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Abstract—Detecting and tracking people in scenes monitored
by cameras is an important step in many application scenarios
such as surveillance, urban planning or behavioral studies to
name a few. The amount of data produced by camera feeds
is so large that it is also vital that these steps be performed
with the utmost computational efficiency and often even real-
time. We propose SCOOP, a novel algorithm that reliably detects
pedestrians in camera feeds, using only the output of a simple
background removal technique. SCOOP can handle a single or
many video feeds. At the heart of our technique is a sparse
model for binary motion detection maps that we solve with a
novel greedy algorithm based on set covering. We study the
convergence and performance of the algorithm under various
degradation models and provide mathematical and experimental
evidence of both its efficiency and robustness using standard
datasets. This clearly shows that SCOOP is a viable alternative
to existing state-of-the-art people detection algorithms, with the
marked advantage of real-time computations.

Index Terms—People Localization, Sparse Representation, Dic-
tionary, Multi-view, Greedy, Matching Pursuit, SCOOP, group
testing

I. INTRODUCTION

The present paper deals with a simple but very important
problem in computer vision: given a set of cameras observing
a scene (there can be only one camera as extreme example),
we want to automatically detect pedestrians and locate them
in the scene. The detection output would generally be used
in a second step for tracking people, but we focus here on
the detection/localization problem. This problem has numerous
applications, surveillance being the most obvious, and has
been the subject of intense research over the past decade.
However, there remain two important challenges to most
existing solutions:

« robustness: due to occlusions and variable lighting con-
ditions, existing algorithms tend to produce false or miss
detections. Often, robustness is achieved at the expense
of computationally complex scene modeling

o computational complexity: cameras operating at 25
frames per second or more generate tremendous amount
of data. In order to achieve real-time performance, exist-
ing algorithms have to sacrifice on robustness.

This trade-off between robustness and computational effi-
ciency brings unbearable constrains on real-world applications
where both are desirable. The objective of this paper is thus to
propose a solution to the people detection problem that would
be at the same time robust and computationally efficient.

In a previous paper, we have proposed a model of motion
detection maps based on the assumption that the number of
people in the scene is much smaller than the total possible

ground locations [?]. The model was relaxed into a LASSO-
like problem and solved with a re-weighted ¢; algorithm.
We showed that the resulting technique, deemed O-LASSO,
reached state-of-the-art performances in terms of robustness.
Unfortunately, O-LASSO is a computationally complex algo-
rithm and, despite various optimizations, cannot reach real-
time operation. Acknowledging that the excellent robustness
properties reported in [?] were due to the sparsity hypoth-
esis, we conserve that part of the model but we propose a
completely different way of exploiting it. First, where O-
LASSO was based on complex floating point calculations,
we derive a new regression model that involves only boolean
arithmetics and takes full advantage of the binary output of
basic motion detection algorithms. Second, instead of solving a
difficult convex optimization problem with iterative shrinkage,
we derive a novel greedy algorithm inspired by the set cover
problem. This algorithm operates with only binary operations
and is therefore extremely efficient.

The relevance and performance of our model and algo-
rithm are analyzed at two different levels. First we draw a
connection with group testing that allows us to study the
mathematical properties of the model and sate the existence
and uniqueness of solutions. We also show that these solutions
can be recovered by a simple thresholding algorithm. We then
extend these findings and propose a greedy heuristics that also
incorporates physical constrains on the localization of detected
people, the resulting algorithm is called Set Covering Object
Occupancy Pursuit or SCOOP. We then study experimentally
its performances: SCOOP matches O-LASSO in terms of
robustness but at a fraction of the computational cost, easily
reaching real-time implementation.

II. RELATED WORK
A. People localization in camera networks

As hinted at above, the problem of detecting and localizing
people in networks of camera has been the subject of an
intense research activity. Let us review the main approaches
leading to our own model. Detection can occur independently
in each camera then fused across cameras [22], [23], or they
can be detected concurrently in a unique referential [24],
[25] since cameras are calibrated to match 3D points across
image planes [26]. These approaches suffer to detect people
occluding each other and a good alternative is to fuse features
extracted from all cameras in a unique referential and make the
decision once all features are combined. The most commonly
used features are the silhouettes extracted from all cameras
using a motion detection algorithm and a reference background
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Fig. 1: Dictionary reconstruction: an atom/column d; corresponds to the MSV of a half-rectangular-half-elliptical object approximating a person standing at
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(a) Camera views

(b) Extracted MSV (y)

(c) Dictionary approximation (D.x) (d) Noise (2)

Fig. 2: Illustration of the boolean regression model described by equation (2) for three camera views of a single frame of the PETS 2009 dataset,

http://winterpets09.net.

