
Fast and Enhanced Algorithm for Exemplar Based Image Inpainting

Anupam

Information Technology

IIIT

Allahabad, India

anupam@iiita.ac.in

Pulkit Goyal

Information Technology

IIIT

Allahabad, India

pulkit110@gmail.com

Sapan Diwakar

Information Technology

IIIT

Allahabad, India

diwakar.sapan@gmail.com

Abstract— Image Inpainting is the art of filling in missing data

in an image. The purpose of inpainting is to reconstruct

missing regions in a visually plausible manner so that it seems

reasonable to the human eye. There have been several

approaches proposed for the same. In this paper, we present an

algorithm that improves and extends a previously proposed

algorithm and provides faster inpainting. Using our approach,

one can inpaint large regions (e.g. remove an object etc.) as

well as recover small portions (e.g. restore a photograph by

removing cracks etc.). The inpainting is based on the exemplar

based approach. The basic idea behind this approach is to find

examples (i.e. patches) from the image and replace the lost data

with it. This technique can be used in restoring old

photographs or damaged film. It can also remove

superimposed text like dates, subtitles etc.; or even entire

objects from the image like microphones or wires to produce

special effects. We obtained good quality results quickly using

our approach.

Keywords-inpainting; exemplar; priority; enhanced; object

removal

I. INTRODUCTION

Inpainting is the art of restoring lost parts of an image

and reconstructing them based on the background

information. This has to be done in an undetectable way.

The term inpainting is derived from the ancient art of

restoring image by professional image restorers in museums

etc. Digital Image Inpainting tries to imitate this process and

perform the inpainting automatically. Figure 1 shows an

example of this technique where a building (manually

selected as the target region) is replaced by information

from the remaining of the image in a visually plausible way.

The algorithm automatically does this in a way that it looks

“reasonable” to the human eye. Details that are hidden/

occluded completely by the object to be removed cannot be

recovered by any mathematical method. Therefore the

objective for image inpainting is not to recover the original

image, but to create some image that has a close

resemblance with the original image.

Such software has several uses. One use is in restoring

photographs. Ages ago, people were preserving their visual

works carefully. With time, photographs get damaged and

scratched. Users can then use the software to remove the

cracks from the photographs.

(a) (b)

Figure 1. Removing objects using Image Inpainting. (a) The original

image [15], (b) Image with the building removed. Notice how the contour

of mountain and the textures have both been corrected.

Another use of image inpainting is in creating special
effects by removing unwanted objects from the image.
Unwanted objects may range from microphones, ropes, some
unwanted person and logos, stamped dates and text etc. in
the image. During the transmission of images over a
network, there may be some parts of an image that are
missing. These parts can then be reconstructed using image
inpainting. There have also been a few researches on how to
use image inpainting for super-resolution and zooming of
images [6].

The rest of the paper is organized as follows. Section 2

describes the related work in this area. Section 3 presents

key observations and shortcomings of the earlier

approaches. This is followed by a description of what we

propose to improve the inpainting process. Experimental

results and Conclusion & Future work then follow in

sections 4 and 5 respectively.

II. RELATED WORK

Currently there are very few accepted technologies/tools

for carrying out the work of image inpainting. It is still in

the beginning stage and a lot of researches are being carried

out to explore this area. There are, however, a few software

products and libraries existing for this purpose. E.g.

„restoreInpaint‟ [12] is an open source library which

provides functionalities to detect and automatically restore

cracks etc. from damaged photographs. Software currently

available for this task is named „Photo-Wipe‟ [11] by Hanov

Solutions. It provides tools for selecting the region to be

inpainted and then provides several options to carry out the

inpainting process with varying time and quality.

The algorithm at first sight may seem to be something

similar to noise removal from images. De-noising is focused

towards modifying individual pixels whereas inpainting

aims at modifying larger regions from the image. De-

noising also differs from inpainting in the way that in

inpainting there is no information about the image in the

region to be inpainted as opposed to noise removal where

pixels may contain information about both the real data and

noise [1]. Also, noise removal will in general not work for

filling-in large missing portions in an image (e.g., in

removal of an object). Thus specific methods are being

developed to answer this problem.

Most inpainting methods work as follows: The user

selects the region to be inpainted. This is usually done as a

separate process and may require the use of separate image

processing tools. The image restoration is then carried out

automatically. In order to produce a visually plausible

reconstruction, an inpainting technique must try to

reconstruct the isophotes (i.e. the lines of equal grey values)

as smoothly as possible and also propagate two dimensional

textures. Based on these two requirements, the inpainting

algorithms are classified as in the following way.

