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Calculations of formation energies and charge transition levels of defects routinely rely on density functional
theory (DFT) for describing the electronic structure. Since bulk band gaps of semiconductors and insulators are
not well described in semilocal approximations to DFT, band-gap correction schemes or advanced theoretical
models, which properly describe band gaps, need to be employed. However, it has become apparent that different
methods that reproduce the experimental band gap can yield substantially different results regarding charge
transition levels of point defects. We investigate this problem in the case of the (+2/0) charge transition level
of the O vacancy in ZnO, which has attracted considerable attention as a benchmark case. For this purpose, we
first perform calculations based on nonscreened hybrid density functionals, and then compare our results with
those of other methods. While our results agree very well with those obtained with screened hybrid functionals,
they are strikingly different compared to those obtained with other band-gap-corrected schemes. Nevertheless,
we show that all the different methods agree well with each other and with our calculations when a suitable
alignment procedure is adopted. The proposed procedure consists in aligning the electron band structure through
an external potential, such as the vacuum level. When the electron densities are well reproduced, this procedure is
equivalent to an alignment through the average electrostatic potential in a calculation subject to periodic boundary
conditions. We stress that, in order to give accurate defect levels, a theoretical scheme is required to yield not
only band gaps in agreement with experiment, but also band edges correctly positioned with respect to such a
reference potential.
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I. INTRODUCTION

Point defects can affect the properties of solids in a
dramatic way.1 They determine, for example, the conduc-
tivity of semiconductors, the color of natural crystals, and
the mechanical properties of materials. Equally important,
defects influence or govern the performance and the long-
term stability of a wide range of semiconductor devices,
such as metal-oxide-semiconductor field-effect transistors,
photovoltaic cells, and solid fuel cells, to name a few.
The theoretical characterization of defects, especially in
wide band-gap materials, has become increasingly important
in the attempt to understand and control the performance
of these devices.2,3 In the last decades, density functional
theory (DFT) has grown into the standard theoretical model
to describe the electronic and atomic structure of solids.
The common approximations to DFT, viz., the local density
approximation (LDA) and the generalized gradient approx-
imation (GGA), systematically underestimate band gaps of
semiconductors and insulators. Since the band gap is the
relevant energy scale in the study of defects, this so-called
“band-gap problem” of LDA and GGA severely affects the
predictive power of these approximations when applied to de-
fect levels. Recently, there have been lots of efforts to assess the
importance of band-gap corrections2–7 and to use theoretical
models giving a much more appropriate description of the bulk
band structure. The choice of methods is large and includes the
LDA+U method,8–11 approximate self-interaction correction
schemes,12 hybrid density functionals,13–21 the use of modified
pseudopotentials,22 empirical schemes,23 and more advanced
theoretical tools, such as the many-body perturbation theory
within the GW and higher approximations.24–29

It appears evident to assume that a good theoretical model
must at least satisfy two conditions, namely, (i) give an accurate
electron density of the defect system and (ii) yield a good band
gap of the host material. While these two requirements form a
necessary prerequisite to obtain reliable results concerning
defect formation energies and associated charge transition
levels,2,4 it has recently become apparent that it is by no means
sufficient. This is best exemplified in the case of defect energy
levels in ZnO.4,8–11,17,21,30–34 This is a particularly severe case
because the LDA and the GGA yield a bulk band-gap of
0.6–0.8 eV, severely underestimating the experimental value
of 3.44 eV. For the case of the (+2/0) charge transition level of
the oxygen vacancy (VO), theoretical models yield levels either
as low as 0.6 eV above the valence-band maximum (VBM) or
as high as 2.4 eV above VBM. These results differ significantly
despite the fact that, in all these theoretical models, the “band-
gap problem” was accounted for. In addition, other critical
issues, such as finite-size effects associated to the supercell
treatment, were presumably under control in these studies.
Furthermore, the first condition concerning the accuracy of the
electron density was clearly also fulfilled since the involved
electronic state corresponds to the fully symmetric a1 state,
which is already correctly described via a semilocal functional.
The second condition concerning the band gap was fulfilled
by construction.

Recently, Lany and Zunger provided a very detailed
overview of the way various theoretical and computational
approximations affect the determination of defect formation
energies and charge transition levels.4 They concluded that,
in addition to the two requirements discussed above, a
reliable theoretical model should correctly describe the relative
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positions of all relevant electronic states. For ZnO, this
condition mainly concerns the position of the Zn 3d states
with respect to the conduction- and valence-band edges.
The importance of this requirement becomes evident when
considering shallow defects, the wave functions of which can
be always thought as arising from a linear combination of bulk
bands.

In this paper, we show that that there is yet another
crucial requirement that the theoretical model must fulfill. In
order to yield an appropriate description of defect formation
energies and associated charge transition levels, the positions
of the VBM and the conduction-band minimum (CBM)
with respect to a suitably defined reference potential should
also be accurately described. To demonstrate this, we first
calculate the (+2/0) charge transition level of the VO in
ZnO and compare our result with those available in the
literature. Our study adds to a series of studies,4,9–11,26,32,34

in which conflicting results were found. However, we show
that these seemingly incompatible findings agree reasonably
with each other when an alternative alignment scheme is
used. We provide theoretical arguments to rationalize this
finding. Similar results are expected for other atomically
localized defects and for other materials in which the band-gap
problem of semilocal calculations is particularly severe. Our
investigation thus leads to a deeper understanding of the
band-edge problem in the theoretical study of defect levels and
provides a requirement for the theoretical model in addition to
the conditions mentioned above.

This paper is organized as follows. In Sec. II, we summarize
our computational approach for calculating defect formation
energies and charge transition levels. The obtained results are
discussed and compared to other calculations in Sec. III. An
alignment scheme with respect to the average electrostatic
potential is introduced and found to bring all the calculated
results in good agreement with each other. The significance
of this alignment of bulk band structures is discussed in more
detail in Sec. IV. To understand our findings about defect
charge transition levels, fundamental differences between lo-
calized and extended states in approximate DFT formulations
are discussed in Sec. V. In Sec. VI, two different theories
reproducing the experimental band gap but differing in the
positions of the bulk band edges with respect to the vacuum
level are taken under consideration to complete our rationale.
We summarize our work and draw conclusions in Sec. VII.

