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Abstract

The thermochemical production of hydrogen from lignocellulosic biomass is systemati-
cally analyzed by developing thermo-environomic models combining thermodynamics with
economic analysis, process integration techniques and optimization strategies for the concep-
tual process design. H2 is produced by biomass gasification and subsequent gas treatment,
followed by H2 purification via CO2 removal. It is shown how the overall efficiency is im-
proved by considering process integration and computing the optimal integration of combined
heat and power production. In the conversion process, electricity can be generated in steam
and gas turbine cycles using the combustion of the off-gases and recovering available process
heat. Additional electricity can be produced by burning part of the H2 -rich intermediate or
of the purified H2 product. The trade-off between H2 and electricity co-production and H2

or electricity only generation is assessed with regard to energy, economic and environmental
considerations. Based on multi-objective optimization, the most promising options for the
poly-generation of hydrogen, power and heat are identified with regard to different process
configurations. The best compromise between efficiency, H2 and/or electricity production
cost and CO2 capture is identified. Biomass based H2 and electricity reveal to be a compet-
itive alternative in a future sustainable energy system.

Keywords:Biomass, Hydrogen, Polygeneration, Process integration, Thermo-economic opti-
mization, Life cycle assessment

Nomenclature

Abbreviations
BM Biomass
CC Carbon Capture
CFB Circulating Fluidized Bed
CGC Cold Gas Cleaning
COE Cost Of Electricity
Eimp Electricity import
FICFB Fast Internally Circulating Fluidized Bed
GT Gas Turbine
GWP Global Warming Potential
HHV Higher Heating Value
HP Heat Pump
HTS High Temperature Shift
IBGCC Integrated Biomass Gasification Combined Cycle
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IGCC Integrated Gasification Combined Cycle
IPCC Intergovernmental Panel on Climate Change
LCA Life Cycle Assessment
LCI Life Cycle Inventory
LHV Lower Heating Value
LTS Low Temperature Shift
MDEA Methyldiethanolamine
MEA Monoethanolamine
MOO Multi-Objective Optimization
NG Natural Gas
NGCC Natural Gas Combined Cycle
PC Pulverized Coal
PG Producer Gas
PM Particulate Matter
PSA Pressure Swing Adsorption
RME Rape Methyl Ester
SMR Steam Methane Reforming
WGS Water-Gas Shift
Greek letters
∆ho Lower heating value, kJ/kg
∆h̃r

0 Standard heat of reaction, kJ/mol
∆ko Exergy value, kJ/kg
ϵeq Natural gas equivalent efficiency, %
ϵH2 H2 efficiency, %
ϵex Exergy efficiency, %
ϵtot Energy efficiency, %
η Efficiency, %
ηCO2 CO2 capture rate, %
θwood Wood humidity, %wt
YH2 H2 Yield, gH2/kgBM

Roman letters
Ė Mechanical/electrical power, kW
ṁ Mass flow, kg/s
P Pressure, bar
Q̇ Heat, kW
T Temperature, ◦C or K
Superscripts
+ Material/energy stream entering the system
− Material/energy stream leaving the system

1 Introduction

In a future clean and abundant energy system, hydrogen is to be considered as an alternative
energy carrier. H2 is a clean fuel that can be used in combustion engines and fuel cells for elec-
tricity generation without local CO2 emissions. Being a secondary form of energy, H2 does not
freely exist in nature and consequently has to be manufactured. Today H2 is produced essen-
tially by steam methane reforming, coal gasification and in a lesser extent by water electrolysis
[2, 3, 10]. The drawback of these processes is that they are using fossil fuels or electricity from
non-renewable sources. Within the worldwide challenge of global warming mitigation and energy
supply, alternative H2 production processes from renewable resources have received considerable
attention. Different renewable energy resources may be used like wind, biomass or solar energy
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[2, 10]. Biomass-based technologies have a high potential because they emit no or very few net
CO2 emissions, if carefully managed, since the released CO2 was previously fixed in the plant as
hydrocarbon by photosynthesis. H2 production from biomass can be divided into two categories;
thermo-chemical processes (i.e. biomass gasification and pyrolysis) and biological processes (i.e.
biophotolysis and fermentation). An overview of these H2 production processes from fossil and
renewable resources and its economics can be found in [3].

The economic surveys in [3, 28, 18] among with other studies assessing the energy and exergy
efficiency of the biomass conversion into H2, as well as the influence of operating conditions,
show that it is a technical feasible process that could be promising on the future energy market
[16, 30, 29, 7, 1, 33, 36]. H2 yields in the range of 80-130gH2/kgBiomass are assessed in [1, 33].
Energy efficiencies between 51 and 60% on lower heating value basis and H2 production cost
ranging from 29 to over 40 $/MWhH2 are reported for biomass based H2 processes in [16]. The
performance of some H2 processes using fossil or renewable resources are compared in Table 1.