There are mainly three classes of algorithms employed

for inpainting. First class of algorithms is for restoring

films/videos, but this is not very useful for image inpainting

as there is limited information for inpainting images as

opposed to film inpainting where the information may be

extracted from various frames. Another class of algorithms

deals with the reconstruction of textures from the image

(e.g. [4]). These algorithms utilize samples from the source

region to rebuild the image. Using this approach, most of

the texture of the image can be rebuilt. The third class of

algorithms tries to rebuild the structural features such as

edges and object contours etc. The authors of paper [1]

presented a pioneering work in this respect. It was able to

recover most of the structural features from the image but

failed while recovering very large regions. Another

algorithm proposed in paper [10] involved the use of mask

to achieve inpainting. The mask that they choose for

inpainting is decided interactively and requires user

intervention. They prepare the mask such that the centre

element in the mask is zero. This means that no information

about a pixel is extracted using its own value (as it is the one

that is to be reconstructed and in image inpainting, it is

assumed that the region to be inpainted does not contain any

information). It uses the values of its neighboring pixels to

determine its value. But this algorithm also works only for

small regions and cannot inpaint large regions in the image.

Another algorithm for recovering small regions and noise

in an image is proposed in paper [5]. It can inpaint images

with very high noise ratio. It uses Cellular Neural Networks

for the same. Here noises inside the cell with different sizes

are inpainted with different levels of surrounding

information. They achieved a high accuracy in the field of

de-noising using inpainting techniques. They provide results

that show that an almost blurred image can be recovered

with visually good effect. But as with other de-noising

algorithms, the approach doesn‟t work well for large

regions.

The authors of paper [13] propose an algorithm using

Cahn-Hilliard fourth order reaction equation to achieve

inpainting in gray-scale images. The paper [2] extends the

earlier mentioned paper [13] by introducing a total-variation

flow for images.

Authors in [4] proposed an inpainting algorithm to fill in

holes in overlapping texture and/or cartoon image synthesis.

Their algorithm is a direct extension of morphological

component analysis that is designed to separate linearly

combined texture and cartoon. Their approach differs from

the one proposed by Bertalmio et al. [1]. On one hand,

Bertalmio considered decomposition and filling-in stage as

two blocks. On the other hand, their approach [4] considers

these as one unified task.

There have been a very few algorithms that utilize the

advantages of both the image inpainting methods i.e. the

structure recreation and texture synthesis algorithms. One

such work was proposed in the paper by Criminisi et al. [3].

They proposed a pioneering approach in this field that

combined structural reconstruction approach with the

texture synthesis approach in one algorithm by combining

the advantages of both approaches. They used the fact that

the result of inpainting process depends (in general) on the

order of filling-in the hole. The traditional concentric-layer

filling (onion-peel) algorithm [17] for defining the region

filling order failed to reconstruct structural features. On the

other hand, they based their approach on the priority of

regions which was based on the isophotes values and it

allowed for the patches with the isophotes flowing into the

patch to be filled earlier. Another approach proposed in [18]

tries to improve the time complexity by defining a measure

of step length for the search region.

There is also significant work carried out in the field of

video inpainting. The authors in [14] proposed an algorithm

for video inpainting by implanting objects from other

frames. They employ improved exemplar based algorithms

for the same. Another approach for video inpainting

employs information from adjacent frames and performs

interpolation based on those frames to achieve inpainting

[9]. Authors in [7] present an algorithm to inpaint videos

using the exemplar based approach. They focus their

research towards the restoration of old movies, and

particularly scratch removal. They use the block based

exemplar based approach and extend it using motion

estimation.

In this paper, we propose an extension to earlier

inpainting algorithms with a focus on improving the

computational complexity of the approaches along with

some other improvements such as speed and accuracy.

III. METHODOLOGY

The conventions that we use throughout the paper are

similar to earlier papers that deal with this problem of image

inpainting [1], [3], [10]. Here, I represents the original

image. Ω represents the target region, i.e. the region to be

inpainted. Φ represents the source region, i.e. the region

from which information is available to reconstruct the

image. Generally, Φ = I – Ω. Also, we use δΩ to represent

the boundary of the target region, i.e. the fill front. It is from

here that we find some patch that is to be filled. Our

algorithm is basically an extension to the algorithm

proposed by Criminisi et al. [3]. Using this algorithm, we

can inpaint large missing regions in an image as well as

reconstruct small defects. Generally an exemplar based

inpainting algorithm involves the following steps:

i. Initialize the target region. This is generally

performed separately from the inpainting process and

requires the use of an additional image processing

tool. This is performed by marking the target region

in some special colour. Without any loss of

generality, let us consider that the colour that the

target region will be marked in is green (i.e. R = 0, G

= 255, B = 0).

ii. Find the boundary of the target region.

iii. Select a patch from the region to be inpainted. The

patch size should be a bit larger than the largest

distinguishable texture element in the image. We

have used a default patch size of 9 x 9 which can be

changed with the knowledge of the largest texture

element in the image. We denote the patch by ψp.

iv. Find a patch from the image which best matches the

selected patch, ψp. This matching can be done using

a suitable error metric. We use the Mean Squared

Error (please refer eq. 1) to find the best matching

patch.

