require: - 3D points representing the object

- Linearized friction cone at each point and corresponding wrenches

Ensure: - Average number of 4 fingers force-closure grasps

1: nFC new ← 0

2: nFC classic← 0

3: nL← 0

4: NLoc← number of all 3 fingers locations non-aligned and not in force-closure

5: for i from 1 to NLoc do

6: L basis = Find Basis (L wrenches)

7: q L=quality(L basis)

8: if q L <Th then

9: i← i+ 1

10: end if

11: nL← nL+ 1

12: for all object vertices do

13: if new Force Closure (vertex, L basis) then

14: nFC new ← nFC new + 1

15: end if

16: if classic Force Closure (vertex,L wrenches) then

17: nFC classic← nFC classic+ 1

18: end if

19: end for

20: end for

21: return nFC new/nL and nFC classic/nL

Given a representation of an object along with normal directions and a friction coefficient,

wrenches associated to each of its vertices are firstly computed. The completeness test

consists in generating all locations of 3 fingers non-aligned and not in force-closure on the

sphere. For each 3 fingers locations corresponds 9 wrenches, L wrenches. All 6-dimensional

basis, L basis, from the L wrenches are determined by Find Basis. To ensure a robust

force-closure grasp, a quality criterion of the locations of the 3 fingers, q L is computed by

quality function. q L is computed by calculating the quality of each basis according to our
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Table 5.4: Completeness test

Number of Solutions (s)

classic new n/c

Th0 315 59 18.73%

Th1 349 82 23.5 %

Th2 366 96 26.23 %

Th3 392 118 30.1 %

Th4 419 149 35.56 %

criterion. Thus, q L is the maximum quality of their corresponding basis. If q L is above

a threshold Th, good locations for the first three fingers are found and nL is incremented.

All object vertices are then tested for a 4-finger force-closure grasp with new Force Closure

and classic Force Closure (of course with the same first three fingers locations for the two

methods). These two functions correspond to our approach and the convex-hull method. A

position of the 4th finger is located such that its normal contact wrench can be uniquely

expressed as a strictly negative linear combination of one of the L basis. If the grasp ensures

force-closure, nFC new or nFC classic is incremented according to the approach used. The

algorithm returns the average number of 4-fingers force-closure grasps found with the two

approaches.

Results: Completeness results for different thresholds 0 = Th0 < Th1 < Th2 < Th3 <

Th4 are shown in (table 5.4). The threshold value varies according to the object geometry

and consequently was empirically chosen. Note that Th0 is null and thus presume no con-

straints on the generation of the first n− 1 fingers. The latter are thus generated randomly

ensuring no minimal quality criterion. We notice that the solutions found by our approach

regarding the convex-hull one increases with the threshold. This proves the robustness of the

quality criterion proposed. In spite of a good selection of the first three fingers locations, a

completeness of only 35% is obtained. Thus, our method reports fault negative results (the

method implies no force-closure when it exists). That is due to two main reasons. The first

one is the linearization of the friction cone. The second is due to testing only the normal

wrench associated to the nth finger for force-closure. The next paragraph will show that

even with a low rate of completeness, i.e with Th0, our approach will generate a more ro-

bust force-closure grasp with at least a quarter computation time needed by the convex-hull

method.

5.2.2 Rapidity Test

This paragraph measures the computation time for generating one n-finger force-closure

grasp. The algorithm below details the different corresponding steps for generating 4-finger

force-closure grasps.
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Require: - 3D points representing the object

- Linearized friction cone at each point and corresponding wrenches

Ensure: - A 4 fingers force-closure grasp

1: α ∈ [0; 1]

2: L = Rand Fingers (3)

3: L basis = Find Basis (L wrenches)

4: q L = quality(L basis)

5: if q L <Th then

6: Go to step 2

7: end if

8: B basis = Best Basis(L basis)

9: randomly choose x ∈]0; 1[

10: if x > α then

11: n← 0

12: while (n < Npoints) and (No Force-Closure found) do

13: n← n+ 1

14: vertex=Rand Finger(1)

15: Force Closure (vertex, B basis or L wrenches)

16: end while

17: if No Force-Closure found then

18: Go to step 2

19: end if

20: else

21: vertex = Rand Finger(1)

22: Force Closure (vertex, B basis or L wrenches)

23: if No Force-Closure found then

24: Go to step 2

25: end if

26: end if

A 4-finger force-closure grasp may be generated in two different ways. The tuning pa-

rameter α will indicate the best way. L stands for the randomly generated locations of 3

fingers non-aligned and not in force-closure on the sphere. Since computing a good grasp

depends on a good placement of the first 3 fingers as well as the location of the fourth fin-

ger, L must ensure a minimal quality criterion. This criterion computation is detailed in

the previous chapter. Once good 3 fingers locations are generated, we compute their cor-

responding wrench space basis and determine the best quality basis, B basis. The value x

permits to choose between two methods. The first method consists in testing till Npoints

vertices for force-closure with B basis. The second method tests only one randomly gener-
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ated vertex for force-closure with B basis. When no force-closure grasp is found, we proceed

to generate another locations for the first 3 fingers. The variable x can take values between

0 and 1. When x > 0.5, the second method is privileged. Thus, when no force-closure is

obtained when testing a vertex for force-closure with the generated n−1 vertices, we privilege

regenerating new locations for the n − 1 vertices on testing another vertex with the same

first n − 1 vertices positions. On the contrary, when x < 0.5 the first method is privileged.

The Force Closure(vertex, B basis or L wrenches) function performs n-finger force closure

tests. It takes B basis or L wrenches as arguments wether force-closure is tested according

to the new or the classic convex-hull method respectively.

Results: Experiments were conducted using different thresholds with the convex-hull and

our method. Figure (5.11) shows the evolution of a force-closure grasp computation time

with respect to α, for the threshold Th0. We remind the reader that Th0 is null and thus

presume no constraints on the first n-1 generated fingers locations. This procedure occurs

randomly with the only condition of non-collinearity. With this threshold, the best force-

closure grasp computation time is obtained for α = 0.9, thus when regeneration of fingers

locations is privileged (case of x > 0.9).
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Figure 5.11: 4-finger force-closure grasp computation time using our method with the thresh-

old Th0

Figure (5.12) illustrates the influence of the threshold. This graph demonstrates that the

better the locations of the first three fingers are chosen, the lower is the computation time

of a 4-finger force-closure grasp. The best results are obtained for the threshold Th4.

Table (5.5) compares for this threshold and by varying α our method and that of the

convex-hull computation time. The classic column gives in ms the time for computing one

4-finger force-closure grasp according to the previously described algorithm, with the convex-
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Figure 5.12: 4-finger force-closure grasp computation time using our method with thresholds

Th0 < Th1 < Th2 < Th3 < Th4

hull method. The new column does the same when our approach is used. The last column

show the ration of our method computation time to that of the classic method. This ratio

varies approximately between 15% and 17.7%. Thus in the worst case, our method is more

than five times faster in finding a force-closure grasp than the convex-hull method. In (ta-

ble 5.6), the same ratio is computed for α = 1 and by varying the threshold. In the worst

case, when Th0 is considered, this ratio is of 25% approximately, thus our method is four

times faster than the convex-hull one. Consequently, when generating the first three fingers

randomly without any quality criterion, our method is still faster in computing 4-finger force-

closure grasps than the convex-hull method. We notice, that when the threshold increases,

the force-closure computation time decreases for both the convex-hull and for our method.

This is normal, because a better choice of the first three fingers increases the number of

possible 4th finger ensuring 4-finger force-closure grasps.

Table (5.7) shows the quality of the force-closure grasps computed with the two ap-

proaches. The quality is obtained according to the largest ball criterion. The quality of the

force-closure grasps obtained with our approach is approximately twice better than that of

the classical method. Thus, although our method is not complete, it finds good solutions for

the force-closure problem.

5.2.3 Discussion

The proposed force-closure condition is sufficient but not necessary. It is based on our con-

viction that rapidly generating good grasps depends on the locations of the first generated

n − 1 fingers as much as the positioning of the nth finger. Experimental results show that

when the n − 1 fingers are generated randomly, our method is four times faster than the

convex-hull one. When the latter are chosen according to our quality criterion, the quality of
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Table 5.5: Force-Closure grasp computation time with Th4

Time (ms)

α classic new n/c

0 3.00382 0.529787 17.64 %

0.1 2.96908 0.525141 17.69 %

0.2 3.00494 0.511493 17.02 %

0.3 3.17757 0.518583 16.32 %

0.4 3.05470 0.499915 16.36 %

0.5 3.07801 0.474132 15.40 %

0.6 3.04441 0.467638 15.36 %

0.7 3.08814 0.466491 15.10 %

0.8 2.80214 0.471555 16.83 %

0.9 2.81084 0.449039 15.97 %

1 2.83721 0.449150 15.83 %

Table 5.6: Force-Closure grasp computation time with α = 1

Time (ms)

threshold classic new n/c

Th0 3.74062 0.934578 24.98 %

Th1 3.60284 0.764612 21.22 %

Th2 3.43498 0.681242 19.83 %

Th3 3.19753 0.531346 16.62 %

Th4 2.83721 0.44915 15.83 %

Table 5.7: Force-Closure grasp generated quality with α = 1

Mean Quality

threshold classic new n/c

Th0 0.0689 0.1431 2.0769

Th1 0.0700 0.1445 2.0643

Th2 0.0731 0.1458 1.9945

Th3 0.0826 0.1545 1.8705

Th4 0.0955 0.1627 1.7037
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the obtained grasps is better and our method is six times faster than the convex-hull. This

is due to two main reasons:

1) The force-closure test is easy to compute. It is reduced to an inverse matrix calculation.