Instead of producing H2 from biomass, electricity can be generated in an integrated biomass
gasification combined cycle (IBGCC) [6, 21, 8, 19, 5]. Even if there are still some technological
challenges, this option appears as promising for CO2 mitigation when compared to fossil fuel
based power plants with CO2 capture as shown by the performances reported in Table 2. Carbon
capture decreases the efficiency of fossil power plants by around 10% points and increases the
electricity cost by nearly one third which yields CO2 avoidance cost in the range of 13-75$/t
CO2,avoided [24]. Polygeneration processes co-producing H2 and electricity can also be considered
as an alternative.

The different studies about biomass conversion into H2 or electricity assessed the process
performance either by the thermal efficiency [7, 5], the economics [30, 8] or by the life cycle
impacts [6, 21]. In some of these researches performance analyses and cost or environmental
assessment are combined. However, no consistent comparison and optimization considering
efficiency, costs and environmental impacts at the same time is performed. The difficulty to
choose the best concept without including these three dimensions is revealed in [20] making a
comparison of natural gas power plants concepts with CO2 capture based on efficiency and CO2

emissions without including economics. Moreover, in these studies energy integration is most
of the time not explicitly considered. This may lead to sub-optimal solutions from the energy
efficiency point of view. In [11, 26] the advantage of applying energy integration in biomass
conversion processes is demonstrated. Environmental objectives have been introduced in a multi-
objective optimization strategy combining energy integration and life cycle assessment (LCA)
in [4] to study the impact of CO2 capture in NGCC plants. This approach was also successfully
applied to reveal potential process improvements in biomass conversion into synthetic natural
gas [15] but has not yet been applied for H2 and power generation.

In this paper, the thermochemical conversion of biomass into H2 and electricity is investigated
and optimized with regard to energy, economic and environmental considerations. This is done
by applying a consistent methodology [15, 12, 31] combining thermodynamics with economic
analysis, process integration techniques and using optimization strategies to generate optimal
process configurations. The objective is to assess the competition between hydrogen or electricity
only production processes and polygeneration with and without CO2 capture by studying the
influence of the operating conditions and process configurations. The use of process integration
techniques allows to focus on the heat recovery and the energy conversion performance and on
polygeneration aspects of H2, heat and power and captured CO2.

2 Methodology

This paper follows a previously developed methodology for the optimal thermo-economic pro-
cess design of liquid and gaseous fuel production from biomass [15, 12, 31, 13]. The conceptual
design methodology is illustrated in Figure 1. First suitable process technologies are identified
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and thermo-economic models of the process units are developed. The thermodynamic model
computes the chemical and physical transformations and the associated heat transfer require-
ments. It is combined with a separate energy integration model representing the heat recovery
system. Based on the pinch analysis methodology, the optimal thermal process integration is
computed after defining the maximum heat recovery potential between hot and cold streams
and considering a minimum approach temperature ∆Tmin. The process needs are satisfied by
different utilities such as, combustion of waste and producer gas (PG), steam Rankine cycle for
power production, gas turbine and cogeneration by burning either H2-rich fuel or almost pure
H2. The optimal utility integration is defined by maximizing the combined production of fuel,
power and heat with regard to the minimal operating cost by solving a linear programming
problem [12, 22, 23]. Using the data from the flowsheeting and process integration models, the
costs are estimated based on equipment sizing and cost correlations from the literature [34, 35].
For the life cycle inventory model, the cradle-to-gate LCA approach described in [15] is applied
with a functional unit of 1 kJ of biomass at the inlet of the installation. The impact assessment
method developed by the Intergovernmental Panel on Climate Change (IPCC) considering a
time horizon of 100 years for the global warming potential (GWP) is used as the environmental
performance indicator. Finally a multi-objective optimization using an evolutionary algorithm
[12, 25] is performed. The optimization allows to identify competing objectives with regard to en-
vironomic (i.e. thermodynamic, economic and environmental) criteria and to assess the different
trade-offs. The main feature of this methodology is the use of flowsheeting and process integra-
tion models in a multi-objective optimization framework that takes into account simultaneously
economic and environmental considerations. In conventional process evaluation approaches, the
processes are first designed and then different process configurations are compared based on var-
ious criteria. In comparison with conventional methods where process configuration scenario are
compared, the proposed method allows one to make a systematic generation of optimal process
configurations and to compare these on the same consistent performance criteria.

3 Process description

The thermochemical process converting biomass into H2 fuel consists of wood handling, drying,
gasification, gas cleaning and conditioning by reforming and shift conversion, and finally H2 pu-
rification and/or H2 burning for electricity generation. For each process step, several technology
options can be proposed. This results into a process superstructure that is presented in Figure
2, where the investigated process layouts and the life cycle inventory (LCI) flows within the sys-
tem’s limits are highlighted. A separate torrefaction step is introduced before the gasification
step to take advantage of the heat integration. The torrefaction operating at around 530[K]
shifts part of the high temperature heat required for gasification to lower temperatures and
yields torrified gas which can be used for heat and power generation; leading to higher process
performances. The products (i.e. H2 or electricity) are defined by the options chosen at the
cross points A and B. Depending on the production purpose and on the fuel which is burnt, the
process either produces impure (80%mol) or pure H2 (99%mol), imports or exports electricity,
or is self-sufficient in terms of electricity.

