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Abstract— Image Inpainting is the art of filling in missing data 

in an image. The purpose of inpainting is to reconstruct 

missing regions in a visually plausible manner so that it seems 

reasonable to the human eye. There have been several 

approaches proposed for the same. In this paper, we present an 

algorithm that improves and extends a previously proposed 

algorithm and provides faster inpainting. Using our approach, 

one can inpaint large regions (e.g. remove an object etc.) as 

well as recover small portions (e.g. restore a photograph by 

removing cracks etc.). The inpainting is based on the exemplar 

based approach. The basic idea behind this approach is to find 

examples (i.e. patches) from the image and replace the lost data 

with it. This technique can be used in restoring old 

photographs or damaged film. It can also remove 

superimposed text like dates, subtitles etc.; or even entire 

objects from the image like microphones or wires to produce 

special effects. We obtained good quality results quickly using 

our approach. 

Keywords-inpainting; exemplar; priority; enhanced; object 

removal 

I.  INTRODUCTION 

Inpainting is the art of restoring lost parts of an image 

and reconstructing them based on the background 

information. This has to be done in an undetectable way. 

The term inpainting is derived from the ancient art of 

restoring image by professional image restorers in museums 

etc. Digital Image Inpainting tries to imitate this process and 

perform the inpainting automatically. Figure 1 shows an 

example of this technique where a building (manually 

selected as the target region) is replaced by information 

from the remaining of the image in a visually plausible way. 

The algorithm automatically does this in a way that it looks 

“reasonable” to the human eye. Details that are hidden/ 

occluded completely by the object to be removed cannot be 

recovered by any mathematical method. Therefore the 

objective for image inpainting is not to recover the original 

image, but to create some image that has a close 

resemblance with the original image.  

Such software has several uses. One use is in restoring 

photographs. Ages ago, people were preserving their visual 

works carefully. With time, photographs get damaged and 

scratched. Users can then use the software to remove the 

cracks from the photographs.  

  

(a)     (b) 

Figure 1.  Removing objects using Image Inpainting. (a) The original 

image [15], (b) Image with the building removed. Notice how the contour 

of mountain and the textures have both been corrected. 

Another use of image inpainting is in creating special 
effects by removing unwanted objects from the image. 
Unwanted objects may range from microphones, ropes, some 
unwanted person and logos, stamped dates and text etc. in 
the image. During the transmission of images over a 
network, there may be some parts of an image that are 
missing. These parts can then be reconstructed using image 
inpainting. There have also been a few researches on how to 
use image inpainting for super-resolution and zooming of 
images [6]. 

The rest of the paper is organized as follows. Section 2 

describes the related work in this area. Section 3 presents 

key observations and shortcomings of the earlier 

approaches. This is followed by a description of what we 

propose to improve the inpainting process. Experimental 

results and Conclusion & Future work then follow in 

sections 4 and 5 respectively. 

II. RELATED WORK 

Currently there are very few accepted technologies/tools 

for carrying out the work of image inpainting. It is still in 

the beginning stage and a lot of researches are being carried 

out to explore this area. There are, however, a few software 

products and libraries existing for this purpose. E.g. 

„restoreInpaint‟ [12] is an open source library which 

provides functionalities to detect and automatically restore 



cracks etc. from damaged photographs. Software currently 

available for this task is named „Photo-Wipe‟ [11] by Hanov 

Solutions. It provides tools for selecting the region to be 

inpainted and then provides several options to carry out the 

inpainting process with varying time and quality.  

The algorithm at first sight may seem to be something 

similar to noise removal from images. De-noising is focused 

towards modifying individual pixels whereas inpainting 

aims at modifying larger regions from the image. De-

noising also differs from inpainting in the way that in 

inpainting there is no information about the image in the 

region to be inpainted as opposed to noise removal where 

pixels may contain information about both the real data and 

noise [1]. Also, noise removal will in general not work for 

filling-in large missing portions in an image (e.g., in 

removal of an object). Thus specific methods are being 

developed to answer this problem. 

