
Transliteration among Indian Languages using WX Notation

Rohit Gupta
LTRC

IIIT, Hyderabad
India

Pulkit Goyal
Information Technology

IIIT, Allahabad
India

rohit@research.iiit.ac.in {pulkit,sapan}@daad-alumni.de

Sapan Diwakar
Information Technology

IIIT, Allahabad
India

Abstract

In this paper, we propose an algorithm to translit-

erate between several Indian languages. The main

aim of the algorithm is to assist in the translation

process by providing efficient transliteration. This

algorithm works on Unicode transformation for-

mat of an Indian language. It then transliterates

it into the Unicode transformation format of the

target language. It does no sort of bilingual dictio-

nary lookup of the word. It can be used to translit-

erate nouns (e.g. named entities) in the transla-

tion process as well as for transliterating some text

into other language which is more suitable for the

reader.

1 Introduction

With the advances in technology and availability

of information in electronic format everywhere, it

becomes important to provide this information to

people as and when needed as well as in their native

language. This calls for the development of a tool

that can translate this information efficiently.

The translation process comprises of several

steps, one of which is transliteration. By translit-

eration, we refer to the process of transcribing let-

ters or words from one script to another script. In

transliteration, word pronunciation is usually pre-

served. In some cases, it can also be modified

according to its pronunciation in target language.

Its main aim is to present the word in the destina-

tion languagefs script such that it is readable by

the readers of the destination language (Surana and

Singh, 2008).

The use of translation is even more necessary

in a country like India that has immense diversity.

There are different people who speak different lan-

guages in different regions of the country. More-

over, most of these languages have different scripts.

Thus the application of translation is huge in India.

Also, Indian languages are used by many people

across the globe. Hindi, the most common of all the

Indian languages is used by more than four hundred

million people followed by Bengali (83m), Telugu

(74m), Marathi (72m), Tamil (61m), Urdu (52m),

Gujarati (46m), Kannada (38m) and Malayalam

(33m) (Wikipedia, 2010).

We aim at providing an efficient algorithm for

the transliteration process that is used to convert

nouns (or other words) that are not present in the

bilingual dictionary of the source language to the

target language. Such software has other utilities as

well when used as a standalone tool. One such util-

ity of such software is in building an interface for

users wherein they can type in an Indian Language

using the more familiar QWERTY keyboard.

The idea is to allow users to type Roman letters

and have them automatically transliterated into In-

dian Language. This is not as simple as it occurs

because there is no direct mapping between Roman

letters and Indian Language letters. There may be

several combinations of characters which produce

a single character in Indian Language or may pro-

duce vowel. The mapping that we have used in

our work, is a more constrained and provides a rule

set for writing a particular Indian Script in Roman

letters which can then be converted into the Indian

Script. This intermediate representation (known as

WX notation explained in a greater detail later in

the paper) also provides a way to convert the Indian

Languages into one another considering that the

phonetic pronunciation of the words in WX nota-

tion does not change with different scripts. This

assumption is simplifying as well as holds true

in most of the cases for Indian Languages. Our

approach revolves around this concept of WX no-

tation and inter-conversions between UTF notation

of language to its WX notation and then from WX

to UTF of the target language.

The paper is structured as follows. In Section

2, we briefly discuss the previous work carried

out in this field. In Section 3, we describe our

147



methodology which is subdivided into three main

modules as described in Sections 3.1, 3.2 and 3.3.

2 Previous Research

There have been several researches carried out in

this area. Janarthanam, Sethuramalingam and Nal-

lasamy (2008) proposed an algorithm that employs

grapheme-based model. In their approach, the

transliteration equivalents are identified by match-

ing in a target language database based on edit-

distance. The authors trained their tool with several

names before the transliteration process. Surana

and Singh (2008) present a different algorithm that

eliminates the training phase. They used fuzzy

string matching to account for the lack of training

process. Karimi, Turpin and Scholer (2006) split

the words into vowels and consonants to achieve

transliteration. Their approach focuses on combin-

ing most probable combinations of vowels and con-

sonants from source language to target language.

A Statistical model for transliteration from English

to Arabic words was implemented by Jaleel and

Larkey (2003).

3 Methodology

Our algorithm works by converting the Unicode

transformation format of source language to its cor-

responding WX notation taking into account the

linguistic knowledge for each language. This WX

notation is then converted to the Unicode transfor-

mation format of the target language to achieve

transliteration. It utilizes the information stored

in Unicode transformation format to automatically

identify the source language. The target language,

however, needs to be specified.

Before we begin with the description of the al-

gorithm, let us first define what Unicode transfor-

mation format and WX notation are.

Definition 1: Unicode transformation format

(UTF): It is the universal character code standard to

represent characters. UTF-8 is an alternative coded

representation form for all the characters in Uni-

code while maintaining compatibility with ASCII

(Unicode Standard Version, 2003).

Definition 2: WX-Notation: WX notation is a

transliteration scheme to denote a script in Roman

script. It defines a standard for the representation

of Indian Languages in Roman script. These stan-

dards aim at providing a unique representation of

Indian Languages in Roman alphabet (Akshar et.al.,

1995).

The WX notations for different Indian Lan-

guages are similar in their representation (See Table

1). We utilize this property for the development of

our algorithm for transliteration.

Language UTF-8 WX

Hindi

Sacina

Bengali

Telugu

Punjabi

Malayalam

Kannada

Table 1: Corresponding UTF and WX for various

Indian Languages representing the word “Sachin”

Thus the problem of transliteration can now be

divided into sub problems each of which can be

addressed by designing converters for converting

UTF to WX and WX to UTF for each language.