image. In [27] Khan and Shah project foreground silhouettes a
reference ground plane given a global homography. By stack-
ing and normalizing the obtained re-projected silouhettes, they
construct a probability map. Alternatively probability maps
over several planes can estimated [28], [29], which provides
more robustness. Eshel and Moses in [30] use a probability
map at head level, but grouped people with few number of
cameras are hardly segmented. Closer to our model, Fleuret
et al. in [31], [32] use a dictionary of ideal silhouettes that
is used to detect people in crowded environment. Rectangular
shape prototypes are used to approximate the ideal human
foreground silhouettes observed by the cameras. They then
estimate the probability of occupancy map (POM) of the
ground plane at each time. Recently, Alahi er al. in [33]
have also proposed a dictionary based framework with a
generative model to approximate foreground silhouettes and
their model is the starting point of our investigations. The
localization of people in the monitored scene arises as the

solution to an inverse problem referred to as O-Lasso. It
outperforms previous approaches in terms of detection rate
but it is computationally costly for real-time application. As
a result, we propose in Section III a greedy approach that
achieves the same detection rate but real-time performance.

III. DICTIONARY-BASED BOOLEAN REGRESSION MODEL

Alahi et al. in [33] propose a sparsity driven framework
that performs well with respect to the state-of-the-art. A key
feature of this scheme is to cast the multi-view localization as a
sparse linear inverse problem that is followed by a quantization
step. A huge collection of silhouettes of an individual standing
at various positions, that is called dictionary, is used for this
purpose. Later, inspired by the recent massive developments in
sparse linear approximation tools, an algorithm was proposed
(O-Lasso) to approximate the foreground silhouettes by a few
number of individuals. The main drawback of these schemes
is their numerical complexity: they are based on iterative
algorithms that converge slowly.



Our proposed approach is similar to the dictionary-based
framework, however, we use a boolean (non-linear) regressive
formulation to model the localization problem. Using boolean
arithmetics, we design much faster and memory efficient
approximation algorithms that are mainly rooted in the old
literature of group testing and set cover. The following steps
precisely describe our problem formulation:

1) Discretization of the scene: The ground plane is dis-
cretized into 2-D grid of N cells (sub-regions). We assume
each cell can be occupied by only one person at each time
instance. To simplify notations, the 2-D grid is concatenated
into a 1-D vector = € {0,1}", whose elements are indicating
the presence of a person in the corresponding cell (with Id= ¢)
if z; = 1. Typically, we refer to this vector as the occupancy
vector. An adaptive sampling process can be used to discretize
the ground plane into non-regularly spaced grid points to take
advantage of the cameras’ topology and the scene activity [33].

2) Arranging the Foreground Silhouettes: A 2-D binary
mask representing the foreground pixels observed by each
camera c, is extracted given a background subtraction algo-
rithm [3]. We used the well known mixture of Gaussians to
classify each pixel as foreground [4]. The foreground images
are also rearranged by concatenation of the 2-D masks into
binary vectors y. € {0,1}*<. Each of these vectors contain
the extracted foreground silhouettes from the corresponding
camera c. A foreground silhouette is a connected region of
foreground pixels. As a result, M. denotes the resolution
(number of pixels) of the ct? camera. Further, we concatenate
all these vectors into the Multi-Silhouette Vector (MSV):

y= 1 yo)" € {o,1}M, (1)

where, M = Zle M..

3) Dictionary construction: Imagine a person with a given
volume walking in a scene. The shape observed by each cam-
era can vary depending on the view-points and the behavior
of that person. We approximate the shape of people with a
half-rectangular-half-elliptical shape as in [33] (see Figure 1).
We consider an average person with a height of Im70 cm. A
3-D model is projected into all the camera views given the
calibration data [34]. Such approximation is used to construct
atoms of a dictionary D € {0,1}*¥_ Each column of the
dictionary, i.e. each atom, represents the approximated multi-
view silhouette observed at a given ground plane point. A
typical dictionary contains a huge collection of atoms i.e.,
there is as many columns as the discretized ground plane
points in the scene. Figure 1 demonstrates reconstruction of an
atom of the dictionary used in people detection applications.
Note that in urban scenes, dictionary atoms can be modified
so that they can also represent approximate MSVs of various
urban objects e.g., pedestrians, cars, buses, trucks, etc.

A. Boolean regression model

Suppose a single person occupies the scene. This refers
to an occupancy vector xz with only one nonzero element
whose index depends on the location of that person on the
scene. Moreover, each of the cameras will capture only one
silhouette (if they have a view over the position) whose size,

the position and possibly the shape depends on the location.
In more general cases, for a given configuration of x with
more nonzero elements (depending on the number of people
and their positions), the resulting MSV may not be necessary
unique. This non-uniqueness comes from the occlusions in the
camera view which are highly dependent on the density of the
crowd and the positions of the cameras.