Most inpainting methods work as follows: The user 

selects the region to be inpainted. This is usually done as a 

separate process and may require the use of separate image 

processing tools. The image restoration is then carried out 

automatically. In order to produce a visually plausible 

reconstruction, an inpainting technique must try to 

reconstruct the isophotes (i.e. the lines of equal grey values) 

as smoothly as possible and also propagate two dimensional 

textures. Based on these two requirements, the inpainting 

algorithms are classified as in the following way. 

There are mainly three classes of algorithms employed 

for inpainting. First class of algorithms is for restoring 

films/videos, but this is not very useful for image inpainting 

as there is limited information for inpainting images as 

opposed to film inpainting where the information may be 

extracted from various frames. Another class of algorithms 

deals with the reconstruction of textures from the image 

(e.g. [4]). These algorithms utilize samples from the source 

region to rebuild the image. Using this approach, most of 

the texture of the image can be rebuilt. The third class of 

algorithms tries to rebuild the structural features such as 

edges and object contours etc. The authors of paper [1] 

presented a pioneering work in this respect. It was able to 

recover most of the structural features from the image but 

failed while recovering very large regions. Another 

algorithm proposed in paper [10] involved the use of mask 

to achieve inpainting. The mask that they choose for 

inpainting is decided interactively and requires user 

intervention. They prepare the mask such that the centre 

element in the mask is zero. This means that no information 

about a pixel is extracted using its own value (as it is the one 

that is to be reconstructed and in image inpainting, it is 

assumed that the region to be inpainted does not contain any 

information). It uses the values of its neighboring pixels to 

determine its value. But this algorithm also works only for 

small regions and cannot inpaint large regions in the image.  

Another algorithm for recovering small regions and noise 

in an image is proposed in paper [5]. It can inpaint images 

with very high noise ratio. It uses Cellular Neural Networks 

for the same. Here noises inside the cell with different sizes 

are inpainted with different levels of surrounding 

information. They achieved a high accuracy in the field of 

de-noising using inpainting techniques. They provide results 

that show that an almost blurred image can be recovered 

with visually good effect. But as with other de-noising 

algorithms, the approach doesn‟t work well for large 

regions.  

The authors of paper [13] propose an algorithm using 

Cahn-Hilliard fourth order reaction equation to achieve 

inpainting in gray-scale images. The paper [2] extends the 

earlier mentioned paper [13] by introducing a total-variation 

flow for images.  

Authors in [4] proposed an inpainting algorithm to fill in 

holes in overlapping texture and/or cartoon image synthesis. 

Their algorithm is a direct extension of morphological 

component analysis that is designed to separate linearly 

combined texture and cartoon. Their approach differs from 

the one proposed by Bertalmio et al. [1]. On one hand, 

Bertalmio considered decomposition and filling-in stage as 

two blocks. On the other hand, their approach [4] considers 

these as one unified task. 

There have been a very few algorithms that utilize the 

advantages of both the image inpainting methods i.e. the 

structure recreation and texture synthesis algorithms. One 

such work was proposed in the paper by Criminisi et al. [3]. 

They proposed a pioneering approach in this field that 

combined structural reconstruction approach with the 

texture synthesis approach in one algorithm by combining 

the advantages of both approaches. They used the fact that 

the result of inpainting process depends (in general) on the 

order of filling-in the hole. The traditional concentric-layer 

filling (onion-peel) algorithm [17] for defining the region 

filling order failed to reconstruct structural features. On the 

other hand, they based their approach on the priority of 

regions which was based on the isophotes values and it 

allowed for the patches with the isophotes flowing into the 

patch to be filled earlier. Another approach proposed in [18] 

tries to improve the time complexity by defining a measure 

of step length for the search region. 

There is also significant work carried out in the field of 

video inpainting. The authors in [14] proposed an algorithm 

for video inpainting by implanting objects from other 

frames. They employ improved exemplar based algorithms 

for the same. Another approach for video inpainting 

employs information from adjacent frames and performs 

interpolation based on those frames to achieve inpainting 

[9]. Authors in [7] present an algorithm to inpaint videos 

using the exemplar based approach. They focus their 

research towards the restoration of old movies, and 

particularly scratch removal. They use the block based 

exemplar based approach and extend it using motion 

estimation.  