This method of conversion using an intermediate

notation was necessary so as to limit the number

of converters required for several languages (Using

direct mapping, for 6 languages, we would have

required 30 different transliteration tools whereas

using the intermediate notation, we just need 6

tools for converting from UTF to WX and another

6 to convert back from WX UTF thus limiting the

number of tools to just 12). Another benefit of

this notation is that we can extend it to convert into

other languages by simply adding 2 tools that could

convert from UTF to WX and vice versa for that

language.

3.1 Identifying Source Language

The first step in the transliteration process that we

explain in the paper is to identify the source lan-

guage. The source language of the given text can

automatically be detected by analyzing the UTF

characters. UTF characters follow a particular or-

der in the representation of characters. All the char-

acters of a particular script are grouped together.

Thus we can identify which language/script is pre-

sented to the software by analyzing its character

codes. UTF-8 characters are variable length. For In-

dian languages, these characters comprise of three

bytes. Thus to detect the script of the UTF-8 char-

acters, we analyzed the three bytes for different

languages for some pattern. By comparing the

code of second byte, the Indian Languages can be

identified (See Table 2).

148 Proceedings of KONVENS 2010, Saarbrücken, Germany, September 2010



Language Code for second
byte

Hindi (hin) 164 or 165

Bengali (ben) 166 or 167

Telugu (tel) 176 or 177

Punjabi (pan) 168 or 169

Malayalam (mal) 180 or 181

Kannada (kan) 178 or 179

Table 2: Character Codes for UTF-8 representation

of different Indian Languages

3.2 Converting UTF to WX

The next task is to convert the UTF form of lan-

guage to the corresponding WX notation. This is

achieved by using different converters for different

languages. These converters are similar in their

implementation with a few minor changes for each

arising due to its linguistic rules. Firstly, we ini-

tialize the character maps which usually represent

a many to one mapping from Roman characters

to UTF. We then extract characters from the input

string one by one. We then push the corresponding

WX equivalents of these characters to the output

string. We have to keep in mind about maintaining

the efficiency of the algorithm so that searching for

an element in the map is minimized. For this pur-

pose, we have made a map that corresponds to the

indices that we can obtain using UTF characters.

Thus we donft need to search the map for UTF char-

acters. Each UTF character has a different code and

from that code, we can extract an index that points

to its corresponding WX character. This finds the

WX equivalent for each UTF character in constant

time.

3.3 Converting WX to UTF

Once we obtain the WX notation for the given

source text, the next step is to convert the WX

notation to UTF of target language. This can be

done using a similar mapping of Roman charac-

ters to UTF. Again we have to keep in mind about

maintaining the efficiency of the algorithm so that

searching for an element in the map is minimized.

This is done by utilizing the ASCII codes of roman

characters that are used to represent WX characters

and then building the map as required. Thus WX to

UTF conversion for each character is also achieved

in constant time.

4 Results

In order to prove our algorithm, we compared the

performance of our tool with the results provided

on a test set by Linguists having knowledge of both

the source as well as target language.

To evaluate our method, we tested our tool on

a large corpus having 10k (approx. 240k words)

sentences in Hindi. We then transliterated the com-

plete corpus into each of the target languages one

by one, results of which are listed in table 3.

Target Language Accuracy

Hindi 95.8

Bengali 93.2

Telugu 90.0

Punjabi 92.9

Malayalam 85.2

Kannada 87.1

Table 3: Different Indian Languages and corre-

sponding accuracy

The accuracy is based on the phonetic pronuncia-

tions of the words in target and source language and

this was obtained from Linguistics having knowl-

edge of both the languages.

a) Input Text to transliteration module

b) Output in Hindi

Figure 1: Results of transliteration module

149



Another important point to note in the translit-

eration module is its time efficiency. Since it may

be used as a part of the complete translation tool, it

has to perform its task very rapidly. Keeping this in

view during our implementation, we now present

the time taken by our tool.

For 100 words written in Devanagari (Hindi), the

transliteration into Malayalam using our tool takes

less than 0.100 seconds on an Intel Core 2 Duo, 1.8

GHz machine running Fedora.

5 Conclusion

In this paper, we present an algorithm for the ef-

ficient transliteration between Indian Languages.

We presented a brief overview of UTF and WX

notations and then our algorithm that involved tran-

sition from UTF to WX of source language and

then back to UTF for target language.

6 Future Work

The algorithm presented in the paper is an efficient

algorithm for transliteration and would be used

in translation between Indian Languages. We are

also exploring on how to make the mapping more

efficient using automatic learning.

References
Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal.

1995. Natural Language Processing : A Paninian
Perspective. Prentice Hall of India.

Nasreen Abdul Jaleel and Leah S. Larkey. 2003. Statis-
tical transliteration for english-arabic cross language
information retrieval. In Proceedings of the twelfth
international conference on Information and knowl-
edge management, New Orleans, LA, USA.

Srinivasan C. Janarthanam, Sethuramalingam S, and
Udhyakumar Nallasamy. 2008. Named entity
transliteration for cross-language information re-
trieval using compressed word format mapping al-
gorithm. In Proceedings of 2nd International ACM
Workshop on Improving Non-English Web Search-
ing.

Sarvnaz Karimi, Andrew Turpin, and Falk Scholer.
2006. English to persian transliteration. In SPIRE
2006, pages 255–266.

Harshit Surana and Anil Kumar Singh. 2008. A more
discerning and adaptable multilingual transliteration
mechanism for indian languages. In Proceedings of
the Third International Joint Conference on Natural
Language Processing, Hyderabad, India.

Addison Wesley The Unicode Consortium. 2003. The
Unicode Standard, Version 4.0.

Wikipedia. 2010. Languages of india.
http://en.wikipedia.org/wiki/languages of india.
(accessed: April 21, 2010).

150 Proceedings of KONVENS 2010, Saarbrücken, Germany, September 2010