Let us define the following regression model which de-
scribes the underlying correspondence between each occu-
pancy vector and its resulting MSV:

y=D -z®z. 2)

Note that here the operations are boolean i.e., sums and
products correspond to AND and OR, and @& denotes the
bitwise XOR operation between two boolean vectors. The
dictionary D € {0,1}M*N as previously defined, is a very
huge matrix of silhouettes. Each column of D, say d;, indicates
the corresponding MSV of an average person who is standing
at position i in the scene. Finally, z € {0,1}* denotes the
noise vector that corrupts the MSV by both missing and extra
foreground pixels. This may occur due to several reasons e.g.,
non ideal silhouette extraction, non ideal modeling of the
dictionary atoms, shadows, reflections, etc. Figures 2(a)-2(d)
provide an illustration of the regression model described by
the Equation (2).

Assume an occupancy vector x representing & individuals
in a scene. The support of x is the set S that contains indices
of the k nonzero elements, S = supp(z) := {i : z; = 1}.
Equation (2) formulates the observed MSV as the boolean
superposition of k& atoms (bitwise OR among the columns) of
the dictionary, indexed by S and possibly corrupted by some
noise,

y=> di &z 3)
=

Recalling that each of the atoms represents the silhouette of
a single individual at a certain location, the use of the boolean
operators in Equations (2) and (3), explicitly demonstrates
the nonlinearity of the MSV model caused by occlusions in
scenes with more than a single person. We use later this
model frequently, specially as one of the most important priors
in order to infer the locations of the individuals given their

foreground MSV.

IV. PROBLEM STATEMENT AND CONNECTIONS WITH
GROUP TESTING

Considering descriptions in the previous section, the prob-
lem of detecting and localizing objects in a scene is equivalent
to recover an occupancy vector from an inaccurate noisy MSV,
provided with the knowledge of the dictionary D that links
them through Equation (2). Accordingly, we formulate people
detection and localization as a non-linear inverse problem, in
which one need to identify the support set S that approxi-
mately leads to the observed MSV, even in presence of noise
(see Equation (3)).

As one can observe, noise together with the non-linearity of
the formulation can impose many different possible solutions



to Equation (2). Hence, different occupancy vectors may
result in the same MSV. This fact severely challenges the
performance of any decoding algorithm to reliably detect and
localize the objects e.g., a decoder may mistakenly add or
neglect some individuals.

In the next part, we determine necessary and sufficient
conditions in order to preserve the uniqueness of the solutions.
Our theoretical analysis finds interesting and intuitive implica-
tions in multi-view people detection and localization problem.
Moreover, a simple algorithmic approach called Thresholding,
is introduced to recover the occupancy vector from the MSV
and we show it performs optimally i.e., if there exists a unique
solution, Thresholding will recover it. We develop our results
based on some popular tools existing in the well established
group testing literature and therefore we show how these two
problems are related to each other.

The classical group testing which was introduced by Dorf-
man [35] problem finds its historical roots in World War II,
when blood samples of many U.S. soldiers were examined to
detect few cases of syphilis. The main idea is to pool the blood
samples into certain groups and test the groups instead of one
by one testing. The original problem can be formulated as
Equation (2) in the noiseless case, where, « contains N blood
samples with sparse nonzero elements indicating the infected
cases and D (called the contact matrix) determines the way of
collecting M < N group tests into a vector y. The question is,
how to design a contact matrix and a recovery algorithm that
can efficiently identify as many defective cases as possible?
For more details see [36].

In our localization application, the design of the dictionary
is however fixed by the number of the cameras, their relative
positions, silhouette model and the density of the points on
the scene. Thus, contrary to the group testing, our application
deals mainly with the recovery problem rather than com-
pression. Another difference is that the cameras are typically
providing multi-view images with much higher resolution than
the number of grid points on the scene i.e., M > N, which
may help us compensate for the rather non-optimal design of
the dictionary .

A. Uniqueness of the representation

Given the regression model (2), there can be many
realizations of the occupancy vector leading to the same
MSV gy, which makes any decoding scheme hopeless to
recover the original x. There are two main reasons for this
non-uniqueness: the presence of noise and non-linearity of
the formulation. Particularly, in people detection applications,
occlusions often occur due the relative placement of the
cameras and the people in the scene. Therefore, any decoder
fails to decide correctly whether there are some individuals
present at those positions. This section defines precisely a set
of conditions that avoids such uncertainties and guarantees
the uniqueness of the solution to (2). These constraints
provide an upperbound on the performance of any recovery
scheme and in addition, they measure how efficiently they do
perform. In the following, we define the notion of disjunct
matrices that is often used in group testing literature [36] and

it appears to be the key element of the theoretical framework
that we establish in this paper.