II. COMPUTATIONAL METHODS

In the present calculations, the electronic structure was
treated using two different functionals. First, we employed the
GGA functional proposed by Perdew, Burke, and Ernzerhof
(PBE).35 For comparison with previous calculations in the
literature, we obtained for bulk ZnO a band gap of 0.83 eV, to
be compared with the experimental value of 3.44 eV. To obtain
an improved band gap, we used a hybrid density functional36

defined by a single parameter a corresponding to the fraction
of nonlocal Fock exchange admixed to the GGA exchange:

Ehybrid
x = aEFock

x + (1 − a)EGGA
x . (1)

A hybrid functional with a = 0.25 and with the PBE for the
GGA part37 is referred to as PBE0, PBEh, or PBE1PBE. For

ZnO, we obtained a band gap of 2.82 eV using this functional.
The experimental band gap is reproduced with a = 0.32.
In the following, we refer to this functional as PBEh-32.
While this adjustment of a is empirical, it can be justified
to a certain extent.38–41 It can be shown that the optimal
value of aopt, i.e., the one which reproduces the experimental
band gap, is approximately given by aopt ∼ 1/ε∞. Here, ε∞
is the electronic part of the static dielectric constant. For a
large number of materials, this relationship is approximately
fulfilled.40,41 The adjustment of a can also be justified in some
cases by comparison with more accurate GW calculations.38

The main quantity that needs to be calculated is the
formation energy of the oxygen vacancy in a charge state q,
which is given as2

E
q

f = E
q
tot − Etot,bulk + μO + q(εV + εF). (2)

Here, E
q
tot is the total energy of the defect system containing a

single O vacancy in the supercell, Etot,bulk is the total energy
of the host material without any defect, μO is the atomic
chemical potential of oxygen, and εF is the electron chemical
potential. The latter is referred to the VBM εV. Except for
semiconductors with degenerate doping, εF varies between
zero and the band gap of the material Eg.

The atomic chemical potentials μO and μZn are bound by
the condition that ZnO is in thermal equilibrium with the
reservoir of O and Zn atoms, i.e., μZn + μO = μZnO. Oxygen-
rich conditions are defined by the onset of spontaneous
formation of O2 molecules, i.e., by μO = 1

2E
O2
tot . Oxygen-poor

(Zn-rich) conditions are correspondingly defined by the onset
of spontaneous formation of bulk Zn crystallites, i.e., via
μZn = μZn,bulk. The formation of oxygen vacancies in ZnO
is hindered in O-rich conditions, and facilitated in O-poor
conditions. The calculation of the O chemical potential in
O-poor conditions poses some difficulties when hybrid density
functionals are used because this involves the calculation of the
total energy of bulk Zn. In Hartree-Fock theory, the description
of metals leads to divergences, and the same problem is also
found with hybrid functionals. To overcome this problem,
we assume that the cohesive energy of bulk Zn, which is
well described in the GGA, does not change significantly in
the hybrid functional calculation.42 Alternatively, one could
define the O chemical potential in O-poor conditions by
assuming that the separation between the O-rich and O-
poor chemical potentials in GGA is preserved in the hybrid
functional calculation; this condition corresponds to assuming
equal formation energies for ZnO in GGA and in the hybrid
functional scheme. These two ways of determining the O
chemical potential in O-poor conditions lead to formation
energies differing by about 0.4 eV.

Charge transition levels correspond to the specific value of
the electron chemical potential for which two charge states
have equal formation energies. The (+2/0) charge transition
level is thus given by

ε(+2/0) = E0
tot − E+2

tot

2
− εV. (3)

Charge transition levels do not depend on atomic chemical
potentials.

The calculations were performed within a plane-
wave pseudopotential formulation. Soft norm-conserving
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pseudopotentials43 were generated at the PBE level and used
in all subsequent calculations. The plane-wave kinetic energy
cutoff, determined by the much harder O pseudopotential, was
set to 80 Ry. The calculations in this paper were performed
with the code CPMD.44–47 We explicitly treated the singularity
in the nonlocal exchange potential.47

We used the experimental lattice parameters for bulk
ZnO since these were found to be very close to theoretical
lattice parameters obtained with hybrid functionals.17 We also
used experimental lattice constants in our GGA calculations,
finding results that did not differ in any significant way
from GGA calculations performed with theoretical lattice
parameters.10 Upon defect formation, geometry relaxations
were performed with both the GGA and the PBEh-32
functionals. The defect structures achieved in the two cases
were found to be very similar: in PBEh-32, for example,
PBE-optimized defect structures are only 0.08 eV higher in
energy than those optimized consistently at the PBEh-32 level.
Hence, geometry optimization at the PBEh-32 level has no
effect on the position of the (+2/0) charge transition level
[Eq. (3)].

For the defect structures, we used the supercell approach.
This gives rise to finite-size effects, which need to be accounted
for. First, as suggested by Van de Walle and Neugebauer,2 the
total energies of charged defects were corrected by q�V , �V

being the shift needed to align the local potential of the neutral
system far from the defect to that of a separate unperturbed
bulk calculation, which was used to determine εV. This term
was found to be quite small for the supercells employed
in our calculations. Second, the total energies of charged
defect states are subject to spurious electrostatic contributions
associated to the periodic boundary conditions and to the
compensating background charge in our supercell calculations.
To evaluate these effects, we used an extrapolation scheme
based on supercell calculations of increasing size, containing
96, 192, and 384 atoms, as shown in Fig. 1. When using the
PBE functional, the convergence of formation energies and
charge transition levels is accelerated when using the 2 × 2 × 2
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FIG. 1. (Color online) Charge transition level ε(+2/0) vs inverse
number of atoms contained in the supercell Nat: (a) for the PBE
calculation (1 × 1 × 1 and 2 × 2 × 2k-point meshes) and (b) for the
PBEh-32 calculation (1 × 1 × 1 mesh). ε(+2/0) is referred to the
respective VBM.

