
Molecular associative memory
An associative memory framework with exponential storage capacity for DNA computing

Amir Hesam Salavati, K. Raj Kumar and Amin Shokrollahi http://algo.epfl.ch/ ◦ ALGO–I&C–EPFL

1. Introduction
Associative memory problem : Find the closest stored vector (in Hamming distance) to a given query
vector.

Neural implementation

• Using neural networks, connection weights are adjusted in order to perform association.

• Recall procedure is iterative and relies on simple neural operations.

• Design criteria: maximizing the number of stored patterns C while having some noise tolerance.

Molecular implementation

• Synthesize C DNA strands as stored vectors.

• Recall procedure is usually done in one shot via chemical reactions and relies on highly parallelism of
DNA computing.

• Design criteria: finding proper DNA sequences to minimize probability of error during the recall phase.

2. The problem
Current molecular associative memories are either

• low in storage capacity, if implemented using molecular realizations of neural networks [3].

Or

• very complex to implement, if all the stored sequences have to be synthesized [7], [1].

3. The proposed solution
We introduce an associative memory framework with exponential storage capacity based on transcriptional
networks of DNA switches proposed by [3].

Advantages over current methods

• Exponential storage capacities with current neural network-based approaches can not be achieved.

• For other methods, although having exponential storage capacities is possible, it is very complex as it
requires synthesizing an extraordinarily large number of DNA strands.

4. Model and method

• We utilize a bipartite network of DNA switches with n pattern nodes and m constraint nodes.

• The connectivity of the network is determined by the adjacency matrix H .

• The state of each pattern node j, denoted by xj, can either be 1 (activation) or −1 (suppression).

• The state of each constraint node i (denoted by yi) can be 1 (activation), −1 (suppression) or 0 (non-
transcribed).

• Each constraint node yi has a decision threshold bi.

• Given the vector of decision thresholds b and pattern nodes states x, we fix H such that Hx = b.

Hence, instead of memorizing all possible random sequences of length n, we store only those that satisfy
m constraints.

5. The association process
The proposed framework finds the closest stored pattern to the probe x̂ via forward and backward itera-
tions.

Forward iteration

• Constraint nodes decide their state based on simple neural operations:

yi =







1, hi < bi
0, hi = bi
−1, otherwise

.

where hi =
∑n

j=1 Hijxj,

Backward iteration

• Each pattern node j computes the quantity

gj =

∑m
i=1 Hijyi

dp
.

The sign of gj is an indication of the sign of the noise that affects xj, and |gj| indicates the confidence
level in the decision.

• The state of pattern DNA node j is updated using either of the following two strategies:

1. Winner-take-all strategy: only the node with the maximum |gj| is updated.

2. Bit-flipping strategy: all pattern nodes are updated based on the sign of gj.

6. Results
Theoretical results

• The proposed framework is guaranteed to correct two
erroneous nodes [4].

• For proper choice of row degrees in the constraint ma-
trix, it also admits an exponential storage capacity in
terms of n.

Numerical results

• The following graph illustrates the pattern retrieval er-
ror probability against the number of initial erroneous
nodes.

2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of initial erroneous nodes

P
at

te
rn

 r
et

rie
va

l e
rr

or
 p

ro
ba

bi
lit

y

Winner−take−all
Bit−flip

7. Some remarks
Full details about the approach can be found in [4].

The proposed method have other possible applications as well:

• Designing artificial transcriptional networks to govern the activity of
cells, for instance in combating certain diseases.

• Iterative error correction in DNA computing instead of pre-designed
error-avoiding DNA sequences.

8. Previous works

Neural Associative Memory

• Extensive studies in past decades [2], [5].

• Storage capacity has been shown to be at best equal to n, the number of neurons, when required to

memorize purely random patterns.

• Recently, some works have been done to improve the storage capacity by memorizing structured patterns

(see [4] and references therein).

Molecular Associative Memory

• In contrast to neural associative memory, most approaches are already concerned with memorizing
structured patterns to minimize recall probability of error.

• These approaches synthesize all the stored patterns and store them in a vessel [7], [1].

• Coding theory can help in designing DNA strands that admit low probability of error in the recall
process [6].

• Some approaches that implement neural networks using DNA strands can be used as a means of
implementing associative memory as well [3].

• However, the storage capacity of molecular associative memory is not well-studied yet.

References
[1] J. Chen, R. Deaton, Y. Z. Wang, A DNA-based memory with in vitro learning and associative

recall, Lect. Notes in Comp. Sci., Volume 2943, 2004, pp. 145-156.

[2] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abil-

ities, Proc. Natl. Acad. Sci., Vol. 79, 1982, pp. 2554-2558.

[3] J. Kim, J. J. Hopfield, E. Winfree, Neural network computation by in vitro transcriptional circuits,
Adv. Neur. Inf. Proc. Sys. (NIPS), Vol. 17, 2004, pp. 681-688.

[4] K. R. Kumar, A. H. Salavati, A. Shokrollahi, Exponential pattern retrieval capacity with non-binary

associative memory, submitted to Information Theory Workshop 2011.

[5] R. McEliece, E. Posner, E. Rodemich, S. Venkatesh, The capacity of the Hopfield associative memory,
IEEE Trans. Inf. Theory, Jul. 1987.

[6] O. Milenkovic, N. Kashyap, ”On the Design of Codes for DNA Computing” Lect. Notes in Comp. Sci.,
Vol. 3969, 2006, pp. 100-119.

[7] J. H. Reif, T. H. LaBean, Computationally inspired biotechnologies: improved DNA synthesis and

associative search using error-correcting codes and vector-quantization, Lect. Notes in Comp. Sci.,
Vol. 2054, 2001, pp. 145-172.

Acknowledgment
The authors would like to thank Prof. Wulfram Gerstner for helpful comments and discussions. This work
was supported by Grant 228021-ECCSciEng of the European Research Council.