 ∑
()

 . (1)

where fx,y represents the element of the patch ψp and

gx,y represents the elements of the patch for which

MSE is to be calculated. N is the total number of

elements in the patch.

v. Update the image information according to the patch

found in the previous step.

As mentioned earlier, the result does depend considerably

on the third step wherein a patch is selected to be inpainted.

The result that we obtain would almost always depend on

the selection order and thus there have been approaches that

try to define this selection order so that the result is

improved.

In Criminisi‟s algorithm, the priority function used for

selecting the best patch from the target region was defined

in a multiplicative form (please refer eq. 2).

P(p) = C(p) x D(p) . (2)

 where C(p) represents the confidence term for the patch

and D(p) the data term for the patch. These terms are

defined in equations 3 and 4 respectively.

 where |ψp| is the area of the patch ψp and γ is the

normalization factor (equal to 255 for a normal grey level

image), np is a unit vector orthogonal to the front δΩ at the

point p and
 represents the perpendicular isophote at

point p. The value of np is found by finding the gradient for

the source region. The source region represents a matrix

with all ones on the points that are not in the target region

and zeros otherwise (i.e. for the points in Ω). Isophote can

be determined using the gradient of the image. Cheng et al.

[16] discovered that the confidence term that was defined in

Criminisi‟s algorithm decreases exponentially and thus the

multiplicative definition of the priority term needs to be

replaced. They also proposed that the confidence term in the

additive form of priority did not match the order of the data

term. Thus they modified the confidence term with the

regularized confidence term.

 Also, the authors proposed the addition of weights to

different components in the definition of priority term so

that a balance between confidence and data term could be

maintained. Thus the modified priority term can now be

represented as (please refer eq. 5)

 where α and β are respectively the component weights

for the confidence and data terms. Also α + β = 1 and Rc(p)

is the regularized confidence term (please refer eq. 6).

 where ω is regularizing factor for controlling the curve

smoothness. Using this confidence term the value of the

confidence term is regularized to [ω,1]. In this way the new

priority function will be able to resist the “dropping effect”.

Now, as we have the priorities for the patches on the fill

front, we can find the patch with maximum priority and

select it as the patch that is to be inpainted. Let us call it ψp.

The next step in the inpainting process is to find the patch

with the maximum similarity with the selected patch. In the

earlier approaches, the metric used for finding the similarity

was the mean squared error. But none of them defines what

is to be done when we have 2 (or more) patches with the

 () () (), 0 ≤ α, β ≤ 1 . (5)

 ()
∑ ()

 .

(3)

 ()

 . (4)

 () () () , 0 ≤ ω ≤ 1. (6)

same mean squared error (See Figure 2). We found that in

such cases, for some images, the algorithm produced

visually poor results.

Figure 2. Patches with same mean square error. Selecting the incorrect
patch may not produce the most visually plausigble result.

 The solution to the problem that we propose involves the

calculation of variance of the patches with same mean

squared error. This variance (please refer eq. 8) that we use

is the variance of the pixel values of the patch with respect

to the mean (please refer eq. 7) of the pixels from the same

patch that correspond to the pixels belonging to source

region from the patch to be inpainted (i.e. pixels that

correspond to).

∑

 * +
 (7)

∑()

 * +
 (8)

 where „f‟ denotes the pixel value of the element, #{..}

represents the cardinality of the set.

 Another improvement that we propose to the given

approach is that Criminisi‟s approach looked for the best

exemplar from the complete image. Most often, the patch

that most resembles the selected patch lies very close to the

patch selected to be inpainted. Based on this assumption, we

provide an approach on how to reduce the computational

complexity of the algorithm. The diameter of the

surrounding region to search is calculated at run time by

taking into account the region to be inpainted. We search for

the best exemplar from a rectangle defined by (startX,

startY) and (endX, endY).

 We can find these coordinates by using the maximum

number of continuous green pixels in one row as well as a

column. Let us assume that these values as cr and cc

respectively. Then, we calculate the coordinates as follows.