Monkhorst-Pack mesh instead of a sampling at the sole �

point [Fig. 1(a)]. Hence, finite-size corrections are sizable for
the PBE calculation and a careful extrapolation of the results
is needed, as previously shown by Oba et al.17 At variance,
a denser k-point mesh turned out to be unnecessary for a
calculation with the hybrid functional PBEh-32 [Fig. 1(b)].
Indeed, in the latter case, the bulk band gap is substantially
larger and the dispersion of the defect state is already negligible
for the smallest supercells considered. This behavior is in line
with observations in a previous study on defects in ZnO.42

A notable difference between finite-size effects in PBE and
PBEh-32 calculations suggests that unphysical defect-defect
interactions mediated by bulk bands could be operative in
the former case.4 For the largest supercell considered here, we
obtain a conservative estimate of 0.20 eV for the residual finite-
size error by considering the monopole correction proposed by
Makov and Payne.48

III. OXYGEN VACANCY IN ZnO

For the neutral oxygen vacancy, we obtained, at the PBE
level, formation energies of 3.17 eV in O-rich conditions and
of 0.50 eV in O-poor conditions. In the PBEh-32 calculation,
the corresponding value is 3.57 eV in O-rich conditions. In
O-poor conditions, we found 0.50 and 0.90 eV depending on
whether the cohesive energy of Zn or the formation energy of
ZnO is taken from the GGA, respectively. Our values agree
well with the value of 0.8 eV found in Ref. 9 and that of
0.9–1.0 eV in Ref. 17. Thus, our results confirm that the
formation energy of the O vacancy in O-poor conditions is
small enough to lead to a noticeable concentration of these
defects.

At variance with these results, Janotti and Van de Walle
reported much higher formation energies for the neutral VO.10

They used an extrapolation procedure based on LDA+Ud

and an additional assumption about the behavior of the
formation energy of the charged vacancy upon the band-gap
correction. While the former extrapolation has been criticized
due to the unphysical values to which the Ud parameter
extrapolates,4 we argue here that it is the latter assumption
that is inconsistent with the hybrid functional calculations.
Indeed, the extrapolation procedure adopted in Ref. 10 leads
to charge transition levels that agree well with those obtained
with hybrid functionals.

The dependence of the formation energy on the electron
chemical potential is shown Fig. 2 for oxygen-poor con-
ditions. For simplicity, the oxygen chemical potential was
set to the average value derived from the two definition
schemes described above. The (+2/0) charge transition level
occurs at εV + 2.38 eV. This result agrees well with other
calculations based on hybrid functionals. Oba et al. found
the (+2/0) charge transition level at εV + 2.23 eV,17 using
the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional based
on screened exchange49 in which the fraction of nonlocal
exchange was set to 0.375 (HSE-37.5). Using the same
functional but with a set to 0.40 (HSE-40), Clark et al. obtained
the transition level at εV + 2.34 eV.21 Thus, it appears that
when a in either PBEh or HSE functionals is tuned to reproduce
the experimental band gap, one consistently obtains the (+2/0)
charge transition level at 2.23–2.38 eV from the VBM. The
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FIG. 2. (Color online) Formation energy of oxygen vacancy in
ZnO vs electron chemical potential, as obtained with the PBEh-32
functional. O-poor conditions are assumed.

occurrence of such an agreement has recently been rationalized
in general terms.50 Janotti and Van de Walle,10 who adopted an
extrapolation method based on LDA+Ud , found this charge
transition level at 2.17 eV, in a fair agreement with the hybrid
functional calculations.

As already noted in the literature,4,11,21 the charge transition
level at εV + 2.2–2.4 eV is in stark disagreement with
calculations based on other methods for correcting the band
gap. For example, adopting a LDA+Ud scheme,51 Lany and
Zunger obtained the charge transition level at εV + 1.3 eV.9 In
the LDA+Ud method, the Hubbard Ud term acts on the Zn 3d

states and the band-gap problem is not fully corrected. When
one tunes the Ud parameter so that the position of Zn 3d states
are correctly positioned with respect to the VBM, one obtains a
band gap of 1.5 eV, considerably smaller than the experimental
one. The remaining band-gap error was corrected by an upward
shift of the CBM.9

In another study, Paudel and Lambrecht adopted a
LDA+Us/d scheme, in which the Hubbard U term was applied
to both Zn 3d and Zn 4s states.11 While this scheme brings
the theoretical band gap in agreement with experiment, the
(+2/0) charge transition level is found at εV + 0.8 eV. Some
of the results obtained in Ref. 11 have recently been reviewed
and improved by Boonchun and Lambrecht.34 We here mainly
elaborate on the original results, but the conclusions that we
draw are independent of this choice. Using a similar method as
that of Paudel and Lambrecht, Lany and Zunger have obtained
a level at εV + 0.6 eV.4

The charge transition levels obtained with different meth-
ods are compared in Fig. 3(a). We note that the observed
differences do not stem from different electron densities of the
defect state, as the oxygen vacancy is characterized by a fully
symmetric state of a1 symmetry, which is well described in
all schemes. The origin of this apparent disagreement between
various methods has lately been discussed to some extent.4

However, it remains unclear whether the observed differences
originate from failures of some specific methods or whether
they point to a more fundamental problem common to all
approximate electronic structure methods.

A clue to the understanding as to why different methods
seemingly differ so much is provided by the realization that
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FIG. 3. (Color online) Calculated positions of the (+2/0) charge
transition level of the oxygen vacancy in ZnO through different band-
gap correction methods: (a) the various calculations are aligned via the
VBM after the band-gap correction is applied; (b) all the calculations
are aligned through the VBM prior to shifts of the band edges required
for the band-gap correction. The illustrated results are taken from
Paudel and Lambrecht (Ref. 11), Lany and Zunger (Ref. 4), Janotti
and Van de Walle (Ref. 10), Oba et al. (Ref. 17), and Clark et al.
(Ref. 21). The theoretical method is indicated in parentheses.

the band edges of bulk ZnO calculation undergo drastically
different shifts when going from LDA and GGA calculations52

to band-gap-corrected schemes. Such shifts between two
different electronic structure calculations are properly defined
through the alignment of the average electrostatic potential.
For example, the LDA+Ud method of Ref. 9 yields a shift
in the VBM, �εV = −0.7 eV. The LDA+Us/d method
of Ref. 11 gives a shift of +0.1 eV, while our calculations
yield −1.8 eV.