In this paper, we propose an extension to earlier 

inpainting algorithms with a focus on improving the 



computational complexity of the approaches along with 

some other improvements such as speed and accuracy. 
 

III. METHODOLOGY 

The conventions that we use throughout the paper are 

similar to earlier papers that deal with this problem of image 

inpainting [1], [3], [10]. Here, I represents the original 

image. Ω represents the target region, i.e. the region to be 

inpainted. Φ represents the source region, i.e. the region 

from which information is available to reconstruct the 

image. Generally, Φ = I – Ω. Also, we use δΩ to represent 

the boundary of the target region, i.e. the fill front. It is from 

here that we find some patch that is to be filled. Our 

algorithm is basically an extension to the algorithm 

proposed by Criminisi et al. [3]. Using this algorithm, we 

can inpaint large missing regions in an image as well as 

reconstruct small defects. Generally an exemplar based 

inpainting algorithm involves the following steps:  

i. Initialize the target region. This is generally 

performed separately from the inpainting process and 

requires the use of an additional image processing 

tool. This is performed by marking the target region 

in some special colour. Without any loss of 

generality, let us consider that the colour that the 

target region will be marked in is green (i.e. R = 0, G 

= 255, B = 0). 

ii. Find the boundary of the target region. 

iii. Select a patch from the region to be inpainted. The 

patch size should be a bit larger than the largest 

distinguishable texture element in the image. We 

have used a default patch size of 9 x 9 which can be 

changed with the knowledge of the largest texture 

element in the image. We denote the patch by ψp.  

iv. Find a patch from the image which best matches the 

selected patch, ψp. This matching can be done using 

a suitable error metric. We use the Mean Squared 

Error (please refer eq. 1) to find the best matching 

patch.  

     ∑
(         )

 

 
 . (1) 

where fx,y  represents the element of the patch ψp and 

gx,y represents the elements of the patch for which 

MSE is to be calculated. N is the total number of 

elements in the patch. 

v. Update the image information according to the patch 

found in the previous step.  

 

As mentioned earlier, the result does depend considerably 

on the third step wherein a patch is selected to be inpainted. 

The result that we obtain would almost always depend on 

the selection order and thus there have been approaches that 

try to define this selection order so that the result is 

improved.  

In Criminisi‟s algorithm, the priority function used for 

selecting the best patch from the target region was defined 

in a multiplicative form (please refer eq. 2).  

P(p) = C(p) x D(p) . (2) 

    where C(p) represents the confidence term for the patch 

and D(p) the data term for the patch. These terms are 

defined in equations 3 and 4 respectively. 

     where |ψp| is the area of the patch ψp and γ  is the 

normalization factor (equal to 255 for a normal grey level 

image), np is a unit vector orthogonal to the front δΩ at the 

point p and    
  represents the perpendicular isophote at 

point p. The value of np is found by finding the gradient for 

the source region. The source region represents a matrix 

with all ones on the points that are not in the target region 

and zeros otherwise (i.e. for the points in Ω). Isophote can 

be determined using the gradient of the image. Cheng et al. 

[16] discovered that the confidence term that was defined in 

Criminisi‟s algorithm decreases exponentially and thus the 

multiplicative definition of the priority term needs to be 

replaced. They also proposed that the confidence term in the 

additive form of priority did not match the order of the data 

term. Thus they modified the confidence term with the 

regularized confidence term.  

     Also, the authors proposed the addition of weights to 

different components in the definition of priority term so 

that a balance between confidence and data term could be 

maintained. Thus the modified priority term can now be 

represented as (please refer eq. 5)  

     where α and β are respectively the component weights 

for the confidence and data terms. Also α + β = 1 and Rc(p) 

is the regularized confidence term (please refer eq. 6). 

     where ω is regularizing factor for controlling the curve 

smoothness. Using this confidence term the value of the 

confidence term is regularized to [ω,1]. In this way the new 

priority function will be able to resist the “dropping effect”.  

