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Abstract—A new approach for gradient estimation in the
context of real-time optimization under uncertainty is proposed
in this paper. While this estimation problem is often a difficult
one, it is shown that it can be simplified significantly if an
assumption on the local quasiconvexity of the process is made
and the resulting constraints on the gradient are exploited. To
do this, the estimation problem is formulated as a constrained
weighted least-squares problem with appropriate choice of the
weights. Two numerical examples illustrate the effectiveness of
the proposed method in converging to the true process optimum,
even in the case of significant measurement noise.

I. INTRODUCTION
In the steady-state, real-time optimization of continuous

processes, it is often the case that the model used to carry
out the on-line optimization is an inaccurate approxima-
tion of the true process. This makes the nominal solution
unreliable, since it is either a solution that is suboptimal
or, in the worst case, infeasible and likely to damage the
process. While the standard approach for many years has
been to iteratively improve on this solution by collecting
measurements and updating the model parameters [1], there
has been a recent trend to use measurements to add auxiliary
“correction” terms to the model instead [2], [3], [4]. Based
on the original work of Roberts [5], these algorithms do not
necessarily update the process parameters but are designed
around updating the correction terms so as to iteratively drive
the optimum given by the modified model to a Karush-Kuhn-
Tucker (KKT) point of the real process. These “modifier-
adaptation” schemes are advantageous in that they are able
to reject both structural and parametric errors in the model
[4].
A major bottleneck of these approaches, however, is the

need to estimate the real process derivatives (the local
process gradient) at each operating point in the iterative
optimization procedure. This is a difficult problem, since
not only must the contributions of the different derivatives
be decoupled at each point, but also because the measured
outputs are often corrupted by noise. As basic approaches,
one may fall back on finite-difference approximations or
derivative-free (e.g. trust-region) methods [6], but these –
despite being reliable – generally require an unacceptably
large number of samples as the problem dimensionality
grows. “Dual-modifier” methods have consequently emerged
[2], [7], [8] to combat this issue, and are analogous to
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trust-region-with-linear-model approaches that require only
nu +1 operating points to estimate the gradient for a process
with nu inputs. Though promising, these methods require
additional constraints to ensure robustness against truncation
errors and noise, which often conflicts with the main task of
optimization and results in algorithms that do not scale well
with an increase in dimensionality.
In this work, a new framework that appears to avoid, or

at least simplify, a lot of these issues is presented. Primar-
ily, it is shown that assuming local process quasiconvexity
leads to the introduction of new constraints on the gradient
and may significantly simplify the estimation problem. In
order to incorporate these constraints into the estimation, a
formulation of the estimation problem as a weighted least-
squares problem is proposed, and a possible choice of the
weighing scheme is discussed. Two numerical examples
serve to illustrate the proposed method, which appears to
be quite effective even in the presence of high measurement
noise.
The paper is structured as follows. First, the modifier-

adaptation methodology is quickly reviewed in Section II.
The additional constraints on the gradient that arise from
assuming local convexity are detailed in Section III, and
the estimation framework is outlined in Section IV. Section
V then presents the numerical examples, and Section VI
concludes the work.

II. REVIEW OF MODIFIER ADAPTATION
The steady-state, static optimization problem that needs to

be solved is the following:1

min
u

. φ(u)

s.t. Gp(u) ! 0
, (1)

with u ∈ Rnu the vector of inputs, φ : Rnu → R the
process objective, and Gp a set of ng inequality constraints
gp,1...gp,ng

: Rnu → R.
Realistically, any or all of the Gp functions may not be

known exactly in practice, and only an approximate model
will be available:2

min
u

. φ(u)

s.t. G(u) ! 0
. (2)