In Fig. 3(b), we show the comparison of the (+2/0)
charge transition level obtained with various methods when
the VBMs in the LDA and GGA calculations are aligned.
This is equivalent to aligning the electrostatic potential of all
calculations (see Sec. IV). With this alignment, the various
methods yield charge transition levels differing by at most
0.4 eV. This is to be contrasted to the variation of up to
1.8 eV achieved when the electronic structures are aligned
via their respective VBM [Fig. 3(a)]. Thus, these theoretical
calculations do not in fact differ as much as has been previously
claimed. Our conclusion is that, when a suitably defined
common reference level is adopted, the charge transition levels
are more accurately described than the bulk band edges.5 In
Secs. V and VI below, we give a detailed explanation of this
behavior and address its general consequences for theoretical
studies of defects.
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IV. ALIGNMENT OF BULK BAND STRUCTURES

The previous discussion relied on the assumption that the
bulk band structures of two theoretical calculations can be
aligned with respect to each other, as done in Fig. 3(b). This
alignment allows one to determine the shifts in the valence
band �εV and in the conduction band �εC for a given
theoretical scheme with respect to another one. In this section,
we discuss the meaning of such an alignment.5,40

The alignment between the electronic structures of the same
bulk material within different theoretical schemes could, in
principle, be achieved through the identification of a common
reference potential. For instance, the vacuum level could serve
this purpose, requiring the explicit consideration of the surface
between the considered material and vacuum within both
theoretical schemes. Since the surface dipole depends on the
specific crystal surface that is considered, the same orientation
has to be chosen for both theoretical schemes. In this way,
properly defined bulk levels in the two schemes, such as εV

and εC, can be positioned with respect to the vacuum level
and thus aligned. By constructon, the alignment achieved in
this way is not an intrinsic bulk property of the two theoretical
schemes. Indeed, differences between the surface dipoles in
the two surface calculations directly affect the alignment.

While such a procedure can always be carried out, we
note that the alignment between different electronic structures
for the same bulk material is a meaningful concept only as
long as their associated electron densities are identical (or
very close). Indeed, different electron densities at surfaces
of the material could yield different surface dipoles and,
thus, the achieved alignment would depend on the particular
surface adopted and give rise to ambiguity. Moreover, different
surface dipoles could result from different electron densities
in the bulk, for instance, because of different theoretical
equilibrium lattice parameters. In such a case, the alignment
with respect to the vacuum level would again be surface
dependent. When comparing electronic structures of bulk
materials as achieved within different theoretical schemes,
we will thus additionally assume that their electron densities
do not differ essentially. In practical calculations involving
semilocal and hybrid density functionals, this condition is
close to being satisfied. Indeed, surface and interface dipoles
in a variety of cases were found to differ by at most a few
tenths of an electronvolt.38,50,53–55

Under the assumption of yielding close electron densities,
two different theoretical schemes can be expected to give
similar surface dipoles. This implies that an alignment to the
vacuum level is equivalent to an alignment to the average
electrostatic potentials within the bulk of the materials.40

This consequence is particularly convenient and allows us
to compare different bulk calculations without the necessity
of performing surface calculations.5 Note, however, that it
is implicitly understood that alignment shifts resulting from
slight differences in the electron density are negligible when
compared to the shifts undergone by the band edges.

To produce Fig. 3(b), we relied on shifts �εV and �εC

calculated in the respective papers. Indeed, the position
of the VBM and the CBM in the more advanced theory
were generally given with respect to the (semi)local density
functional calculation (LDA or GGA) for an alignment with
respect to the average electrostatic potential. For instance, the

LDA+Us/d and LDA band structures obtained in Ref. 11,
corresponding to the left column in Fig. 3(b), were aligned
through the average electrostatic potential in the bulk. In
Refs. 4 and 9, corresponding to the results in the middle
column in Fig. 3(b), the authors determined the shifts of
the bulk bands in the LDA+Ud with respect to the LDA by
referring the energies to O 2s states, which do not directly
couple to the d states on which the Hubbard correction was
applied. This is again equivalent to the alignment to the average
electrostatic potential in the bulk. In our own calculations,
presented in the right column in Fig. 3(b), we aligned the two
band structures through the average electrostatic potential in
the bulk. Unfortunately, the reported data did not allow us to
establish the relative alignment for all the studies referred to in
Fig. 3(a). However, we can assume that similar theories yield
close �εV and �εC. For instance, the LDA+Us/d calculations
of Lany and Zunger4 are expected to yield similar shifts as
those found by Paudel and Lambrecht11 [Fig. 3(a)]. As far
as the screened hybrid functionals are concerned [Fig. 3(a)], a
recent study has shown that these functionals yield very similar
shifts as the unscreened functionals used in our calculations, as
long as the fraction of nonlocal exchange is tuned to reproduce
the experimental band gap.50 Hence, although the results in
Fig. 3(b) are restricted to those studies that explicitly give
the shifts in the band edges, the present considerations are
expected to carry a much broader validity and to equally hold
for all other calculations reported in Fig. 3(a).

V. LOCALIZED AND DELOCALIZED STATES IN
APPROXIMATE DENSITY FUNCTIONAL SCHEMES

We showed above that different theoretical models give
quite consistent results concerning the description of the
(+2/0) charge transition level of the O vacancy in ZnO
provided that they are aligned through the average electrostatic
potential, taken as a common reference level. To understand
why this happens, we first discuss fundamental differences
between localized (atomiclike) and extended (bulklike) states
in approximate density functional schemes.

For (approximate) density functionals, Janak’s theorem56

applies:

∂Etot

∂fi

= εi(fi), (4)

i.e., the derivative of the total energy with respect to the change
of occupation number fi of the highest-occupied state i is equal
to the single-particle eigenvalue of this state εi . Equation (4)
holds for finite systems but also for periodically repeated ones
provided εi is referred to the average local potential.57

The integral form of Janak’s theorem is

EN
tot − EN−1

tot =
∫ 1

0
εN (f )df, (5)

where EN
tot is the total energy of the system with N electrons. In

the above expressions, we suppressed the spin variable. While
in the original derivation of Janak’s theorem the functionals
were implicitly assumed to be continuous, Eq. (4) equally
applies to functionals that possess a discontinuity58,59 at integer
number of electrons. In this case, one has to distinguish
between left and right derivatives and the corresponding
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single-particle eigenvalues. The integral form of Janak’s
theorem [Eq. (5)] applies to discontinuous functionals without
modifications. In addition, it also holds for generalized Kohn-
Sham schemes, such as for hybrid density functionals.

In the case of localized states, such as, e.g., in molecules and
atoms, the single-particle eigenvalue in approximate density
functional schemes depends sensitively on the fractional
occupation. Accordingly, total energy differences pertaining
to the change of number of electrons are given by Eq. (5). In
particular, the ionization potential (IP) of a system is given by

IP = EN−1
tot − EN

tot = −
∫ 1

0
εN (f )df, (6)

where εN is the highest occupied orbital of the N -electron
system. Similarly, the electron affinity (EA) can be expressed
as

EA = EN
tot − EN+1

tot = −
∫ 1

0
εN+1(f )df, (7)

where εN+1 is the lowest unoccupied state of the N -electron
system.