3.1 Thermo-economic process model

The thermo-economic models for the drying, gasification and gas cleaning section have been
developed in previous work [31, 13, 14] and the same specifications for the biomass and pro-
cess units are considered in this work. The chemical conversion in the gasifier is modeled by
equilibrium relationships with an artificial temperature difference as explained in [13, 14]. After
the gasification the syngas is treated in two sequential water gas shift (WGS) reactors (Eq.1)
one (HTS) operating at high [573-683K] and one (LTS) at lower [473-573K] temperature. This
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increases the H2 and CO2 concentrations before CO2 removal reducing the greenhouse gas emis-
sions and producing higher LHV fuel.

CO +H2O
∆h̃r

0=−41 kJ/mol↔ CO2 +H2 (1)

For the H2 separation and purification, CO2 capture by chemical absorption with amines
and by physical adsorption using pressure swing adsorption (PSA) are considered. A chemical
absorption step is introduced before the PSA unit to produce pure H2 and to capture high purity
CO2 which is compressed to over 100 [bar] for storage. For separating high partial pressure CO2

from syngas methyldiethanolamine (MDEA) is commonly used, while for low partial pressure
CO2 (flue gas) monoethanolamine (MEA) is used. Here the chemical absorption with amines is
modeled as a blackbox considering the average energy demands for the separation given in [27]
and summarized in Table 3. In order to account for the influence of the solvent on the efficiency
and cost, a more detailed model would be required, which was considered out of the scope of this
study. In [32] a more sophisticated methodology for developing energy and cost correlations of
CO2 capture processes is proposed. For the PSA model, the approach outlined in [13] is adapted
for H2 / CO2 separation based on data from [17]. PSA yields H2 purities of over 99%mol. The
nominal operating conditions of the main process units, as well as their ranges are summarized
in Table 4.

4 Process performance

4.1 Performance indicators

The first law energy efficiency ϵtot defined by Eq.2 characterizes the chemical conversion and
the quality of the process integration by taking into account the energy of the products and
resources. In this definition thermal and mechanical energy are considered as being equivalent,
however with regard to energy quality they are not equal. Therefore, the natural gas (NG)
equivalent efficiency ϵeq (Eq. 3) is introduced to compare the value of the products with respect
to the technical feasibility of their further conversion into final energy services. In ϵeq, the net
electricity that is consumed is substituted by a NG equivalent calculated based on an energy
efficiency of 55%. The H2 productivity is defined by the H2 yield YH2 (Eq.5). The conversion
efficiency ϵH2 (Eq.6) expresses the production of the H2 fuel with regard to the biomass resource
consumption, without taking into account the electricity import or export. The CO2 capture
rate is given by the molar ratio between the captured carbon and the carbon entering the system
(Eq.7). The exergy efficiency ϵex (Eq.4) is also computed with ∆kodry,Biomass=20.9MJ/kg. All
the reported efficiencies are expressed on the basis of the lower heating value (∆h0, LHV) of dry
biomass.
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ϵtot =
∆h0fuel,out · ṁfuel,out + Ė−

∆h0Biomass,in · ṁBiomass,in + Ė+
(2)

ϵeq =
∆h0Fuel,out · ṁFuel,out +

1
ηNGCC

∆h0
NG

∆koNG
( 1
ηHP

Q̇− + Ė−)

∆h0Biomass,in · ṁBiomass,in
(3)

ϵex =
∆kofuel,out · ṁfuel,out + Ė−

∆koBiomass,in · ṁBiomass,in + Ė+
(4)

YH2 =
gH2

kgbiomass
(5)

ϵH2 =
∆h0H2fuel · ṁH2fuel

∆h0Biomass,in · ṁBiomass,in
(6)

ηCO2 =
molCcaptured

molCin
· 100 (7)

The economic performance is defined by the capital investment and the operating cost esti-
mated according to [34, 35] with the assumptions given in Table 5. All the performance analyses
are performed for a plant capacity of 380MWth,biomass of dry biomass.