2) Another main advantage on the convex-hull method is that a construction of a convex-hull

is needed whenever a new finger is tested for force-closure with the other n − 1 fingers. On

the other hand, when a basis is associated to the first n− 1 fingers, it can be used to test all

remaining vertices for a n-finger force-closure grasp.

5.3 Grasping By Components
We proposed a grasping strategy that determines in a first place an unknown object handle

and is able then to generate, on this component, contact points ensuring the grasp stability.

This section shows in a first place examples of contact points computation on the objects

graspable parts. It shows then the adaptability of our strategy to the hand kinematics.

5.3.1 From the 3D Model to the Contact Points

This paragraph tests our grasping strategy on different objects models. We first show ex-

amples of contact points generation on the graspable parts of synthetic objects (table 5.8).

We also run our algorithm on real objects. The 3D model of such objects is acquired either

with a 3D laser scanner (table 5.9) or through a vision system (table 5.11). The former is

obtained by scanning the object from different view-points using a turntable. The latter is

obtained by performing a 3D reconstruction based on 12 images of the object taken from dif-

ferent angles. The reconstruction method used combines the Visual Hull and optimization by

Graph-Cuts methods [WD08]. The yellow part indicates each time the grasping component

identified by the learning algorithm. The GBC time indicates in seconds the whole process,

i.e time required for decomposing objects into single parts, approximating each part by a su-

perquadric, selecting the graspable component and generating a 4-finger force-closure grasp

on the selected part. This time increases with the number of vertices constituting the object.

The reader may notice that the generated contact points do not always correspond to those

that humans choose to grasp the selected objects components. This however is sufficient for

ensuring task compatibility [AC08].

5.3.2 Grasping by Taking into account the Hand Kinematics

At this point, our grasping strategy identifies an unknown object handle and generates con-

tact points on it with the only constraint of stability. Dealing with a robotic hand model

[WD08] G. Walck and M. Drouin. Reconstruction 3d progressive et rapide. MajecStic08, 2008.

[AC08] J. Aleotti and S. Caselli. Programming task-oriented grasps by demonstration in virtual reality.

In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, WS

on Grasp and Task Learning by Imitation, 2008.
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Table 5.8: Generating 4-finger force-closure grasps for synthetic objects.

Objects Grasps Vertices Number GBC time(s)

629 2.59

1725 3.73

7613 7.82

6010 7.1

5363 5.76

918 2.8

3394 4.88

850 4.12
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Table 5.9: Generating 4-finger force-closure grasps for laser scanned objects.

Objects Grasps Vertices Number GBC time(s)

183534 267.63

137421 173.8

122307 159.82

Table 5.10: Generating 4-finger force-closure grasps for an object model obtained using vision.

The segmentation is performed with one and 3-ring neighborhoods.

Object Segmentation Object Grasp Vertices Number GBC time(s)

7360 10.45

7360 8.87



5.3 Grasping By Components 111

induces additional kinematical and geometrical constraints. Taking these constraints into

account results in limiting possible locations for the contact points on the graspable part.

The latter should be kinematically feasible for the fingers and they should also avoid collision

with the hand, the remaining fingers and the object. Consequently, these contacts should be

generated in respect of the accessibility domains of the fingers. Furthermore, a grasp involves

several closed kinematic loops between the fingers and the object. Randomly generation of a

closed kinematic chain is very difficult. In order to handle these closed kinematic chains and

inspired by the thesis of Jean-Philippe Saut [Sau07], we propose to adapt the RLG (Random

Loop Generator) algorithm [Cor03] to our grasping strategy. RLG aims at handling closed

kinematic loops by dividing them into active and passive parts. The idea of the algorithm

is to reduce the closed kinematic chain complexity iteratively until the active part becomes

reachable by all passive chain segments simultaneously. In our case, the object is the active

part while the fingers constitute the passive parts. A grasp can occur when the object is

reachable by all the fingers. The reachable workspace of a kinematic chain is defined as the

volume which the end-effectors can reach. RLG approximates such volume with a sphere.

Figure 5.13 illustrates an example of the reachable workspace of a finger. It also shows the

intersection between this space and the object. Thus, the finger should be placed on this

intersection. The placement of the first finger is then taken into account when computing the

second finger reachable workspace and so on until the placement of all fingers. We modify

our grasping strategy to take these constraints into consideration.

Figure 5.13: The red sphere represents the reachable workspace approximation of a finger.

The green part stands for the object surface reachable by the finger. Thus, this finger should

be placed on that green part [Sau07].

Require: - 3D points representing the object graspable part

- Linearized friction cone at each point and corresponding wrenches

Ensure: - n-fingers force-closure grasp for a given object/hand models

1: Move Hand to Object

2: RW1 ← Grasp RLG(f1,object)

[Sau07] J.P. Saut. Planification de mouvement pour la manipulation dextre d’objets rigides. Thése de

doctorat de l’Universite Pierre et Marie Curie, 2007.

[Cor03] J. Cortes. Motion planning algorithms for general closed-chain mechanisms. Thése de doctorat

de l’Institut National Polytechnique de Toulouse, 2003.
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3: CP1 ← Rand(RW1)

4: i ← 1

5: while i < n− 1 do

6: RWi ← Grasp RLG(fi,object,
∑i−1

k=1
fk)

7: if RWi then

8: CPi ← Rand(RWi)

9: else

10: Go to step 3

11: end if

12: end while

13: RWn ← Grasp RLG(fn,object,
∑n−1

k=1
fk)

14: FC ← 0

15: while !FC do

16: CPn ← Force Closure(
∑n−1

k=1
CPk)

17: FC ← CPn in RWn

18: end while

19: END

Since we are interested in computing grasps on the object handle, an obvious first step of

our algorithm is to move the hand towards the handle until this object sub-part is reachable

by a finger. RWi stands for the intersection of the reachable workspace of a generated finger

fi and the object. Grasp RLG permits the estimation of RWi by taking into consideration

the object and the i − 1 fingers positions. A contact location CPi is then randomly chosen

in RWi. This guarantees that the inverse geometrical model of the finger existence. After

placing the n−1 fingers, the nth finger location is computed with Force Closure in order to

ensure the grasp stability. This algorithm can be enhanced by introducing a quality criterion,

while generating the first n-1 fingers, that takes into account the hand model. Figure ?? shows

several grasps obtained using DLR and Rutgers hands models and GraspIT interface. The

latter uses PQP algorithm to detect collisions [Mil01].

[Mil01] A.T. Miller. Graspit!: A versatile simulator for robotic grasping. PhD thesis, Columbia

University, 2001.
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Table 5.11: Generating 4-finger force-closure grasps using DLR hand model in GraspIT

interface.

Table 5.12: Generating 5-finger force-closure grasps Rutgers hand model in GraspIT interface.



114 Experimental Results

5.4 Conclusion
Different experiments were detailed in this chapter in order to test the ability of our grasping

strategy to predict grasps of unknown objects that conform humans grasping. The first

experiment characterizes how well learned grasps generalize to objects that the algorithm has

no experience with. Results show that features such as objects sub-parts shapes and sizes

are about 80% discriminative to grasping. In other words, an unknown object appropriate

grasp can be found only by using information on its constituting components shapes and sizes

without any task modelling. Once the graspable part is identified, contact points should be

determined. For this purpose, we proposed a new sufficient condition for generating n-finger

force-closure grasps. The main advantage of the proposed condition is its fast computation

of good grasps on the selected component. Its efficiency was confirmed by comparing it to

the classical convex-hull method. Finally, an algorithm for generating contact points on a

novel object that takes the hand kinematics into account was proposed.
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Conclusions

This thesis addresses the problem of grasping unknown objects. The latter can be stated

as follows: given a previously unknown object, determine a set of contacts on the object

surface appropriately in order to ensure stability and to successfully perform a task. Despite

the quantity of relevant work in the field, this problem remains challenging and tackles with

two main issues:

• Task modelling.

• Generalizing learned grasping skills to new objects.