Now, as we have the priorities for the patches on the fill 

front, we can find the patch with maximum priority and 

select it as the patch that is to be inpainted. Let us call it ψp.  

The next step in the inpainting process is to find the patch 

with the maximum similarity with the selected patch. In the 

earlier approaches, the metric used for finding the similarity 

was the mean squared error. But none of them defines what 

is to be done when we have 2 (or more) patches with the 

 ( )       ( )      ( ), 0 ≤ α, β ≤ 1 . (5) 

 ( )   
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  ( )  (    )   ( )    , 0 ≤ ω ≤ 1. (6) 



same mean squared error (See Figure 2). We found that in 

such cases, for some images, the algorithm produced 

visually poor results.  

 

Figure 2.  Patches with same mean square error. Selecting the incorrect 
patch may not produce the most visually plausigble result. 

     The solution to the problem that we propose involves the 

calculation of variance of the patches with same mean 

squared error. This variance (please refer eq. 8) that we use 

is the variance of the pixel values of the patch with respect 

to the mean (please refer eq. 7) of the pixels from the same 

patch that correspond to the pixels belonging to source 

region from the patch to be inpainted (i.e. pixels that 

correspond to            ). 

   
∑          

 *           +
  (7) 

   
∑(          )

   

 *           +
  (8) 

     where „f‟ denotes the pixel value of the element, #{..} 

represents the cardinality of the set. 

     Another improvement that we propose to the given 

approach is that Criminisi‟s approach looked for the best 

exemplar from the complete image. Most often, the patch 

that most resembles the selected patch lies very close to the 

patch selected to be inpainted. Based on this assumption, we 

provide an approach on how to reduce the computational 

complexity of the algorithm. The diameter of the 

surrounding region to search is calculated at run time by 

taking into account the region to be inpainted. We search for 

the best exemplar from a rectangle defined by (startX, 

startY) and (endX, endY).  

     We can find these coordinates by using the maximum 

number of continuous green pixels in one row as well as a 

column. Let us assume that these values as cr and cc 

respectively. Then, we calculate the coordinates as follows. 

Where h and w are height and width of the image 
respectively, m and n are number of rows and columns in the 
patch and Dx and Dy are constants that represent the 
minimum diameter for the X and Y directions respectively. 
These calculations ensure that there is at least one patch of 
the desired size with none of its pixels that belong to the 
target region (Ω). Doing these calculations every time we 
look for a patch will not deteriorate the performance of the 
algorithm as these calculations allow the algorithm to ignore 
quite a large number of patches. 

IV. EXPERIMENTAL RESULTS 

To verify the effectiveness of the proposed variance 
approach and the improvement in speed, we performed tests 
on several images and compared the so-obtained results with 
the conventional approaches. Several of the images that we 
present here are taken from the previous literature and we 
cite the appropriate paper wherever possible. In most of the 
experiments, the patch size was set to 9 x 9. We will state 
appropriately wherever a different patch size was taken by us 
and the reasons for the difference. 

A. Comparison with Criminisi’s approach [3] 

Now we present the comparison of our approach with 

the one presented by Criminisi et al. in [3]. The image in 

Figure 3 (a) was given as input to the inpainting process that 

used our approach as well as to our implementation of the 

Criminisi‟s approach. The results using Criminisi‟s 

approach were not that promising whereas our algorithm 

achieved better results. The difference in the results 

occurred while searching for the best exemplar patch. In 

Criminisi‟s approach, nothing is described about which 

patch to select if we get two patches with same minimum 

error. During our implementation of Criminisi‟s algorithm, 

we assumed that we would choose the patch that was found 

earlier and got the results as shown. Using our approach, 

however, the best exemplar process was well defined and 

therefore it selected a better patch as shown in Figure 3. 
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           (a)                           (b)                            (c) 

Figure 3.  Comparison with Criminisi‟s approach. (a) Image to be 
inpainted, (b) Result using our algorithm, (c) Result using our 

implementation of Criminisi‟s approach. 