Where h and w are height and width of the image
respectively, m and n are number of rows and columns in the
patch and Dx and Dy are constants that represent the
minimum diameter for the X and Y directions respectively.
These calculations ensure that there is at least one patch of
the desired size with none of its pixels that belong to the
target region (Ω). Doing these calculations every time we
look for a patch will not deteriorate the performance of the
algorithm as these calculations allow the algorithm to ignore
quite a large number of patches.

IV. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed variance
approach and the improvement in speed, we performed tests
on several images and compared the so-obtained results with
the conventional approaches. Several of the images that we
present here are taken from the previous literature and we
cite the appropriate paper wherever possible. In most of the
experiments, the patch size was set to 9 x 9. We will state
appropriately wherever a different patch size was taken by us
and the reasons for the difference.

A. Comparison with Criminisi’s approach [3]

Now we present the comparison of our approach with

the one presented by Criminisi et al. in [3]. The image in

Figure 3 (a) was given as input to the inpainting process that

used our approach as well as to our implementation of the

Criminisi‟s approach. The results using Criminisi‟s

approach were not that promising whereas our algorithm

achieved better results. The difference in the results

occurred while searching for the best exemplar patch. In

Criminisi‟s approach, nothing is described about which

patch to select if we get two patches with same minimum

error. During our implementation of Criminisi‟s algorithm,

we assumed that we would choose the patch that was found

earlier and got the results as shown. Using our approach,

however, the best exemplar process was well defined and

therefore it selected a better patch as shown in Figure 3.

 (

) .

(9)

 (

) .

(10)

 (

) .

(11)

 (

) .

(12)

 (a) (b) (c)

Figure 3. Comparison with Criminisi‟s approach. (a) Image to be
inpainted, (b) Result using our algorithm, (c) Result using our

implementation of Criminisi‟s approach.

B. Comparison on the basis of time with Criminisi’s

aaproach

Using the proposed fast inpainting algorithm, the time

taken in inpainting the image is considerably reduced.

(a) (b)

(c)

Figure 4. Comparison with Criminisi‟s approach on benchmark data. (a)
Image to be inpainted [3]. (b) Result using our algorithm. (c) Result using

our implementation of Criminisi‟s approach.

 Following (Table 1) is a brief comparison of time taken

using our approach and our implementation of Criminisi‟s

approach.

TABLE I. COMPARISON OF OUR ALGORITHM AGAINST OUR

IMPLEMENTATION OF CRIMINISI‟S ALGORITHM

Serial

No.

Image Size

(in pixels)

Percentage area to

be removed

Time taken (in

milliseconds)

 Criminisi Our

Algorithm

1. 124032 0.81 11223 2283

2. 60492 2.80 11546 4042

3. 120000 5.00 53971 27319

4. 60492 14.62 61286 52378

5. 225000 60.79 1357690 1337850

Thus the total time using our algorithm obviously
depends on how much area is selected to be inpainted. In

addition to this, the time would be less if the user selects
small but spatially disconnected regions rather than if he
selects the same percentage of target region continuously.
This is so because we have taken into consideration the
number of continuous green (color of the target region)
pixels to remove the possibility of finding regions with no
available patches.

C. Comparison with Photo Wipe © [11]

Now we present a comparison of our algorithm with the

current existing software for the same task (Photo Wipe by

Hanov Solutions). Figure 6 shows the results for the same

(It is apparent that our algorithm produces better results).

(a) (b)

(c)

Figure 5. Comparison with Photo Wipe. (a) The photograph in front of
CC1, IIIT Allahabad. (b) Output from our algorithm. (c) Output using

Photo Wipe‟s Full Quality Inpainting option.

D. Real Life Examples

Now we present a few more examples from real life

scenes which are captured by us.

Figure 6 shows an example of noise removal using our

algorithm. The noise was added randomly to the image and

then the inpainting was applied. The inpainting algorithm

was able to achieve a good overall result than that achieved

by applying median filter [8] on the image.

 (a) (b)

(c)

Figure 6. Using inpainting to remove noise from the image. (a) Image
with noise. (b) Result after applying our inpainting algorithm. (c) Result

after applying 3x3 median filter on the image.

 Now we present an example of removing an unwanted

person from the photograph (See Figure 7).

 (a) (b)

Figure 7. Example of removing unwanted persons. (a) The original image

of IIIT Allahabad admin building with unwanted persons. (b) Image with
the unwanted persons removed.

V. CONCLUSION AND FUTURE WORK

We present an algorithm that can remove objects from

the image in a way that it seems reasonable to the human

eye. It can also restore old photographs (e.g. removal of

scratches).