We overcome these difficulties and propose a strategy that associates a grasp to an unknown

object/task by taking inspiration from humans behavior and Biedermann’s theory of Recog-

nition By Components. The latter states that humans recognize objects by representing them

as an assembly of parts. On a part-representation level, it seems obvious that each object is

equipped with a part designed specifically to make its grasp easier, its handle. We define a

handle or the natural grasping component of an object as the part chosen by humans to pick

this object with. When people reach out to grasp an object, It is in the aim of accomplishing

a task. Thus, their grasp is related to the object function. Consequently, identifying an

object handle yields a successful grasp in accordance with the object function. Our method

learns humans choice of the grasping component based on information such as objects sub-

parts shapes and sizes. Thus, objects are decomposed into single parts and each part is then

fitted with a superquadric. The grasp stability is obtained by determining contact points on

the object handle verifying force-closure property.

We implemented the proposed approach and tested its ability to generalize on previously

unknown objects models whether synthetic or real via laser scanning or 3D reconstruction us-

ing a vision system. The experiments show that the algorithm succeeds in imitating humans

when grasping unknown objects. A score of about 80% is obtained. Thus, we can conclude

that geometric features such as objects sub-parts shapes and sizes, are indeed relevant to

objects grasping. The gap of 20% is due to the fact that some objects have similar shapes

but different functionalities, hence, they are grasped differently. Once the object graspable

part is determined, we process at the generation of grasping contact points on it. For this
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purpose, a new sufficient force-closure grasp condition is introduced. It aims at reducing

good force-closure grasps computation time. It generates locations of n-1 non-aligned fin-

gers according to a quality criterion and finds then locations of the nth finger that ensures

force-closure. We studied its rapidity and completeness aspects in two experiments. Results

showed that, in the worst case, when no quality criterion is used to generate locations of the

first n − 1 fingers, it is four times faster in finding a force-closure grasp than the classical

convex-hull method. Finally, we also adapted the algorithm to take into consideration a

robotic hand model and corresponding kinematics constraints.

Nowadays, many researchers try to understand humans behavior by programming neu-

roscience theories in humanoid robots and vice versa [AHFPK00]. Our work is also based on

the psychological RBC theory and other neuroscience studies. But, will the high scores ob-

tained validate the corresponding theories? Are primitives such as objects sub-parts shapes

and sizes sufficient to identify novel objects grasps? Do we actually understand how people

grasp unknown objects? The work presented in this thesis is a first step towards a full un-

derstanding of humans behavior and may be our learning algorithm needs to be enhanced to

take into account recent/future studies on humans brain.

6.1 Future Works
This work takes into consideration the robotic hand kinematics in order to generate contact

points. A complete approach will couple our grasping strategy with a planning algorithm

permitting to account for the environment obstacles. Consequently, when a robot cannot

reach the object graspable part due to collisions, it may plan another feasible grasp (Fig. 6.1).

In this thesis, we test our grasping strategy on 3D objects models (CAO, laser scanned

and reconstructed using vision system) with different resolutions. Our approach occurs in

two steps: (1) acquiring the object model and then (2) determining the grasp. Obtaining

a complete 3D model of the object is not simple to achieve. Thus, It may be interesting

to pair object reconstruction with grasp generation. A current work with the university of

Coimbra consists at recovering objects shapes using probabilistic volumetric maps. These

grid-based maps are also known as occupancy grids and are used to represent distributed

spatial information, such as occupancy [Thr02]. In order to reconstruct a 3D object, its

enveloping workspace is discretized and mapped to different cells with a given resolution.

Electromagnetic markers are used to track the motion of a human hand exploring the object

surface. Afterwards, each cell has a probabilistic belief about its state (whether belonging to

[AHFPK00] Christopher G. Atkeson, Joshua G. Hale, Shinya Kotosaka Stefan Schaal Tomohiro Shibata

Gaurav Tevatia Ales Ude Sethu Vijayakumar Frank Pollick, Marcia Riley, and Mitsuo Kawato.

Using humanoid robots to study human behavior. IEEE Intelligent Systems, 15(4):46–56, 2000.

[Thr02] S. Thrun. Robotic mapping: a survey. Exploring Artificial Intelligence in the New Millennium,

2002.
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Figure 6.1: Grasping the mug by its handle is impossible in such situation (This is a GraspIT

environment [MKAC03]). Another grasp should thus be computed.

the object surface or not). With each exploration of the object, the probabilistic volumetric

map is updated. Thus, the map’s uncertainty is reduced. Consequently, objects reconstruc-

tion occurs incrementally and the idea is to couple our grasping strategy with this gradually

increasing representation. Thus, contact points generation and objects reconstruction are

looped together until a feasible grasp is obtained. The stop criterion will indicate the quality

or the resolution required to accurately grasp and manipulate the corresponding object.
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Appendix A

Superquadrics Formulation

A.1 The Implicit Equation for Basic Shapes
A superquadric surface model is defined by the following implicit equation:

f(x, y, z) =

((

x

a1

)
2

ǫ2

+

(

y

a2

)
2

ǫ2

)

ǫ2

ǫ1

+

(

z

a3

)
2

ǫ1

= 1 (A.1)

Where:

• a1, a2 and a3, define the superquadric size;

• ǫ1 and ǫ2, determine the shape curvatures that define a smoothly changing family of

shapes from rounded to square.

Figure A.1: Basic superquadrics.

This compact model of superquadrics, defined by only five parameters, can model a large set

of building blocks like spheres, cylinders and boxes (Fig. A.1). When both ǫ1 and ǫ2 are 1,

the surface vector defines an ellipsoid or, if a1, a2, and a3 are all equal a sphere. For example,

the implicit equation for an ellipsoid (ǫ1 = ǫ2 = 1) is as follows:
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f(x, y, z) =

(

x

a1

)2

+

(

y

a2

)2

+

(

z

a3

)2

= 1 (A.2)

When ǫ1 ≪ 1 and ǫ2 = 1, the superquadric surface is shaped like a cylinder. Boxes are

produced when both ǫ1 and ǫ2 are ≪ 1.

A.2 The Implicit Equation for Tapered Shapes
Two assumptions are made regrading the tapering formulation:

• Tapering deformation is performed along the z axis.

• The tapering rate is linear with z.

The linearity assumption is sometimes violated for real objects. This violation is acceptable

since we need only to approximate the shape of the tapered object parts.

Tapering is defined by two parameters kx and ky and tapering deformation along z axis is

given by:

X = fx(z)x

Y = fy(z)y

Z = z (A.3)

X,Y,Z are the components of the surface vector X of the deformed superquadric. fx and fy

are the tapering functions in the x and the y axis of the object centered coordinate system.

x, y, z are the components of the original non-deformed surface vector x. The two tapering

functions are:

fx(z) =
kx

a3

Z + 1

fy(z) =
ky

a3

Z + 1 (A.4)

where:

−1 ≤ k ≤ 1 (A.5)

The equation of inverse tapering is given by:

x =
X

kx

a3
Z + 1

y =
Y

ky

a3
Z + 1

(A.6)
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The implicit equation of a tapered shape is written using equations (A.1) and (A.6) as follows:

f(x, y, z) =

((

X

a1

(

kx

a3
Z + 1

)
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2
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Y
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Z + 1

)

)
2

ǫ2
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z

a3
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2

ǫ1

= 1 (A.7)

A.3 The Implicit Equation for Curved Shapes
Bending is defined with the two parameters k and α. k is the curvature parameter and α

determines the bending plane. Knowing these two parameters, the bending angle, γ, can

be easily computed. the bending is also performed along the z axis and transforms vectors

(x,y,z) into vectors (X,Y,Z).

The bending is performed by projecting the x and y components of all points onto the bend-

ing plane, performing the bending deformation in that plane, and then projecting the points

back to the original plane. The bending plane is defined by coordinate axis z and the angle

α. The transformed surface vector is given by:

X = x+ cos(α)(R − r)
Y = y + sin(α)(R − r)
Z = sin(γ)(k−1 − r) (A.8)

where:

• r is the projection of a point (x, y) on the bending plane;

• γ is the bending angle;

• k is the curvature parameter;

• Bending transforms r into R.

γ = arctan
Z

k−1 −R
r = k−1 −

√

Z2 + (k−1 −R)2

R = cos

(

α− arctan Y
X

)

√

X2 + Y 2 (A.9)
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Thus, the implicit equation of a bent shape is written as follows:

f(x, y, z) =
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X − cos(α)(R − r)
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z
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)
2
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= 1 (A.10)



Appendix B

Behind the Scenes: the Training Data

Choice

Our learning algorithm uses 12 objects as training data. These paragraphs aim at explaining

the whole process that conducts to these objects. We remind the reader that our training

objects are the result of the assembly of two superquadrics. Therefore, the choice of the

training objects should effectively sub-sample the space of two superquadrics assembly. These

volumetric primitives are described by 8 parameters each (λ = e1, e2, kx, ky, γ, a1, a2 and

a3). Thus, sub-sampling superquadrics space induces sub-sampling these parameters.