B. Comparison on the basis of time with Criminisi’s 

aaproach 

Using the proposed fast inpainting algorithm, the time 

taken in inpainting the image is considerably reduced.  

   

(a)                 (b)    

 

(c) 

Figure 4.  Comparison with Criminisi‟s approach on benchmark data. (a) 
Image to be inpainted [3]. (b) Result using our algorithm. (c) Result using 

our implementation of Criminisi‟s approach. 

     Following (Table 1) is a brief comparison of time taken 

using our approach and our implementation of Criminisi‟s 

approach. 

TABLE I.  COMPARISON OF OUR ALGORITHM AGAINST OUR  

IMPLEMENTATION OF CRIMINISI‟S ALGORITHM 

Serial 

No. 

Image Size 

(in pixels) 

Percentage area to 

be removed 

Time taken (in 

milliseconds) 

   Criminisi Our 

Algorithm 

1.  124032 0.81 11223 2283 

2.  60492 2.80 11546 4042 

3.  120000 5.00 53971 27319 

4.  60492 14.62 61286 52378 

5.  225000 60.79 1357690 1337850 

Thus the total time using our algorithm obviously 
depends on how much area is selected to be inpainted. In 

addition to this, the time would be less if the user selects 
small but spatially disconnected regions rather than if he 
selects the same percentage of target region continuously. 
This is so because we have taken into consideration the 
number of continuous green (color of the target region) 
pixels to remove the possibility of finding regions with no 
available patches. 

C. Comparison with Photo Wipe © [11] 

Now we present a comparison of our algorithm with the 

current existing software for the same task (Photo Wipe by 

Hanov Solutions). Figure 6 shows the results for the same 

(It is apparent that our algorithm produces better results).  

 
(a)             (b) 

 
(c) 

Figure 5.  Comparison with Photo Wipe. (a) The photograph in front of 
CC1, IIIT Allahabad. (b) Output from our algorithm. (c) Output using 

Photo Wipe‟s Full Quality Inpainting option. 

D. Real Life Examples 

Now we present a few more examples from real life 

scenes which are captured by us. 

Figure 6 shows an example of noise removal using our 

algorithm. The noise was added randomly to the image and 

then the inpainting was applied. The inpainting algorithm 

was able to achieve a good overall result than that achieved 

by applying median filter [8] on the image.  

  
  (a)                     (b) 



  
(c) 

Figure 6.  Using inpainting to remove noise from the image. (a) Image 
with noise. (b) Result after applying our inpainting algorithm. (c) Result 

after applying 3x3 median filter on the image. 

     Now we present an example of removing an unwanted 

person from the photograph (See Figure 7). 

        
  (a)                  (b) 

Figure 7.  Example of removing unwanted persons. (a) The original image  

of IIIT Allahabad admin building with unwanted persons. (b) Image with 
the unwanted persons removed. 

V. CONCLUSION AND FUTURE WORK 

We present an algorithm that can remove objects from 

the image in a way that it seems reasonable to the human 

eye. It can also restore old photographs (e.g. removal of 

scratches). 

Our approach extends an exemplar based inpainting 

method along with a priority term that defines the filling 

order in the image. In this algorithm, pixels maintain a 

confidence value and are chosen based on their priority that 

is calculated using confidence and data term. The approach 

defines a way of differentiating between patches that have 

the same minimum mean squared error with the selected 

patch. This approach is capable of propagating both linear 

structures and two dimensional textures into the target 

region. This technique can be used to fill small scratches in 

the image/photos as well as to remove larger objects from 

them. It is also computationally efficient and works well 

with larger images. 
We are looking forward to improving the algorithm so 

that the computational complexity is further improved while 

retaining the quality of inpainting and if possible, we would 
also like to improve the inpainting algorithm. Also the 
inpainting algorithm presented here is not meant to be used 
for inpainting videos. We are also investing methods to 
improve the proposed algorithm to make it more robust so 
that it can be used with videos.  