The key idea of modifier adaptation is to add the minimum
number of correction terms, or “modifiers”, to force the KKT
1The symbol ! denotes component-wise inequality.
2Without loss of generality, it may be assumed, via the epigraph trans-

formation [9], that the cost is linear and known. It should also be noted that
while the methodology extends to equality constraints, these have been left
out for simplicity.
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conditions of the modified model to match the KKT condi-
tions of the process [4]. A scheme that partially achieves this
goal is:

min
u

. φ(u)

s.t. G(u) + εk ! 0
, (3)

where εk ∈ Rng×1 is a vector of 0th-order correction terms
at iteration k. In the simplest case, εk may be defined as the
error between the process and the model:

εk = Gp(uk) − G(uk). (4)

When run iteratively, this “constraint-adaptation” scheme
will, in many cases, converge to a feasible sub-optimal point
for the real process [4]. It is attractive as it is easy to
implement, does not require any gradient estimates, and has
been demonstrated to be effective in practice [10]. When the
sub-optimality of this scheme is negligible, it is an excellent
first choice for the optimization of uncertain processes.
However, the degree of sub-optimality for a given process

is generally unknown until it is observed. To truly guarantee
that the process, upon convergence, reaches a KKT point, a
1st-order modifier scheme is needed:

min
u

. φ(u)

s.t. G(u) + εk + λ
T
k (u− uk) ! 0

, (5)

where λk ∈ Rnu×ng are the 1st-order modifiers at iteration
k that essentially serve to correct the gradient errors between
the process and the model and may, in the simplest case, be
defined as the error in the Jacobian:

λ
T
k =

∂Gp

∂u

∣

∣

∣

uk

−
∂G

∂u

∣

∣

∣

uk

. (6)

To ensure a certain degree of robustness, one would
usually not apply the entire corrections in (4) and (6) as
the terms are only local, and would filter the modifiers from
iteration to iteration [4]. Alternatively, one could also filter
the inputs [11] and apply only a fraction of the input steps
calculated by (3) or (5).
When the process derivatives ∂Gp

∂u
can be known accu-

rately, it has been shown that the KKT conditions of the
real process will be satisfied by the modifier scheme (5)
upon convergence. For a proof of this statement, as well
as for the local necessary conditions regarding convergence
and a detailed overview of the scheme, the interested reader
is referred to [4].
As already stated, the major weakness of modifier adapta-

tion is that these experimental gradients are often not known
and are difficult to estimate, making the resulting algorithms
that rely on uncertain estimates unreliable. In the theory that
follows, it is shown how assuming local quasiconvexity of
the functions Gp(u) may alleviate these problems.

III. EXPLOITING LOCAL QUASICONVEXITY
As all of the analysis in this section applies individually

to each of the constraints, a single function gp(u) ∈ Gp(u)
will be considered throughout. Start by assuming that gp(u)
is quasiconvex in some ball of radius δ around the current

operating point uk, defined as Bk = {u : ‖u − uk‖ ≤ δ}.
Let Uk denote a set of points in Bk whose function values
are inferior to gp(uk):

Uk = {u : gp(u) ≤ gp(uk),u ∈ Bk} . (7)

Then, the first-order condition for quasiconvexity states
that:

∇gp(uk)T (u− uk) ≤ 0, ∀u ∈ Uk . (8)

Likewise, if quasiconcavity were assumed instead and Bk

denoted a quasiconcave region, the following would hold:

∇gp(uk)T (u − uk) ≥ 0, ∀u ∈ Bk \ int(Uk) . (9)

The derivation of (8) follows from applying Jensen’s
inequality to the convex sublevel sets Uk and differentiating,
with the derivation of (9) following the same steps (see,
e.g., [12]). Finally, if an assumption of quasilinearity is
made, both sets of conditions are valid. For both simplicity
and consistency, only quasiconvexity is explicitly discussed
in what follows, but it remains implicit that everything
that is mentioned in this paper is equally applicable to
quasiconcavity and quasilinearity as well.
Practically, Condition (8) introduces linear bounds for

estimating the gradient ∇gp(uk) at iteration k. In other
words, if there are previous measurements whose values are
inferior to the current measured value gp(uk) and which
are local enough to satisfy the quasiconvexity assumption,
then (8) provides constraints on the gradient. A geometric
interpretation is given in Fig. 1.
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Fig. 1. Geometric interpretation of the first-order quasiconvexity condition
constraints on the local gradient. Because gp(uk−1) and gp(uk−2) are
both less than gp(uk) and are sampled in Bk , the hyperplane defined around
uk must contain the two previous operating points on its negative side. The
hyperplane is therefore constrained to be between the two extreme deviations
shown in red solid lines. It follows that the gradient, which is orthogonal
to the hyperplane, is constrained accordingly by the solid arrows.