B.1 Sub-Sampling Superquadrics Shapes and Sizes
In order to have a manageable number of superquadrics shapes, we have chosen 7 represen-

tative models that span the space of superellipsoids by choosing ǫ1 and ǫ2 to be one of 0.1

or 1 and by adding tapering and bending deformations. The 7 superquadrics shapes are the

following: cylinder, box, ellipsoid, tapered cylinder, curved cylinder, tapered box and curved

box. These shapes are described by the 5 parameters (λ1 = e1, e2, kx, ky and γ). The

Figure B.1: Variable sizes of a cylinder: (a) cylinder obtained when the three dimensions a1,

a2 and a3 are significant, (b) flat cylinder obtained when only two dimensions are significant

(a1 and a2 ≫ a3 ) and (c) elongated cylinder obtained when only one dimension is significant

(a3 ≫ a1 and a2 ).

remaining 3 parameters (λ2 = a1, a2 and a3) describe the superquadric size. Thus, to span

superquadrics sizes, one needs to vary these parameters. Conisider for example figure (B.1).

This figure illustrates three different cylinders, thus λ1 is the same. On the other hand,
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the first cylinder is obtained when the three dimensions a1, a2 and a3 are significant. The

second cylinder is a flat one and is obtained when only two dimensions are significant. The

third cylinder is an elongated one and it is the case when only one dimension is significant.

By varying sizes parameters of the seven previously defined shapes, we obtain 21 (7 × 3)

volumetric primitives that effectively span superquadrics shapes and sizes space. But only

8 of these primitives are relevant to grasping (Fig. B.2). Many volumetric primitives such

as elongated cylinders, elongated boxes, elongated ellipsoids can be merged to one primitive

since the size information in these cases is more relevant for grasping than the shape. Our

training objects will be represented as an assembly of these 8 primitives (Fig. B.2).

Figure B.2: (A) Illustrates sub-sampling of deformed superquadrics shapes. (B) Shows sub-

sampling of a cylinder size space. (B) Presents primitives used for sub-sampling superquadrics

shapes and sizes.

B.2 Two Superquadrics Assembly: Theoretical Vs.

Real Combinations Number
The training objects are the result of the assembly of two volumetric primitives. These

primitives are chosen among the 8 shapes described above (Fig. B.2). Thus the total number

of two superquadrics combinations is: 8+7+ ...+1 = 4×9 = 36. But another aspect should

be taken into account when assembling primitives: the relative size. For example, three

different combinations of a cylinder and an elongated cylinder are possible (Fig. B.3). The

first assembly occurs when the two primitives are of comparable sizes. The second is obtained

when a primitive is relatively small in respect to the second one. The inverse case gives the

last combination. Consequently, the number of possible combinations is no longer 36, but

3×36 = 108. This number is not final yet. When assembling two similar primitives, only one
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case is meaningful when a primitive is smaller than the other. Thus, the theoretical number

of possible combinations is: 108 − (8 × 2) = 92. In practice, we search for two primitives

assembly corresponding to real objects since our learning algorithm imitates humans choice

of the natural grasping component. From this point of view, 12 objects were sufficient to

span the space of two-superquadrics assembly of real objects.

Figure B.3: Three possible combinations of two volumetric primitives: a cylinder and an

elongated cylinder. (a) A screwdriver obtained when the corresponding primitives relative

sizes are comparable. (b) A bottle obtained when the elongated cylinder is small is respect

of the cylinder size. (c) A hammer obtained in the inverse case of (b).
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Annexe C

Résumé des travaux

La robotique a comme objectif le développement de robots autonomes. Par autonome,

on sous-entend qu’un robot est capable de percevoir son environnement, de raisonner pour

accomplir une mission et d’agir sur ce même environnement. La mission à laquelle nous

nous intéressons, dans cette thèse, est la saisie d’objets. C’est l’une des fonctions les plus

complexes à réaliser par un système robotisé à cause du grand nombre de degrés de liberté

qui entrent en jeu. La prise initiale représente une phase capitale de la manipulation d’un

objet et conditionne fortement le succès du travail demandé. Par conséquence, la question à

poser est la suivante : quelles sont les contraintes que doit satisfaire cette prise initiale afin

que la manipulation de l’objet réussisse ? Dans la littérature, nous pouvons identifier trois

principales contraintes à respecter par une stratégie de prise. La première est la stabilité

ou en d’autres termes que la main tienne fermement l’objet. La deuxième contrainte est la

compatibilité avec la tâche ou l’adaptabilité de la prise à la fonction de l’objet. Finalement,

comme les objets que nous utilisons sont de formes et de tailles très diverses, une stratégie

de prise doit être adaptée à de nouveaux objets.

Plusieurs travaux de recherche se sont intéressés au problème de la génération auto-

matique de prise. Le premier pas dans ce domaine était de trouver pour un objet donné

une prise stable. Différentes approches analytiques ont été développées pour cette fin. Vu le

grand nombre de degrés de liberté mis en jeu, ces approches nécessitent un temps de calcul

considérable et ne garantissent aucune adaptabilité à la tâche. En effet, les chercheurs se sont

heurtés à la complexité de la modélisation d’une tâche et étaient même ramenés, dans plu-

sieurs travaux, à calculer à l’avance la trajectoire de l’objet pour être capable de la modéliser.

Ensuite, ils devaient trouver la meilleure prise adaptée à la tâche. Ceci nécessite d’une part

un calcul complexe. D’une autre part, ces approches restent limitées à un seul objet et à une

seule tâche. Pour éviter la complexité des approches analytiques, les approches empiriques

ont été introduites au problème de la saisie des objets. Ces approches tentent de résoudre le

problème par imitation du comportement humain en utilisant des algorithmes d’apprentis-

sage. Ces méthodes se divisent en deux catégories : les approches basées sur l’apprentissage

par imitation du comportement humain et les approches qui s’intéressent plutôt à l’appren-

tissage des caractéristiques des objets. Pour les premières, le robot observe un opérateur

humain en train de saisir un objet et essaie de reproduire le même geste de préhension.
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Ces méthodes permettent la télémanipulation des objets ou la reconnaissance du geste de

préhension, comme elles observent la phase d’approche. Mais, une fois affrontée à un nouvel

objet, ces méthodes n’arrivent pas également à déterminer une prise adaptée à la tâche. Les

approches focalisant sur les caractéristiques de l’objet permettent d’associer différentes formes

de la main avec des surfaces locales des objets. D’autres méthodes apprennent à identifier,

dans une image, des zones de prise. Ces approches trouvent une correspondance entre la forme

de l’objet et différentes prises. D’où, elles sont adaptées aux nouveaux objets. Le problème

de ces approches est qu’elles trouvent pour un seul objet plusieurs prises. Elles ne permettent

pas alors de choisir la prise compatible à la tâche. Pour ceci, ces approches nécessitent l’inter-

vention d’un opérateur humain ou de la modélisation de la tâche. En d’autres termes, trouver

pour un nouvel objet une prise qui lui est adaptée en terme de tâche reste un problème ouvert.

Le thème de génération de prise n’est pas nouveau pour notre équipe de recherche.

Un ancien thésard de l’équipe, Cédric Michel, a développé une méthode analytique pour

la génération de prise. La méthode permet de trouver à partir de l’enveloppe géométrique de

l’objet, des axes naturels de préhension. Ces axes caractérisent la forme de la main humaine

durant la phase d’approche pour saisir un objet. Cet algorithme trouve pour un seul objet

plusieurs axes de préhension mais ne sélectionne pas celui qui convient le mieux à la tâche.

Ceci nous a conduit à la conviction que les méthodes analytiques ne sont pas suffisantes pour

satisfaire les contraintes nécessaires à la résolution du problème. Ce travail de thèse propose

une stratégie de prise combinant à la fois les deux approches : analytique et empirique. A

partir de l’observation de la saisie humaine, un réseau de neurones sera entrâıné afin d’imiter

le choix de la partie préhensible, associée à chaque objet. En second lieu, nous développons

une méthode pour calculer les points de contact sur la partie saisissable de l’objet.

C.1 Saisir Par Composantes - Le Concept

Notre intérêt se porte sur la détermination d’une prise adaptée à un objet donné, à partir

de sa forme géométrique et des contraintes fixées par la tâche. L’idée de notre approche est

issue de l’observation du comportement humain lors de la saisie d’objets. Pour expliquer

la faculté de saisie exceptionnelle humaine, nous nous inspirons d’une théorie proposée en

neuroscience, intitulée reconnaissance par composantes. Cette théorie suppose que les objets

sont découpés mentalement selon leurs parties naturelles et que l’assemblage de ces différentes

parties servira de clef pour leur identification. Si l’homme découpe les objets en primitives

géométriques simples afin de les reconnâıtre, pourquoi n’emploie-t-il pas cette décomposition

pour les saisir ? Nous avons une forte conviction que plusieurs objets de la vie courante

sont munis, à leur fabrication, d’une partie facilitant leur préhension. L’approche développée

détermine, pour un objet de forme quelconque, cette partie préhensible. L’objet est alors

approché par un ensemble de formes géométriques simples (les superquadriques). A partir

de l’observation de la saisie humaine, un réseau de neurones est entrâıné afin d’identifier

la partie préhensible de l’objet. Les paragraphes suivants détaillent toutes ces étapes. Nous
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commencons par présenter la théorie de reconnaissance par composantes.