Definition 1: A boolean matrix D with N columns dy, ...,dN
is (k,e)-disjunct if for every subset S C {1,..., N} with
cardinality |S| < k, and every i ¢ S, we have:

‘supp(di)\ U supp(d;)

JjES

> e,

where |.| represents cardinality of a set, and .\. means set
difference.

Assuming an occupancy vector that is k-sparse (i.e., x has
less than k£ nonzero elements) and a noise that flips at most e
bits of MSV (i.e., [supp(z)| < e), the following proposition
guarantees the uniqueness of the solution to (2):

Proposition 1: For any (k,2e)-disjunct dictionary Equation
(2) implies a one-to-one mapping between all k-sparse =
and their corresponding y. Conversely, if every k-sparse x is
mapped to a distinct y then D must be (k-1, 2¢)-disjunct.

The proof of Proposition 1 is presented in the Appendix.
In our people detection application, disjunction is a measure
of robustness against occlusions and noise. Intuitively, Propo-
sition 1 implies that any person at any position must have
a silhouette with enough distinguishable pixels to be robust
against the noise and not be submerged (occluded) into the
silhouettes of other people.

By increasing the number of people on the scene, the
occlusions become more probable, thus, Proposition 1 can
also be interpreted as an upperbound for the number of
individuals that can be reliably localized by a fixed camera
setup. Moreover, by changing the camera setup e.g., increasing
the number of the cameras and selecting well their positions
with respect to the scene, one can design optimal dictionaries
that are disjunct for larger number of people.

Note that in general, verifying wether a matrix is (k,e)-
disjunct is a hard problem, which makes Proposition 1 im-
practical for large size setups. Moreover, Proposition 1 pro-
vides a worst case analysis for (2), since it guarantees the
uniqueness for all occupancy vectors and it is robust against
any adversarial noise setup. In practice, simulation results
indicate a reliable recovery under much milder conditions than
in Proposition 1, because the worst case situations are not very
likely.

B. Decoding by Thresholding

In this part we introduce a simple algorithm for recovering
the occupancy vector from the corresponding MSV. Note that
a similar approach has been considered in [37], and in [38]
for real-valued z. This algorithm works based on selecting
atoms of D whose supports are approximately included in
supp(y), that is the number of elements of supp(d;) not
included in supp(y) should not exceed a threshold.

Thresholding: Select the columns of D that satisfy the
following equation:

Defining
the-
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supp(d;)\supp(y)| < e, “4)

and indicate their corresponding indices as the support of x.

The following theorem characterizes the performance of
Thresholding and highlights its optimality for solving the
regression model (2) when |supp(z)| < e:

Theorem 2: Thresholding successfully recovers any k-sparse
occupancy vector, if D is (k,2e)-disjunct.

Theorem 2 shows that Thresholding achieves the optimal
bound of Proposition 1 as long as there is an unique solution to
Equation (2) (the proof is presented in the Appendix). In addi-
tion, note that if the dictionary is not (k, 2e)-disjunct then there
may exist column indices 7 ¢ supp(z) that also satisfy (4), and
therefore the recovery is not exact but contains the support of
the original occupancy vector i.e., supp(x) C supp(Z), where
Z denotes the recovered occupancy vector.

In our application, the highest value £ to have a (k,2e)-
disjunct dictionary is much smaller than the number of poten-
tial individuals in the scene. As a result, for typical populated
scenes, the occlusions become more probable and therefore
many different realizations of the occupancy vector solve
(2) (no unique solution). In this case, by setting correctly
the threshold value in (4), the algorithm does not miss any
individual, but its performance is dramatically affected by
many false positives.

In the next section, we consider an additional prior to better
recover the exact solution. We assume that among all possible
solutions, the one of interest is the sparsest one, and we design
a real-time algorithm in order to recover it. Nevertheless, we
keep taking advantage of the output of Thresholding as a very
fast preprocessing step which efficiently refines the search
space, and thus, accelerates the main step of the recovery
algorithm.

V. REAL-TIME SPARSITY DRIVEN PEOPLE LOCALIZATION

In practice, the configuration of the cameras and the density
of the people on the scene are such that full occlusions are
inevitable and therefore, there is no unique solution to the
localization problem. As an example, there might be many
positions on scene, entirely covered by the people near to
the cameras so that no decoder would be able to decide
wether there are some individuals hidden there or not. The
Thresholding algorithm defined in the previous section outputs
a conservative solution that considers all those points as if they
are occupied by people and thus it results in too many false
positives that are not desired.