4.2 Energy integration

Heat integration and recovery are important with regard to the process performance since several
parts of the system operate at high temperature. The minimum energy requirement is computed
from the hot and cold process streams through the heat cascade method accounting for the
potential heat recovery. Heat is required by the gasification, the endothermic reforming, the
water evaporation for gasification and the CO2 capture. The exothermic WGS and the process
and offgas cooling release heat. The heat demands can be satisfied by different utilities. High
temperature heat is delivered by the combustion of waste streams (i.e. unconverted char and
gaseous residues of the separation and purification sections) and if necessary additional process
streams (i.e. hot or cold syngas from the gasifier) and depending on the production scope also
by the burning of H2-rich gas or pure H2 in a gas turbine to co-produce electricity. In general,
the best choice is determined by assembling the potential fuels in a superstructure, integrating
the different possibilities and computing the optimal solution by minimizing the operating cost
using a linear programming model [23]. In the linear programming problem a cost is attributed
to the electricity import/export (i.e. [50-270$/MWh]) and to the CO2 emissions (i.e. 36$/toCO2,
[15-90$/toCO2]). Surplus heat can be recovered in a Rankine cycle with an extraction steam
turbine/generator to generate additional electricity and supply steam for gasification, steam
methane reforming and shift conversion. A cycle with two production, two usage and one
condensation level is considered and adapted to the different process configurations with regard
to the parameters given in Table 6. The remaining excess heat is removed by cooling water.
The process integration including hot and cold utilities for two different configurations (Table
7:A&B) producing H2 is represented in Figure 3 and discussed in detail in Section 4.3.

4.3 Process integration analysis

The influence of the heat recovery and the cogeneration systems including the introduction of a
steam network, gas turbines (GT) or heat pumps (HP) is analyzed with regard to H2 and elec-
tricity production and captured CO2. Table 7 summarizes the different process configurations
and the computed performances.
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4.3.1 H2 production processes

For the process configurations producing H2 by biomass conversion, different options with H2

purification and/or carbon capture are considered. The performances are reported as configu-
rations A-F in Table 7. The energy integration of the process with H2 separation by PSA and
without or with carbon capture by chemical absorption with amines is illustrated in Figure 3.
Since the pinch point is located at low temperature, there is no excess heat that can be used in
a Rankine cycle. By introducing a heat pump, excess heat from below the pinch can be trans-
fered to a higher temperature for valorization in a Rankine cycle and consequently the energy
integration of the CO2 capture is improved as shown in Figure 4 (Table 7:C).

The influence of CO2 capture is studied by the comparison of configurations B and C (Table
7). CO2 capture increases the power consumption considerably due to the energy requirement for
the solvent regeneration and the CO2 compression. The purchase of the capture unit equipments
increases the capital investment and consequently the production cost are increased by around
one third. Through H2 purification, the H2 yield is increased by over 10% and the environmental
impact is decreased because of the CO2 storage. By performing a multi-objective optimization,
it is shown in Section 4.4 how the performance can be improved further to reach an overall energy
efficiency around 60% with CO2 capture (Table 7:Copt) by changing the operating conditions.

For these configurations electricity is imported to satisfy the overall process demands. Al-
ternatively, part of the H2 rich gas and/or H2 product can be burnt in a gas turbine to cover
the power demand and yield a self-sufficient process in terms of heat and power (Table 7:D).
The energy integration of such a configuration is represented in Figure 5. The self-sufficient H2

process has a lower H2 yield, since part of the product is used for electricity production which
leads to an energy efficiency decrease of more than 10% points. The equivalent efficiency ϵeq
is however increased by around 10% points which shows that the integrated electricity produc-
tion is more efficient than a NGCC plant. Due to the reduced electricity cost, the production
cost are slightly reduced, even if the H2 yield is reduced and the capital investment increased.
However, for keeping a higher level of CO2 capture in the process, the production cost would be
larger (Table 8). In Sections 4.4&4.5, it is shown that the process can become more attractive by
changing the operating conditions and that the economic competitiveness of this option depends
highly on the electricity and fuel market prices and the CO2 taxes.

The H2 purification by PSA (Table 7:C) increases the H2 purity by around 2.5% compared to
the process without PSA (Table 7:E). The electricity demand and the investment are increased,
however the overall impact on the performance is relatively low since the H2 yield is increased.

4.3.2 Electricity only production processes

Instead of generating H2 as a final product, electricity can also by produced by burning the
H2 gas products in a gas turbine combined cycle. Different configurations producing electricity
as a final product are assessed (Table 7:G-J): electricity generation from nearly pure H2 and
electricity generation by the combustion of the H2-rich stream after WGS without (config. G&I)
and with carbon capture (config. H&J). H2 purification and carbon capture adding additional
cost, the configuration burning impure H2 (lower LHV fuel) without CO2 capture (config. I)
yields the lowest investment cost. Burning pure H2 (higher LHV fuel) generates more electricity
in the gas turbine which outweighs the additional power consumption for H2 purification and
consequently yields a higher energy efficiency. However, there are still some concerns with regard
to flame stability which have to be addressed for high purity H2 combustion. CO2 capture leads
to a negative CO2 balance for biomass based processes. It reduces the efficiency by around 10%
and increases the production cost considerably. The difference in the energy integration for the
electricity generation without and with CO2 capture is reported in Figure 6&7 respectively. In
these configurations, the energy demand is satisfied by the heat generated from the gas turbine
and by the combustion of waste streams. The computed efficiencies are in the range of the
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IBGCC power plant efficiency with and without CO2 reported in [6, 8, 19]. In [19] efficiencies in
the range of 37-44% are reported and in [6] an efficiency of 33.9% is assessed with CO2 capture.