As virtually all real processes are continuous, it is possible
to extend the first-order quasiconvexity conditions to other
points so as to achieve even tighter constraints by assuming
Lipschitz constants on the components of ∇gp(u). These are
denoted by κ = [κ1 ... κnu

]T and are defined as follows:3

3The natural choice for these constants are the maximal bounds on the
derivatives.

2807



κj ∈ [0,∞) :

gp(ua) − gp(ub) ≤
nu
∑

j=1
κj |ua,j − ub,j|, ∀ua,ub

. (10)

The following definition is now proposed.

Definition (The i, k-Lipschitz Polytope w.r.t. Function gp)
The i, k-Lipschitz polytope w.r.t. function gp, denoted by

L
gp

i,k, is defined as the following set:

L
gp

i,k = {u : gp(ui) +
nu
∑

j=1

κj |uj − ui,j| ≤ gp(uk)}. (11)

Whenever ui ∈ int(Uk), this is a nonempty nu-
dimensional rhombus with 2nu vertices that are easily ob-
tained from ui, the (positive) difference gp(uk) − gp(ui),
and the Lipschitz constants κ. Furthermore, it is clear that
ui ∈ L

gp

i,k, and that {L
gp

i,k ∩ Bk} ⊆ Uk. The implication of
this is that Condition (8) must hold for all of Lgp

i,k ∩ Bk.
Practically, this may be implemented by considering only
the vertices of Lgp

i,k that belong to Bk.
A nice characteristic of this approach is that, regardless

of how conservative the Lipschitz constants may be, the
resulting conditions will always lead to tighter gradient
estimates (by the simple virtue of having additional, non-
redundant constraints). This is geometrically illustrated in
Fig. 2.
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Fig. 2. The polytopes Lgp

k−1,k
and L

gp

k−2,k
around the past points uk−1

and uk−2 must also lie on the negative side of the hyperplane defined by
the gradient at uk .

The overall potential of these concepts is clear: as the num-
ber of iterations increases and more points become available,
the possible set of estimates may become so constrained
that it becomes impossible to have a “bad” estimate. The
estimation method that implements this idea is presented
next.

IV. GRADIENT ESTIMATION METHOD
As the assumption of local quasiconvexity leads to linear

constraints in the estimation problem, it is natural to place
the estimation in the optimization framework where such
constraints can be appropriately accommodated. Again, the

procedure can be applied individually to each constraint, and
so the method will be described for a single function gp(u) ∈
Gp(u).

A. Weighted least-squares problem
In the proposed method, the estimated gradient is com-

puted as the solution to the following weighted least-squares
problem, with zk used to denote the gradient at the kth

iteration:

min
zk

.
k
∑

i=1
wi

[

z
T
k (ui−ui−1)
‖ui−ui−1‖2

− gp(ui)−gp(ui−1)
‖ui−ui−1‖2

]2

s.t. zT
k (u − uk) < 0,
∀u ∈ {L

gp

0,k ∪ ... ∪ L
gp

k−1,k} ∩ Bk

−κ ! zk ! κ

. (12)