In this section we address this problem by selecting the
sparsest solution to (2), according to our hypothesis regarding
the distribution of the individuals on the scene. Among all
possible solutions, we set our problem to the recovery of the
sparsest occupancy vector z. In the noiseless case, we thus
solve

T =argmingeg1}~ [supp(z)]

s.t.  supp(y) = supp(D - z) ©)

and, in the noisy setup,

T = argminme{oJ}N \supp(w)|
st. |supp(y @ D-x)| <e. ©

Note that, if disjunction holds, the solution of both problems
coincide with the unique solution of (2) which can be simply
identified by Thresholding. However, if D is not (k,2e)-
disjunct, this new approach neglects objects that might be fully
occluded, and approximates the MSV by very few number of
atoms of D corresponding to the large-size silhouettes (i.e.,
people who are mainly in front of the scene).

Problem (5) is equivalent to the well known set cover
problem [39], which recovers the set of atoms with minimal
cardinality, so that the union of its elements covers the support
of y. In the noisy case (6), however, we relax the constraint
since we are not interested in approximating the noise. Set
cover is known as one of Karp’s 21 NP-complete problems,
thus designing feasible algorithms that can approximate the
solution with polynomial time complexity is of high impor-
tance.

It has been shown in [39] that the simple greedy approach
is indeed an effective way to approximate the solution of
the set cover problem. This approach follows the heuristic of
making the locally optimal choice at each iteration with the
hope of finding the global optimum. For example, the greedy
method proposed in [39] works iteratively and recovers one
element of the support set (i.e., supp(z)) per iteration. More
precisely, at each iteration, the algorithm selects the index of
the atom ¢ of the dictionary which contributes the most in
energy of the MSV y (i.e. the atom whose support shares
the most common elements with supp(y)). It then subtracts
its contribution to update the remainder (initially MSV). This
procedure continues until meeting the stopping criteria. This
criteria can be either an a priori knowledge on the sparsity
level, or a threshold on the energy level of the remainder. For
the first criteria the algorithm performs k iterations and for the
latter it runs until the remainder energy falls below a limit e.

It is noteworthy to mention that the same approach is exten-
sively used in the compressed sensing and sparse approxima-
tion research literature because of the simplicity of the analysis
and low computational cost [19], [20]. Among those, the
Matching Pursuit (MP) algorithm [40] works quite similarly to
above mentioned greedy algorithm, and its selection criteria is
rephrased as choosing the atom having the highest coherence
(i.e., inner product) with the remainder.

In the following part we introduce a novel method that
extends the greedy approach described in [39] to approximate
the noisy covering problem (5). We apply this approach to
our localization problem and experimentally show that this
approach outperforms the state-of-the-art algorithms, with a
computational complexity amenable to real-time applications.

A. Set Covering Object Occupancy Pursuit: SCOOP

The proposed localization problem by its construction con-
sists of non-normalized dictionaries i.e., the columns corre-
sponding to the objects on the far back of the scene have much
less energy than the ones in front because the corresponding



targets appear smaller. As a result, the selection criteria based
on the maximal common elements in the support (in the
original set cover problem) or maximal coherence (like in MP)
often chooses high energy columns that cover highly the MSV
as well as many pixels out of the MSV support. For example,
a person at the back of the scene with small silhouette is
mistakenly approximated by a person in front with a much
larger, but well covering silhouette. This indicates that some
high energy columns of D, despite their good covering, are
not fitting the silhouettes well enough. It is thus necessary
to modify the algorithm to avoid such mistakes. We address
this problem so that, at each iteration, the selecting criteria
searches for the column ¢ that has the minimum difference
with the remainder r (i.e., MSV at initial step). Thus, the
selected column, in addition to a good covering must fit well
the MSV i.e., not contain many extra pixels out of the MSV
support. In summary, an iteration of SCOOP selects a column
index ¢ based on the following criteria:

Coverying factor

i aremin oo |supp(r)\supp(d;)|
e { |supp(r)| -
W |supp(d; ) \supp()|
(=) = 3 )

Fitting factor

where 0 < w < 1 is a regularization factor to penalize
the uncovered pixels in the remainder support and the extra
covered pixels out the remainder support. This brings a degree
of freedom to the algorithm that balances between the covering
and fitting factors of the columns.

Compared to simple Thresholding this criteria better re-
spects the sparsity constraint as we now argue. Typically, the
superposition of several atoms with poor coherence can have
the same energy contribution in the MSV as a single atom
with high covering factor. Practically this means that atoms
approximating faraway people can be covered by few atoms
corresponding to close-by people or atoms corresponding to
cars or trucks can cover several atoms corresponding to people
standing at the same location. The proposed selection criteria
however promotes the selection of the largest atom in case of
ambiguity. Typically, it prefers to select a single atom of a
truck than several people in the scene. Likewise, it prefers to
select one single close-by person instead of several faraway
people. As a result, we can say that it promotes a sparse
solution. Nevertheless, as mentioned above, a fitting factor
is used to avoid selecting atoms with too many out-support
pixels.