It has been known for some time that total energy
differences pertaining to the change of charge state of a
localized state are quite accurately described in approximate
density functional schemes, both in semilocal and hybrid ones.
For example, Curtiss et al. calculated IPs and EAs for a
large set of molecules using GGA and hybrid functionals.62

They calculated these quantities via total energy differences
(�SCF method), yielding an average deviation with respect to
experiment lower than 0.2–0.3 eV for both GGA (BLYP) and
hybrid (B3LYP) functionals. This accuracy is achieved despite
the fact that the single-particle eigenvalues of the highest-
occupied molecular orbital (HOMO) εHOMO and of the lowest-
unoccupied molecular orbital (LUMO) εLUMO are substantially
different in the GGA and in hybrid functional schemes. A
similar agreement with experiment also holds for screened hy-
brid functionals.63 However, plain LDA yields slightly larger
errors, of the order of 0.5–0.6 eV, for the same quantities.62

We illustrate this property in the case of the pentacene
(C22H12) molecule in Fig. 4.64 Pentacene is a convenient
example because, unlike several smaller acenes, it possesses
a positive electron affinity. The single-particle HOMO and
LUMO levels, calculated with the semilocal PBE functional
(left, solid lines), do not agree well with the negative of
the experimental IP and EA (right). In particular, the single-
particle gap EKS

g = εLUMO − εHOMO of 1.12 eV is severely
underestimated with respect to the experimental gap Eg =
IP − EA of 5.29 eV. The use of the hybrid PBE0 (i.e., PBEh-
25) functional (left, dashed lines) gives some improvement, but
the calculated single-particle HOMO-LUMO gap of 2.34 eV
remains much smaller than the experimental one. At variance,
when calculated via total energy differences, the IPs and EAs
in both PBE and PBE0 are much closer to their corresponding
experimental values, 6.64 eV (Ref. 65) and 1.35 eV,66

respectively. The two theoretical values (Fig. 4) differ by less
than 0.10 eV, with the hybrid functional calculation in slightly
better agreement with the experimental results. The residual
differences between calculated and measured values (∼0.45
eV for the IP and ∼0.25 eV for the EA) can be accounted for
by the quite large electron correlation effects in the pentacene

single-particle
eigenvalues

total energy
differences

experiment

)
Ve(

y
gre

ne

semilocal functional (PBE)
hybrid functional (PBE0)

0

-2

-4

-6

-8

LUMO

HOMO

-EA

-IP

VL

FIG. 4. (Color online) Frontier-orbital diagram of the pentacene
molecule. Left panel: HOMO and LUMO single-particle eigenvalues
as obtained with the semilocal PBE functional (solid line, blue) and
with the hybrid PBE0 functional (dashed line, red). Middle panel:
Ionization potentials and electron affinities calculated with the same
functionals. Right panel: Experimental values for the electron affinity
and the ionization potential.

molecule.67 In any case, the present result shows that these
theoretical schemes yield total energy differences in good
agreement with experiment and with each other, while the
single-particle levels in the two schemes are very different.
This is consistent with the general trend found by Curtiss et al.
for a large set of smaller molecules.62

Thus, we conclude that total energy differences pertaining
to the change of charge state of localized states are accurately
described with approximate density functionals. Approximat-
ing the integrals appearing in Eqs. (6) and (7) through the
trapezoidal rule, we arrive at the following expressions for the
IP and the EA:

IP = EN−1
tot − EN

tot ≈ −εN

(
1
2

)
(8)

and

EA = EN
tot − EN+1

tot ≈ −εN+1
(

1
2

)
. (9)

Here, εN = εHOMO and εN+1 = εLUMO. Electronic states at
half-filling correspond to Slater-transition states.68 Since
Eqs. (8) and (9) apply equally well to various semilocal and
hybrid functionals, the generally good agreement with experi-
ment implies that the respective eigenvalues ε(f ) defined as a
function of filling all approximately cross at half-filling. This
has indeed already been observed.69

The reason for this good performance of approximate
density functionals should be ascribed to the fact that such
functionals fulfill several exact constraints of the many-body
fermionic system.70 In particular, the most relevant in this
context is the generalized sum rule of the exchange-correlation
hole. This rule holds for systems with an integer number
of electrons, i.e., for closed systems in which no exchange
of electrons with the environment occurs.71 This condition
is enforced for most approximate functionals, including the
LDA and various GGAs. Furthermore, since this constraint
is naturally fulfilled in the Hartree-Fock theory, it also holds
for any hybrid functional with an exchange energy of the type
given in Eq. (1).
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The situation is very different in the case of infinitely
extended bulklike states. Indeed, the band-gap problem per-
taining to (generalized) Kohn-Sham eigenvalues can not be
overcome by considering total-energy differences. When a
fraction f of an electron or even a full electron is added to
or removed from an extended state, the total electron density
changes negligibly. Thus, the local potential, both the Hartree
and the approximate exchange-correlation potential, remain
unaffected. As a result, the single-particle eigenvalues do not
depend on the filling f of this state. Using the integral form of
Janak’s theorem given in Eq. (5), we get, for the valence-band
maximum,

εV = EN
tot − EN−1

tot , (10)

and for the conduction-band minimum

εC = EN+1
tot − EN

tot. (11)

To illustrate this property, we show in Fig. 5 the VBM and
CBM of α quartz calculated via total energy differences as
a function of the supercell size. The considered cells contain
72, 144, 288, and 576 atoms, and their Brillouin zones are
sampled at the sole � point. The semilocal PBE functional
was used. In the case of α quartz, total-energy differences
are very close to single-particle eigenvalues already for the
smallest cells. For the 72-atom cell, the difference is 0.015 eV
for the VBM and 0.035 eV for the CBM, while for the 576
cell, these are 0.003 and 0.004 eV, respectively. The particular
case of hybrid functionals has been addressed in detail in
Ref. 47. Hence, unlike for the localized states in Fig. 4,
the consideration of total-energy differences in the case of
extended states is not useful to improve the comparison with
experiment and the same limitations pertaining to the single-
particle eigenvalues (band-gap problem) are encountered.60,61

A similar comparison involving extended states of GaAs
and localized states of the F atom can be found in
Ref. 4.