4.4 Process optimization

To investigate the trade-off between several competing factors defining the process performance,
multi-objective optimization is performed by applying an evolutionary algorithm.The decision
variables and their variation range are given in Tables 4 and 6 for the H2 process and the steam
network, respectively. The advantage of using an evolutionary algorithm like the one described
in [25], is that it allows to generate the Pareto set, even if some of the simulated points do not
converge and if the problem is non-differentiable.

Four scenarios are optimized: H2 production with electricity import (config. C), self-sufficient
H2 production (config. D), electricity generation from nearly pure H2 (config. H) and electricity
generation from H2-rich gas (config. J). First, the maximization of the energy efficiency ϵtot and
the minimization of the capital investment are chosen as objectives. The objective functions
are obtained by solving the thermo-economic model described in section 3.1 for each set of
decision variables. The heuristics embeded in the sizing and cost estimation model guarantee
that industrial infeasible solutions are avoided. The optimal Pareto frontiers are presented in
Figure 8. The energy efficiency increase is correlated with the investment increase. For each
scenario, the performance of one optimal configuration yielding a high ϵtot is reported in Table 7
(Copt/Dopt/Hopt/Jopt). The energy integration and the main operating conditions of the optimal
H2 process designs are represented in Figure 10&11, respectively. Looking at the equivalent
efficiency instead of ϵtot, the self-sufficient scenario (Dopt) performs better than the one with
electricity import (Copt). The optimization leads to better energy efficiency and lower cost
when compared to the base case configurations. However, the CO2 capture rate is lower and
consequently the environmental benefit is less important. The trade-off between the energy
efficiency and the CO2 capture rate is highlighted by the optimal Pareto frontier resulting from
the maximization of the energy efficiency and the CO2 capture rate as reported in Figure 9.
With regard to competitiveness, a compromise between the different objectives has to be found.
The performance of selected optimal configurations yielding relative high efficiency and capture
rates are reported in Table 8. Depending on the biomass and the electricity import/export
prices, production cost can become lower as shown in section 4.5. Compared to fossil power
plants (Tables 1& 2) with carbon capture the biomass conversion into electricity and H2 reveals
to be competitive.

4.5 Economic evaluation

The H2 production costs assessed previously depend strongly on the economic assumptions
made in Table 5. The sensitivity analysis varying the wood cost [10-70$/MWhBM ] and the green
electricity cost [40-270$/MWhe] shows the influence of the resource price on the competitiveness
of the H2 production in Figure 12 for the configurations yielding a compromise between efficiency
and CO2 capture (Table 8) and for the base case without capture (Table 7:B). With the initial
assumption of 50$/MWhBM for biomass from Switzerland [13] up to 60% of the production cost
are attributed to wood purchase, whereas a decrease of the resource cost can reduce this fraction
to around 20% and reduce the H2 production cost by nearly 50%. According to [16], biomass
prices as low as 7.2$2002/MWh can be expected for Latin and North America. Consequently, the
competitiveness is highly influenced by the resource price and location. The assessed costs are
still slightly higher than the one reported in [16] because of the higher investment cost, especially
for the gasifier purchase. Contrary to their approach, the investment estimation method applied
here rates the equipment with conventional design heuristics that take the operating conditions
into account. As pilot plant data are used as reference for the design parameters of the gasifier,
it can be expected to yield realistic figures. The conservative cost estimation might however
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overestimate the investment and consequently lead to higher production cost. Nevertheless, these
biomass based H2 processes yielding efficiencies of 40-60% and production costs in the range of
65-262$/MWhH2 can become a competitive option with regard to fossil resource depletion and
climate change compared to conventional processes using fossil resources (Table 1). Considering
a new hydrogen plant based on fossil resources [24] producing H2 with an efficiency of 60%,
production costs of 28$/MWhH2 and CO2 emissions of 493kg/MWhH2 as a reference, CO2

avoidance cost 1 in the range of 45-220$/tCO2 are assessed for the analyzed biomass based
processes. In comparison, CO2 avoidance cost in the range of 2-56$/tCO2 are assessed for fossil
H2 production processes with CO2 capture in [24] .

For the electricity production processes without CO2 capture (Table 7:G/I) and with CO2

capture (Table 8) a sensitivity analysis on the wood cost [10-70$/MWhBM ] (Figure 13) yields
electricity production cost in the range of 89-362$/MWhe. Considering the low wood cost, the
costs are in the range of the one reported in [19] (≈ 150 − 220 $/MWh). Compared to fossil
power plants (Table 2) some scenarios with CO2 capture are promising regarding the future
energy market, especially when high CO2 taxes are imposed. Considering a NGCC plant [24]
with an efficiency of 57%, production costs of 40$/MWhe and CO2 emissions of 360kg/MWhe
as a reference, CO2 avoidance cost in the range of 98-254$/tCO2 are assessed for the analyzed
biomass based processes. In comparison, CO2 avoidance cost in the range of 37-74$/tCO2 are
assessed for an NGCC with CO2 capture in [24]. By the sensitivity analyses, it is shown that the
variation of the resource price of a factor of 7 translates in a production cost increase of a factor
of 4 due to the high weight of resource purchase in the total cost. Consequently, the resource
price and location define the competitiveness of the biomass conversion processes. The analyses
also highlight the importance of the process efficiency. The market price of electricity, fuel,
biomass and CO2 taxes will define if it is more advantageous to produce H2 with or without
electricity import as final product or to convert the H2 fuel directly into electricity with or
without CO2 capture.