The full algorithm is presented in table ?? and coined as
’Set Covering Object Occupancy Pursuit’ (SCOOP). As we
can see, Thresholding is used as a preprocessing step in order
to reduce the dimension of the search space U/ of all possible
locations. When |U{| < N, this step can massively accelerate
the main greedy pursuit.

Note that the stopping criteria can adopt three forms: either
one knows a priori how many individuals are present in the
scene (e.g., team sports like basketball, soccer,...) and runs k

iterations to detect them or a good estimation of the noise
power e is available to the decoder, which leads to the same
criteria used in table ??. Finally, if the decoder does not have
access to any of those priors, it continues the iterations until
by adding the next index the outcome error E (see table ??)
starts to increase.

Repulsive Spatial Sparsity (RSS): In many application
(including people localization) there exists another sort of
sparsity: spatial sparsity. Two individuals are separated by
a minimum spatial distance related to the minimum surface
occupied by a person on the ground e.g., here we choose 70
cm to be the average width of a standing person. This is what
we refer to as the concept of Repulsive Spatial Sparsity (RSS)
introduced in [33]. More precisely, if ¢, j € supp(z) and i # j
then we must have,

Aij=|P3E) —P(j)l2 > T, (8)

where P (i) is the position of a point ¢ on the ground plane,
and 7 cm is the minimum spatial distance. Lets denote by
N (i) the set of indices corresponding to positions that are
7-close to P(i) i.e.,

N-(@):={j:Aij <7} 9)

Finding a sparse occupancy vector does not necessarily
impose the constraint above. For this purpose, at each iteration,
SCOOP excludes all the neighboring points AN (.) of the
selected atom from the search space and modifies Uf.

B. Complexity of SCOOP

All atoms selected by Thresholding satisfy inequality (4).
This criteria is directly related to the boolean inner product,
which counts number of elements that two m-dimensional
boolean vectors share in their supports. We define the inner
product of y and ith column of D as,

(divy) = > djiy;
J

= |supp(d;) Nsupp(y)],

with the predefined boolean arithmetic notations. Comput-
ing this inner product for all N atoms of the dictionary leads
the preprocessing step to complete with complexity O(MN).
The main greedy pursuit performs iteratively. Thanks to the
preprocessing step, each iteration consists of searching over
u = [U| < N atoms of the dictionary for finding the
maximizer of (7). By simple computation we can rewrite (7)
as,

1 <= arg max

{w (r,d;) (r,d;)
el

mupp(] T ) Supp(dy)

Therefore, each iteration roughly consists of computing u
inner products between m-dimensional vectors, finding their
maximum and modifying U/ by finding (and excluding) the
neighbors of the selected atom i.e., complexity of O(Mu +
ulogu) = O(Mu). Now, if we consider a typical scene with
k individuals (sparsity is known a priori e.g., in team sport

}. (10)



Algorithm 1: Set Covering Object Occupancy Pursuit’
(SCOOP)

Input: MSYV signal y, Dictionary D, Error parameter e,

RSS parameter 7.
Output: Support set S (equivalently the occupancy
vector ).

Initiation:

S<{lu<{}l,r<yy<0

Preprocess:

for (i=1:n) do

if (|supp(di)\supp(y)| < e)
U<=UuUui}.
end

end

Greedy Process:
while (£ > ¢) do

|supp(r)\supp(d;)
|supp(r)|
|supp(d;) \supp(r)| }
’supp(dj/)

| <= arg min {w
J & e

(1—-w

Updates: L

Recovered support: S < S U {j}

Recovered MSV: supp(y) < supp(y) U supp(d;)
Remainder: supp(r) < supp(r)\supp(d,)
Search space: U <= U\ N, (j)

Error: £ < ’supp(y ©Y)

end

activities), the whole complexity of SCOOP in table 1 scales
as O(kMu).

Compared to O-Lasso, our method performs enormously
faster so that, in typical problem sizes (i.e., typical M, N, k), it
is able to detect and localize the objects of a frame in real-time.
Mainly two reasons are behind the success of SCOOP: First, a
novel formulation of the problem based on boolean regression
model. Second, using the greedy approach to solve the local-
ization problem. Unlike O-Lasso, our approach does not need
to solve a sparsity-inducing convex optimization (reweighed
¢1-minimization) with heavy computations. As a consequence,
instead of performing many iterations to converge in a solution
(like in O-Lasso), our approach identifies one individual per
iteration. In addition, each iteration of SCOOP performs only
basic boolean arithmetic operations that are cheap in terms
of computational complexity and memory usage. In the next
section we demonstrate by several simulations that this low
complexity does not impair robustness.