The above discussion highlights an important difference
between localized and extended states as described within
approximate density functional schemes. While the band-
gap problem associated to single-particle eigenvalues can
be circumvented by considering total-energy differences for
localized states, such a solution does not apply to extended

1/72
1/144

1/288
1/576

0

2

4

6

E

1/Nat

EV

EC

FIG. 5. (Color online) Band edges of crystalline SiO2 (α quartz)
calculated via total-energy differences as a function of 1/Nat, where
Nat is the total number of atoms in the supercell. The calculations
were performed with the semilocal PBE functional.

states for which the band-gap problem remains a fundamental
obstacle. Recently, a clear explanation has been put forward
for justifying this different behavior.72,73 The inaccurate total
energies for large systems with integer number of electrons
stems from the failure of approximate density functionals
in describing small systems with fractional charges.72,73

Indeed, approximate functionals generally do not reproduce
the property of the exact density functional by which the total
energy depends linearly on the number of electrons. There is
at present an ongoing effort to achieve improved descriptions
on the basis of these ideas.74–76 The degree of localization
required for achieving an accurate description with current
density functionals is still to a large extent an open question.
We refer the reader to the interesting debate on this issue in
Ref. 77.

VI. “THE BAND-EDGE PROBLEM”

Having stressed the different properties of localized and
extended states with respect to a change in electron occupation,
we return in this section to the discussion of charge transition
levels. For the sake of simplicity, let us consider the (+/0)
transition of a point defect characterized by an atomically
localized wave function. Using Eq. (10), we write the charge
transition level ε(+/0) as the difference between two terms,
each of them corresponding to a total-energy difference:

ε(+/0) = E0
tot − E+

tot − εV

= (
E0

tot − E+
tot

)
︸ ︷︷ ︸

localized state

− (
E0

tot,bulk − E+
tot,bulk

)
︸ ︷︷ ︸

delocalized state

. (12)

The second term clearly describes the total-energy difference
pertaining to a delocalized bulk state, while the first term can
to a very good approximation be related to the total-energy
difference pertaining to a localized state. Formally, the first
term describes the total energy of the whole manifold of states
involving both defect and bulk states, but can be related to
the localized defect state through the Slater transition-state
approximation.5 For atomically localized defect states, this
is a very good approximation.78 In view of the following
discussion, it is convenient to rewrite Eq. (12) as

ε(+/0) = (
E0

tot − E+
tot − φ

) − (εV − φ)

= ε̄(+/0) − ε̄V, (13)

where the charge transition level ε̄(+/0) and the VBM ε̄v

are referred to the average electrostatic potential φ of the
unperturbed bulk material.

A. “Band-gap” problem of defect energy levels

Let us assume that we study the (+/0) charge transition
level of the same defect using two different theories: theory
I and theory II. The first theory severely underestimates the
band gap, while the second one gives a band gap in a much
closer agreement with experiment. The two theories differ only
by the exchange-correlation potential. According to Eq. (13),
the corresponding charge transition levels referred to the
respective valence-band maxima are

εI(+/0) = ε̄I(+/0) − ε̄I
V (14)
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FIG. 6. (Color online) Schematic illustration of energy levels of
various types of defect states differing by the extent of their wave
function: (a) defect level with an atomically localized wave function,
(b) an intermediate case, and (c) an effective-mass-like defect. The
results of two electronic-structure theories (I and II) giving different
band gaps are compared to illustrate the band-gap problem. The
alignment is made through the average electrostatic potential.

and

εII(+/0) = ε̄II(+/0) − ε̄II
V. (15)

We further assume that the two theories produce a sufficiently
accurate representation of the electron density so that it
is justified to align the two bulk band structures through
the average electrostatic potential φ in the two theories, as
discussed in Sec. IV. Under the assumption that the defect
wave function ψd differs very little in the two theories, we can
express the difference between the two charge transition levels
ε̄(+/0) making use of the Slater transition state5

ε̄II(+/0) − ε̄I(+/0) ≈ 〈ψd|V̂ II
xc − V̂ I

xc|ψd〉, (16)

where the exchange-correlation potentials are evaluated with
the defect state at half occupation. Only the difference in
the exchange-correlation potentials enters the expression in
Eq. (16). Indeed, if the electron density and the single-particle
wave functions are very similar in the two calculations,
the interaction between the defect and the ionic cores, the
long-range electrostatic electron-electron interaction and the
kinetic energy are the same in the two theories and cancel.

To understand the behavior of defect levels, it is con-
venient to focus first on defects with extremely localized
wave functions. Hence, according to Eq. (16), the difference
ε̄II(+/0) − ε̄I(+/0) can then be expressed in terms of an
expectation value involving the sole localized defect state.5

However, we know from Sec. V that total-energy differences
pertaining to localized states or, equivalently, Slater transition-
state eigenvalues of localized states, are almost the same,
independent of the functional. Thus, we get

ε̄II(+/0) − ε̄I(+/0) ≈ 0. (17)

This means that charge transition levels for such defects are
almost equal in the two theories when the energy scales
are aligned through the average electrostatic potential φ.
At variance, the charge transition levels are substantially
different when the energy scales in the two theories are aligned
through the respective valence-band maxima, i.e., through ε̄V

in Eqs. (14) and (15), because of the different positions of
the bulk band edges with respect to the potential φ. This
scenario pertaining to a defect with an extremely localized
wave function is illustrated in Fig. 6 by the defect state a.
The validity of the ideal alignment illustrated by this type

VBM

CBM

theory I theory II

a b

c

a
b

c

v

FIG. 7. (Color online) Schematic illustration of energy levels of
various types of defect states differing by the extent of their wave
function: (a) a deep defect level with an atomically localized wave
function, (b) an intermediate case, and (c) an effective-mass-like
defect. The results of two electronic-structure theories (I and II) giving
the same band gap, but different band-edge positions, are compared
to illustrate the “band-edge problem.” The alignment is made through
the average electrostatic potential.

of defect has been demonstrated for a wide class of defects
encompassing various host materials.5,50,55,79–81

Figure 6 also illustrates the shifts of other type of defects. In
the opposite limit, defect c corresponds to an effective-mass-
like defect with a spatially extended wave function. In this case,
the defect level is anchored to the bulk band to which it pertains
and rigidly follows the band edge upon the opening of the
band gap in theory II. Defect b has an intermediate extension
compared to defects a and c, and is partially affected by the
shift of the band edges. The relation between the departure
from ideal alignment and the spatial extension of the defect
wave functions has been documented for various defects and
host materials in Ref. 5. However, the detailed behavior of
such defects is intrinsically system dependent, and no universal
considerations can be made.