C.1.1 Théorie de Reconnaissance Par Composantes

Cette théorie propose que la reconnaissance des objets repose sur la perception d’éléments

géométriques de base à partir desquels on peut construire un objet. Ces éléments sont nommés

géons , contraction de geometric ion. Ainsi, un objet quelconque sera segmenté en plusieurs

composantes en exploitant ses propriétés locales telle que la concavité. Chaque composante

est ensuite identifiée à un géon. L’agencement des différents géons permet alors l’identification

des objets. La figure (C.1) illustre un objet non-familier. En decomposant cet objet en parties,

nous nous rendons compte qu’il ressemble à un chariot à hot-dog. Le grand compartiment

étant l’endroit où sont cuits les saucisses. La partie circulaire en bas pourrait être la roue.

La partie courbée sur le côté a la même forme qu’une poignée. Sur le compartiment, nous

avons une partie qui ressemble au support d’un parasol et l’autre à un extracteur de jus.

Par conséquence, même les objets non-familiers peuvent être identifiés en les découpant en

composantes. Mais comment pourrait-on saisir des objets non-familiers ou quelconques ?

Fig. C.1 – L’objet non-familier de Biederman [Bie87].

C.1.2 Saisie Par Composantes

Le paragraphe précédent montre que la représentation des objets par un assemblage

de formes géométriques simples permet leur identification. En effet, cette représentation par

composantes nous incite à remarquer que nous saisissons de la même manière plusieurs objets

de la vie courante constitués des sous-parties similaires. Considérons par exemple les trois

objets de la figure (C.2). Ces trois formes approximent respectivement une tasse, un sceau et

un sac. Ces derniers sont constitués de deux composantes : un cylindre et un cylindre courbé.

Malgré l’arrangement différent de ces deux parties, les trois objets sont saisis de la même

manière, par leur partie courbée.
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Fig. C.2 – Le choix de la partie préhensible dépend de la forme des sous-parties de l’objet.

Ce choix est moins influencé par la disposition relative de ces composantes, i.e : a) une tasse,

b) un sceau et c) un sac sont tous saisis par leur partie courbée.

Un autre aspect important dans le choix de la partie préhensible est la taille relative

des différentes composantes. Considérons l’exemple des trois verres suivants (Fig. C.3) : un

verre à vin, une flûte à Champagne et un verre à cognac. Ces trois verres sont constitués

des sous-parties similaires : le calice, la jambe ou la tige et le pied. Malgré la similitude de

leurs composantes, ces verres sont saisies de manières différentes. Nous remarquons qu’un

verre à vin réclame un calice large permettant aux arômes profonds de librement s’épanouir.

Les flûtes à champagne sont caractérisées par un calice étroit et allongé mettant le mieux en

valeur l’effervescence de ce dernier. Une coupe trop ouverte laisse échapper les bulles ainsi

que leur arôme. Ces deux verres ont une longue tige permettant de les tenir sans poser les

doigts sur le calice. Non seulement ceci évite de tâcher la coupe de graisse et d’amoindrir

la netteté du verre ou du cristal, tenir le verre par la tige est aussi essentiel pour préserver

la bonne température du vin. Le contact avec la main peut réchauffer rapidement un vin.

D’une autre part, le verre à cognac se distingue par sa jambe courte. La main se positionne

ainsi sous le calice du verre pour réchauffer naturellement l’alcool. Cet exemple montre à la

fois l’influence de la taille relative des composantes sur le choix de la partie préhensible et

que les objets sont fabriqués d’une manière facilitant leur prise.

Fig. C.3 – Une représentation approximative de : a) un verre à vin, b) une flûte à Champagne

et c) un verre à cognac.
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L’approche proposée utilisera alors les informations sur la forme et la taille des différentes

composantes consritutants l’objet afin de déterminer, en imitant le comportement humain,

la partie préhensible qui lui correspond.

C.2 Saisir Par Composantes - L’Approche Proposée
Nous proposons une nouvelle stratégie de prise permettant de trouver, pour un objet

quelconque, une prise qui lui est adaptée en terme de fonctionalité. L’idée à la base de notre

algorithme est la suivante : les objets de la vie courante sont fabriqués de manière à faciliter

leur prise. Les tasses ont des parties courbées pour les saisir : leurs anses. Les bouteilles ont

une partie allongée facilitant leur préhension. Quelle serait alors la partie préhensible d’un

objet quelconque ? La réponse à cette question nous conduira vers la détermination d’une

prise de l’objet compatible avec la tâche à laquelle il est destiné. Notons que cette approche

permet d’éviter la complexité de la modélisation de la tâche. Notre approche est illustrée

dans la figure (C.4).

Fig. C.4 – Les différentes étapes de l’approche proposée.

Les différentes étapes sont les suivantes :

Segmentation : Nous nous inspirons de la théorie de reconnaissance par composantes pour

décomposer les objets en parties. Le but est d’obtenir une représentation intuitive de l’objet

en terme de composantes, conforme à celle de l’être humain. La segmentation s’intéresse alors

au problème suivant : comment déterminer les frontières entre les différentes composantes

d’un objet quelconque ?
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Approximation : Cette étape consiste à approximer un nuage de points par une forme

géométrique simple. Mais quelles primitives géométriques choisir ?

Apprentissage : L’étape d’apprentissage permet l’imitation du choix de la partie préhensible

de l’être humain. La difficulté sera de construire la base d’apprenissage correspondante.

Les points de contact : Une prise est générée en calculant des points de contact sur la

partie préhensible obtenue. Cette prise est-elle stable ?

Toutes ces étapes seront détaillées dans les sections suivantes.

C.3 Saisir Par Composantes - La Technique
Cette section détaille les différentes étapes permettant de déterminer, pour un objet

quelconque, sa partie préhensible. Nous présentons d’abord la segmentation en parties. Nous

détaillons ensuite l’approximation de chacune des parties par une forme géométrique simple.

L’apprentissage nous permet enfin d’identifier la partie saisissable.

C.3.1 Segmentation

la segmentation d’un ensemble de points 3D en parties significatives se ramène à un

problème d’étiquetage des points, de telle sorte que ceux appartenant à une même région

reçoivent une même étiquette. La méthode utilisée pour la segmentation se base sur un

algorithme en 3 étapes [CG06]. Nous commençons par la détection des forntières entre les

différentes régions, puis d’associer les frontières aux régions voisines pour ensuite fusionner les

régions petites ou non-significatives obtenues. Nous avons testé cet algorithme sur des objets

synthétiques, des objets réels dont les modèles sont obtenus à travers un scanner 3D et des

objets obtenus par reconstruction 3D. La figure C.5 montre la décomposition des objets réels

scannés par un laser 3D.

Fig. C.5 – Segmentation des objets réels scannés par un laser 3D.

[CG06] L. Chen and N.D. Georganas. An efficient and robust algorithm for 3d mesh segmentation.

Multimedia Tools Appl., 29(2) :109–125, 2006.
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C.3.2 Approximation

Nous avons montré que des informations telles que la forme et la taille des sous-parties

constituants l’objet sont pertinentes pour la sélection de la partie préhensible. Ainsi, nous

étions ramenés à approximer chaque partie obtenue suite à la décomposition par une forme

géométrique simple. Nous choisissons comme primitives les superquadriques grâce à leur com-

pacité en terme de nombre de paramètres. Comme les quadriques, les superquadriques sont

divisées en quatre classes : les superellipsodes, les superhyperbolodes à une nappe, les su-

perhyperbolodes à deux nappes et les supertorodes. La première classe est la plus utilisée en

informatique graphique car elle permet de modéliser, le plus naturellement, des objets tridi-

mensionnels. Nous utilisons 7 formes de superellipsodes pour modéliser nos objets (Fig. C.6).

Ainsi, il s’agit d’approximer ce nuage de points par l’une des sept superellipsoides prédéfnies.

Fig. C.6 – Sept superquadriques pour la modélisation des objets : a) cube, b) ellipsoide, c)

cylindre, d) cube étiré, e) cylindre étiré, f) cube courbé et g) cylindre courbé.

En d’autres termes, il s’agit de déterminer les valeurs des paramètres du modèle de la su-

perellipsoide qui approxime le mieux notre nuage de points. L’estimation des paramètres du

modèle nécessite la minimisation de la distance entre le nuage de points 3D et les modèles

des superellipsoides [SLM94]. Cette distance est une fonction non-linéaire. Nous utilisons

l’algorithme déterministe de Levenberg-Marquardt qui est une méthode d’optimisation au

sens des moindres carrés.