VI. EXPERIMENTAL RESULTS AND COMPARISONS

In this section we present results of a few experiments on
the APIDS dataset! that consists of seven pseudo-synchronized
cameras monitoring a basketball game (including one omni-
directional camera). We evaluate the performance over the

The dataset is publicly available at http://www.apidis.org/Dataset/

.

o

Fig. 3: Demonstration of a densely populated synthetic scene: k = 30
synthetic rectangular objects are randomly distributed on N = 15x 15
grid points. Silhouettes of the objects viewed by four cameras as well
as their location on the grid are shown.

left-half of the basketball court wherein the most number of
cameras are monitoring the game i.e., cameras id 1, 2, 4, 5,
and 7. For this purpose, a dictionary D has been constructed
using camera calibration data (similar to the one in [33]). This
dictionary maps the grid points that densely sample the bas-
ketball court (distance between each two adjacent gird points
~ 10cm) into their approximate MSV. The performance of
the detection process is quantitatively measured by computing
the Precision and the Recall measures given by the following
ratios:

TP TP an
TP+ FP’ TP+ FN’

where TP, FP and and F'N are the number of True
Positive, False Positive and False Negative. A true positive
is when a person is correctly located on the ground plane.

Mainly, two classes of experiments are performed as fol-
lowing:

Precision = Recall =

A. Synthetic-Noiseless Setup

Once the dictionary is constructed, we are able to synthesize
foreground silhouettes with the same scene geometry as in
APIDIS dataset. We generate random occupancy vectors x and
the corresponding noiseless MSVs are computed by y = D.zx.
Our main goal here is to analyze the performance of SCOOP
as the problem size scales i.e., number of objects or size of
the scene.

First we choose a submatrix of the original dictionary which
corresponds to a square subregion of the basketball court
including 15 x 15 grid points observed by four cameras. MSVs
are synthesized from occupancy vectors corresponding to k
individuals/objects randomly distributed on the scene, and the
results are averaged over a hundred independent realizations.
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Fig. 4: Comparing the precision of SCOOP and Thresholding on synthetic
data. Solid and dashed-line curves correspond to setups wherein any
two adjacent points on the grid have 100 cm and 75 cm distance,
respectively.
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Fig. 5: Average running time (per frame) of SCOOP for localizing various
number of individuals on a scene with N = 225 grid points, using
four cameras (synthetic data).
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Fig. 6: Average running time (per frame) of SCOOP for localizing k = 5
individuals who are randomly distributed on scenes with different
number of grid points N, using four cameras (synthetic data).

Figure 3 illustrates a realization of such densely populated
scene (for £ = 30) and the rectangular-shaped silhouettes
observed by four cameras.

In figure 4 we compare Thresholding and SCOOP methods.
Solid and dashed-line curves correspond to setups wherein
any two adjacent points on the grid have 100 cm and 75
cm distance, respectively. For both methods the average per-
formance decreases as the scene becomes more dense i.e.,
more people/objects or less relative distance between them.
We can observe that by increasing the number of individ-
uals, Thresholding reports many false positives (due to the
ambiguity raising by many positions hidden from the camera
views ) resulting in a huge decrease in the method precision.
In contrast, SCOOP discard many of those false positives by
selecting a sparse occupancy vector, which let the method to
be more robust against densely populated scenes.

Figures 5 and 6 demonstrate running time of scoop for
different problem sizes (again, averaged over hundred syn-
thetic frames). We can observe that running time of SCOOP
almost linearly increases by adding more individuals. This
comes from the fact that SCOOP wont result in too many false
positive and thus, it manages to localize the people within
few number of iterations proportional to the number of the
individuals. In figure 6, for £ = 5 individuals, we vary the size
of the scene i.e., N =i x ¢ for i € {4,...,20}. The running
time of SCOOP scales sub-linearly with respect to the scene
size. This highlights the advantage of the preprocessing step
(also RSS step) in SCOOP which reduces the search space at
each iteration of the greedy pursuit i.e., in our experiments as
the dimension N grows, the search space U grows sub-linearly
for a fixed k.

B. Sequence of a Basketball Match

As previously mentioned, we consider left-half of the
basketball court monitored by cameras id=1, 2, 3, 5 and 7
(see Figure 7). All videos are scaled to a QVGA resolution
with approximately 25 fps and the foreground silhouettes
are extracted using the work of Stauffer and Grimson [4].
The dataset has several challenges: Basketball players may
have unexpected changes of behavior, e.g., running, jumping,
crouching, sudden changes in the motion path, etc. Players
can be either strongly grouped together or spatially scattered.
Shadows and reflection of the players on the ground floor
mislead many typical silhouette extraction techniques, and
they output severely degraded MSVs often corrupted by many
false positive pixels (i.e., noisy data).