The first set of constraints are the first-order quasiconvex-
ity conditions applied to the union of Lipschitz polytopes
that correspond to the previous data and lies in Bk. Note
that these inequality constraints are made strict so as to
avoid the degenerate solution 0 (in implementation, it is a
non-strict inequality with a small tolerance). There are also
box constraints on the gradient estimates that are simply
the Lipschitz constants, which, while generally not defining
the solution, are nevertheless useful as they ensure that the
estimates are always bounded.
As in dual-modifier schemes, the idea is to estimate the

current gradient from data collected in the previous operating
points, and this is reflected in the objective. The gradient zk

estimated at iteration k is run through all previous data –
from iteration 1 to the current iteration k – to predict the
increment zT

k (ui − ui−1) that is compared to the measured
increment gp(ui)− gp(ui−1). The step size between succes-
sive iterations in the denominator is used as it provides an
important scaling effect (otherwise, iterations with larger step
sizes tend to dominate the cost and thus bias the estimation
– see, e.g., [13]).
An important difference with dual-modifier approaches is

that the solution to this problem may be obtained regardless
of the conditioning of the step-size matrix or the effect of
the noise. It is therefore not necessary to add constraints to
the optimization problem to make it work. However, some
quality control is needed to give more weight to iterations
with useful information concerning the local gradient and
less weight to iterations that are either heavily corrupted by
noise or are too far away from the current operating point
to offer any benefit. The weights wi are designed with these
goals in mind.

B. Choice of weights
As is often the case, designing the “optimal” weighting

scheme is an art that is subjective and requires some experi-
ence. Nevertheless, some reasonable guidelines for choosing
such a scheme a priori are given here. This choice is based
on the following important criteria: 1) iterations where the
noise is likely to overwhelm the measurement should be
given very low weight, 2) iterations that are “far” from the
current operating point should be given low weight as they
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have little relation to the local gradient, 3) on the contrary,
iterations that are close to the current point and are expected
to have a good signal-to-noise ratio should be given high
weight. Each weight is composed of two terms:

wi = ws,i wd,i , (13)

with ws,i reflecting the signal-to-noise ratio and wd,i reflect-
ing the distance from the current operating point. Both are
defined as functions taking values between 0 and 1, which
essentially guarantees that weight is distributed based on the
specifications given above.
In designing ws,i, it is necessary to have some sort of ex-

pected signal-to-noise ratio for a given step. Several heuristic
approaches could be proposed to estimate the signal. In this
paper, this estimation is done crudely using the Lipschitz
constants introduced earlier:

|gp(ui) − gp(ui−1)| ≈
nu
∑

j=1

κj |ui,j − ui−1,j | . (14)

For the noise, the worst-case noise magnitude σ is as-
sumed. The resulting signal-to-noise ratio ri is thus a “best-
signal-worst-noise” approximation:

ri =

nu
∑

j=1
κj |ui,j − ui−1,j |

σ
. (15)

The weight is then defined as:

ws,i = min(0.5ri, 1) , (16)

i.e. it is a linear function of the estimated signal-to-noise ri

for 0 ≤ ri < 2, and then constant at 1 for ri ≥ 2.
For designing wd,i, the distance between the current point

uk and the points involved in the ith iteration is first defined:

di = ‖0.5(ui−1 + ui) − uk‖2 , (17)

which is the Euclidean distance between the current point
and the midpoint in the ith iteration. wd,i is then defined as:

wd,i = 1 −
di

max
q=1...k

(dq)
, (18)

i.e. the distance is scaled with respect to the maximal
distance.
If the linear penalization is not strict enough (for either

wd,i and ws,i), the weights could be raised to a power (e.g.
wi = w2

s,iw
2
d,i) for stricter penalties. The tradeoff here lies

between quantity and quality – whether it is better to have a
lot of partially irrelevant data or a smaller amount of relevant
data – and is not addressed in this paper.

C. Effect of noise on the constraints
When noise with the worst-case magnitude σ is present,

it may not be clear which previous operating points the
constraints should be valid for, since it may not be possible
to tell which previous constraint measurements are in fact
inferior to the current one. In this paper, the worst-case
scenario is always assumed, i.e. Uk is redefined as:

Uk = {u : gp(u) + σ ≤ gp(uk) − σ,u ∈ Bk} . (19)

The Lipschitz polytope definition is also modified accord-
ingly:

L
gp

i,k = {u : gp(ui) + σ +
nu
∑

j=1
κj |uj − ui,j |

≤ gp(uk) − σ}
, (20)

which guarantees that the resulting linear constraints will still
be valid in the noisy case.