[SLM94] F. Solina, A. Leonardis, and A. Macerl. A direct part-level segmentation of range images using

volumetric models. In Proceedings of IEEE International Conference on Robotics and Automa-

tion, pages 2254–2259, 1994.
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C.3.3 Apprentissage

Nos objets sont modélisés par un ensemble de superquadriques. Cette étape de l’algo-

rithme s’intéresse au choix de la partie préhensible en se basant sur la taille et forme des

sous-parties de l’objet. Ce choix doit être conforme à celui de l’être humain. Un réseau de

neurones de type perceptron avec une couche cachée est entrainé sur une base d’appren-

tissage constituée de 12 objets (Fig. C.7). Ces objets sont formés chacun de deux parties.

Ces derniers correspondent aux objets réels représentants différentes combinaisons des 7 su-

perquadriques. Or, l’apprentissage nécessite un grand nombre de données. Pour ceci, nous

faisons varier des paramètres tels que la taille, la courbure ou l’étirement de facon à conserver

la forme générale de l’objet. Nous obtenons ainsi 72 variantes pour chaque objet. La validité

du modèle du réseau de neurones est obtenue suite à un 10-fold cross-validation. La capacité

du réseau à généraliser est ensuite testé sur plusieurs nouveaux objets.

Fig. C.7 – Objets utilisés pour l’apprentissage. La partie en noire correspond à la partie

saisissable de l’objet.

C.3.4 Résultats Expérimentaux

Deux expériences ont été effectuées afin de tester la capacité de l’algorithme à généraliser.

La première consiste à tester l’algorithme sur des objets formés de plusieurs parties et qui

appartiennent aux mêmes catégories de la base d’apprentissage. Ces objets sont tels que des

bouteilles, couteaux, tasses, cuillères, etc. Ainsi, si notre algorithme n’arrive pas à identifier

la partie saisissable correspondante à chacun de ces objets, nous pouvons conclure que les

primitives choisies pour notre algorithme d’apprentissage ne sont pas pertinentes. Pour ces

objets, notre algorithme généralise bien et réussi à sélectionner la partie choisie par les êtres

humains pour saisir ces objets. En un second lieu, nous effectuons des tests sur des objets

nouveaux. Nous obtenons, pour ces objets, un taux de réussite de 80%. Par conséquence, des

primitives telles que la forme et la taille relative des différentes sous-parties de l’objet sont à

80% pertinentes pour le choix de la partie préhensible.
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C.4 De la Partie Préhensible aux Points de Contact
Dans cette étape, nous disposons de la partie préhensible de l’objet et nous nous intéressons

à l’identification des points de contacts sur cette partie garantissant la stabilité de l’objet.

Pour cette fin, nous proposons une nouvelle approche pour la génération de prises dites force-

closure. Cette propriété est définie par la capacité des forces appliquées par les doigts sur

l’objet aux points de contact d’équilibrer tout torseur extérieur. Plusieurs algorithmes ont

été développés dans la littérature afin de tester si une prise donnée vérifie cette propriété.

Plusieurs mesures de qualité de prise ont aussi été introduites. Pour générer une bonne prise,

les approches existantes génèrent en premier lieu plusieurs prises force-closure, calculent en-

suite leur qualité et les classent en fonction des résultats obtenus. Ceci nécessite un temps de

calcul considérable. Nous proposons une méthode permettant simultanément la génération

d’une prise vérifiant à la fois la contrainte de force-closure et ayant une bonne qualité. Nous

avons une forte conviction que la qualité d’une prise à n doigts dépend sur la position des

n− 1 premiers doigts autant que de la position du nième doigt. Pour ceci, nous introduisons

un critère de qualité pour la génération des positions des n-1 premiers doigts. Nous proposons

ensuite une nouvelle condition rapide permettant de choisir le nième point de telle manière

que la prise constituée des n doigts vérifie la propriété de force-closure. Nous introduisons en

premier lieu quelques définitions et théorèmes nécessaires à l’établissement de notre nouvelle

condition.

C.4.1 Définition de la Matrice de Prise

Ce paragraphe présente les notations et définitions nécessaires pour l’élaboration de la

matrice de prise. Il donne aussi une définition et une condition nécessaire et suffisante pour

qu’une prise respecte la propriété de force-closure.

◮ Définition 1 : Une prise est un ensemble de contacts.

◮ Définition 2 : Un contact caractérise la position d’un doigt sur la surface de l’ob-

jet. Pour déterminer une prise, des informations sur le type et le nombre de contact sont

nécessaires.

◮ Définition 3 : Une force de contact fi est la force exercée par chacun des doigts sur

l’objet.

Dans le cas d’un contact sans frottement, cette force est exercée selon la normale à l’objet

au point de contact. Dans le cas contraire, cette force est contrainte à se situer à l’intérieur

d’un cône de frottement centré autour de la normale interne à la surface de l’objet au point

de contact (C.1), afin d’éviter le glissement des doigts sur la surface de l’objet.

fix
2 + fiy

2 ≤ µ2fiz
2 (C.1)
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Avec (fix
2, fiy

2, fiz
2) les composantes de fi dans le repère x, y, z associé à l’objet. Le coeffi-

cient de frottement est noté par µ.

Définition 4 : Les contraintes non-linéaires de (C.1) définissent géométriquement un cône

de frottement.

Pour linéariser le problème, le cône de frottement est généralement echantilloné en m seg-

ments.

Fig. C.8 – La force de contact fi sur un cône de frottement echantillonné.

Avec cette approximation, la force de contact est représentée par :

fi =

m
∑

i=1

λij lij, λij ≥ 0 (C.2)

Avec lij représentant le j-ième segment du cône de frottement échantillonné. Les λij sont des

constantes positives.

◮ Définition 5 : Un torseur, wi, est la combinaison du vecteur force fi et de son moment.

wi =

(

fi

τi

)

=

(

fi

ri × fi

)

(C.3)

Avec ri la position du ième point de contact dans un repère lié au centre de masse de l’objet.

En remplaçant (C.2) dans (C.3), nous aurons :
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wi =
m
∑

j=1

λijuij (C.4)

avec :

uij =

(

lij

ri × lij

)

(C.5)

Les vecteurs uij sont normalisés de la façon suivante :

wij =
1

‖lij‖
uij

Le terme ‖lij‖ correspond à la norme L2 du vecteur lij. Les vecteurs wij sont les torseurs

primitifs de contact. Par conséquence, N = mn est le nombre total de torseurs primitifs

de contact appliqués par les n doigts.

◮ Définition 6 : La matrice de prise, W , est de dimension 6×nm pour les objets 3D.

Ses colonnes sont les torseurs primitifs de contact.

W =

(

l11 . . . l16 . . . lnm

r1 × l11 . . . r1 × l16 . . . rn × lnm

)

◮ Définition 7 : Selon la définition de Salisbury et Roth [SR82], une prise satisfait la

propriété de force-closure si et seulement si tout torseur extérieur peut être équilibré par

les forces appliquées par les doigts sur l’objet aux points de contact.

◮ Proposition 1 : Salisbury et Roth montrent qu’une condition nécessaire et suffisante pour

satisfaire la propriété de force-closure est que les torseurs primitifs de contact génèrent po-

sitivement l’espace 6D des torseurs. Cette condition est équivalente à ce que l’origine de

l’espace des torseurs soit strictement inclus dans l’enveloppe convexe des torseurs primitifs

de contact [MSS87, MLS94, Mon91].

Dém. Pour une démonstration détaillée, le lecteur pourra se reporter à [SR82]. �

[SR82] J.K. Salisbury and B. Roth. Kinematic and force analysis of articulated hands. ASME J. Mech.,

Transmissions, Automat.,Design, 105 :33–41, 1982.

[MSS87] B. Mishra, J.T. Schwartz, and M. Sharir. On the existence and synthesis of multifinger positive

grips. Algorithmica, Special Issue : Robotics, 2 :541–558, 1987.

[MLS94] R.M. Murray, Z. Li, and S.S. Sastry. A mathematical introduction to robotic manipulation.

Orlando, FL : CRC, 1994.

[Mon91] D.J. Montana. The condition for contact grasp stability. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 412–417, 1991.
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C.4.2 Notions Mathématiques

Ce paragraphe introduit des notions mathématiques nécessaires pour la reformulation de

la condition de force-closure.

◮ Définition 9 : Un ensemble de vecteurs, {vi} avec i ∈ I, génèrent positivement un

espace vectoriel si et seulement si, v peut s’écrire comme une combinaison linéaire positive

de vi :

v =
∑

i∈I

αivi, αi ≥ 0 (C.6)

◮ Proposition 2 : Pour un espace Euclidien de n-dimension, En, n + 1 vecteurs sont

nécessaires pour générer positivement En.

Dém. Pour une démostration, le lecteur pourra se reporter aux résultats de l’algèbre

linéarire présentés par Goldman et Tucker [GT56]. �

◮ Lemma 1 : Etant donné n+1 vecteurs, v1, v2, ...., vn+1, dans Rn, tels que v1, v2, ...., vn

sont linéairement indépendants et :

vn+1 =
n
∑

i=1

αivi, αi < 0 (C.7)

Nous pouvons dire que vi, i = 1, ..., n + 1, est une combinaiosn linéaire négative unique des

autres n vecteurs [WZG95].