4.6 Environmental impacts

For the life cycle inventory, the method from the IPCC (IPCC07) is applied for the LCI flows
identified in Figure 2. Following the approach of Gerber et al. [15], 1kJ of biomass entering the
plant is considered as functional unit in order to make a consistent comparison of H2 and elec-
tricity production scenarios. The data available from the ecoinvent database [9] are used for the
different contributions. For the electricity impact contribution, the Swiss mix for medium volt-
age electricity production at grid is considered. The amount of CO2 that is stored is accounted
as a negative contribution of fossil CO2.

Regarding the climate change impact of H2 processes, Figure 14 shows the advantage of CO2

capture. CO2 capture for storage has a negative contribution (n) to the climate change impact
which outweighs all the other positive contributions (p).

For the electricity generation processes, the benefit of CO2 capture on the climate change is
highlighted in Figure 15. A large impact is attributed to the use of rape methyl ester (RME)
produced from colza cultivated with insecticides and consumed for the cold gas cleaning, con-
sequently alternative colza cultivation methods and the development of alternative cleaning
technologies such as hot gas cleaning have to be analyzed.

With regard to CO2 emissions mitigation, processes based on renewable biomass have a huge
potential, especially if CO2 capture and storage is implemented since this leads to a negative
CO2 balance.

1CO2 avoidance cost expressed in $/tCO2,avoided are defined by the ratio of the difference of the pro-
duction cost and the CO2 emissions for a plant with capture and a reference plant without capture:

COECC−COEref [$/MWh]

CO2emit,ref−CO2emit,CC [kgCO2/MWh]
. For the biomass based plants, the CO2 emissions equal to the negative

value of the CO2 captured since it is removed from the atmosphere.
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5 Conclusion

A systematic methodology based on thermo-economic and LCI models coupled with a multi-
objective optimization algorithm has been applied to the conceptual design of integrated plants
for H2 fuel, power and heat production. The competitiveness of H2 and electricity production
and co-production process options are evaluated consistently with respect to energy efficiency,
cost and environmental impacts. It is highlighted in particular, how appropriate energy inte-
gration and operating conditions optimization improve the process performance by maximizing
the combined production of fuel, heat and power. Based on multi-objective optimizations with
regard to energy efficiency and capital investment or CO2 capture rate, the trade-off between H2

and electricity generation and CO2 capture are assessed. Life cycle impact assessment under-
lined the climate change benefit of using renewable resources and capturing CO2. Overall energy
efficiencies in the range of 60% are reached for H2 production and around 39% for electricity
production with CO2 capture. Depending on the biomass price evolution, H2 production costs
in the range of 65-262$/MWhH2 and electricity production costs in the range of 89-362$/MWhe
are reported. With regard to conventional H2 and electricity production processes based on fossil
resources, CO2 avoidance costs of 45-220$/tCO2,avoided and 98-254$/tCO2,avoided respectively, are
computed. In comparison, the performances assessed in [24] for processes using fossil resources
are for a NGCC plant 43-72$/MWhe and 37-74$/tCO2,avoided, and for H2 plants 27-48$/MWhH2

and 2-56$/tCO2,avoided. The market price of electricity, fuel, biomass and CO2 taxes will conse-
quently define the competitiveness of biomass conversion into H2 or electricity with or without
CO2 capture. With regard to a future energy system promoting renewable resources and reduced
greenhouse gas emissions, biomass based H2 and electricity production have to be considered as
competitive alternatives.
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Table 1: Reference H2 production plants performance.
Process CO2 capture [%] ϵ [%] [$/MWhH2] Ref.