In this section, we limited the discussion to defect states
occurring in the band gap for both theories. More complex
situations occur when defect states are resonant with the
band states for one of the theories.4 However, the physical
description of the defect state is altered in such cases. The
main motivation of this paper is to understand the effect of the
band gap opening under the assumption that the defect wave
function remains essentially unmodified.

B. “Band-edge” problem for defect energy levels

In the preceding section, we compared defect charge
transition levels as obtained within two different theories
giving different band gaps. We found that the energy levels of
defect states described by atomically localized wave functions
are already well described in theories with a pronounced
“band-gap problem,” provided those levels are referred to
a relevant reference level. For such defects, the problem of
finding the defect level is essentially decoupled from that of
finding the band edges.

Let us thus consider two different theories, I and II, yielding
this time the same band gap (taken to coincide with the
experimental one), but giving different positions of the VBM
and the CBM with respect to the average electrostatic potential
φ of the bulk. We assume that the two theories are sufficiently
accurate, yielding, in particular, close electron densities, so that
the energy scales of the two theories can be aligned through
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φ, as discussed in Sec. IV. For instance, theory I could be
LDA+U in which the remaining band-gap underestimation is
corrected by a rigid shift of the conduction band, while theory
II could be a hybrid functional scheme in which the fraction
of Fock exchange is tuned to reproduce the experimental band
gap. For an atomically localized defect, the same argument
holds as in the preceding section and the charge transition
levels obtained within the two theories are expected to fall
very close to each other, as illustrated in Fig. 7 for defect a. In
Fig. 7, a departure from the ideal alignment is seen for defects b

and c, corresponding to defect wave functions of intermediate
and effective-mass-like extensions, respectively.

Figure 7 summarizes the principal finding of this paper. In
a condensed form, the following statement can be formulated
concerning the comparison of charge transition levels of
atomically localized defects. Despite the good description of
the experimental band gap in both theories, the defect levels
differ when referred to their respective VBM because the band
edges in the two theories are located differently with respect to
the common electrostatic potential φ. This occurs even when
the defect wave function is almost identical in the two theories.
This alignment property deteriorates with the extension of
the defect wave function. Thus, the correct description of
band edges relative to the average electrostatic potential is a
crucial prerequisite for an accurate location of charge transition
levels within the band gap. We refer to this issue as to the
“band-edge problem” for the calculation of defect levels. In
other words, there is not only a “band-gap problem” related
to the underestimation of the band gap, but also a “band-
edge problem” related to the position of the band edges
with respect to the average electrostatic potential, ultimately
corresponding to an absolute alignment with respect to an
external vacuum level.

As far as the determination of the (+2/0) charge transition
level of the oxygen vacancy in ZnO is concerned, the present
considerations appear confirmed [cf. Fig. 3(b)]. This defect
level behaves like the defect state b in Fig. 7, showing a shift
that does not depart in a significant way from the case of ideal
alignment (defect state a). Indeed, when referred to a common
reference level, all previous calculations yield the (+2/0) level
within 0.4 eV,4,8–11,17,21 which corresponds to just one ninth of
the band gap of bulk ZnO. Hence, contrary to previous claims,
we find that all previous defect calculations agree quite well
with each other. In fact, these calculations differ in the positions
of the bulk band edges with respect to the average electrostatic
potential.

C. Which band-edge shifts are the right ones?

These considerations lead to the question about which
theoretical description should be adopted for positioning the
band edges. This corresponds to determining the shift �εV

of the valence band and the shift �εC of the conduction
band, when taking the LDA or the GGA as a starting
point. A direct comparison between theory and experiment
is, in principle, possible. The bulk band structure can, for
instance, be referred to the vacuum level through a surface
calculation. The VBM and the CBM determined in this way
could then be compared with ionization potentials and electron
affinities, as obtained by means of photoelectron and inverse

photoelectron spectroscopy. However, such measurements
are often shrouded by very pronounced effects associated
to charged native defects and impurities, which influence
the electrostatics and alter the alignment. More practically,
the validity of a given theoretical scheme can be examined
addressing band offsets at interfaces.82 Band offsets are well-
defined quantities and can generally be measured through a
large set of experimental techniques. The comparison between
theoretical and experimental band offsets then allows one to
determine the overall accuracy with which such shifts are
obtained within various theoretical schemes.38,50,54,83–86

In the absence of experimental data, the validity of the
shifts �εV and �εC could also be assessed by comparing
with electronic structure calculations of higher accuracy, such
as those based on many-body perturbation theory (MBPT)
in the GW approximation or beyond.38,83,87 Indeed, such
calculations not only provide improved relative positions of
bulk bands, but also shifts of those bands with respect to
theoretical schemes of lower level. However, recent work has
shown that the shifts of the band edges with respect to the
average electrostatic potential are more difficult to converge
than relative positions of bands.83 Furthermore, such shifts
are sensitive to various levels of approximation, such as, e.g.,
the use of different models for the plasmon pole to describe the
frequency dependence of the dielectric function, the inclusion
of vertex corrections �, and various levels of self-consistency
on G, W , �, and the electron wave functions.83,88,89 To
illustrate this point, we quote a recent work83 in which the
relative shift of the valence band with respect to the overall
band-gap correction, i.e., �εV/�Eg, was found to range from
−0.68 to −0.42 in the case of SiO2, depending on the level
of approximation in the GW scheme. Even for a material as
simple as Si, the value of �εV/�Eg as predicted by different
GW schemes, ranges from −0.75 to +0.17.83 Thus, clearly
more work is needed to clarify these issues. A systematic study
of the effects of different levels of approximation in MBPT on
the shifts in the band edges is thus vital for the study of defect
levels.

VII. CONCLUSIONS

In this paper, we carried out a theoretical analysis of the
(+2/0) charge transition level of the oxygen vacancy in ZnO.
In recent years, this defect has grown into a benchmark case to
assess the quality of various advanced electronic-structure the-
ories. Indeed, common approximations to density functional
theory, such as the LDA and the various GGAs, severely
underestimate the band gap of bulk ZnO, and the treatment
at a more advanced level thus becomes crucial even for
drawing qualitative conclusions. However, different advanced
theoretical methods applied hitherto yielded conflicting results
regarding the position of the defect level in the band gap.

We here showed that apparently conflicting theoretical
results are in a much better agreement with each other
when the charge transition levels are aligned with respect
to the average electrostatic potential rather than to the
respective valence-band maximum. We showed that the
former alignment is equivalent to the choice of a common
external potential such as the vacuum level, provided the
electron densities are sufficiently accurately described. We
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have rationalized our finding by considering fundamental
differences between the ways approximate density functionals
describe localized and delocalized states. For localized states,
the “band-gap problem” can generally be overcome through
the consideration of total-energy differences. On the other
hand, such a solution is not applicable to delocalized states,
for which the “band-gap problem” remains an intrinsic
shortcoming.