◮ Proposition 3 : Un ensemble de n+ 1 vecteurs v1, v2, ...., vn+1 dans Rn génèrent posi-

tivement En si et seulement si vn+1 est une combinaison linéaire unique de vi, i = 1, ..., n et

que tous les coefficients sont strictement négatifs.

Dém. Pour une démonstration, le lecteur pourra se reporter à [WZG95].�

Un exemple de cette condition en 2D est présenté dans (Fig. C.9). V1 et V2 sont deux

vecteurs non-collinéaires dans R2. V3 peut s’écrire comme une combinaison linéaire négative

unique de V1 et V2. Donc, ces trois vecteurs génèrent positivement E2.

[GT56] A.J. Goldman and A.W. Tucker. Polyhedral convex cones. Princeton University Press, 1956.

[WZG95] R. Wagner, Y. Zhuang, and K. Goldberg. Fixturing faceted parts with seven modular struts.

IEEE International Symposium on Assembly and Task Planning, 1995.
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Fig. C.9 – Trois vecteurs V1, V2 et V3 qui génèrent positivement E2

◮ Les propositions précédentes montrent que pour générer une prise force-closure

ou en d’autres termes pour trouver une prise dont les torseurs primitifs génèrent

positivement l’espace 6D des torseurs, nous avons besoin de trouver : (1) des

torseurs primitifs de contact qui constituent une base de l’espace 6D et (2) un

torseur primitif qui s’exprime comme une combinaison linéaire négative de cette

base. Mais, dans quel cas les torseurs associés aux points de contact constituent

une base de l’espace 6D ? Pourrions-nous représenter un torseur de dimension

6 dans un espace de dimension 3 ? Les coordonnées de Plücker représentent les

torseurs 6D par des droites en 3D et l’algèbre de Grassmann étudient le rang de

ces droites. Nous utilisons ces deux études pour montrer que les torseurs associés

à 3 points de contact non-alignés constituent une base de l’espace 6D (proposition

8). Dans ce qui suit, nous présentons brièvement les coordonnées de Plücker ainsi

que quelques résultats utilisés de l’algèbre de Grassmann.

Les coordonnées de Plücker : Soit L une droite dans l’espace 3D. Soit u son vecteur

directeur et P un point choisi sur L. Le vecteur directeur associé à son produit vectoriel avec

P définissent les coordonnées de Plücker qui sont notées par (u;P × u). Ces 6 coordonnées

représentent L dans l’espace 3D [VY10, Cra73]. Par conséquence, un torseur primitif de

contact, défini par wi = (fi; ri× fi) peut être représenté par la droite d’action Lfi de la force

fi appliqué au point ri. Les 6 coordonnées (wi1, wi2, ..., wi6) de wi sont applelées coordonnées

de Plücker de la droite d’action de fi.

Les coordonnées de Plücker sont des coordonnées homogènes de l’espace projectif de dimen-

[VY10] O. Veblen and J.W. Young. Projective geometry. the Athenaeum press, 1910.

[Cra73] H. Crapo. A combinatorial perspective on algebraic geometry. Colloquio Int. sulle Teorie Com-

binatorie, 1973.
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sion 5, P 5 : les torseurs wi et λwi, avec λ 6= 0 représentent la même droite Lfi. Donc, à

chaque droite Lfi de l’espace 3D correspond exactement un point dans P 5. L’ensemble des

droites forment une quadrique, appelée Grassmannienne, définie par w1w4+w2w5+w3w6 = 0

dans cet espace projectif. Ainsi, nous définissons une relation entre l’ensemble des droites de

l’espace 3D et les points de P 5. Cette relation est de rang 6.

L’algèbre de Grassmann : Grassmann a étudié le rang des droites dans l’espace dont le

rang varie de 0 à 6. Il a caractérisé géométriquement chaque variété. Nous utilisons deux de

ses résultats. Pour une démostration détaillée, le lecteur pourra se reporter à [Dan84].

◮ Proposition 4 : Toutes les droites passant par un même point sont de rang 3.

◮ Proposition 5 : Toutes les droites qui intersectent une même droite sont de rang 5.

C.4.3 Une nouvelle condition suffisante pour obtenir une prise force-closure

à n doigts

Nous avons montré qu’un torseur 6D peut être représenté par la droite d’action de la

force qui lui correspond. Nous utilisons cette représentation pour démontrer que les torseurs

associés à 3 points de contact non-alignés sont de rang 6. Ce résultat induit la formulation

d’une condition suffisante pour obtenir une prise force-closure à n-doigts (n ≥ 4).

◮ Proposition 6 : Les torseurs associés à 3 points de contact alignés sont au maximum

de rang 5.

Dém. Pour une démonstration, le lecteur doit se reporter au chapitre 4. �

◮ Proposition 7 : Les 6 droites constituant un tétraèdre sont indépendantes et forment

alors une base de R6 (Fig. C.10).

Dém. Pour une démonstration, le lecteur doit se reporter au chapite 4. �

◮ Proposition 8 : Les torseurs associés à 3 points de contact non-alignés sont de rang 6.

Dém. Pour une démonstration, le lecteur doit se reporter au chapite 4. �

◮ Proposition 9 : Supposons que la prise effectuée avec n− 1 contacts non-alignés n’est

pas force-closure. Supposons que {bi}i=1..k, avec k = 6, est une base 6D associée aux torseurs

de contact. Une condition suffisante pour qu’une prise à n-doigts soit force-closure est qu’il

[Dan84] A. Dandurand. The rigidity of compound spatial grid. Structural topology, 10, 1984.
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Fig. C.10 – Les 6 droites constituant un tétraèdre sont indépendantes.

Fig. C.11 – Ls torseurs de rang 3 associés aux points de contact p1, p2 et p3.

existe un torseur de contact γ tel que :

• γ ∈ cone de frottement du nieme doigt (C.8)

• γ =
k
∑

i=1

βibi, βi < 0

⇒ γ = Bβ ⇒ β = B−1γ (C.9)

Avec B = [b1, b2, ..., bk] est une matrice de dimension k × k et β = [β1, β2, ..., βk ]T est

un vecteur de dimension k × 1 strictement negatif. D’où, une simple multiplication par B−1

permet de tester si un torseur de contact γ, et par conséquence la position du nième contact

garantisse la propriété de force-closure.

Dém. Pour une démonstration, le lecteur doit se reporter au chapite 4. �
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en se basant sur la proposition 9, les paragraphes suivants détaillent la synthèse d’une prise

force-closure à n-doigts.

C.4.4 Synthèse de prise Force-Closure à n-Doigts

Pour obtenir une prise force-closure, la matrice de prise doit générer positivement l’espace

des torseurs (proposition 1). Nous proposons une méthode de deux étapes satisfaisant cette

condition : (1) nous générons aléatoirement des positions pour les n − 1 premiers doigts et

(2) nous choisissons ensuite le nième doigt garantissant la propriété de force-closure. Nous

avons démontré que les torseurs associés à 3 points de contact non-alignés constituent une

base de l’espace 6D des torseurs (proposition 8). D’où, une position du nième doigt est choisie

de telle manière qu’un torseur de contact qui lui correspond puisse être exprimé comme une

combinaison linéaire négative de la base définie (proposition 9). Cette approche permet de

générer sur l’objet 3D, n points de contact vérifiant la propriété de force-closure.

C.4.5 Synthèse d’une bonne prise Force-Closure à n-Doigts

Pour l’instant, nous avons développé une méthode permettant la génération d’une prise

force-closure à n-doigts. Notre objectif est de calculer une bonne prise d’une façon rapide.

Dans notre cas, la rapidité et la qualité de la prise sont fortement liés. Pour comprendre le

lien entre les deux, il suffit de remarquer que la qualité d’une prise à n-doigts dépend de la

position des n− 1 doigts. Un bon choix de ces derniers induit d’une part une bonne qualité

de prise et d’une autre part une plus grande possibilité pour le choix du nième doigt. Cette

dernière condition rend plus rapide la sélection de la position du nième doigt. Nous avons

donc besoin d’associer un critère de qulité à la génération des positions des n − 1 premiers

doigts.

C.4.5.1 Motivation

Les critères de qualité existant dans la littérature permettent de sélectionner la meilleure

prise parmi plusieurs. Ces approches trouvent en premier lieu plusieurs prises force-closure,

calculent ensuite leurs qualités pour choisir enfin la meilleure. Par exemple, le critère classique

le plus utilisé dans la littérature est celui maximisant la sphère centré à l’origine et contenue

dans l’enveloppe convexe. Ce critère n’est défini que si la prise est force-closure. Dans notre

cas, générer une prise force-closure dépend de la qualité des n−1 doigts, qui, eux, ne sont pas

en force-closure. D’où le besoin de définir une nouvelle qualité de prise associée aux positions

des n− 1 points de contact.