Our approach extends an exemplar based inpainting

method along with a priority term that defines the filling

order in the image. In this algorithm, pixels maintain a

confidence value and are chosen based on their priority that

is calculated using confidence and data term. The approach

defines a way of differentiating between patches that have

the same minimum mean squared error with the selected

patch. This approach is capable of propagating both linear

structures and two dimensional textures into the target

region. This technique can be used to fill small scratches in

the image/photos as well as to remove larger objects from

them. It is also computationally efficient and works well

with larger images.
We are looking forward to improving the algorithm so

that the computational complexity is further improved while

retaining the quality of inpainting and if possible, we would
also like to improve the inpainting algorithm. Also the
inpainting algorithm presented here is not meant to be used
for inpainting videos. We are also investing methods to
improve the proposed algorithm to make it more robust so
that it can be used with videos.

ACKNOWLEDGMENT

We would like to thank our Director Dr. M.D. Tiwari for
providing excellent computational facilities and stimulating
work environment for carrying out the research work.

REFERENCES

[1] M. Bertalmio, G. Saprio, V. Caselles, and C. Ballester, “Image

Inpainting,” Proceedings of the 27th annual conference on Computer
graphics and interactive technique, 417-424, 2000.

[2] M. Burger, H. Lin, and C.B. Schonlieb, “Cahn-Hilliard Inpainting and

a Generalization for Grayvalue Images,” UCLA CAM report, 08-41,
2008.

[3] A. Criminisi, P. Perez, and K. Toyama, “Region Filling and Object

Removal by Exemplar- Based Image Inpainting,” IEEE Transactions
on Image Processing, 13(9), 1200-1212, 2004.

[4] M. Elad, J.L. Starck, P. Querre, and D.L. Donoho, “Simultaneous

Cartoon and texture image inpainting using morphological
component analysis (MCA) ,” Journal on Applied and Computational

Harmonic Analysis, 340-358, 2005.

[5] P. Elango, and K. Murugesan, K, “Digital Image Inpainting Using
Cellular Neural Network,” Int. J. Open Problems Compt. Math., 2(3),

439-450, 2009.

[6] M.J. Fadili, J.–L Starck, and F. Murtagh, “Inpainting and zooming
using Sparse Representations,” The Computer Journal, 64-79, 2009.

[7] G. Forbin, B. Besserer, J. Boldys, and D. Tschumperle, “Temporal
Extension to Exemplar- Based Inpainting applied to scratch

correction in damaged image sequences,” Proceedings of the

International Conference on Visualization, Imaging and Image
Processing (VIIP 2005), Benidorm, Espange, , 1-5, 2005.

[8] R.C. Gonzalez, and R.E. Woods, Digital Image Processing, 2nd ed.

Pearson Education, 2002.
[9] A.C. Kokaram, R.D. Morris, W.J. Fitzgerald, and P.J.W. Rayner,

“Interpolation of missing data in image sequences,” IEEE

Transactions on Image Processing 11(4), 1509-1519, 1995.
[10] M.M. Oliveira, B. Bowen, R. McKenna, and Y.S. Chang, “Fast

Digital Image Inpainting,” Proceedings of the International

Conference on Visualization, Imaging and Image Processing (VIIP
2001), Marbella, Spain, 261-266, 2001.

[11] Photo Wipe, http://www.hanovsolutions.com/?prod=PhotoWipe

[12] Restore Inpaint, http://restoreinpaint.sourceforge.net/
[13] C.B. Schonlieb, A. Bertozzi, M. Burger, and H. Lin, “Image

Inpainting Using a Fourth-Order Total Variation Flow,”

SAMPTA‟09, Marseille, France, 2009.
[14] T. Shih, et al., “Video inpainting and implant via diversified temporal

continuations,” Proceedings of the 14th annual ACM international

conference on Multimedia, 133-136, 2006.
[15] Studio Lighting, http://www.studiolighting.net/

[16] Wen-Huang Cheng, Chun-Wei Hsieh, Sheng-Kai Lin, Chia-Wei

Wang, and Ja-Ling Wu, “Robust Algorithm for Exemplar-Based
Image Inpainting,” The International Conference on Computer

Graphics, Imaging and Vision (CGIV 2005), Beijing, China, 64-69,

2005.
[17] A. A. Efros and T. K. Leung, “Texture synthesis by nonparametric

sampling,” Proceedings of IEEE International Conference on

Computer Vision, Greece, 1033-1038, 1999.

[18] Q. Chen, Y. Zhang and Y. Liu, “Image Inpainting With Improved

Exemplar-Based Approach,” Multimedia Content Analysis and

Mining, LNCS, vol. 4577/2007, pp.242-251, 2007