V. ILLUSTRATIVE EXAMPLES
Two examples illustrate the effectiveness of the proposed

gradient estimation method for modifier-adaptation schemes.
The first example has two inputs and serves to illustrate the
real-time optimization scheme when the results can be inter-
preted geometrically. The second example is more involved
and encompasses six inputs. Both processes are globally
convex, and thus the local quasiconvexity assumption holds
by default with Bk = Rnu for all k.

A. 2-input case
Consider the following problem:

max
u

. u1 + u2

s.t. gp(u) = (u1 − 2.5)4 + 1.6u2 − 3.6 ≤ 0
1 ≤ u1 ≤ 3.5
1 ≤ u2 ≤ 2.5

. (21)

The nonlinear constraint used in the optimization problem is

g(u) = (u1 − 2)4 + 2u2 − 4 ≤ 0 . (22)

The process is initialized at u = [2 1.5]T and the modifier-
adaptation scheme described in Section 2 is launched. The
inputs are filtered with the gain 0.5 to prevent the algorithm
from taking overly aggressive steps, that is, at each iteration
the solution of the modified problem is averaged with the pre-
vious operating point. The Lipschitz vector κ = [13.5 1.6]T

is chosen, corresponding to the largest derivative values over
the relevant input space. In practice, these would not be
known and so more conservative values would be chosen.
Fig. 3 shows the optimization results for the cases with

σ = 0, 0.05, 0.10, and 0.20 (since the value of gp(u) ranges
between -1 and 0 in this example, this may be roughly
thought of as 0, 5, 10, and 20% measurement noise). A
large number of iterations is simulated for all cases so as
to show that not only does the algorithm converge quickly
in, generally, less than 20 iterations, but that it is able to
maintain the optimum upon convergence.
As expected, the performance declines with rising noise,

but the algorithm remains quite robust (only in the 20% case
is there a noticeable offset). Since noise not only corrupts the
estimation but also reduces the number of useful constraints
that can be added (note the reduced size of the polytopes for
cases with large σ), it is natural that offsets begin to occur
as the noise grows large.
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Fig. 3. Solution of Problem (21) using modifier adaptation with the
proposed gradient estimation approach for cases with different noise levels.
a) The green and blue curves represent the contours of g(u)+εk +λ

T
k (u−

uk) and gp(u), respectively (note that for the case of σ = 0, the green,
dashed contour is given for k = 0 with ε0 = 0 and λ0 = 0 so as to
represent g(u) and illustrate the initial process-model mismatch; otherwise,
modifiers corresponding to the final iteration are used). Straight lines of the
respective colors show the supporting hyperplanes of the modified-model
and process functions upon convergence. The Lipschitz polytopes are also
shown, and can be seen to all lie on the correct side of the hyperplane.
The non-shaded region represents the feasible space and the green circle
represents the process optimum. b) The black line at the very top gives
the objective function value at the true process optimum, while the red
dashed line below gives the objective value attained if the gradients were
not estimated and only constraint adaptation (3) were used.

In order to illustrate the benefits brought by the quasi-
convexity assumption, results for a case where no additional
constraints (8) are included are given in Fig. 4. It is seen

that this version of the algorithm, despite finding the optimal
region, may drift very easily from the desired optimum (it
does, however, work perfectly well in the absence of noise).
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Fig. 4. Solution of Problem (21) for σ = 0.05 when local quasiconvexity
is not assumed.

As a final test, the case with σ = 0.10 and a major input
perturbation is considered (u is set to [1.5 2]T every 500
iterations). It is seen that the algorithm brings the inputs
back to the correct region and maintains them there (Fig. 5).
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Fig. 5. Solution of Problem (21) with σ = 0.10 and a major input
perturbation applied every 500 iterations.