We run several experiments on this dataset and we measure
the performance of SCOOP together with several state-of-the-
art methods of localization namely, the sparsity-driven convex-
approach in [33] (RW-Lasso, RW-BPDN, O-Lasso) and the
work of Fleuret et al. in [32] (referred to as POM). Results
are reported in Figure 8 and providing a clear comparison
between performance of SCOOP and its counterparts; SCOOP
outperforms RW-Lasso, RW-BPDN, POM, and record a sim-
ilar performance as for O-Lasso.

In addition to its precision, our method offers a huge
acceleration in detection time. We measure the computation



Fig. 7: Detecting and localizing players in the APIDIS dataset using SCOOP: demonstration for four frames and three camera views per frame. players’

positions are marked for the left-half of the basketball court.

time of SCOOP as opposed to O-Lasso. Given the setup
above with five cameras and a non-optimized matlab imple-
mentation for both algorithms, SCOOP locates the basketball
players in 0.1 sec/frame on average, whereas O-lasso takes
10 sec/frame. Videos corresponding to a real-time imple-
mentation of SCOOP on C++, using Kineckt depth cameras
for precise foreground silhouettes extraction, are available at
www.lts2.2??2.

Finally, to evaluate the influence of noisy observations, we
also evaluate the performance of various methods over noise-
free foreground silhouettes. Synthetic foreground silhouettes
are constructed as explained above with a spatial sparsity
constraint; location points have a minimum spatial distance
with respect to each other (> 70 cm). Five to fifteen people
are randomly triggered for each frame (few hundred frames
are generated). Given the synthetic data, we also obtain
similar performance (see Figure 9). SCOOP outperforms other
sparsity driven formulations such as RW-BPDN and RW-Lasso

presented in [33] as well as POM [32].

VII. CONCLUSIONS

A sparsity driven system has been presented to capture
people’s motion behavior given a network of fixed cameras
and analyze it in real-time. The proposed data collection
algorithm is robust to noisy observation present in real-world
conditions, outperforming previous works. It is optimized to
monitor large scenes with minimal computational constraint.
To analyze the captured data, the behavior of people is studied
given the POI/AP framework where POIs are automatically
identified and ranked given their mutual flows. The proposed
system could be further used to quantitatively study human
psychology over large scale data given specific events that
inflence their behavior such as color, or layout.
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Fig. 9: Precision and recall rate with the synthetic data given four cameras
(Noiseless foreground silhouettes, however with possible occlusions).
Our proposed approach SCOOP is compared with other sparsity
driven formulation and the probability of occupancy (POM) approach
presented by Fleuret et al. in [32].

APPENDIX
A. Proof of Proposition 1

Having a (k, 2e)-disjunct dictionary implies a one-to-one
map between all k-sparse x and their corresponding y. Con-
versely, if every k-sparse x leads to a distinguishable y then,
D must be (k-1, 2e)-disjunct.

Proof: Assume two different k-sparse boolean vectors x
and ' that are supported on sets S and S’. Let 3 and 3’ be
correspondingly the bitwise OR of the columns of D indexed
by S and &’ iee,, 5 = D.x and ¥’ = D.z’ with boolean
arithmetic. Choose a column of the dictionary d; so that, 7 € S’
but not in S. Since D is (k, 2¢)-disjunct, it implies the support
of d; has 2e + 1 elements that are not included in supp(7).
Therefore, assuming noises that flip e bits of d; and e bits of
7, there will be still at least one element of supp(d;) that is
not included in the support of y (recall y = ¥ & z), which
makes = and 2’ distinguishable from their noisy MSVs.

For the converse, suppose D is not a (k-1, 2e)-disjunct

matrix and pick a pair of a set S C [n] with |S| < k — 1,
and an index 7 ¢ S that is a counterexample to the (k-1, 2¢)-
disjunctness. Assume vectors x and z’ that are supported on
S and SU{i} correspondingly. The noise can configure in an
adversarial way, so that, by flipping e zero bits of ¥ = D.x to
one, and e one bits of d; to zero, the MSV outcome of x and
2’ becomes indistinguishable. [ ]

B. Proof of Theorem 2

Thresholding successfully recovers any k-sparse occupancy
vector, if D is (k, 2e)-disjunct.

Proof: Assume a boolean vector x, supported on the set
S C [n] with |S] < k. Since the noise has flipped at most e
bits of y, obviously every i € S satisfies (4).

In addition, define 3 to be the bitwise OR of the columns of
D indexed by S i.e., the noiseless version of the MSV. Again
by the assumption on the noise power, for any column of D
we have,

lsupp(d;)\supp(y)| < |supp(d;)\supp(y)| + e.

Now, if any ¢ ¢ S satisfies (4), it implies
|supp(d;)\supp(y)| < 2e, which violates the assumption
that the dictionary is (k, 2e)-disjunct. Therefore, thresholding
recovers exactly the support of x. [ ]
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