Design of Acoustic Metamaterials based on the Concept of Dual Transmission Line

Anne-Sophie Moreau1, Hervé Lissek1 and Frédéric Bongard2

1Ecole Polytechnique Fédérale de Lausanne, Switzerland
2JAST SA, Switzerland

Presented at the COMSOL Conference 2010 Paris
Layout of the presentation

• Introduction & Objectives
• Transmission line concept
 • Conventional & Dual acoustic TL
• Lumped element models
 • Membrane, Stub & CRLHTL
• Finite element models
 • Membrane, Stub & CRLHTL
• Methodologies for the assessment
 • Lumped & Finite element models
• Results
 • Bloch, Scattering parameters & Unbalanced case
• Conclusion
Introduction

- **Acoustic metamaterials**: artificial structures using inclusions of elements, whose dimensions are smaller than the wavelengths of interest, so as to enact effective macroscopic behavior not readily available in nature.

- Growing interest for acoustic metamaterials

 - Capability to achieve new properties like negative refraction

- Lots of development in Electromagnetics

- Proposed structure based on transmission line concept: acoustic waveguide loaded with membranes and open radial stubs
Objectives

- Negative refraction: an illustration

![Diagram of waveguide with conventional and dual mediums]
Transmission line concept

- Conventional acoustic TL
 - Describe the propagation of waves
 - Positive index of refraction

- Dual acoustic TL
 - Dual topology
 - Negative index of refraction

- Unit cell of the composite right/left-handed (CRLH) TL
 - Dual acoustic TL has to load a conventional TL
 - Equivalent circuits assumed lossless

Conventional TL for high frequencies

Dual TL for low frequencies
Lumped element models

- Membrane
 - Implements a **series compliance**
 - Mechanical element

- Stub
 - Implements a **parallel mass**
 - Acoustic element

- Host waveguide
 - Conventional TL

\[\begin{align*}
 m_{as} &= m_{am} + m_a \\
 C_{ap} &= C_{at} + C_a \\
 C_{as} &= C_{am}
\end{align*}\]
Lumped element models

- CRLHTL
 - Balanced condition between RH & LH bands
 \[m_{as}C_{as} = m_{ap}C_{ap} \]
 - Balanced condition for \(f_0 = 1 \text{kHz} \)
 - Lattice constant \(d \) small compared to the wavelength \(\lambda \)
 \[d/\lambda = 0.1 \text{ at } f_0 \rightarrow d = 34 \text{ mm} \]
 - Dimensions and values of masses & compliances

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
<th>Value (kg/m(^4))</th>
<th>Value (x10(^{-12}) m(^3)/Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Membrane radius</td>
<td>9.06 mm</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>Membrane thickness</td>
<td>125 (\mu \text{m})</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Stub thickness</td>
<td>1 mm</td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>Stub length</td>
<td>43.5 mm</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>Lattice constant</td>
<td>34 mm</td>
<td></td>
</tr>
</tbody>
</table>
Finite element models

- **Membrane**
 - 2D axi-symmetric acoustic structure interaction model
 - Thin circular membrane clamped at its perimeter modeled as a thin plate: no tension is applied
 - \(\Delta p \): average pressure applied on the membrane
 - \(v \): average velocity of the membrane

\[
Z_{ac} = \frac{\Delta p}{S v} = \frac{p_2 - p_1}{q}
\]

<table>
<thead>
<tr>
<th>Source</th>
<th>Pressure of 1 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls</td>
<td>Sound Hard Walls</td>
</tr>
<tr>
<td>Output</td>
<td>Plane Wave Radiation</td>
</tr>
</tbody>
</table>
Finite element models

• **Stub**
 - 2D axi-symmetric pressure acoustic model
 - Radial open tube radiating in a surrounding medium
 - \(p \): average pressure at the entrance of the stub
 - \(v \): average velocity at the entrance of the stub

\[
Z_{at} = \frac{p}{S v} = \frac{p}{S(v_2 - v_1)} = \frac{p}{q_2 - q_1}
\]
Finite element models