B. 6-input case
The following optimization problem is solved:

max
u

. cT u

s.t. gp,1(u) = 2u4
1 + e2u3 + u2

5 − u6 − .8 ≤ 0
gp,2(u) = u2

2 − 2u3 + u2
4 + u5 − 2 ≤ 0

gp,3(u) = −u1 − u2 + .5eu5 + u2
6 − 2 ≤ 0

gp,4(u) = −u3 + u2
4 + 6u2

6 − 4 ≤ 0
0 ! u ! 1

, (23)

where c = [0.45 0.04 0.88 0.69 0.95 0.56]T and the modeled
constraints are:

g1(u) = 2.2u2
1 + e3u3 + 0.9u2

5 − 0.9u6 − 0.8
g2(u) = 1.1u2

2 − 1.1u3 + 0.9u2
4 − u4 − 2

g3(u) = −2u2 + e1.5u5 + 0.8u2
6 − 2

g4(u) = −1.2u3 + u4 + 2.5u2
6 − 4

. (24)

The following matrix of Lipschitz constants, where each
row contains the Lipschitz constants of the corresponding
constraint, is used:
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K =









8 µ 2e2 µ 2 1
µ 2 2 2 1 µ
1 1 µ µ 0.5e 2
µ µ 1 2 µ 12









, (25)

where µ is a small value (here, it is set to 0.001) that is meant
to replace 0 so as not to make the polytopes degenerate. This
basically means that that particular input is known to have
no effect on a particular constraint value. An input filter with
gain 0.5 is used, and the initial point u = [0 0 0 0 0 0.8]T

is chosen.
The algorithm works well for σ = 0 and σ = 0.05,

and only the results for σ = 0.10 are given here. Fig.
6 shows that, despite undergoing an initial “roughness”
(likely attributable to aggressive steps by the optimization
algorithm), the algorithm finds the right region after about
50 iterations and then suffers a small bump before settling
down for good despite the continued injection of noise.
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Fig. 6. Solution of Problem (23) for σ = 0.10. In the left plot, the dotted
lines represent the optimal inputs for the process.

VI. CONCLUSIONS AND FUTURE WORK
A new methodology for estimating the local gradients

in modifier-adaptation schemes has been presented, making
the assumption of local quasiconvexity and showing how
this facilitates what is otherwise a rather difficult problem.
Through two numerical examples, it has been demonstrated
that the stated methodology is effective at finding the optimal
region and, with the additional hyperplane constraints on the
gradients, keeping the system there even in the presence of
significant noise. Particularly promising is the extension to
the six-dimensional case, as most current gradient estimation
schemes do not generally extend well to higher dimensions.
The potential weakness in the current work is, of course,

the assumption that the real process is locally quasiconvex
(as mentioned, one could also assume quasiconcavity, or
even quasilinearity). Two difficulties arise here – the choice
of assumption and the locality of neighborhood. In reality,
nothing prevents the user from trying different assumptions
and using the one that, over a number of iterations, appears
to give the best estimates. In considering the locality of
any of the assumptions, it is important to note that, save
for pathological cases like the saddle point, every function
must be locally quasiconvex or quasiconcave (or both, if
monotonic). Just how small the neighborhood would be

in practice is, naturally, unknown, but it may be argued
that reasonably-sized neighborhoods would exist for real
processes, and that the locality of the assumption would
not be so hindering as to limit its applicability. Future work
will, however, focus on ways to verify these assumptions on-
line and to attempt to estimate the size of the neighborhood
adaptively.
It should also be noted that all of the noise handling in

this work was done in a crude, worst-case manner. This could
probably be done stochastically, thereby allowing points that
would normally be excluded from the set of constraints to
still play a productive role in their construction, thereby
allowing tighter estimates even with high noise levels. Other
elements, such as the choice of weights in the gradient-
estimation scheme, or ensuring that the process constraints
are satisfied at every iteration [11], could also be improved
upon.
Finally, it should be noted that, while this estimation

scheme was applied here in the context of modifier adap-
tation, the theory is by no means limited to this context
and could perhaps find use in other fields where gradient
estimation is important [13], [14], [15].
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