ACKNOWLEDGMENT 

We would like to thank our Director Dr. M.D. Tiwari for 
providing excellent computational facilities and stimulating 
work environment for carrying out the research work. 

REFERENCES 

[1] M. Bertalmio, G. Saprio, V. Caselles, and C. Ballester, “Image 

Inpainting,” Proceedings of the 27th annual conference on Computer 
graphics and interactive technique, 417-424, 2000. 

[2] M. Burger, H. Lin, and C.B. Schonlieb, “Cahn-Hilliard Inpainting and 

a Generalization for Grayvalue Images,” UCLA CAM report, 08-41, 
2008. 

[3] A. Criminisi, P. Perez, and K. Toyama, “Region Filling and Object 

Removal by Exemplar- Based Image Inpainting,” IEEE Transactions 
on Image Processing, 13(9), 1200-1212, 2004. 

[4] M. Elad, J.L. Starck, P. Querre, and D.L. Donoho, “Simultaneous 

Cartoon and texture image inpainting using morphological 
component analysis (MCA) ,”  Journal on Applied and Computational 

Harmonic Analysis, 340-358, 2005. 

[5] P. Elango, and K. Murugesan, K, “Digital Image Inpainting Using 
Cellular Neural Network,” Int. J. Open Problems Compt. Math., 2(3), 

439-450, 2009. 

[6] M.J. Fadili, J.–L Starck, and F. Murtagh, “Inpainting and zooming 
using Sparse Representations,” The Computer Journal, 64-79, 2009. 

[7] G. Forbin, B. Besserer, J. Boldys, and D. Tschumperle, “Temporal 
Extension to Exemplar- Based Inpainting applied to scratch 

correction in damaged image sequences,” Proceedings of the 

International Conference on Visualization, Imaging and Image 
Processing (VIIP 2005), Benidorm, Espange, , 1-5, 2005. 

[8] R.C. Gonzalez, and R.E. Woods, Digital Image Processing, 2nd ed. 

Pearson Education, 2002. 
[9] A.C. Kokaram, R.D. Morris, W.J. Fitzgerald, and P.J.W. Rayner, 

“Interpolation of missing data in image sequences,” IEEE 

Transactions on Image Processing 11(4), 1509-1519, 1995. 
[10] M.M. Oliveira, B. Bowen, R. McKenna, and Y.S. Chang, “Fast 

Digital Image Inpainting,” Proceedings of the International 

Conference on Visualization, Imaging and Image Processing (VIIP 
2001), Marbella, Spain, 261-266, 2001. 

[11] Photo Wipe, http://www.hanovsolutions.com/?prod=PhotoWipe 

[12] Restore Inpaint, http://restoreinpaint.sourceforge.net/ 
[13] C.B. Schonlieb, A. Bertozzi, M. Burger, and H. Lin, “Image 

Inpainting Using a Fourth-Order Total Variation Flow,” 

SAMPTA‟09, Marseille, France, 2009. 
[14] T. Shih, et al., “Video inpainting and implant via diversified temporal 

continuations,” Proceedings of the 14th annual ACM international 

conference on Multimedia, 133-136, 2006. 
[15] Studio Lighting, http://www.studiolighting.net/ 

[16] Wen-Huang Cheng, Chun-Wei Hsieh, Sheng-Kai Lin, Chia-Wei 

Wang, and Ja-Ling Wu, “Robust Algorithm for Exemplar-Based 
Image Inpainting,” The International Conference on Computer 

Graphics, Imaging and Vision (CGIV 2005), Beijing, China, 64-69, 

2005. 
[17] A. A. Efros and T. K. Leung, “Texture synthesis by nonparametric 

sampling,” Proceedings of IEEE International Conference on 

Computer Vision, Greece, 1033-1038, 1999. 

[18] Q. Chen, Y. Zhang and Y. Liu, “Image Inpainting With Improved 

Exemplar-Based Approach,” Multimedia Content Analysis and 

Mining, LNCS, vol. 4577/2007, pp.242-251, 2007 