In particular, the present study highlights a specific criterion
that needs to be fulfilled in order to properly describe charge
transition level and formation energies of defects. We clearly
demonstrated that the band structure of the host material needs
to be correctly positioned with respect to an external potential,
such as the vacuum level. When the electron density is
accurately described, this alignment condition can equivalently
be replaced by the alignment with respect to the average

electrostatic potential in the bulk. This condition is additional
with respect to the accurate reproduction of the band gap. Our
analysis of the oxygen vacancy in ZnO shows that conflicting
theoretical results arise for theories yielding an accurate band
gap, but differing positions for the band edges.

ACKNOWLEDGMENTS

We particularly thank P. Broqvist for his contribution
to a wider research project from which the present study
takes its origin. We also acknowledge fruitful interactions
with A. Carvalho, H.-P. Komsa, and O. A. Vydrov. Partial
financial support from the Swiss National Science Foundation
is acknowledged under Grant No. 200020-111747. We used
computational resources at DIT-EPFL (BlueGene), CSEA-
EPFL, and CSCS.

1A. M. Stoneham, Theory of Defects in Solids: Electronic Structure
of Defects in Insulators and Semiconductors (Oxford University
Press, New York, 1975).

2C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851
(2004).

3Advanced Calculations for Defects in Materials, edited by
A. Alkauskas, P. Deák, J. Neugebauer, A. Pasquarello, and C. G.
Van de Walle (Wiley, Weinheim, 2011).

4S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).
5A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Rev. Lett. 101,
046405 (2008).

6S. Lany and A. Zunger, Modell. Simul. Mater. Sci. Eng. 17, 084002
(2009).

7W. R. L. Lambrecht, Phys. Status Solidi B 248, 1547 (2011).
8A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. 87, 122102
(2005).

9S. Lany and A. Zunger, Phys. Rev. Lett. 98, 045501 (2007).
10A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202

(2007).
11T. R. Paudel and W. R. L. Lambrecht, Phys. Rev. B 77, 205202

(2008).
12C. D. Pemmaraju, R. Hanafin, T. Archer, H. B. Braun, and

S. Sanvito, Phys. Rev. B 78, 054428 (2008).
13P. Deák, A. Gali, A. Solyom, A. Buruzs, and Th. Frauenheim,

J. Phys. Condens. Matter 17, S2141 (2005).
14J. M. Knaup, P. Deák, Th. Frauenheim, A. Gali, Z. Hajnal, and

W. J. Choyke, Phys. Rev. B 72, 115323 (2005).
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87R. Shaltaf, T. Rangel, M. Grüning, X. Gonze, G.-M. Rignanese,

and D. R. Hamann, Phys. Rev. B 79, 195101 (2009).
88M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99,

246403 (2007).
89M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).

125206-11

http://dx.doi.org/10.1103/PhysRevB.80.195205
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevLett.55.2471
http://dx.doi.org/10.1002/cphc.200500059
http://dx.doi.org/10.1021/jp055127v
http://dx.doi.org/10.1103/PhysRevB.80.085114
http://dx.doi.org/10.1103/PhysRevB.80.085114
http://dx.doi.org/10.1103/PhysRevB.51.4014
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1103/PhysRevB.81.205118
http://dx.doi.org/10.1103/PhysRevB.81.205118
http://dx.doi.org/10.1103/PhysRevB.80.205113
http://dx.doi.org/10.1103/PhysRevB.80.205113
http://dx.doi.org/10.1063/1.3116612
http://dx.doi.org/10.1063/1.3116612
http://dx.doi.org/10.1063/1.2907704
http://dx.doi.org/10.1063/1.2907704
http://dx.doi.org/10.1103/PhysRevB.18.7165
http://dx.doi.org/10.1088/0022-3719/12/21/009
http://dx.doi.org/10.1088/0022-3719/12/21/009
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevB.64.224108
http://dx.doi.org/10.1103/PhysRevB.71.094113
http://dx.doi.org/10.1063/1.476538
http://dx.doi.org/10.1063/1.1668634
http://dx.doi.org/10.1002/hlca.19720550507
http://dx.doi.org/10.1002/hlca.19720550507
http://dx.doi.org/10.1021/ja00070a030
http://dx.doi.org/10.1021/ja00070a030
http://dx.doi.org/10.1063/1.1589731
http://dx.doi.org/10.1016/S0065-3276(08)60541-9
http://dx.doi.org/10.1063/1.2723119
http://dx.doi.org/10.1063/1.2723119
http://dx.doi.org/10.1007/3-540-37072-2_1
http://dx.doi.org/10.1103/PhysRevB.56.16021
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/PhysRevB.77.115123
http://dx.doi.org/10.1103/PhysRevB.77.115123
http://dx.doi.org/10.1103/PhysRevB.80.085202
http://dx.doi.org/10.1103/PhysRevB.81.205209
http://dx.doi.org/10.1103/PhysRevB.82.115121
http://dx.doi.org/10.1103/PhysRevLett.80.3162
http://dx.doi.org/10.1103/PhysRevLett.80.3162
http://dx.doi.org/10.1103/PhysRevLett.80.3161
http://dx.doi.org/10.1016/j.physb.2007.09.048
http://dx.doi.org/10.1016/j.physb.2007.09.048
http://dx.doi.org/10.1103/PhysRevB.82.104106
http://dx.doi.org/10.1103/PhysRevB.82.104106
http://dx.doi.org/10.1063/1.3515422
http://dx.doi.org/10.1063/1.3515422
http://dx.doi.org/10.1103/PhysRevB.84.075207
http://dx.doi.org/10.1103/PhysRevB.35.8154
http://dx.doi.org/10.1103/PhysRevB.35.8154
http://dx.doi.org/10.1103/PhysRevLett.100.186401
http://dx.doi.org/10.1103/PhysRevB.81.035330
http://dx.doi.org/10.1103/PhysRevB.81.035330
http://dx.doi.org/10.1063/1.3487776
http://dx.doi.org/10.1063/1.3487776
http://dx.doi.org/10.1103/PhysRevB.76.075351
http://dx.doi.org/10.1103/PhysRevB.76.075351
http://dx.doi.org/10.1103/PhysRevB.79.195101
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevB.75.235102