Natural gas 0 83.9 (HHV) 18.9 [18]
Natural gas 71 78.6 (HHV) 20.2 [18]
Coal (Texaco gasif.) 0 63.7 (HHV) 31.6 [3]
Coal (Texaco gasif.) 87 59 (HHV) 37.8 [3]
Biomass (FICFB, CGC) - 57.7 - [33]
Biomass - 51-60 29-40 [16]

Table 2: Reference power plants performance without and with CO2 capture.
Type CO2 capture [%] ϵ [%] gCO2/kWhe COE [$/MWhe] $/t CO2,avoided Ref.
PC 0 41-45 736-811 43-52 - [24]
PC -CC 85-90 30-35 92-145 62-86 29-51 [24]
IGCC 0 38-47 682-846 41-61 - [24]
IGCC -CC 85-90 31-40 65-152 54-79 13-37 [24]
NGCC 0 55-58 344-379 31-50 - [24]
NGCC -CC 85-90 47-50 40-66 43-72 37-74 [24]
IBGCC 0 37(HHV) - 67.5 - [21]
IBGCC -CC 80 33.94 178 - - [6]

Table 3: Parameters for the H2 purification.
Section Specification Value

Chem. abs. Thermal Q̇ @ 150◦C 3.7MJ/kg CO2

Electric Power 1.0MJ/kg CO2

PSA Adsorption P 10bar
Purging P 0.1bar
H2 recovery 90%

Table 4: Operating conditions of the process units and feasible range for optimization.
Operating parameter Nominal Range

Drying

Temperature (in) [K] 473 -
θwood,out [wt%] 20 [5-35]

Gasification

Pressure [bar] 1 [1-15]
Temperature [K] 1123 [1000-1200]
Steam/biomass [%wt] 50 -

SMR

Temperature [K] 1138 [950-1200]

WGS

Pressure [bar] 25 [1-25]
Temperature HTS [K] 623 [573-683]
Temperature LTS [K] 453 [473-573]
H2O/CO molar ratio [-] 2 [0.2-4]
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Table 5: Assumptions for the economic analysis.
Parameter Value

Marshall and Swift Index 1473.3
Dollar exchange rate (e US$) 1.5 US$/e
Expected lifetime 15 years
Interest rate 6%
Yearly operation 8000h/year
Operators [13] 4 p./shift
Operator’s salary 91’070 $ /year
Wood costs (θwood=50% wt) 50 $ /MWh
Electricity price (green) 270 $ /MWh

Table 6: Feasible range for optimization of the steam network design and the gas turbine.
Operating parameter Unit Range

1st Production level bar [90-130]
2nd Production level bar [70-110]
Superheating temperature K [623-823]
1st Utilization level K [300-523]
2nd Utilization level K 510
Condensation level K 292

Combustion T K [700-900]
Turbine T K 1500

Table 7: Investigated process configurations characteristics.
Configuration a A B C Copt D Dopt E F G H Hopt I J Jopt

H2 Process Electricity generation
Process Parameters Process Parameters

Products H2 H2 H2 H2 H2 H2 H2 H2 Ė Ė Ė Ė Ė Ė
Carbon capture [%] y n y y y y y y n y y n y y
PSA y y y y y y n n y y y n n n
PG burning y y y y y n y y n n n n n n
GT H2 impure n n n n n y n n n n n y y y
GT H2 pure n n n n n n n n y y y n n n
HP n n 387/478K 387/478K 387/478K 387/478K n 387/478K n 387/478K 387/478K n 387/478K n
Steam network: n n y y y y y y y y y y y y
Production levels [bar] - - 140 135&95 125 128 93 125&93 125&93 125&93 105&60 125&93 125&93 128&60
Consumption levels [K] - - 513&473 505&434 473&300 483&430 300 513&300 513&300 513&300 428&300 513&300 510&300 431&300

Power Balance Power Balance
Consumption [kW/MW] 136.7 72.5 169.7 153.3 120.6 119.6 127.5 100.8 91.8 221.5 102.8 89.5 176.6 77.4
HP [kW/MW] 0 0 40.4 35.9 27.6 8.1 35.9 28.1 0 53.1 0.3 0 53.3 0
Steam network [kW/MW] 0 0 25.7 10.1 37.7 29.3 31.2 28.1 115.6 132.6 108.2 100.4 113.9 105.7
Gas turbine [kW/MW] 9.1 28.9 9.9 30.4 110.5 98.4 6.0 100.8 425.5 414.7 389.3 338.8 307.9 296.2
Net electricity [kW/MW] -127.6 -43.6 -174.5 -148.7 0 0 -126.2 0 449.3 272.7 394.4 349.7 191.9 324.5

Performance Performance
H2 yield [g/kgBiomass] 79.8 92.4 102.9 107.1 68.7 83.8 96.7 72.2 0 0 0 0 0 0
H2 purity [mol%] 99.8 80.7 99.8 99.3 99.8 98.7 97.4 97.4 80.7 99.8 98.7 69.1 97.4 63.2
H2 production [t/d] 140.7 162.8 181.4 188.7 121.1 147.7 170.5 127.3 0 0 0 0 0 0
Energy H2 [kW/MW] 514.3 596.9 663 696.5 442.2 550.1 626.9 468.1 0 0 0 0 0 0
CO2 capture [%] 44.9 0 57.9 52.3 38.6 25 53.3 39.8 0 78.2 22.4 0 78.2 24.9
gCO2 captured/kWh 316 0 316 271 316 164 308 307 0 1037 205 0 1474 278
ϵtot [%] 45.6 57.2 56.4 60.6 44.2 55 55.6 46.8 44.9 27.3 39.4 34.9 19.2 32.4
ϵeq [%] 29.1 52.1 35.8 43.7 44.2 55 40.1 46.8 - - - - - -
ϵH2 [%] 51.4 59.7 66.3 69.6 44.2 55 62.7 46.8 - - - - - -
ϵex [%] 39.9 49.7 49.6 53.1 38.2 47.5 48.7 40.4 39.9 24.3 35.1 31.1 17.1 28.9