- CRLH-TL
 - 2D axi-symmetric acoustic structure interaction model
 - Periodic structure with the same boundary conditions as before
 - Connection to an adapted host waveguide to avoid reflection at the interfaces
 - CRLH-TL with 10 cells

- 1 symmetric cell

\[
\begin{align*}
C_{as}/2 & \quad 2m_{as} & \quad C_{as} \\
2m_{sp} & \quad C_{as}/2 & \quad 2m_{sp}
\end{align*}
\]

\[d\]
Methodologies for the assessment

- Lumped element model
 - Computation of the Bloch parameters
 - Description of the propagation of waves in periodic structures
 - Pulsation of the two branches
 \[\omega_R = \frac{1}{\sqrt{m_{as} C_{ap}}} \text{ and } \omega_L = \frac{1}{\sqrt{m_{ap} C_{as}}} \]
 - Bloch impedance \(Z_B \) and dispersion diagram \(\beta_B d \)
 \[
 \cos(\gamma_B d) = 1 - \frac{\left(\frac{\omega}{\omega_R} - \frac{\omega}{\omega_L} \right)^2}{4} \\
 Z_{B,\pi} = \sqrt{\frac{m_{as}}{C_{ap}}} \sqrt{1 - \frac{\left(\frac{\omega}{\omega_R} - \frac{\omega}{\omega_L} \right)^2}{4}}
 \]
Methodologies for the assessment

- Finite element model
 - Four probes sensing pressure

<table>
<thead>
<tr>
<th>Distance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = -x_4$</td>
<td>0.1 m</td>
</tr>
<tr>
<td>$x_2 = -x_3$</td>
<td>0.05 m</td>
</tr>
<tr>
<td>s</td>
<td>0.05 m</td>
</tr>
</tbody>
</table>

- Propagation of plane waves under $f < 0.586 \frac{c}{2a} = 11 k\text{Hz}$
- 2 & 4 microphones methods
- Scattering parameters: 1 & 10 cells

\[
R = \frac{H_{12} - e^{jks} e^{2jks}}{e^{jks} - H_{12}}
\]

\[
T' = \frac{C}{A} = \frac{P_3 e^{jks} - P_4 e^{jks}}{P_1 e^{jks} - P_2 e^{jks}}
\]

- Bloch parameters: 1 cell

\[
\cos(\gamma_B d) = \frac{1 - R^2 + T'^2}{2T'}
\]

\[
Z_B = \pm Z_0 \sqrt{\frac{(1 + R)^2 - T'^2}{(1 - R)^2 - T'^2}}
\]
Results

- Bloch parameters

![Dispersion diagram with negative and positive refraction](image)

Negative refraction

Pressure at $f = 950$ Hz

Positive refraction

Pressure at $f = 1050$ Hz
Results

- Scattering parameters
 - 2 & 4 microphones methods can be realized experimentally
 - 2 microphones \(\rightarrow \) reflection coefficient
 - 4 microphones \(\rightarrow \) transmission coefficient
 - LEM & FEM match well (previous results) so FEM results can be used as a reference for experimental results
Results

- Unbalanced case
 - Finite element model
 - $L = 80$ mm

Negative refraction
No propagation
Pressure at $f = 900$ Hz

Positive refraction
Conclusion

- Circuit theory concepts efficiently used to design a TL-based metamaterial
- Inclusion of mechanical elements to realize series compliance
- Proposed structure: negative refractive band of almost one octave with a balanced condition & unbalanced case
- LEM & FEM models confirm performances
- Future experimental measurement of scattering parameters to validate the results
- Further work in FEM to predict performances of a 2D version of this structure
Thank you for your attention

Corresponding author: herve.lissek@epfl.ch

This work was supported by the Swiss National Scientific Foundation under research grant 200021-130255