C.4.5.2 Critère de qualité associé aux positions des n− 1 premiers doigts

Nous rappelons que pour trouver une prise à n doigts, nous sélectionnons une base 6D

associée aux torseurs des n-1 doigts et trouvons ensuite la position correspondante du nième

doigt. Le critère de qualité, sur les positions des n-1 doigts, proposé mesure le volume de la

base qui leur est associé. Ce volume correspond à un hypertétraèdre dans l’espace 6D. Plus
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ce volume est élevé, plus nous avons des possibilités pour le choix du nième doigt, dont un

torseur doit s’exprimer comme une combinaison linéaire négative de cette base. Ce critère est

testé en 2D et ensuite en 3D. Les résultats expérimentaux montrent que ce critère varie dans

le même sens que le critère classique de boule maximale. Ceci prouve le lien entre le choix

des n-1 doigts et la qualité de prise à n doigts. Nous présentons en ce qui suit l’algorithme

pour générer une prise à n doigts utilisant le critère de qualité proposé :

Require: - Ensemble de points 3D représentant l’objet

- Le cône de frottement discrétisé en chaque point de contact ainsi que les torseurs

correspondant

Ensure: - prise force-closure à n doigts

1: L = Rand Na Fingers(n-1)

2: ntry ← 0

3: L basis = Find Basis (L wrenches)

4: q L=quality(L basis)

5: if q L <threshold then

6: Go to step 1

7: end if

8: vertex = Rand Finger(1)

9: ntry ← ntry+1

10: FC = Force Closure Test(vertex, r basis)

11: if ( !FC) and (ntry ≤ nmax ) then

12: Go to step 8

13: else

14: or Go to step 1

15: end if

Etant donné une représentation de l’objet en termes de points 3D, leurs normales corres-

pondantes ainsi que le coefficient de frottement, les torseurs associés à chacun des som-

mets de l’objet sont calculés. Pour obtenir une prise force-closure à n doigts , la fonction

Rand Na Fingers génère, aléatoirement, sur la surface de l’objet, des positions non-alignées

des n-1 premiers doigts. L basis correspondent aux bases 6D associées aux torseurs de ces

n-1 points de contact et qui sont déterminées par Find Basis. La fonction, quality, calcule

la qualité de ces bases. Si cette qualité est en-dessous d’un certain seuil, nous procédons à

la génération de nouvelles positions pour les n-1 doigts. Si la qualité d’au moins une de ces

bases L basis est supérieure au seuil, un point 3D de l’objet est sélectionné aléatoirement,

par Rand Finger, et ensuite testé avec notre condition de force-closure Force Closure Test.

Dans le cas où la prise à n doigts obtenue vérifie la propriété de force-closure, l’algorithme

se termine. Dans le cas contraire, ntry permet de choisir entre la génération de nouvelles

positions des n-1 doigts ou le choix d’un autre nième point de contact. Le choix du seuil ainsi

que de nmax influe sur le temps de calcul de l’algorithme. La valeur du seuil ne peut pas

être calculé analytiquement. Son choix est effectué d’une façon empirique. En ce qui concerne
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nmax, plusieurs expériences détaillent son influence sur le temps de calcul.

C.4.6 Résultats Expérimentaux

Deux expériences ont été effectuées afin de tester la complétude et la rapidité de notre

algorithme et ceci en choisissant les positions des n-1 premiers doigts selon des qualités dis-

tinctes. Les expériences montrent que des taux de complétude de 18% et de 35% sont obtenus

pour une génération des n-1 points aléatoire et avec un critère de qualité respectivement. Ceci

est dû au fait que notre condition est suffisante mais pas nécessaire. En revanche, concernant

la détermination d’une prise force-closure à n doigts, notre méthode est 4 fois plus rapide

que la méthode du convex-hull et les prises trouvées sont deux fois meilleure selon le critère

classique de la boule.

C.4.7 Modification de l’algorithme et prise en compte des contraintes

géométriques de la main

Jusqu’à maintenant, nous avons supposé que le modèle de la main peut garantir la prise

obtenue. Nous tenons compte, dans ce paragraphe, des contraintes géométriques de celle-ci.

En d’autres termes, nous ne pouvons plus générer aléatoirement les positions des points de

contact sur toute la surface de l’objet. Celles-ci doivent respecter les contraintes géométriques

des doigts, d’où la notion d’accessibilité. Ainsi, seulement une partie de l’objet est attei-

gnable par un doigt. La position du doigt correspondant sera alors généré sur cette zone de

l’objet. Or, la saisie d’un objet par une main robotisée est un problème à plusieurs chaines

cinématiques fermées. La probabilité de générer aléatoirement une chaine cinématique fermée

tend vers zéro. Nous nous inspirons, pour ceci, de la thèse de Jean-Philippe Saut [Sau07] et

proposons l’utilisation d’une version adaptée de RLG (Random Loop Generator [Cor03]. Cet

algorithme permet la génération des configurations respectant les fermetures de chaines. Il

découpent ces chaines en chaine active et chaine passive. La chaine active doit être acces-

sible à la chaine passive. Ensuite, le modèle géométrique inverse est appliqué pour le calcul

des paramètres de la chaine passive. Dans notre cas, l’objet constitue la cahine active et les

doigts correspondent à la chaine passive. Ainsi, l’espace accessible par chacun des doigts est

approximé par une sphère. Les collisions entre les doigts et doigts/objet sont également gérées

par l’algorithme PQP. L’algorithme permettant de générer une prise force-closure devient le

suivant :

Require: - L’ensemble des points 3D points représentant l’objet

- Le cône de frottement discrétisé en chaque point de contact ainsi que les torseurs

correspondants

[Sau07] J.P. Saut. Planification de mouvement pour la manipulation dextre d’objets rigides. Thése de

doctorat de l’Universite Pierre et Marie Curie, 2007.

[Cor03] J. Cortes. Motion planning algorithms for general closed-chain mechanisms. Thése de doctorat

de l’Institut National Polytechnique de Toulouse, 2003.
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Ensure: - Prise force-closure à n doigts pour objet/main donnés

1: Move Hand to Object

2: RW1 ← Grasp RLG(f1,object)

3: CP1 ← Rand(RW1)

4: i ← 1

5: while i < n− 1 do

6: RWi ← Grasp RLG(fi,object,
∑i−1

k=1
fk)

7: if RWi then

8: CPi ← Rand(RWi)

9: else

10: Go to step 3

11: end if

12: end while

13: RWn ← Grasp RLG(fn,object,
∑n−1

k=1
fk)

14: FC ← 0

15: while !FC do

16: CPn ← Force Closure(
∑n−1

k=1
CPk)

17: FC ← CPn in RWn

18: end while

19: END

Nous nous intéressons à trouver une prise sur la partie préhensible de l’objet. Une première

étape de l’algorithme proposé est alors d’approcher la main de l’objet afin que la partie

correspondante soit atteignable par les doigts de la main. RWi caractérise l’intersection entre

le domaine d’accessibilité d’un doigt fi et de l’objet. Grasp RLG permet l’estimation de

RWi en considérant la position de l’objet et celles des i − 1 points de contact. Un point de

contact CPi est ensuite généré aléatoirement dans RWi. Ceci garantit l’existence du modèle

géométrique inverse du doigt. Après le placement des n−1 doigts, la position du nième doigt

est calculée par Force Closure afin d’assurer la stabilité de la prise. Cet algorithme pourrait

être amélioré en introduisant une mesure de qualité sur la génération des n-1 premiers doigts

prenant en compte le modèle de la main. Figure C.1 montre plusieurs prises obtenues en

utilisant le modèle de la main du DLR et l’interface de GraspIT.
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Tab. C.1 – Génération de prises force-closure à 4 doigts utilisant la main du DLR et l’interface

GraspIT.
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C.5 Conclusion
Cette thèse propose une nouvelle stratégie, qui, issue de l’observation du comportement

humain, trouve une prise adaptée à la tâche de l’objet. En se basant sur l’idée que plusieurs

objets de la vie courante sont munis, à leur fabrication, d’une partie facilitant leur préhension,

l’approche développée détermine, pour un objet de forme quelconque, cette partie préhensible.

L’objet est alors représenté par un ensemble de formes géométriques simples. Un réseau de

neurones est ensuite entrâıné afin d’identifier la partie saisissable de l’objet conforme au choix

de l’être humain. Après l’identification de la partie préhensible de l’objet, nous nous sommes

intéressés à l’identification des points de contacts sur cette partie garantissant la stabilité

de celui-ci. En se basant sur l’algèbre de Grassmann, nous proposons une nouvelle condition

suffisante pour la génération de ces prises dites force-closure. Afin de valider l’approche

proposée, nous l’avons testée sur des objets CAO ainsi que sur des objets réels scannés par

un laser 3D ou obtenus par reconstruction 3D.