Economics Economics
Investment [M$] 424 421 525 401 555 361 461 511 521 600 416 446 529 333
Annualized Inv. [$/MWh] 27.9 23.9 26.8 19.5 42.5 22.2 24.9 36.9 39.2 74.5 35.7 43.2 93.4 34.7
Maintenance [$/MWh] 21.7 18.7 19.4 15.5 30.2 18.5 18.8 26.9 28.5 51.6 28.0 33.1 67.4 29.8
Wood cost [$/MWh] 95.7 82.4 74.2 70.6 111.3 89.4 78.5 105.1 109.5 180.4 124.8 140.7 256.3 151.6
Electricity cost [$/MWh] 65.9 19.4 69.9 42.5 0 0 53.5 0 0 0 0 0 0 0
Production cost [$/MWh] 211.2 144.4 190.3 148.1 184 130.1 175.7 169 177.2 306.5 188.5 217 417 216.1

Environmental Impact (GWP 100) Environmental Impact (GWP 100)
10−5 kg CO2eq/kJBM -3.5 0.98 -4.7 -4.2 -3.0 -1.5 -4.3 -3.1 0.8 -6.9 -1.44 0.8 -6.8 -1.74

a For the different technology options: n=not included, y=yes included. The net electricity output expressed in kW of electricity per MW of biomass is negative when the integrated process requires electricity importation and positive when

it generates electricity. For H2 processes the costs are expressed in $/MWhH2 while for electricity generation they are expressed in $/MWhe.
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Table 8: Process performance of selected optimal configurations.
Process H2 Ė import H2 self-sufficient Ė GT H2 pure Ė GT H2 impure
ϵtot [%] 60.6 40.2 32.5 27.5
CO2 capture [%] 65.1 74.4 75.2 56.4
gCO2 captured/kWh 324 668 835 741
10−5 kg CO2eq/kJBM -5.5 -6.4 -6.6 -4.8
Investment [M$] 509 651 777 532
Production cost [$/MWh] 129.7 214.1 284.3 291.3
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Figure 1: Design methodology: Thermo-environomic optimization [15]
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Figure 2: Flowsheet of the investigated biomass conversion processes with recycling options
including thermo-economic and LCI model flows. The cross points A and B illustrate the
different options with regard to H2 and/or electricity generation.
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Figure 3: Integrated composite curves for H2 process with and without CO2 capture (Table
7:A& B).
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Figure 4: Integrated composite curve for a base case H2 process with net Ė import and with
steam network integration (config. C).
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Figure 5: Integrated composite curve for a self-sufficient H2 process with steam network inte-
gration (config. D).

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

1200

1400

1600

1800

Heat load [kW/MW Biomass]

T
e

m
p

e
ra

tu
re

 [
K

]

 

 

E production GT H2 no CO2 capt

Stream network

Figure 6: Integrated composite curve for the Ė production without CO2 capture and with steam
network integration (config. G).
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Figure 7: Integrated composite curve for the Ė production with CO2 capture and with steam
network integration (config. H).
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Figure 8: Optimal solutions in the Pareto domain for H2 processes (config. C& D) and Ė
generation processes (config. I& H) with regard to efficiency and investment.
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Figure 9: Optimal solutions in the Pareto domain for H2 processes (config. C& D) and Ė
generation processes (config. I& H) with regard to efficiency and CO2 capture rate.
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Figure 10: Integrated composite curve for an optimized H2 process with net Ė import and steam
network integration (config. Copt).
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Figure 11: Integrated composite curve for an optimized self-sufficient H2 process with steam
network integration (config. Dopt).

0

50

100

150

200

250

300

0 20 40 60 80

P
ro

d
u

c
ti
o

n
 c

o
s
t 
[$

/M
W

h
]

Wood price [$/MWh]

H2 pure E_imp

H2 pure self.-

H2 pure no capt. 

Figure 12: Sensitivity analysis of the wood cost on the hydrogen production cost [$/MWhH2]
for different H2 scenarios (Table 7:B & Table 8).
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Figure 13: Sensitivity analysis of the wood cost on the electricity generation cost [$/MWhe] for
different scenarios (Table 7:G/I & Table 8).
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Figure 14: Comparison of the climate change impact of the H2 generation processes (Table
7:B/C/D) based on impact method IPCC07 for 1kJ of biomass.
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Figure 15: Comparison of the climate change impact of the electricity generation processes
(Table 7:G-H) based on impact method IPCC07 for 1kJ of biomass.
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